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ABSTRACT 

 

Free spanning pipeline is considered a threat towards pipeline that needs to be 

inspected for its reliability. The main purpose of this research is to investigate the 

structural integrity of a free spanning pipeline. Finite Element Simulation method is 

used. Different length of free spanning pipeline will act under different loading 

(pressure) for the simulation of stress distribution towards the pipeline. The result the 

free spanning simulation will lead to the result for monitoring or repairing work 

towards the free span. At the end of this research, finite element modelling (FEM) 

simulation is proven to be a reliable tool for free spanning pipeline assessment.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Project Background 

Generally, offshore pipelines are used to transport oil and gas. Being a medium of 

transportation for oil and gas product, pipelines are also used for several other 

purposes in the development of offshore resources. Bai (2001) states the roles of 

offshore pipelines as:  

 

 Exporting pipelines  

 Flow lines to transfer product from a platform to export lines  

 Water injection or chemical injection flow lines  

 Flow lines to transfer product between platforms 

The ever increasing offshore works due to popular demand call for further simulation 

to the use of offshore pipelines. In line with that, pipeline monitoring and 

maintenance activities work vigorously forming integrity management. Integrity 

management serves as an important part in order to ensure pipeline continuous 

functionality as pipeline carries a vital role in the transport of energy and impact 

towards environment in case of incidents and threat. The examples of threats to 

pipeline are internal and external corrosion, free span, erosion, on-bottom stability as 

well as external damage. 

 

Today, offshore pipelines have significant role in the development of oil and gas 

industry. In this industry, most pipelines are laid on seabed by various methods. For 

example embedded in a trench that is a buried method or laid on uneven seabed, an 

unburied method. Construction of unburied pipeline is the most common method due 

to its rapid and economic performance. However, this method exposed the pipelines 

to several lengths of free spanning through its service life and this may threaten the 

pipelines safety.  
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Figure 1: Free Spanning Pipeline 

Free span is defined as the gap between the pipe and the supporting seabed. Based on 

Figure 1, the free span length is noted as Ls while e is the distance between bottom of 

the pipe and seabed. Bakhtiary et al. (2007) mentioned that free spanning in offshore 

pipelines mainly occurs as a result of uneven seabed topography as well as local 

scouring due to turbulence by flow and instability. Thus, it can be safely concluded 

that free spanning existence for unburied pipeline is completely predictable.  

Thus, this research presents the reliability of free spanning pipeline by using Finite 

Element Modelling (FEM). In this research, the free span that requires monitoring or 

repairing work will be distinguished.  

 

1.2 Problem Statement 

In a pipeline, the number of free span occurring varies with length of pipeline. In 

most cases, number of free span is high when the length of pipeline is longer. As the 

free span occurring is big in number, the identification of free spanning pipeline that 

requires rectification becomes harder. As the presence of free span along the length 

of pipeline may result in excessive displacement and bending or vibration of the 

pipeline section, the identification process must be done to avoid the situation from 

worsen.  

Thus, an assessment of free spanning pipeline is crucial in order to ensure the 

reliability of these pipelines. In current practice, the DNV RP F109 Free Spanning 

Pipeline serves as a guideline of assessments of free spans subjected to combined 

wave and current loading. However, numerical method analysis is also believed as a 

reliable approach to simulate the pipeline reliability. Thus, FEM is adopted as an 

approach to achieve the objective.  
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1.3 Scope of Study  

The scope of this research paper is to assess the integrity of free spanning pipeline by 

using FEM. A case study for a gas pipeline in east coast area of Peninsular Malaysia 

is selected as a verification case study. For obvious reason, like that of complete data 

availability, the aforementioned pipeline is chosen. The gas pipeline is named 

Pipeline X throughout this whole research.  

The pipelines are drawn using Computer Aided Three-dimensional Interactive 

Application V5 P3 (CATIA). Five different model off various free span length are 

drawn. The entire range of computer simulation however, is performed using ANSYS 

Workbench 14.0. The untrenched, simply supported pipelines are then subjected to 

various pressure. The free spanning pipeline simulation will result in the stress 

distribution of the free span under different pressure.  

 

1.4 Objectives of Study 

The primary aim of this research is to perform a computer-based simulation 

assessment on free spanning pipeline, subjected to five different internal pressure. 

Free spanning pipelines are modelled and simulated by using Finite Element 

Modelling (FEM) and later described in this report.  

To complement the latter, the second objective is to identify the free span that 

require monitoring and decision for rectification work. The differences are made 

based on the result of simulation itself, together with the support of information from 

DNV RP F109 Free Spanning Pipelines.  

 

1.5 Relevancy & Feasibility  

This research suggests a method to address free spanning pipeline assessment for its 

reliability. The method may provide an insight into the identification of free spans 

with regards to differing pipeline length, soil characteristics and length of free span. 

