Statistical Process Control of Debutanizer Column

by

Jackie Koh

13825

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Chemical Engineering)

MAY 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Statistical Process Control of Debutanizer Column

by

Jackie Koh

13825

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Chemical Engineering)

Approved by,

(Nasser B M Ramli)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(JACKIE KOH)

ABSTRACT

Distillation process in distillation column is a challenging process as it is subjected to disturbances and interruptions that sometime cannot be controlled or predicted. The main concern in any distillation column or process is the quality of the main product produced. To control and monitor the quality of the main product also proves as a challenge. The right implementation of control strategies could help the distillation column to produce conforming product with desired quality. Therefore, Statistical Process Control (SPC) is introduced with the aim to identify the variations affecting the process, thus controlling and monitoring the quality of the end product of distillation column. The relationship between the product compositions and the process variables also being investigated using the statistical method. The debutanizer column at PETRONAS Penapisan Terengganu Sdn Bhd (PPTSB), an oil refinery plant will be the subject for this SPC research. The methodology to implement SPC is constructed and Individual Control Charts will be used to determine the state of the process. The finding of this project shows that the Manipulate Variables and Temperature Variable have the most significant relationship with the top product composition. The quality of the top product also affected by the changes made in the manipulated variables as shown on each of the individual. The findings are very helpful in suggesting what variables are crucial to be taken care of to maintain the quality of the product.

Keywords: Statistical Process Control, Debutanizer Column, Final Year Project

ACKNOWLEDGEMENTS

First and foremost, I would like to convey my uttermost appreciation to God for His blessing on myself especially on the perseverance and determination to complete the project.

Secondly, I would like to express my gratitude to Mr Nasser B M Ramli, my supervisor for his time, guidance and advices in completing this final year project.

I also would like to thank both the Final Year Project (FYP)'s coordinators. Without the excellent management and coordination from Dr Anis Suhaila Shuib and Dr Abrar Inayat for FYP I and II, this project will not complete as per said in the timeline.

Last but not least, my sincere gratitude to my colleagues who have helps me directly or indirectly in completing this project. In addition, thank you also to my family for their moral supports and encouragements.

TABLE OF CONTENTS

Abstract .									iii
Acknowledgements			•		•	•			iv
List of Figures		•	•			•	•	•	vii
List of Tables .									viii
CHAPTER 1:	INTR	ODUC	ΓΙΟΝ						1
	1.1	Backg	round of	f Study					1
	1.2	Proble	m State	ment					3
	1.3	Object	ives	•	•	•	•	•	3
	1.4	Scope	of Stud	y		•	•		4
	1.5	Releva	ancy of t	he Proj	ect	•	•	•	4
	1.6	Feasib	ility of t	he Proj	ect				4
CHAPTER 2:	LITE	RATUF	RE REV	IEW					5
	2.1	Statisti	ical Proc	cess Co	ntrol (S	PC)			5
	2.2	Contro	l Charts	5					8
	2.3	Debuta	anizer C	olumn	•				12
CHAPTER 3:	METH	IODOI	LOGY		•				14
	3.1	Resear	ch Meth	nodolog	y and P	Project A	Activitie	es	14
	3.2	Softwa	are Used	l					16
	3.3	Project	t Milest	one and	Gantt (Chart	•		16

CHAPTER 4:	4.1 Descriptive Statistic . <th>•</th> <th>•</th> <th>19</th>	•	•	19					
	4.1	Dese	criptive	Statistic	•				19
	4.2	Hist	ogram						22
	4.3	Stati	istical A	Analysis					24
CHAPTER 5:	CON	CLUS	SION &	RECO	MMEN	DATI	ONS.		43
REFERENCES									45
APPENDIX I			•	•	•	•	•		47
APPENDIX II	•		•	•	•	•	•		50
APPENDIX III			•	•	•	•	•		61
APPENDIX IV	•		•	•	•	•	•		73
APPENDIX V			•	•	•	•	•		104
APPENDIX VI									119

LIST OF FIGURES

Figure 1: X-bar and R Chart (adapted from Statistical Process Control, p.108, by	r
Oakland J. S., 2008)	11
Figure 2: Debutanizer column configuration (Mohamed Ramli et al., 2014)	13
Figure 3: Flowchart of the Methodology	15
Figure 4 : Histogram of the Compositions	22
Figure 5: Histogram of the Manipulated Variables	23
Figure 6: Scatter Plots of C3 vs MVs	26
Figure 7: Propane Individual Chart	40
Figure 8: i-Butane Individual Chart	40
Figure 9: n-Butane Individual Chart	41
Figure 10: i-Pentane Individual Chart	41
Figure 11: n-Pentane Individual Chart	42

LIST OF TABLES

Table 1: Factor determining from R the three sigma Control Limits for X and R chart
(adapted from Statistical Quality Control, p.562, by E. L. Grant and R. Leavenworth,
1964, New York: McGraw-Hill)11
Table 2: Debutanizer column specification (Mohamed Ramili et al., 2014)13
Table 3: List of Software Used 16
Table 4: Gantt Chart for FYP I 17
Table 5: Gantt Chart for FYP II
Table 6: Descriptive Statistic 20
Table 7: Summary of Pearson's Correlation between Top Product Compositions and
Manipulated Variables
Table 8: Summary of Pearson's Correlation between Top Product Compositions and
Temperature Variables
Table 9: Summary of Pearson's Correlation between Top Product Compositions and
Level Variables
Table 10: Summary of Pearson's Correlation between Top Product Compositions and
Flow Variables
Table 11: Summary of Pearson's Correlation between Top Product Compositions and
Pressure Variable
Table 12: Chi-Square Tests C3 and Feed Flow 34
Table 13: Friedman Test Ranks 34
Table 14: Friedman Test Statistics
Table 15: Summary of Spearman's Correlation between Top Product Compositions
and Manipulated Variable
Table 16: Summary of Spearman's Correlation between Top Product Compositions
and Temperature Variable
Table 17: Summary of Spearman's Correlation between Top Product Compositions
and Level Variables
Table 18: Summary of Spearman's Correlation between Top Product Compositions
and Flow Variables
Table 19: Summary of Spearman's Correlation between Top Product Compositions
and Pressure Variable

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Distillation is a separation process that separates a mixture based on differences in volatility of components in a boiling liquid mixture. The components in a liquid solution are separated by distillation with regards to the components distribution in vapor and liquid phase (Geankoplis, 2003). It is a physical separation process which is different than a chemical process that using chemical reactions. Distillation is used in many applications for separation but found its widest application in oil and gas and petrochemical industries. In petroleum/oil refineries for example, crude oil as the feedstock of the refineries is separate to various fractions to produce petroleum products and other using vapor-liquid separation process in a distillation column/tower.

The distillation column is definitely the most important component in distillation unit. The separation process between mixtures happens inside the distillation column and produces two type of product, which are the top product and bottom product. Most of the time, the top product will be the main product of the separation and the bottom product will undergo another separation to obtained another desired product. However, some of the aforementioned products will be recycled back into the column as reflux. This is where the distillation process in distillation column gets complicated.

Distillation process in refinery plant is usually operated in continuous steady state. In continuous steady state operation, the amount of product being distilled is normally will be the same with the amount of feed being added. This will be different if there are interruptions in the process such as changes in the feed, heat, pressure, or temperature. This will affect the separation process inside the distillation column.

