Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Simulation and Energy Analysis of Pre-Cooling Loop in LNG Processes

Zulqurnain, Syazwan Ifwat (2014) Simulation and Energy Analysis of Pre-Cooling Loop in LNG Processes. Universiti Teknologi PETRONAS. (Unpublished)

[img]
Preview
PDF
Download (842Kb) | Preview

Abstract

Natural gas is one type of energy source that play an important part in supplying energy to the world and known to be the cleanest fossil fuel energy due to facts that it produce lower emission of sulfur and carbon dioxide. In the 1960, the first LNG plant has been built and the liquefaction process for natural gas has been introduced. During this process natural gas will be cooled down to -162°C at atmospheric pressure and the volume of liquid is reduced by 600 times of its gaseous volume. Liquefaction of natural gas has been the cornerstone of the LNG business since the transportation of natural gas to remote place becomes more economical viable. Despite the huge advantages of liquefaction process, the amount of energy consumed in producing LNG still considerably high. In the past decade, important amount of work has been focused on the design of LNG process. The aim of those work mainly focus on optimizing various developed LNG process.. This stage represents 40% of the work in the liquefaction process and it is important to reduced energy consumed in this stage of the liquefaction process. Due to the rapidly changing market conditions, escalating equipment costs, scarcity of resources for owners, contractors and suppliers, marginal projects will be put on the back burner but will continue to be evaluated for improved economics in the future. This paper proposed conceptual design strategies for improving total project design concepts for pre-cooling stage for Linde-Hampson cycle with a lesser energy consumption in the process. In this modification achieved 0.8% increment in productivity and specific power is reduced by 14%. It also gives lower LMTD reading while changes in heat exchanger effectiveness by 0.002. Besides that, this model study also uses less amount of refrigerant to achieve target natural gas outlet temperature.

Item Type: Final Year Project
Academic Subject : Academic Department - Chemical Engineering - Separation Process
Subject: T Technology > TP Chemical technology
Divisions: Engineering > Chemical
Depositing User: Users 2053 not found.
Date Deposited: 26 Sep 2014 15:08
Last Modified: 25 Jan 2017 09:37
URI: http://utpedia.utp.edu.my/id/eprint/14109

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...