The author then appropriately infers this to deem the project as industrially relevant.  
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As for the time basis, the author concludes that the project is progressing as planned 

although there were slight hiccups along the way, the project is completed as 

scheduled.  
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter encompasses a comprehensive review of key elements and concepts 

that is crucial in gaining a sound grasp of this project. These terms can be abstracted 

from the project theme – Free spanning pipelines, In line oscillation and Cross flow 

oscillation. 

 

2.1 Free Spanning Pipelines and its Causes 

Free spanning pipelines are one of the important criteria during design or operation 

stage of submarine pipelines. In order to ensure a safe operation of offshore product 

during installation stage, the free span length shall be first determined and 

maintained within its allowable length. The many types of free spanning condition is 

as shown in Figure 2. Various situation of free spanning pipelines are due to the 

pipeline location itself and the behaviour of current in the water. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Type of Free Span.  
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Free spanning can occur when the contact between pipeline and seabed is lost over 

an appreciable distance on a rough seabed (Guo et al., 2014). A few researches made 

beforehand by Bakhtiary et al. (2007) and Mehdi et al. (2012) agree that the reasons 

of the existence of free spans in subsea pipelines are due to the seabed irregularity 

and by scouring phenomena existing around the installed non-buried pipeline. The 

aforementioned statement is then supported by an established code that is widely 

used by pipeline engineers, DNV-RP-F105 Free Spanning Pipelines, as it mentioned 

that free span can be caused by seabed unevenness, change of seabed topology, 

artificial support as well as strudel scours. 

 

 

Figure 3: Ideal VIV Model for Free Spanning Pipeline.  

From: Koushan, K. (2009) Vortex Induced Vibrations of Free Span Pipelines. 
 

Vortex induced vibration (VIV) that is caused by steady current is recognized to be 

one of major sources for dynamic loads in free spanning pipelines. As the free span 

length grows larger that the allowable limit, the free span is most likely to experience 

VIV (Choi, 2000). Figure 3 shows a typical VIV of free spanning pipeline that 

illustrates flow and motion that acts on the pipeline. The flow of wave and current 

around a pipeline free span results in the generation of sheet vortices in the wave. 

These vortices are shed alternately from the upper and lower part of the pipe 

resulting in an oscillatory force being exerted on the free span. Resonance may be 

reached when the frequency of vortex shedding approaches the condition when the 

frequency of shedding approaches the natural frequency of the pipeline span. Under 

resonant condition, sustained oscillations can be excited, and the pipeline will 

oscillate at a frequency (Guo et al., 2014). The resulting vibration may threaten 

pipeline integrity and this might lead to fatigue failure. Therefore, free spans and 

fatigue due to vortex induced vibrations (VIV) is an important design aspect in 

pipeline engineering.  
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VIV takes place as the flow of current comes in all direction around the pipeline. 

According to Beckmann et al. (1991), at lower flow velocities, vortex shedding is 

symmetrical, i.e. vortices are shed simultaneously from both sides of the pipe. While 

at higher velocities, vortex shedding is asymmetrical, i.e. a vortex is shed from one 

side of the pipeline followed by a vortex shed from the other side in an alternating 

pattern. Symmetrical shedding causes the pipeline to vibrate in line with flow 

direction. While asymmetrical shedding, however, causes two components of 

vibration. Referring to Figure 2, the two components are in line and cross flow 

motion. In layman term, the in line motion refers to the motion that is in the direction 

of the flow while cross flow motion is perpendicular to the flow. The in line motion 

exists in the similar direction with every vortex, though the cross line motion 

alternates direction. Inline excitation is at a frequency twice that of cross flow 

excitation and has a smaller motion amplitude and stress. Guo et al. (2005) studies 

that in line oscillations are excited at flow velocities lower than critical velocities for 

cross flow motion. The severe motion in the cross flow direction causes a high 

degree of potential to be more dangerous than in in line direction. This situation is 

due to the amplitudes of response in earlier mentioned motion are larger than those 

associated with in line motion. However, these oscillations occur at much larger 

velocities than in line oscillations and are not normally governing. 

A free span failure case recorded at the subsea pipelines in the Cook Inlet in South 

Alaska experienced fourteen failures due to VIV between 1965 and 1976. While in 

another case at East China Sea, Ping Hu pipeline failed at two locations during the 

autumn in 2000 due to VIV (Fyrileiv et al., 2005). These cases are the most 

distinctive evidences to show how severe free span might affect pipelines. However, 

the expenses related to seabed correction and free span rectification would incur 

substantial costs thus making these projects considerable. Therefore it is highly 

relevant to investigate in depth whether such intervention work is necessary.  
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2.2 Offshore Pipeline Design Code 

DNV RP F109 Free Spanning Pipeline is a recommended practice to account for 

technical research for free span problems. This guideline also provide design 

methodology as well as acceptance criteria for fatigue, thus making it possible to 

select the cost effective methods in design and operational phase. Pipeline 

deflections and natural frequencies for both in line and cross flow motion can be 

determined for the effective span length calculation by using the guideline. 