It is not easy to maintain the stability in the process and definitely same goes to the quality of the product as it is correlated. The separation process in distillation column proves to be complicated and difficult to be handled as it is complex and highly unpredictive in nature. In addition, Mohamed Ramli, Hussain, Mohamed Jan, and Abdullah (2014) describes the PETRONAS Penapisan Terengganu Sdn Bhd (PPTSB) debutanizer column as "a challenging process as it deals with non-linearity, is highly multivariable process, involves a great deal of interaction between the variables, has lag in many of the control system, all of which makes it a difficult system to be modeled by linear techniques".

To maintain the stability and desired quality that meets the customers' requirement will be a challenging process. Therefore, the best control strategy is needed to be implemented in the distillation column to manage the stability and the product quality. The process stability can be managed by the process model or corrective actions by the controller. The product quality however proves to be the hardest to control.

Therefore, Statistical Process Control (SPC) is introduced with the aim to control and manage the product quality. Quality has a broad definitions but all of it comes to a single statement which is to meet the specification given by the customer. SPC was pioneered by Dr. Walter Shewhart in the early 1920s back in the Bell Laboratories. It was not until after the World War II, where W. Edwards Deming introduces the application of SPC to Japanese industry. From then on, SPC is widely used until now. SPC as a method of quality control which is widely used and most popular in manufacturing industries but it is not limited to only manufacturing processes.

In response to the challenges in controlling and monitoring the quality of the end product of the debutanizer column, SPC is introduced as a quality control strategy. In this study, the relationship between the process variables and the top product will be investigated. The effect of this relationship is then compared to the process in order to identify if it has an impact toward the process. The process can be either in control or out of control.

1.2 Problem Statement

A distillation column such as the debutanizer column is a challenging process to control especially the quality of its end product. Monitoring and controlling the quality of debutanizer column end product is a challenge especially for a control engineer. The variations in the distillation process are often the challenge that needed to be tackled as the variation is inversely proportional to the quality. By reducing the variation in the process, quality of the end product can be controlled within the specification limit. The relationship between the process variables and the top product compositions also needed to be analyzed to observe the effect of the process variables towards the quality of the product especially on the top product compositions.

Therefore, this project addresses several focuses:

- 1. Is there a relationship between each of the process variable and the top product compositions that eventually affecting the quality?
- 2. Is the relationship affecting the process?

1.3 Objectives

The objectives of the project are as follows:

- To implement Statistical Process Control techniques/tools to analyze the debutanizer column top product quality.
- To investigate the relationship between the process variables and the top product compositions.
- To analyze the variables using control chart.

1.4 Scope of study

This study will focus on the application of Statistical Process Control (SPC) on the Debutanizer Column top product quality. This includes the descriptive and inferential statistic, and the use of control charts. Real plant data of debutanizer column obtained from the PETRONAS Penapisan Terengganu Sdn. Bhd. (PPTSB) will be used as the analysis data inputs. The analyzing method is statistical method with the help of Statistical Packages for the Social Sciences (SPSS) software, prominent software for statistical analysis.

1.5 Relevancy of the Project

Quality of the product is the most important in any production industries. To maintain a certain quality of the product, controlling and monitoring the quality is crucial. Challenging distillation process contributes to the variability of the product quality in a debutanizer column. With the introduction of Statistical Process Control or SPC to control and monitor the main product quality, it is desired to improve the process capability and at the same time maintained the desired quality. The success of the SPC implementation during this project could benefits on future, real implementation to any distillation column.

1.6 Feasibility of the Project

The time allocated for the project is adequate to be completed in time. The area of the project covers in within the area of expect of the Supervisor which the author seeks guidance and help. The data information for the project was obtained and readily used as the case study for SPC application.

CHAPTER 2

LITERATURE REVIEW

2.1 Statistical Process Control (SPC)

Statistical Process Control (SPC) has been widely used since the World War II both in the United Kingdom (UK) and the United States of America (USA) but as industries converted to peacetime production, SPC lost its importance in the industries (Wetherill & Brown, 1991). However, when taught to the Japanese by W. E. Deming in the 1950s, they have applied it to their industry widely and prove that SPC saves money and attracts customers. Competition between industries becomes bigger since the application of SPC in Japan and it has forced UK and USA to introduce it to their industries in order to compete with the Japanese. Up until now, SPC have gained the interest in industries for quality control and improvements.

SPC in general is a quality control technique which uses the statistical method. Control Chart is commonly used as SPC tools to monitor and controlling the process. It helps to monitor and control the variations in the process that eventually affects the quality of the product. However, according to Oakland (2008), SPC is not really about statistics or control, it is about competitiveness. Quality, delivery and price are the three main issues that always revolve around the competition between industries. If the quality is right, the delivery and price performance will be competitive too (Oakland, 2008). Therefore, there is a relationship between the SPC methods and the result or quality of the desired product.

2.1.1 Statistics, Process, and Control

These three words (statistic, process, and control) are crucial in understanding SPC and using it effectively.

A process is where a set of inputs is transformed into outputs (Oakland, 2008). Normally, the quality of production is determined by the process that produces the output. By knowing on how the process works and what process factors affect the output, the quality can be improved and the source of the factors can be eliminated or reduced. According to Oakland (2008), each process may be analyzed by an examination of the inputs and outputs. The examination will determine the action necessary to improve quality. This can be done using SPC which gather and analyze data of the process to understand and improve it. Better improvement on the process can leads to better quality product. Although quality can be different in definition by the industries, but in general, it can be defined as meeting the requirements of the customers. Therefore, better quality product leads to the satisfaction of the customers.

On the other hand, statistics or statistical methods help to quantify variations. Fundamentally, SPC is about understanding and managing variation (Stapenhurst, 2013). Variations exist almost in every process not only in production or manufacturing. Variations in form of data can be analyzed using graphical analysis such as Cumulative Sum plot, Histogram, moving-average charts, etc as part of process capability analysis. With the help of quantitative methods and statistical tools to quantify variations, it can be eliminated or reduced by identifying the causes.

Last but not least, control. All processes can be monitored and brought 'under control' by gathering and using data (Oakland, 2008). The process' performance is measured and feedback is required for corrective action where necessary to make it 'in control'. But in every process, there are variations and this is where control comes in. Variations can be categories into two which are *common cause variation* and *special cause variation*. *Common cause variation* is non-assignable or random source of variation. It can be considered normal to the process as it is consistently act on the process. Stapenhurst (2013) added that the process is said to be in state of statistical control or in control although it was subjected to only *common cause variation*. The *special cause variation* is different as it is assignable and not always occurs or present in the process. When it occurs, the process is said to be not in a state of statistical

control or out of control. This can happen with *special cause variation*, or both *common cause variation* and *special cause variation*. It is important for SPC to monitor and manage the various so that it cannot affect the process and eventually affects the quality of the product.

2.1.2 The SPC and its Applications

Control chart is proven as the most prominent SPC tools when it comes to monitoring and controlling variations (Driesen, 2004). Control chart enable visual and statistical analysis of a data for practitioner in descriptive and inferential tools. As descriptive tool, the control chart help practitioner to see and visualize the patterns in production process, whereas as inferential tools, control chart established baseline and applying probability test to distinguish *special cause variations* from *common cause variations*. Control Chart will be further discussed later in this chapter.