According to Elsayed et al. (2012), DNV suggested three approaches for assessment; 

dynamic lateral stability analysis, generalized lateral stability method and the 

absolute lateral static stability method. Any of these approaches are highly 

recommended to be used according to environmental and pipeline condition. Figure 

4 shows a flow chart for the design checks for a free span according to this code. In 

current practice, pipeline engineers obey to this flow chart in order to assist free 

spanning severity on offshore pipelines. 

 

Figure 4: Free Span Assessment Flowchart based on DNV RPF109 Free Spanning Pipelines 

 

2.3 Assessment of Free Spanning Pipelines 

The number of free spans in a pipeline varies from none to hundreds and could reach 

thousands depending on the pipeline’s length, seabed and ocean condition. The 

existence of such amount of free span on offshore pipeline requires close monitoring 
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by pipeline engineers especially to the free spans that has exceeded the maximum 

allowable free span length calculated. FEM is foreseen to be a reliable tool to assist 

such assessment. Generally, FEM adopts the idea of dividing a large body into small 

parts. These small parts are called element, and are connected at predefined points 

called nodes. In this research, free span is the element and the pipeline is labelled as 

the large body.  

A research done by Elsayed et al. (2012), adopted finite element model approach for 

the checking of free spanning condition in subsea pipelines subjected to 

hydrodynamic forces resulting from wave and currents with pipe soil interaction. 

FEM modelling was basically simulated using finite element package, ANSYS. The 

simulation allowed friction forces as well as soil stiffness to be involved in the 

analysis. The pipeline is modelled as a rigid structure while the seabed is considered 

as a flat non-deformable area. ANSYS contact elements have been used to model the 

contact between the two. Meanwhile, the seabed soil stiffness is used to state the 

contact stiffness between seabed and pipeline. Apart from that, a number of elements 

used for the modelling of the pipe-soil interaction and contact between pipeline and 

seabed. The pipeline stress is then calculated using Von Mises Stresses equation, 

following the recommendation by DNV RP F109 Free Spanning Pipelines.  

In another research done, it is concluded that a number of parameters contributes to 

the vortex shedding induced response of the pipe. Namely, pipe soil interaction, 

turbulence in current and wave flow, seabed vicinity, pipeline sagging, flow inside 

the pipeline and also dynamic coupling between adjacent free span. Various 

investigations handled beforehand regarding each parameter in order to understand 

free spanning pipeline in depth. These parameters are handful in estimating the 

pipeline fatigue life. The quality of estimation of pipeline design life for a specific 

free span at a specific location greatly depend on the quality input, specifically the 

analysis tool itself. Many research programmes aimed in predicting the VIV 

response correctly (Yttervik et al. 2003). In an investigation by Ytterrvik et al. 

(2003), the fatigue life design estimation focuses on the VIV of free span by using 

the current speed and direction. The findings implies that as the free span length is 

reduced, the flow speed that is required to create VIV increases but the number of 

occurrences of VIV (for a given distribution of flow speed) decreases. 

Simultaneously, when VIV is created, the stresses that occur, also increases. 
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Therefore, it is difficult to estimate the fatigue life early since free span length 

changes with current condition. The researchers then concluded that a detailed 

analyses, using a pipeline model is necessary to clearly define the fatigue life of a 

free spanning pipeline. 

A related research by Fyriliev et al. (2003), assessed long free spanning pipelines for 

its VIV induced fatigue condition. By fully using the design methodology of DNV 

RP F109 Free Spanning Pipelines, VIV is identified as a displacement controlled 

load due to its probability of span length change with the vibration amplitude. The 

code applies response models to predict the amplitude of vibration due to vortex 

shedding. Thus a comparison between the response model and FATFREE software 

is done to identify the best method to estimate its fatigue life. However, the 

computational procedure is revealed to be not very sensitive. 

Very irregular seabed condition results in large number of free spans. The 

measurement for the severity of free span is by the length to the diameter ratio (L/D).  

Current practice for free span design is relevant for L/D ratios up to approximately 

120 (Nielsen et al., 2002). For the spans below this value, the stiffness of pipeline is 

significant to the beam effect. And as for free spans that has L/D ratio much larger 

than 200 are dominated by cable effect which contributes significantly to the 

stiffness.  

DNV RP F109 proved that research made by Nielsen et al. (2002) is correct and the 

method used is highly reliable. On the other hand, the response classification of L/D 

ratio according to DNV RPF109 is as shown in Table 1.  

 

Table 1: Free Span Response Classification 

L/D Response description 

L/D < 30 Very little dynamic amplification 

Normally not required to perform comprehensive fatigue design 

check. Insignificant dynamic response from environmental loads 

expected and unlikely to experience VIV.  
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30 < L/D < 100 Response dominated by beam behaviour 

Typical span length for operating conditions. Natural frequencies 

sensitive to boundary conditions (and effective axial force) 

 

 

100 < L/D < 200 Response dominated by combined beam and cable behaviour 

Relevant for free spans at uneven seabed in temporary conditions. 