The application of SPC has been used in many industries nowadays but not limited only to production or manufacturing industries. SPC also widely used in healthcare and at some point, in an organization for better performances.

Ipek, Ankara, and Ozdag (1999) wrote a technical note entitled 'The Application of Statistical Process Control' to show how control chart is used to find the causes of the quality changes of the concentrates and examines if the process is 'in control' or otherwise. The finding using control chart shows that the process is 'in control' but found also few causes that contribute to the poor quality of the concentrates. Ipek et al. then make a suggestion based on the findings using control chart to increase the quality.

Smith et al. (2013) shows that the SPC also can be used in monitoring and improving the outcomes of cardiac surgery performances. In his article entitle 'Use of Graphical Statistical Process Control Tools to Monitor and Improve Outcomes in Cardiac Surgery' concluded that the use of SPC tools such as the Cumulative Sum (CUSUM) charts, Exponentially Weighted Moving Average (EWMA) charts and Funnel Plots, facilitate near "real-time" performance monitoring by allowing early detection and intervention in altered performance. This proves that SPC is working effectively even though it was outside of the common use in manufacturing.

SPC is proven to be effective in monitoring, controlling and improving the quality of the desired outcome especially using the control chart and other statistical methods. Wheeler (2010) proclaimed that SPC is not a theory anymore as it has been proven time after time.

2.2 Control Charts

The heart of SPC is definitely the Control Charts. Ipek et al. (1999) describes the control charts as "the most effective means for controlling process control system via statistical methods in an economical and secure way". Control charts have been used to analyze and monitor the variations in the process effectively.

The pioneer control charts were developed by Shewhart back in the 1920s and known as Shewhart control charts. The Shewhart charts can be divided into two categories: Attributes Control Charts and Variable Control Charts (Christobek, 2001). When countable sets of measurement provided, the Attributes Control Charts is used. On the hand, if the set of measurement is from a continuous distribution or from a process, Variables Control Charts is used.

The most common Attributes Control Charts are the c-chart and p-chart. c-chart deals with the number of defects and nonconformities while, p-chart deals with fraction or proportions of the defects.

Since this project deals with variations in the process and having a continuous data, Variables Control Charts is most suitable to be used. Some examples of Variable Control Charts are Mean or X-bar chart, range or R chart and individuals chart.

The assumption on using control charts was that the data were normally distributed and independent (Ibrahim, 1996). Based on this assumption, the probability of falling in certain ranges for the data can be predicted. Therefore, the state of the process data, either 'in control' or 'out of control' can be defined from the control charts.

2.2.1 X-bar and R Chart

X-bar and R chart are common type of variable control chart and it is using a set or more of measured data. It is often used to monitor the data when samples are collected at regular intervals. Most of the time, X-bar and R charts is used together (Oakland, 2008).

X-bar or mean chart is simply a plot of the mean of the sample of data taken from the process. While R or range chart is a plot of range between samples.

To construct X-bar chart, the mean of the each samples must be known. The mean, \overline{X} is calculated using the formula below

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} \mathbf{X}i}{n}$$

Where

i = Item number

n = Total number of item in the sample

Since the central tendency of a process is unknown, the mean of the sample means can be used to estimate it. The mean of sample means, \overline{X} simply the average of all samples mean.

$$\overline{\overline{X}} = \frac{\sum_{j=1}^{m} \overline{X}j}{m}$$

Where

j = Sample number

m = Total number of sample

The range, R is the difference between the highest and the lowest numbers in the sample. R-bar, \overline{R} is the mean of the R of each sample.

$$R = Xmax - Xmin$$

$$\overline{R} = \frac{\sum_{j=1}^{m} Rj}{m}$$

Where

X_{max} = Highest number in the sample

X_{min} = Lowest number in the sample

The Control Limit is calculated for both charts. The \overline{X} will be the central line (CL) for X-bar chart, and \overline{R} will be the CL for r chart. The general equations for control limit are as follows:

Upper Control Limit for $\overline{X} = \overline{X} + A2\overline{R}$ Lower Control Limit for $\overline{X} = \overline{X} - A2\overline{R}$ Upper Control Limit for $R = D4\overline{R}$ Lower Control Limit for $R = D3\overline{R}$

The factors A2, D3 and D4 can be obtained from Table 1. Figure 1 show the common X-bar and R chart used together.

Table 1: Factor determining from \overline{R} the three sigma Control Limits for \overline{X} and R chart(adapted from Statistical Quality Control, p.562, by E. L. Grant and R. Leavenworth,1964, New York: McGraw-Hill)

NUMBER OF		Factors for	R CHART
	Factor for \overline{X} Chart A_2	LOWER CONTROL LIMIT D3	Upper Contro Limit D4
2	1.88	0	3.27
3	1.02	0	2.57
4	0.73	0	2.28
5	0.58	0	2.11
6	0.48	0	2.00
7	0.42	0.08	1.92
8	0.37	0.14	1.86
9	0.34	0.18	1.82
10	0.31	0.22	1.78
11	0.29	0.26	1.74
12	0.27	0.28	1.72
13	0.25	0.31	1.69
14	0.24	0.33	1.67
15	0.22	0.35	1.65
16	0.21	0.36	1.64
17	0.20	0.38	1.62
18	0.19	0.39	1.61
19	0.19	0.40	1.60
20	0.18	0.41	1.59

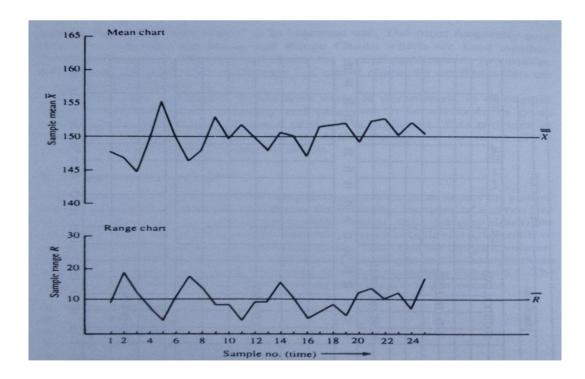
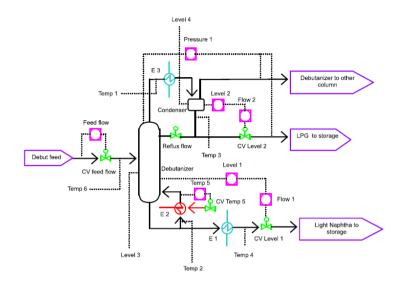


Figure 1: X-bar and R Chart (adapted from Statistical Process Control, p.108, by Oakland J. S., 2008)

2.2.2 Individuals Chart

Another control charts for variable can be used is the individuals chart. This chart is much more simpler than the Shewhart chart. Ussually, an individual chart is used for a one-time or one sample of data (Oakland, 2008). Only the individuals value are plotted instead of means of sample. This is different than the Shewhart chart which plots the means of sample.


The individual chart consist of centreline (CL), action lines such as Upper Action Line (UAL) and Lower Action Lines (LAL) or control limits such as Upper Control Line (UCL) and Lower Control Lines (LCL). The actions or control line can be placed at two or three standard deviations from the centreline.

Both the Shewhart charts and Individual chart can explain on the state of the process either it is in control or out of control. Based on the state of the process, the quality can be monitored and controlled.

Accoding to Oakland (2008), there were other control charts used for special applications to variable data. Run charts, Median, mid range and multi-vari charts, Moving mean, moving range and exponentially weighted moving average (EWMA) charts, control charts for standard deviation, are few of the examples of alternative control charts for variables.

2.3 Debutanizer Column

PETRONAS Penapisan Terengganu Sdn Bhd (PPTSB) debutanizer column is located at the Crude Distillation Unit where the crude oil as the main feedstock is transformed to petroleum products, liquefied petroleum gas (LPG), naphtha and low sulphur waxy residue. Mohamed Ramli et al. (2014) identified the debutanizer column as the main column which is responsible in producing the main product, LPG. The feed of the debutanizer is coming from the deethanizer column bottom product and the LPG is produced as the overhead product. The manipulated variables for the debutanizer column are the feed flow rate, reflux flow rate and reboiler flow rate, whereas the measure variables are the feed flow, debutanizer receiver overhead pressure (Pressure 1), LPG flow to storage (Flow 2), Light Naphtha flow to storage (Flow 1), debutanizer condenser level (Level 2), debutanizer level (Level 1) and reboiler outlet temperature to column. Figure 2 shows the debutanizer column configuration and **Table 2** shows the column specification obtained from Mohamed Ramli et al. technical paper.

Figure 2: Debutanizer column configuration (Mohamed Ramli et al., 2014) **Table 2:** Debutanizer column specification (Mohamed Ramili et al., 2014)

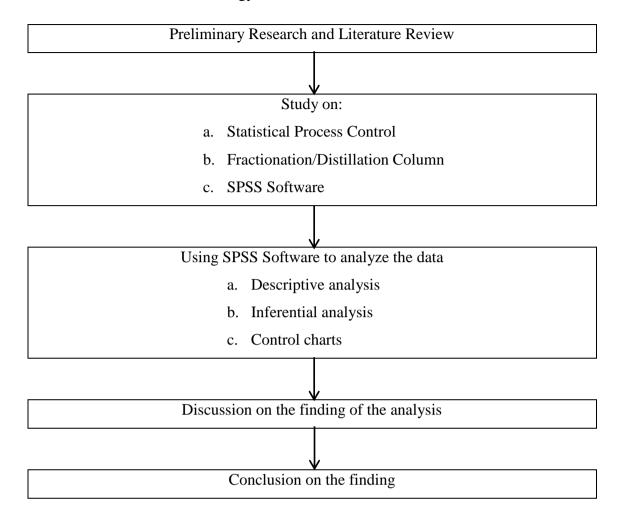
Number of tray of the column	35
Feed tray – stage number	23
Type of tray use	Valve
Column diameter	1.3 m
Column height	23.95 m
Condenser type	Partial
Feed mass flow rate	44106 kg/hr
Feed temperature	113°C
Feed pressure	823.8 kPa
Overhead vapor mass flow rate	11286 kg/hr
Overhead liquid mass flow rate	5040 kg/hr
Condenser pressure	823.8 kPa
Reboiler pressure	853.2 kPa

CHAPTER 3

METHODOLOGY

3.1 Research Methodology and Project Activities

The project started with preliminary research and literature reviews to grasp the full understanding on the Statistical Process Control (SPC) techniques. The research involves with the study of the SPC, the nature of distillation column, and the software that is used in the project.


From preliminary research and literature reviews, the project procedure/methodology is constructed to fit the project relevancy and feasibility. Figure 3 shows the flowchart of the project methodology in brief.

This project is using a real plant data consisting the process variables and compositions. These data were obtained from PETRONAS Penapisan Terengganu Sdn Bhd (PPTSB) debutanizer column as inputs for SPC analysis. The data will be analyzed in descriptive analysis, inferential analysis, and control charts with the aid of Microsoft Excel and Statistical Package for the Social Science (SPSS) software.

In descriptive analysis, the data will be analyzed to get the value for maximum and minimum, mean, standard error of mean, standard deviation, variance, skewness and kurtosis. The data distribution will be displayed using the histogram to describe it.

For inferential analysis, the multivariable data will be analyzed using various statistical methods in order to come out with an inference or conclusion from the data. Statistical methods such as Paired t-Test, Analysis of Variance (ANOVA), Correlations, Scatter plots, Chi-square test, and Regression will be used.

Last but not least, the last statistical method is the control charts. Individual chart is chosen as control chart as the data exhibits only one-time set of data.

The flowchart of the methodology is as shown below:

Figure 3: Flowchart of the Methodology

3.2 Software Used

Below are the software used in this project:

No	Software	Version	Descriptions
1	Microsoft Word	2010	Microsoft Word or Word is
			used in this project for
			documentation and report
			writing.
2	Microsoft Excel	2010	Microsoft Excel or Excel is
			used in this project for data
			analysis.
3	IBM SPSS Statistics	V22	SPSS is used in this project for
			statistical analysis.

Table 3: List of Software Used

3.3 Project Milestone and Gantt Chart

The project schedule as shown in Table 4 and Table 5 are in the form of gantt chart for better monitoring of the project progress and the activities. The schedule is feasible and structured to follow the timeline given to complete the project.

There are few milestones stated in the gantt chart to enable the project completed in time.

 Table 4: Gantt Chart for FYP I

No	Activities\Week	FYP I (Seme 1 2 3 4 5 6 7 8 9	mest	ter 7)											
INU	ACUVILIES WEEK	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Title Selection														
2	Preliminary Research Work and Preparing Proposal														
3	Submission of extended Proposal (Wed, 26th Feb)														
4	Proposal Defense (5-7th March)														
5	 Project Work/ Analysis Commence Familiarization on SPSS Software Descriptive Statistic Histograms Paired T-test ANOVA Preparing for Interim report 														•
6	Submission of Interim Report (Draft) (Wed, 9th April)														
7	Submission of Interim Report (Final) (Mon, 21st April)													-	
8	Project Work Continues														