Natural frequencies sensitive to boundary conditions, effective 

axial force (including initial deflection, geometric stiffness) and 

pipe “feed in”. 

L/D > 200 Response dominated by cable behaviour 

Relevant for small diameter pipes in temporary conditions. 

Natural frequencies governed by deflected shape and effective 

axial force.  

 

Table 2 summarized the literature review as discussed in the earlier part of this 

section. In a nutshell, DNV RP F109 Assessment of Free Spanning Pipeline shall be 

the first reference to be used in assessing free spans. While Nielsen et al, (2002) 

agreed to the response classification as written by DNV RP F109. This shows that 

free span carries different characteristics according to its length. Meanwhile, Elsayed 

et al, (2012) used the same tool as the author that is FEM and proven that the 

simulation values are within the target value. The result received is then compared 

with hand computation and shows a positive remark. In another research conducted 

by Choi (2000), it is concluded that axial load of pipeline affects the natural 

frequency and allowable span length at the same time.  

It is also mentioned that the free span analysis may be based on approximate 

response expressions or a refined FEM approach depending on the free span 

classification and response type (DNV RP F109, 2006). Thus, it is safe to say that 

FEM is believed to be a reliable approach as DNV RP F109 also suggests the usage 

of this method. 
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Table 2: Summary of Literature Review 

No Author Title Methodology Result 

1. Det Norske 

Veritas  

DNV RP F109 

Assessment of Free 

Spanning Pipelines 

Estimating the 

magnitude of IL & CF 

oscillations 

Recommended practice 

by pipeline engineers 

2. Nielsen et al.  VIV Response of 

Long Free Spanning 

Pipelines 

Model Test – setting 

up model by adding 

support. Observe the 

effect of free span 

length under VIV. 

a)Short span – beam 

dominated behavior 

b)Intermediate spans – 

semi-cable behavior 

c)Long spans – cable 

dominated behavior  

3. Elsayed et al.  A Finite Element 

Model for Subsea 

Pipeline Stability and 

Free Span Screening 

a)FEM simulation by 

using ANSYS 

b)Result comparison 

with pipeline lateral 

displacement 

calculation using Von 

Mises Stress equation 

a)Computed 

displacement by using 

ANSYS are within 

target values 

b)Proposed approach is 

a reliable tool 

4. Choi, H.S.  Free Spanning 

Analysis of Offshore 

Pipelines 

Closed form solution 

considering beam-

column equation 

considering tension 

and compression 

forces 

a)Axial load of 

pipeline affects the 

natural frequency and 

allowable span length 

at the same time. 

b)Beam column 

equation are used to 

find natural frequency 
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CHAPTER 3 

METHODOLOY 

 

This section elaborates a discussion on the means used in performing the research, 

from how information was grasped till how the project was structured and executed.  

 

3.1 Research Tool 

Internet resources. In the early stage of this research, a sound study on the key 

component such as the causes of free spanning pipelines is conducted. 

Simultaneously, sourcing for literature prevalent to free spanning pipeline is carried 

out. The access to UTP’s online subscribed resources via OpenAthens other than 

material from Google Scholar is maximally used in order to perform a concise study 

Computer Aided Design (CAD) and Simulation. Two software are used in this 

research. The software namely Computer Aided Three-dimensional Interactive 

Application V5 P3 (CATIA) played a crucial role in modelling pipeline model while 

ANSYS Workbench 14.0 is primarily used for simulation of free spanning pipeline as 

a while.   

of pipeline. 
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Conversing with lecturers and seniors. Some parts of the research was performed via 

word of mouth, consultation with lecturers and chatter with post graduate students in 

order to make up for the short coming of the small number of relevant documented 

materials made available.  

 

3.2 Research Methodology 

The research is broken down into three major sections. The first part kick off as a 

preparatory stage which provides great emphasis on data collection and 

familiarization of literature review, alongside with ANSYS Workbench 14.0 software 

training.   

At the initiation phase, all stresses and loads towards the pipeline is identified since 

these factors influence the failure of a free spanning pipeline. Concurrently, the 

natural frequency of the free spanning pipeline will also be determined. Then, the 

natural frequency will deduce to the maximum allowable free span value of the 

pipeline. From the value, all free spans that exceed the allowable limit will be 

identified. Five different span length are selected and then further tested.  

The free spanning pipelines modelled using finite element modelling allow various 

range of analysis. Finite element modelling involves variety model shapes and 

material behaviour. Thus, ANSYS allow its users to simulate the critical area and 

deforming surfaces. Free spanning pipeline modelling includes several stages before 

the analysis can be executed. The stages involved are as stated in Figure 5. 
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Figure 5: Generic Project Methodology/ Flow with Key Milestones 

 

 

 

3.3 Research Flow 

Figure 6 depicts the flow of this research according to the author planning.  