Key milestone

Activities\Week Project Work/ Analysis Continues	1	2	3	1	-				FYP II (Semester 8)					
			Week 1 2 3 4 5 6 7 8 9 10 11 12	12	13	14								
- Correlations														
- Scatter Plots														
- Chi-square Test														
- Regression														
- Control Charts														
- Prepare for Progress Report														
Submission of Progress Report														
Project Work Continues														
- Discussion on the findings														
- Conclusion of the project														
- Preparing Poster & Dissertation														
Pre – SEDEX														
Submission of Dissertation (Softbound)														
Oral Presentation (Viva)													•	
Submission of Dissertation (Hardbound)													-	
	 Regression Control Charts Prepare for Progress Report Submission of Progress Report Project Work Continues Discussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre – SEDEX Submission of Dissertation (Softbound) Oral Presentation (Viva)	 Regression Control Charts Prepare for Progress Report Submission of Progress Report Project Work Continues Discussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre – SEDEX Submission of Dissertation (Softbound) Oral Presentation (Viva) Submission of Dissertation (Hardbound)	 Regression Control Charts Prepare for Progress Report Submission of Progress Report Project Work Continues Discussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre – SEDEX Submission of Dissertation (Softbound) Oral Presentation (Viva) Submission of Dissertation (Hardbound) 	- Regression- Control Charts- Prepare for Progress ReportSubmission of Progress ReportProject Work Continues- Discussion on the findings- Conclusion of the project- Preparing Poster & DissertationPre - SEDEXSubmission of Dissertation (Softbound)Oral Presentation (Viva)Submission of Dissertation (Hardbound)	- Regression - Control Charts - Prepare for Progress Report - Submission of Progress Report - Project Work Continues - - Discussion on the findings - - Conclusion of the project - - Preparing Poster & Dissertation - Pre - SEDEX - Submission of Dissertation (Viva) - Submission of Dissertation (Hardbound) -	- RegressionControl Charts- Prepare for Progress ReportISubmission of Progress ReportIProject Work ContinuesI- Discussion on the findingsI- Conclusion of the projectI- Preparing Poster & DissertationIPre – SEDEXISubmission of Dissertation (Softbound)IOral Presentation (Viva)ISubmission of Dissertation (Hardbound)III<	- RegressionControl Charts- Prepare for Progress ReportISubmission of Progress ReportIProject Work ContinuesI- Discussion on the findings- Conclusion of the project- Preparing Poster & DissertationPre – SEDEXSubmission of Dissertation (Softbound)Oral Presentation (Viva)Submission of Dissertation (Hardbound)	- Regression - Control Charts - Prepare for Progress Report <td>- Regression - Control Charts - Prepare for Progress Report I Submission of Progress Report I Project Work Continues I - Discussion on the findings I - Onclusion of the project I - Preparing Poster & Dissertation I Pre - SEDEX I Submission of Dissertation (Softbound) I Oral Presentation (Viva) I Submission of Dissertation (Hardbound) I Image: Note that the function of the project I - Oral Presentation (Hardbound) I I I</td> <td> Regression Control Charts Prepare for Progress Report Submission of Progress Report Discussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre - SEDEX Submission of Dissertation (Softbound) Coral Presentation (Wiva) Submission of Dissertation (Hardbound) I I I I I I I I I I I I I I I I I I I</td> <td> Regression Control Charts Prepare for Progress Report Submission of Progress Report Discussion on the findings Conclusion on the findings Conclusion of the project Preparing Poster & Dissertation Pre - SEDEX Submission of Dissertation (Softbound) Image: Set the set of the se</td> <td> Regression Control Charts Prepare for Progress Report Submission of Progress Report Note that the second second</td> <td>- Regression- Control Charts- Prepare for Progress ReportSubmission of Progress ReportSubmission of Progress ReportProject Work Continues- Discussion on the findings- Conclusion of the project- Preparing Poster & DissertationPre - SEDEXSubmission of Dissertation (Softbound)Dral Presentation (Viva)Submission of Dissertation (Hardbound)I I I I I I I I I I I I I I I I I I I</td> <td> Regression Control Charts Prepare for Progress Report Submission of Progress Report No iscussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre - SEDEX Submission of Dissertation (Softbound) I I I I I I I I I I I I I I I I I I I</td>	- Regression - Control Charts - Prepare for Progress Report I Submission of Progress Report I Project Work Continues I - Discussion on the findings I - Onclusion of the project I - Preparing Poster & Dissertation I Pre - SEDEX I Submission of Dissertation (Softbound) I Oral Presentation (Viva) I Submission of Dissertation (Hardbound) I Image: Note that the function of the project I - Oral Presentation (Hardbound) I I I	 Regression Control Charts Prepare for Progress Report Submission of Progress Report Discussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre - SEDEX Submission of Dissertation (Softbound) Coral Presentation (Wiva) Submission of Dissertation (Hardbound) I I I I I I I I I I I I I I I I I I I	 Regression Control Charts Prepare for Progress Report Submission of Progress Report Discussion on the findings Conclusion on the findings Conclusion of the project Preparing Poster & Dissertation Pre - SEDEX Submission of Dissertation (Softbound) Image: Set the set of the se	 Regression Control Charts Prepare for Progress Report Submission of Progress Report Note that the second second	- Regression- Control Charts- Prepare for Progress ReportSubmission of Progress ReportSubmission of Progress ReportProject Work Continues- Discussion on the findings- Conclusion of the project- Preparing Poster & DissertationPre - SEDEXSubmission of Dissertation (Softbound)Dral Presentation (Viva)Submission of Dissertation (Hardbound)I I I I I I I I I I I I I I I I I I I	 Regression Control Charts Prepare for Progress Report Submission of Progress Report No iscussion on the findings Conclusion of the project Preparing Poster & Dissertation Pre - SEDEX Submission of Dissertation (Softbound) I I I I I I I I I I I I I I I I I I I

CHAPTER 4

RESULTS AND DISCUSSIONS

Over the period of the study, the data from PETRONAS Penapisan Terengganu Sdn Bhd (PPTSB) Debutanizer Column is analyzed using statistical methods which correspond to the statistical process control tools as mentioned in Chapter 3. In this chapter, the result of the analysis is discussed.

4.1 Descriptive Statistic

Descriptive statistic is used to describe and explore the data obtained. This enables us to summarize the data such as what is the data average (mean), range, standard deviation and variance as presented on Table 6.

The debutanizer top product compositions analyzed are Propane (C3), i-Butane (iC4), n-Butane (nC4), i-Pentane (iC5), and n-Pentane (nC5). The process variables analyzed are flow rates, temperature, level, and pressure as mentioned in Chapter 2 of this report. There are 301 values for each compositions and process variables.

The range (R) and standard deviation (σ) tells how spread the data. Range is the difference between the maximum and minimum value in the set of data. Standard deviation the other hand is the square root of the variance of the data, which also responsible in measuring the deviation of the data from the mean. The higher the value of R and σ , the more the data is spread.

It can be seen that in Table 6, variables with larger R value also have large σ value and vice versa. The data is said to have a better distribution if the set has lower R and σ value. However, very large R and σ value can affect the process ultimately leads to 'out of control' process.

Table	6:	Descri	ptive	Statistic
-------	----	--------	-------	-----------

	N	Range	Minimum	Maximum	Me	an	Std. Deviation	Variance	Skey	vness	Kurtosis		
	11	Range	Willing	Waximum		an	Deviation	variance	DKC V	Std.	IXul	Std.	
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Error	Statistic	Error	
Feed Flow	301	22	50	72	62.57	.629	10.905	118.926	290	.140	-1.929	.280	
Reboiler Flow	301	3.0	141.5	144.5	142.181	.0629	1.0915	1.191	1.109	.140	483	.280	
Reflux Flow	301	1.999001	20.299999	22.299000	21.09363068	.055810586	.968277475	.938	.422	.140	-1.813	.280	
Debutanizer top temp	301	1.1750	57.7083	58.8833	58.500996	.0112138	.1945514	.038	-1.167	.140	2.750	.280	
Debutanizer bottom temp	301	.983337	138.600006	139.583344	139.16348423	.008786698	.152443505	.023	376	.140	1.639	.280	
Debutanizer receiver bottom temp	301	3.119353	32.206203	35.325556	33.58836350	.035161752	.610033603	.372	.195	.140	.195	.280	
Light naphtha temp	301	1.583336	38.908333	40.491669	39.61292878	.010030428	.174021424	.030	.560	.140	5.221	.280	
Reboiler outlet temp	301	46.178000	94.551000	140.729000	115.76065781	.735121710	12.753884990	162.662	049	.140	-1.220	.280	
Debutanizer feed temp	301	8.580552	107.622157	116.202710	110.85372048	.107810802	1.870447513	3.499	.707	.140	.420	.280	
Debutanizer receiver level	301	6.424999	57.141666	63.566666	59.99197109	.037131285	.644203711	.415	.164	.140	7.615	.280	
Debutanizer level	301	5.291668	57.108334	62.400002	60.22937427	.039016590	.676912540	.458	965	.140	5.380	.280	
Debutanizer level indicator	301	12.853602	56.061479	68.915081	62.95628984	.139953736	2.428106562	5.896	.050	.140	042	.280	
Condenser level indicator	301	22.577714	44.753287	67.331001	57.99590042	.254856689	4.421598302	19.551	521	.140	.525	.280	

Light naphtha flow	301	5.400002	27.208332	32.608334	29.14839423	.032096606	.556855305	.310	1.529	.140	11.124	.280
LPG flow to storage	301	2.870833	5.195833	8.066667	6.76428571	.023881660	.414331315	.172	019	.140	1.396	.280
Debutanizer overhead pressure	301	212.031000	715.800000	927.831000	850.69804319	3.363755246	58.358972362	3405.770	618	.140	-1.386	.280
propane	301	.2914	.0565	.3480	.175584	.0039026	.0677070	.005	.817	.140	038	.280
i-butane	301	.1978	.1308	.3286	.233832	.0021052	.0365243	.001	.566	.140	540	.280
n-butane	301	.0983	.0930	.1914	.138282	.0010323	.0179095	.000	.893	.140	.112	.280
i-pentane	301	.0678	.0682	.1360	.095813	.0007678	.0133205	.000	1.271	.140	1.603	.280
n-pentane	301	.0975	.0690	.1665	.112789	.0010190	.0176792	.000	1.012	.140	2.093	.280
Valid N (listwise)	301											

4.2 Histogram

Histogram is the one of the best way to illustrate the descriptive statistic of the data analyzed especially the frequency distribution. The histograms are discussed based on the skewness and kurtosis obtained from Table 6. 8 out of 21 variables are showing negative skewness and kurtosis.

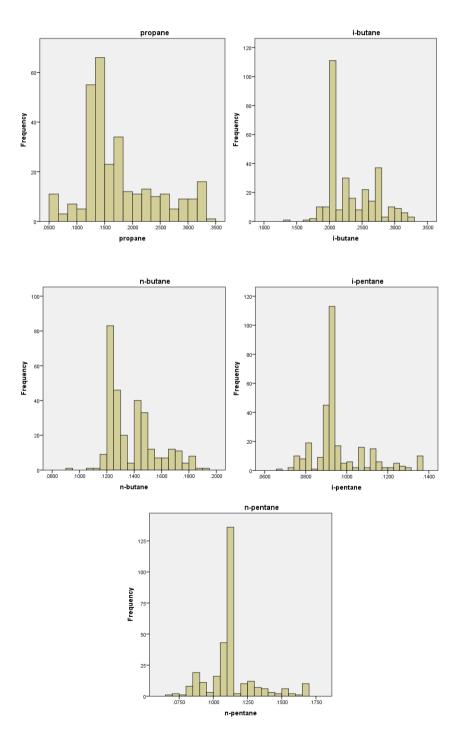


Figure 4 : Histogram of the Compositions

Figure 4 shows the histogram of the debutanizer top product compositions. From Table 6, it can be seen that all the compositions have a positive skewness. Propane (C3), i-Butane (iC4), n-Butane (nC4), i-Pentane (iC5) and n-Pentane (nC5) has skewness of 0.817, 0.566, 0.893, 1.271 and 1.012 respectively. As a result, all the histogram of the compositions is skewed to the right and creating an asymmetrical distribution. As the skewness value getting higher, the distribution will have a long 'tail' to the right as indicated by iC5 and nC5 histogram.

However, C3 and iC4 have a negative kurtosis while nC4, iC5 and nC5 have a positive kurtosis. Negative kurtosis suggests that the data have a 'flat' distribution, while positive kurtosis suggests that the data have a 'peaked' distribution.

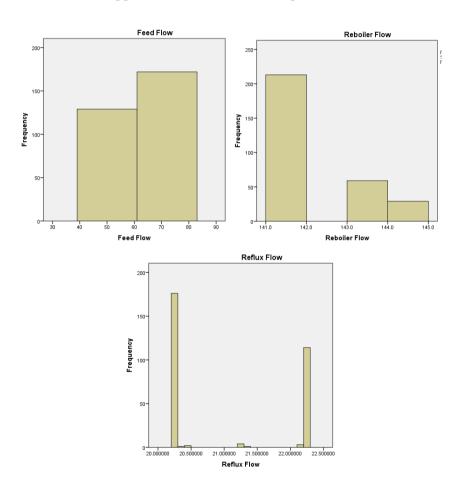


Figure 5: Histogram of the Manipulated Variables

Figure 5 show the histogram of the manipulated variables which are the Feed flow rates, Reboiler flow rates, and Reflux flow rates. All three histogram have negative Kurtosis which indicates flat distribution among the data. Only feed flow rates histogram is skewed to the left as it haves a negative skewness.

4.3 Statistical Analysis

There are few statistical methods used for the statistical analysis on the data provided. Correlations, Chi-Square Test and Regression are used to analyze the relationship between the process variables and the product compositions. On the other hand, t-Test and Analysis of Variance (ANOVA) used to test the significant of the relationship. Nonparametric techniques also used to analyze the data. Last but not least, individual chart is used as control chart to observe the state of the data especially on the top product compositions.

4.3.1 Correlations and Scatter Plots

Pearson's Correlation or Correlation can be used to measure the relationship between two variables whether it have an association or not. Scatter plot is a representation of the relationship or the correlation between the two variables. In this method, we can examine whether both of the variable is responding to each other and have a significant relationship.

The variables is said to have a stronger relationship when the Pearson Correlation coefficients, r is near to +1 or -1. It depends on the relationship between the two variables whether it is a positive (r is greater than 0) or negative (r is lesser than 0) which can be illustrated by the Scatter plots. If r is equal to 0, it indicates that there is no relationship between the two variables.

The correlation examines the relationship as follows:

- a) Manipulated Variables and Compositions
- b) Temperature Variables and Compositions
- c) Level Variables and Compositions
- d) Flow Variables and Compositions
- e) Pressure Variable and Compositions

The manipulated variables are as follows:

MV 1 :	Feed Flow
MV 2 :	Reboiler Flow
MV 3 :	Reflux Flow

Table 7: Summary of Pearson's Correlation between Top Product Compositions and
Manipulated Variables

		MV 1	MV 2	MV 3
Pearson's Correlation Coefficients (r)	C3	-0.157	-0.201	-0.411
	iC4	-0.102	-0.192	-0.396
	nC4	0.023	-0.151	-0.226
	iC5	0.198	0.078	0.179
	nC5	0.198	0.120	0.236

The Pearson's Correlations coefficients (r) are significant when the p value is less than the alpha value, which is $\alpha = 0.05$. The bold values (in black) are the values that are significant (p<0.05). Appendix II shows the correlation results.