 

 

 

 

 

 

Preparatory 
Stage 

• Research study and literature review 

• Data acquisition (environmental data, pipeline data) 

• ANSYS and CATIA training 

• Milestone 1: Complete literature review, ANSYS and CATIA 
training, acquire data 

Modelling 
(ANSYS) 

• Calculation of Maximum Allowable Free Span 

• Design the free spanning pipeline model by using CATIA 

• Run the simulation by meshing and applying finite element 
modelling 

• Milestone 2: Simulate free span model using ANSYS by FEM 
approach 

Perform 
Stress 

Analysis  

• Thorough analysis on the simulated model  

• Stress and bending analysis towards all model 

• Milestone 3: Succesfully assess free span  

Results 
interpretation  

• Compare and contrast the result findings 

• Milestone 4: Present the analysed data in useful way. Redefine 
design based on comparison. 

START 

Research and study 

Deliverables 

 Causes of free 

spanning  

 Previous FEM on 

pipeline spanning 
Maximum allowable free span 

(MAFS) calculation 

Identify all free span 

> MAFS  
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Figure 6: Flow chart of research 

3.3.1 Gathering Pipeline Properties 

A gas lift pipeline is adopted to be the subject for this research. Throughout this 

report, the pipeline is named Pipeline X. Located in the east coast area of Peninsular 

Malaysia, Pipeline X is used as a verification case study. Table 3 shows the pipeline 

data.  

Table 3: Pipeline Operating Data 

Description Unit Pipeline X 

Outside Diameter mm 168.3 

Deliverables 

 

Free Span Modelling 

 Free Spanning at 

different length 

 Application of FEM 

to the free span 
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Length km 7.1 

Pipeline Wall Thickness mm 9.5 

Service Gas lift 

Design Pressure MPa 13.8 

Operating Pressure MPa 7.7 

Design Temperature °C 60 

Operating Temperature °C 37 

 

3.3.2 Calculation of Maximum Allowable Free Span (MAFS) 

One of the key drivers in this research is a proper definition of free span length limit 

which will then be used in the simulation. The maximum allowable free span length 

is calculated in order to draft a limit before undergoing the latest underwater 

inspection report. The following are the steps used to calculate the maximum 

allowable span length for Pipeline X. 

Step 1: The design current is determined (100 year near bottom perpendicular to the 

pipeline) 

Step 2: The effective unit mass of the pipeline is calculated. 

Step 3: Reynolds Number is calculated. 

Step 4: Stability parameter is calculated. 

Step 5: The reduced velocity for in-line motion is determined based on stability 

parameter calculated. 

Step 6: The reduced velocity for cross flow motion is determined based on Reynolds 

Number calculated. 

Step 7: Based on the terrain and conditions involved, the type of free span end 

conditions is determined and the end condition constant is calculated. 

Step 8: The critical span length for both in line and cross flow motion is calculated. 

It is noted that table 4,5 and 6 contains the relevant information that aided the 

calculation while calculation for critical length is shown afterwards. 

Table 4: Pipeline Data 

Description Symbol Unit Value 

Pipe Outer Diameter d0 mm 168.3 

Wall Thickness  t mm 8 

Pipe Material Grade  - - API 5L X52 



18 
 

Corrosion Coating Material - - CTE 

Corrosion Coating Thickness tc mm 5 

Corrosion Coating Density ρc kg/m
3 

1400 

Concrete Coating Thickness tcc mm 25.4 

Concrete Coating Density ρc kg/m
3 

3044 

Product Density  ρpr kg/m
3 

50 
 

Table 5: Environmental Data 

Description Symbol Unit Pipeline X 

Seawater Density ρsw kg/m
3 

1025 

Minimum Water Depth d m 74.2 

Seawater Ambient 

Temperature 

Tamb deg 25 

Current velocity   Uc m/s 0.53 

Current angle to pipe axis Θc deg 90 

 

Table 6: Other data 

Description Symbol Unit Pipeline X 

Young’s Modulus E MPa 207000 

Seawater Kinematic Viscosity ν m
2
/s 9.6E-07 

Constant for fixed-pinned ends Ce - 15.4 

 

 

 

 

 

 

 

 

 

Calculation for Maximum Allowable Span Length for Pipeline X.  

 

Step 1: Effective Mass, Me 

Me= Mp + Mc  + Ma 

Mp= unit mass of pipe including coatings (kg/m) 

Mc= unit mass of content (kg/m) 

Ma= added unit mass (kg/m) 
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wP = 0.02464 t(d0-t) 

wp = unit mass of steel pipe (kg/m) 

  t = pipe wall thickness (mm) 

  d0 = outer diameter (mm) 

  wcc = unit mass of concrete coating (kg/m) 

  wpc = unit mass of pipe coating (kg/m) 

wP = 0.02464 (8)(168.3-8) = 31.6 kg/m 

wcc = 0.02464 (25.4) (193.7-25.4) = 105.33 kg/m 

wpc = 0.02464 (5) (198.7-5) = 23.86 kg/m 

Mp = (31.6+105.33+23.86) kg/m = 160.79 kg/m 

Mc =  
  (  )