The highest r value between the correlation of the MVs and the compositions are - 0.411, which is a negative correlation. This is the correlation between the MV 3 and the Propane (C3). As a result, the changes in value of MV 3 have more effect on C3 than the other compositions. This however considered as a medium relationship between the MVs and the compositions.

From Table 7, the Pearson's correlation coefficients show that almost all the data have significant relationship. The relationship however is not strong based on the r value. Although the r value did not characterize the relationship, it can be seen that in the scatter plots in Figure 6 that the relationship is not a linear relationship. The scatter

plots show many outliers that able to produce a significant correlation coefficient even though the relationship is not linear.

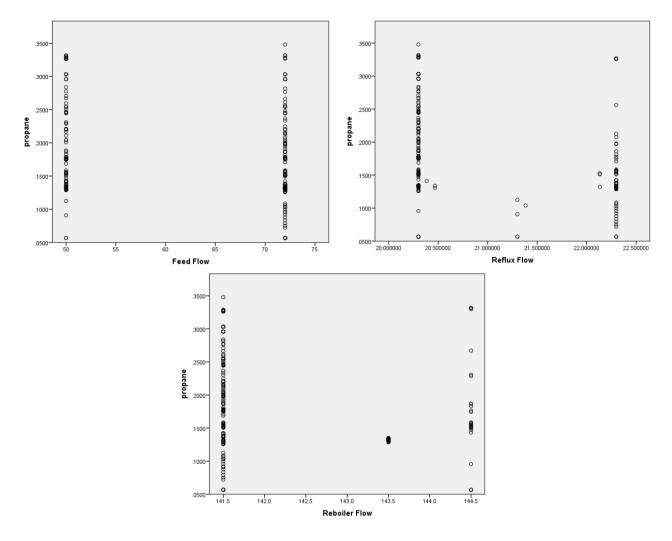


Figure 6: Scatter Plots of C3 vs MVs

The temperature variables are as follow:

TEMP 1 :	Debutanizer Top Temperature
TEMP 2 :	Debutanizer Bottom Temperature
TEMP 3 :	Debutanizer Receiver Bottom Temperature
TEMP 4 :	Light Naptha Temperature
TEMP 5 :	Reboiler Outlet Temperature
TEMP 6 :	Debutanizer Feed Temperature

 Table 8: Summary of Pearson's Correlation between Top Product Compositions and Temperature Variables

		TEMP 1	TEMP 2	TEMP 3	TEMP 4	TEMP 5	TEMP 6
ts (r)	C3	-0.058	0.075	0.156	0.161	0.127	-0.011
Coefficien	iC4	-0.048	0.188	0.125	0.261	0.124	-0.129
Pearson's Correlation Coefficients (r)	nC4	-0.056	0.177	0.180	0.431	0.282	-0.177
	iC5	0.224	0.005	0.109	0.332	0.339	-0.069
	nC5	0.225	-0.056	0.055	0.223	0.268	-0.008

Based on the correlation result between temperature variables and compositions, it can be seen that the highest r value is 0.431, a positive correlation between TEMP 4 and nC4. The result also shows that TEMP 4 and TEMP 5 have most significant r value with the compositions the most compare to the other temperature variables.

There is no strong relationship detected based on the r value although 0.431 is the highest r value obtained. However, it does suggesting a medium relationship between the temperature variables and the compositions especially TEMP 4 and TEMP 5 and

the compositions. Although the scatter plots of this correlation in APPENDIX III showing a nonlinear relationship, the changes in temperature variables does have effects on the compositions.

The level variables are as follow:

LEVEL 1:	Debutanizer Level
LEVEL 2 :	Debutanizer Condenser Level
LEVEL 3 :	Debutanizer Level Indicator
LEVEL 4 :	Condenser Level Indicator

Table 9: Summary of Pearson's Correlation between Top Product Compositions and Level Variables

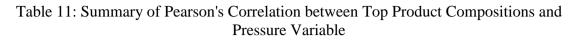
		LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
ts (r)	C3	0.08	-0.084	-0.095	0.198
Pearson's Correlation Coefficients (r)	iC4	0.053	0.022	-0.08	0.270
elation C	nC4	0.013	0.086	-0.032	0.316
on's Corr	iC5	-0.083	0.107	0.116	0.127
Pears	nC5	-0.098	0.094	0.139	0.025

The correlation result between the Level variables and the compositions also showing a less strong relationship compare with the MVs and temperatures correlation result. The highest r value is 0.316 indicates a positive correlation between LEVEL 4 and nC4. LEVEL 4 have the most significant r values in which it haves more effects on the compositions than other level variables.

The flow variables are as follow:

FLOW 1 : Light Naphtha flow to storage

FLOW 2 : LPG Flow to storage


Table 10: Summary of Pearson's Correlation between Top Product Compositions and Flow Variables

		FLOW 1	FLOW 2
Pearson's Correlation Coefficients (r)	C3	0.09	0.005
	iC4	0.077	0.071
	nC4	0.079	0.01
	iC5	-0.011	-0.098
	nC5	-0.032	-0.108

With highest r value of -0.108, a negavite correlation between the FLOW 2 and nC5, the correlation shows the relationship between the Flow variables and the compositions are weak. The other r values also showing a weak relationship. The scatter plots in APPENDIX III also shows a nonlinear relationship between the flow variables and compositions.

The pressure variables is

PRESSURE 1 : Debutanizer Receiver Overhead Pressure

		PRESSURE 1
ts (r)	C3	0.29
Coefficien	iC4	0.108
Pearson's Correlation Coefficients (r)	nC4	0.058
on's Corr	iC5	0.0
Pears	nC5	-0.003

The same relationship also can be seen on the correlation between the Pressure variable and the compositions which indicates a weak relationship with the compositions. The highest r value is 0.29, a positive correlation of PRESSURE 1 and C3. Others showing a lower r value therefore a less strong relationship.

Based on the correlation analysis, MVs and Temperature variables have the most significant relationship with the compositions. Although the relationship is not linear, both MVs and temperature variables have effects on the compositions.

4.3.2 Regression Analysis

The regression analysis enables us to generate equations that can be used to predict the value of the dependent variable (compositions). From the correlation analysis and scatter plots, the relationship between the process variables and compositions is either not linear or have a weak linear relationship. Therefore, a Linear Regression might not be useful or able to correctly predict the dependent variable using linear equation. Other regression equations such as quadratic, cubic, logarithmic, and exponential were obtained. The equations also needed to be significant (p<0.05) and simple in order to be selected. A linear equation can be selected if it is significant and simpler than other equations. It is important for the equation to be significant (p<0.05) in order to correctly predict the dependent variables value from the independent variable values. APPENDIX IV shows the result of the regression analysis.