 

 
(   ) = 

  (       ) 

 
(         )= 18.67 kg/m 

Ma = 
  (  )

 

 
(   ) = 

  (       ) 

 
(       )= 1.11 kg/m 

Me = (160.79+18.67+1.11)kg/m = 180.57 kg/m 

 

Step 2: Stability Parameter, Ks 

    
     

(   )(  
 )

  

δ = total modal damping ratio (take 0.125) 

Ks =  
( )(      )(     )

(    )      ) 
 = 1.56 

 

 

 

 

Step 3: Reynolds Number, Re 

Re = 
   

  
 

Vk = kinematic viscosity of fluid (9.6 x 10
-7

 m
2
/s for seawater) 

Re = 
(    )(      )

         
 = 9.2915 × 10

4 

 

Step 4: Reduced Velocity (from DNV 1981, Appendix A, Figure A.5) 
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For in-line motion, graph in Figure 7 is used.  

 

Figure 7: Reduced Velocity vs Reynolds Number 

 

Since Ks=1.56, Vr=2.2 m/s 

While for cross-flow motion, graph in Figure 8 is used.  

 

Figure 8: Reduced Velocity vs Stability Parameter 

 

Since Re=9.292 × 10
4
, Vr= 4.94 m/s 

Step 5: Critical span length  

Lc = √
       √

  

  

  
 

 

I = 
 

  
 (  

    
 ) = 

 

  
 (             ) =          m4 
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Lc= 
√(    )(   )(      )√

(         )(         )

      

    
  = 14m 

 

From the calculation, it is concluded that the maximum allowable free span length of 

Pipeline X is 14 m. Thus, 14 m is the critical length for the free span of this pipeline. 

Screening process are conducted to the latest underwater inspection report of this 

pipeline. Based on the latest underwater inspection report of Pipeline X, a total of 36 

free span that exceeded 14 m was found. From the values, the author narrowed down 

to five span lengths to be drawn and simulated by using aforementioned software, 

CATIA and ANSYS.  The five span lengths are 36 m, 25 m, 20m, 14 m and 10 m.  

 

3.3.3 Modelling and Simulation Approach  

For the purpose of this research, Computer Aided Three-dimensional Interactive 

Application (CATIA) is used to draw the pipeline model according to desired 

dimension. CATIA is a relevant design software that is universally used as it 

facilitates collaborative engineering disciplines especially in shape design, 

mechanical and system engineering. Five model off the same pipeline size and 

criteria with different span lengths are drawn. The models are of 36 m, 25 m, 20m, 

14 m and 10 m in length. Figure 9 depicts a sample of free spanning pipeline of 10 m 

drawn using CATIA.  
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Figure 9: Free Spanning Pipeline in CATIA 

 

While ANSYS Workbench 14.0 is used extensively for the finite element modelling 

simulation. In ANSYS, the static structural module is used herein. Figure 10 shows 

the imported drawing that is ready to be simulated in ANSYS.  

 

Figure 10: Free Spanning Pipeline in ANSYS 

 

Sequentially, meshing module is used. This aims in aiding result evaluation and 

accuracy of finite element solution. Finer mesh produced better result. Thus, the 

author applied fine meshing to all models. Figure 11 shows a sample of fine meshing 

product.  

 

Figure 11: Fine meshing 
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For the simulation to be performed, several loads are applied on to the pipeline. The 

environmental load applied is standard earth gravity that is 9.81 m/s
2
.  The boundary 

condition of these pipeline is made fixed-fixed end at the edge of the pipe. The 

support functions to show the connection to other pipeline so the model is fixed in 

moment, displacement and shear at the edge. And lastly, the internal loading is 

applied to represent the internal pressure subjected to pipeline. The magnitude of 

load is set up by building up the internal pressure from 5 MPa, 7.7 MPa, 9.5 MPa, 

13.8 MPa and 15 MPa. It is noted that 7.7 MPa is the operating pressure for Pipeline 

X while 13.8 MPa is the design pressure. Five simulations are carried out to five 

different span length namely 36 m, 25 m, 20m, 14 m and 10 m to verify the effect of 

different loads to respective span length.  

 

3.3.4 Simulation Expected Outcome 

The expected results to be produced from the finite element modelling are the 

stresses when the pipeline is subjected to building up internal pressure, which is 5 

MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa. As these pressure are acted upon 

five span length, which is 36 m, 25 m, 20m, 14 m and 10 m, the stresses as a result 

of internal pressure towards various span length are expected.  

In an elastic body that is subject to a system of loads in 3 dimensions, a complex 3 

dimensional system of stresses is developed. That is, at any point within the body 

there are stresses acting in different directions, and the direction and magnitude of 

stresses changes from point to point. The Von Mises criterion is a formula for 

calculating whether the stress combination at a given point will cause failure.  

   (
 

 
[(     )

  (     )
  (     )

 ])
 
  

Von mises stress was used in the research since it allows any arbiter three-

dimensional stress state to be represented as a single positive stress value. Von Mises 

or equivalent stress is used to check whether the pipeline model would withstand the 

given load condition. It is expected that the pipeline model will fail, if the maximum 

value of Von Mises stress induced in the material is more than strength of the 

pipeline itself. 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

The results of this research that is included in this section gives high emphasis on the 

interpretation and discussion of the response of free spanning pipeline towards the 

internal pressure applied on it. Note that all simulation pictures may look similar, but 

each of it is off different span length.  

 

4.1 Simulated Free Spanning Pipeline, 36 m 
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The pictures shown below are the simulated free spanning pipeline, length 36 m. 

This span length is the longest identified from the underwater inspection report.  

 

Figure 12: Equivalent Stress at 36 meter 

 

Table 7 shows the simulated maximum equivalent stress of the 36 m free spanning 

pipeline after 5 MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa internal pressure are 

applied. The values taken are the maximum stresses of all simulation. 

 

Table 7: Simulated Stress Distribution for 36 m Free Spanning Pipeline 

Pressure (MPa) Stress (MPa) 

5.00E+06 1.39E+07 

7.70E+06 1.77E+07 

9.50E+06 2.04E+07 

1.38E+07 2.70E+07 

1.50E+07 2.90E+07 

 

 

While Figure 13 depicts the stress distribution of 36 m free spanning pipeline. It is 

identified that as the pressure building up, the stresses increases together. As this 

span length is the longest, it is noted that as the highest pressure is applied, the stress 

shoots up to 29 MPa.  
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Figure 13: Stress Distribution for 36 m Free Spanning Pipeline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Simulated Free Spanning Pipeline, 25 meter. 

 

The pictures shown below are the simulated free spanning pipeline, length 25 m.  
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Figure 14: Equivalent Stress at 25 meter 

 

Table 8 displays the simulated equivalent stress of the 25 m free spanning pipeline 

after 5 MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa internal pressure are applied.  

 

Table 8: Simulated Stress Distribution for 25 m Free Spanning Pipeline 

Pressure (MPa) Stress (MPa) 

5.00E+06 1.17E+07 

7.70E+06 1.51E+07 

9.50E+06 1.74E+07 

1.38E+07 2.07E+07 

1.50E+07 2.18E+07 

 

While Figure 15 depicts the stress distribution of 25 m free spanning pipeline. The 

same observation made in this free span. It is identified that as the pressure building 

up, the stresses increases as well.  
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Figure 15: Stress Distribution for 25 m Free Spanning Pipeline 

 

 

4.3 Simulated Free Spanning Pipeline, 20 m 

 

The pictures shown below are the simulated free spanning pipeline, length 20 m.  

 

Figure 16: Equivalent at 20 meter 

 

Table 9 shows the simulated equivalent stress of the 20 m free spanning pipeline 

after 5 MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa internal pressure are applied. 

Similarly to previous observation, as the pressure built up, the stress increases.  

Table 9: Simulated Stress Distribution for 20 m Free Spanning Pipeline 

Pressure (MPa)  Stress (MPa) 

5.00E+06 9.85E+06 
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While Figure 17 depicts the stress distribution of 20 m free spanning pipeline. The 

same observation made in this free span. It is identified that as the pressure building 

up, the stresses increases too.  

 

 

Figure 17: Stress Distribution for 20 m Free Spanning Pipeline 

 

4.4 Simulated Free Spanning Pipeline, 14 meter 

 

The pictures shown below are the simulated free spanning pipeline, length 14 m. 

Note that this is the critical span length as calculated in the earlier part of this report.  

 

 

Figure 18: Equivalent Stress at 14 meter 
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Table 10 shows the simulated equivalent stress of the 14 m free spanning pipeline 

after 5 MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa internal pressure are applied. 

 

 

Table 10: Simulated Stress Distribution for 14 m Free Spanning Pipeline 

Pressure (MPa)  Stress (MPa) 

5.00E+06 6.18E+06 

7.70E+06 8.95E+06 

9.50E+06 1.10E+07 

1.38E+07 1.59E+07 

1.50E+07 1.75E+07 

 

 

While Figure 19 depicts the stress distribution of 14 m free spanning pipeline. The 

same observation made in this free span. It is identified that as the pressure building 

up, the stresses increases too.  

 

 

Figure 19: Stress Distribution for 14 m Free Spanning Pipeline 
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4.5 Simulated Free Spanning Pipeline, 10 meter 

The pictures shown below are the simulated free spanning pipeline, length 10 m. 

This is  

 

 

Figure 20: Equivalent Stress at 10 meter 

 

Table 11 shows the simulated equivalent stress of the 10 m free spanning pipeline 

after 5 MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa internal pressure are applied. 

 

Table 11: Simulated Stress Distribution for 10 m Free Spanning Pipeline. 

Pressure (MPa)  Stress (MPa) 

5.00E+06 5.36E+06 

7.70E+06 7.09E+06 

9.50E+06 8.58E+06 

1.38E+07 1.14E+07 

1.50E+07 1.40E+07 

 

 

While Figure 21 depicts the stress distribution of 10 m free spanning pipeline. The 

same observation made in this free span. It is identified that as the pressure building 

up, the stresses increases too.  
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Figure 21: Stress Distribution for 10 m Free Spanning Pipeline 

 

4.6 Discussion 

 

Figure 22 depicts the graph of pressure versus stress distribution for all free spanning 

pipeline namely 10 m, 14 m, 20 m, 25 m and 36 m. From five simulation for 

pressure 5 MPa, 7.7 MPa, 9.5 MPa, 13.8 MPa and 15 MPa the highest resulted stress 

are selected and this graph is plotted. Note that the first line on the graph stated OP 

which is Maximum Allowable Operating Pressure (MAOP) that is 7.7 MPa while the 

second line indicates the limit of stresses shall be within, that is below 13.8 MPa, 

which is the design pressure.  

 

Figure 22: Pressure vs. Stress for all span length 
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Based on the graph, it is observed that similar trend is shown by the stress resulted 

by built up pressure for all five span length. The stresses increases when increasing 

loads are applied. The highlight of this observation would be to the stresses when 

operating and design pressure is experimented.  

When the MAOP which is 7.7 MPa is applied, it is observed that 25 m and 36 m 

span length has exceeded the design pressure of this pipeline. As the pressure built 

up to 9.5 MPa, the same behaviour is shown. Then, the design pressure is applied. It 

is grasped that the critical span length had experienced the stress beyond the design 

pressure of the pipeline. The same stresses are observed from 25 m and 36 m span 

length.  

To strengthen the aforementioned observation, the author adopted response 

classification of free spanning pipelines from DNV RP F105 Free Spanning Pipeline. 

Table 12 shows the response classification for free span is Pipeline X.  

 

Table 12: Response Description based on DNV RP F109 

 

Category 

Span Length/  

Pipe Outer 

Diameter (L/D) 

 

L/0.1987 m 

 

Response Description 

1 L/D < 30 L < 6 m Very little dynamic amplification  

 Normally not required for fatigue 

check 

 Unlikely to experience VIV 

2 30 < L/D < 100 6 m ≤ L < 20 m Response dominated by beam behaviour 

 Typical span length for operating 

condition 

3 100 < L/D < 200 20 m ≤ L < 40 m Response dominated by combined beam 

and cable behaviour 

4 L/D > 200 L ≥ 40 m  Response dominated by cable behaviour  

 Vigorous pipeline movement.  

  

It is observed that critical span length of this pipeline is categorized in category 2. 

While 25 m and 36 m are both in category 3. As described by DNV RP F109, span 

length in category 2 is typical span length for operating condition. The free span 

response is dominated by beam behaviour. It is concluded that the free span in this 

category does not require any further checking. Even though 14 m is the critical span 
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length for Pipeline X, it can still be considered safe for this pipeline. Using 14 m to 

be the limit for free span rectification will be too stringent as well.  

For span length in category 3, which is 25 m and 36 m, the free span response are 

dominated by combined beam and cable behaviour. These free spans are 

experiencing VIV and most likely to experience obvious movement. Thus, it is 

advisable for the free span in this category to undergo close monitoring and fatigue 

check before decision for rectification to be made.  
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CHAPTER 5 

CONCLUSION & RECOMMENDATION 

 

5.1 Conclusion 

In this research, the author presented extensive FEM simulation to aid free spanning 

pipeline assessment. Computer-based simulation by using ANSYS had aided in the 

FEM simulation for five span length model at different pressure. ANSYS simulated 

the pipeline and later produced the equivalent Von Mises stress of the defective 

pipeline.  

The analysis aforementioned in the results and discussion session investigates the 

stress distribution as a result from internal pressure applied. From the result, it is 

observed that stress distribution of free spanning pipeline increases with the building 

up pressure. The results for each model is then compared with DNV RP F109 Free 

Spanning Pipeline. From the comparison, it is concluded that the free span in 

category 3 require close monitoring and fatigue check before decision for 

rectification is made.  As free span could affect the integrity of the system, and 

perhaps even worse, may cause pipeline break, proper monitoring on free span in 

category 3 must be done.  

Rectifying all available may incur substantial cost. Thus, finite element method is 

well suited to assist in free span assessment as it affects relatively low cost and 

proven impactful.  

5.2 Suggested Future Works 

a) Simulation for fatigue check: Among the important steps before making 

decision whether a pipeline require rectification or not, is fatigue check. 

Fatigue check involves checking for pipeline cracking and when this 

checking is completed, decision for rectification could be made.  

b) Incorporating other parameter influencing free spanning pipeline: Other 

parameters and condition that involves in the occurrence of free spanning 

pipeline includes hydrodynamic loading, VIV, pipeline stiffening and many 

others. Since FEM is proven as a reliable tool, it is best to include other 

parameter for a more accurate result in the future.  
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