The equations are as follow:

[C3] = 0.236 - 0.001[MV1]	[iC5] = 0.036 + 0.001(ln[MV1])
$[C3] = 0.417 - 0.059(\ln[MV1])$	[iC5] = 0.044 + 0.02[MV3]
[C3] = 1.949 - 0.012[MV2]	
$[C3] = 9.027 - 1.786(\ln[MV2])$	[nC5] = 0.033 + 0.019(ln[MV1])
[C3] = 0.782 - 0.029[MV3]	[nC5] = -0.163 + 0.02[MV2]
$[C3] = 2.043 - 0.613(\ln[MV3])$	[nC5] = 0.022 + 0.004[MV3]
	[C3] = -0.405 + 0.017[TEMP3]
[iC4] = 1.145 - 0.006[MV2]	[C3] = -2.299 + 0.062[TEMP 4]
[iC4] = 4.785 - 0.918(ln[MV2])	[C3] = 0.097 – 0.001[TEMP 5]
[iC4] = 0.549 - 0.015[MV3]	
$[iC4] = 1.205 - 0.319(\ln[MV3])$	[iC4] = -6.02 _ 0.45[TEMP2]
	[iC4] = -0.017 + 0.007[TEMP3]
[nC4] = 0.491 - 0.002[MV2]	[iC4] = -1.938 +0.055[TEMP 4]
[nC4] = 1.906 - 0.357(ln[MV2])	[iC4] = 0.04 + 0.041(ln[TEMP 5])
[nC4] = 0.226 - 0.04[MV3]	$[iC4] = -28.864 + 0.525[TEMP 6] - 0.002[TEMP6]^2$

[nC4] = -2.757 + 0.021[TEMP2]

[nC4] = -0.039 + 0.005[TEMP3]

[nC4] = -1.547 + 0.043[TEMP 4]

[nC4] = -0.067 + 0.43(ln[TEMP 5])

[nC4] = 0.326 - 0.002[TEMP 6]

[iC5] = -0.802 + 0.015[TEMP1]

[iC5] = -0.911 + 0.025[TEMP4]

[iC5] = -0.086 + 0.038(ln[TEMP 5])

[nC5] = -1.085 + 0.2[TEMP1]

[nC5] = -0.787 + 0.023 [TEMP 4]

[nC5] = -0.078 + 0.4(ln[TEMP 5])

[C3] = -.001 + 0.003[LEVEL4]

 $[iC4] = -1.925 + 0.07[LEVEL3] - 0.001[LEVEL3]^2$

[iC4] = 0.104 + 0.002[LEVEL4]

 $[nC4] = -1.905 + 0.65[LEVEL3] - 0.001[LEVEL3]^2$

[nC4] = 0.064 + 0.001[LEVEL4]

 $[iC5] = 4.785 - 0.154[LEVEL1] + 0.001[LEVEL1]^{2}$

[iC5] = 0.025 + EXP(0.022[LEVEL2])

 $[iC5] = -0.965 + 0.033[LEVEL3] + 0.001[LEVEL3]^2$

[iC5] = 0.01 + 0.021(ln[LEVEL4])

 $[nC5] = 8.274 - 0.269[LEVEL1] + 0.002[LEVEL1]^{2}$

[nC5] = 0.049 - 0.01[LEVEL3]

 $[iC4] = -0.708 + 0.273[FLOW2] - 0.02[FLOW2]^{2}$

[nC4] = -0.136 + 0.061[FLOW2]

[C3] = -1.692 + 0.277(ln[PRESSURE 1])

 $[nC4] = -0.966 + 0.003[PRESSURE1] - (1.57 \times 10^{-6}) [PRESSURE1]^2$

 $[iC5] = -1.986 + 0.005[PRESSURE1] - (3.01 x 10^{-6}) [PRESSURE1]^2$

 $[nC5] = -2.381 + 0.006[PRESSURE1] - (3.61 \times 10^{-6}) [PRESSURE1]^2$

Equation 1: Regression Equations

4.3.3 Paired t-test and Analysis of Variance (ANOVA)

Paired t-test and ANOVA is used to test the significant of the relationship between the process variables and the compositions on mean basis. APPENDIX V and APPENDIX VI show the results of the Paired t-Test and ANOVA respectively.

The t-Test is used to determine whether there is a significant difference between the two variables investigated. The null hypothesis is there is no significant difference between the two variables. Based on the t-test result on APPENDIX V, it can be seen that the p value is less than 0.05 for all case, therefore the null hypothesis is rejected. This indicates that there is a significant difference between the two variables.

The null hypothesis for ANOVA is also the same with t-test. However, some of the result did not reject the null hypothesis which indicates that there is a significant difference between the two variables. The failure to reject the null hypothesis (p>0.05) is because ANOVA take account on the possibility of a linear relationship between the variables. Although almost all scatter plots of process variables vs compositions showing a nonlinear relationship, ANOVA detected a possible linear relationship (medium relationship as observed in the correlations analysis) between the two variables investigated. In regression analysis also, it is observed that linear equation is possible for some of the relationship based on the ANOVA significant result (p<0.05).

4.3.4 Chi-square Test

Chi-square test can be used to convey the existence or nonexistence of the relationships between the variables investigated. However, it cannot determine the strength of the relationship.

The process variables and compositions were subjected to Chi-square test. However it did not give correct results as it violates the assumption for conducting a chi-square test. As seen in Table **12**, 98.7% of the data have counts less than 5. In order to do the chi-square test, the counts must be more than 5 and none less than 1 (minimum expected count is 0.43). Therefore chi-square test is not suitable to be used.

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	158.156 ^a	158	.482
Likelihood Ratio	213.224	158	.002
Linear-by-Linear Association	7.367	1	.007
N of Valid Cases	301		

Table 12: Chi-Square Tests C3 and Feed Flow

a. 314 cells (98.7%) have expected count less than 5. The minimum expected count is .43.

4.3.5 Non-parametric Techniques

Nonparametric techniques involve free distributions and less assumption as alternative on the previous test/analysis done. In this analysis, only Friedman Test and Spearman Rank-order Correlation were used to analyze the relationship between the process variables and the compositions.

4.3.5.1 Friedman Test

Table 13: Friedman Test Ranks

	Mean Rank
Feed Flow	13.89
Reboiler Flow	20.00
Reflux Flow	7.00
Debutanizer top temp	12.04
Debutanizer bottom temp	18.97
Debutanizer receiver bottom temp	9.00
Light naphtha temp	10.00
Reboiler outlet temp	17.66
Debutanizer feed temp	17.36
Debutanizer receiver level	13.55
Debutanizer level	13.83
Debutanizer level indicator	14.96
Condenser level indicator	12.73
Light naphtha flow	8.00
LPG flow to storage	6.00
Debutanizer overhead pressure	21.00
propane	3.81

i-butane	4.87
n-butane	3.07
i-pentane	1.10
n-pentane	2.15

Table 14: Friedman Test Statistics

Ν	301
Chi-Square	5907.514
df	20
Asymp. Sig.	.000

Friedman test is used to compare two or more related samples, in this case, the association between the two variables. The null hypothesis is still the same as in t-test. Based on Table 14, the p value is less than 0.05. This rejects the null hypothesis. There is a significant difference between the two variables investigated which suggesting an association or relationship between the variables.

4.3.5.2 Spearman's Rank-order Correlation

The Spearman's Rank-order Correlation is an alternative to the Correlation analysis. The Spearman's Correlation Coefficients also indicates the strength of the relationship between the process variables and the compositions. The + and - sign indicates the direction of the relationship. As the coefficients reaching +1 or -1, the relationship is considered as strong relationship. If the coefficient is equal to 0, there is no relationship between the investigated variables. Bold values in the tables indicate that the values are significant as p < 0.05.

The highest coefficient obtained is 0.534, a positive relationship between the TEMP 4 and nC4. It can be seen that MVs and Temperature again showing more association with the compositions. The same findings can be detected in the Pearson's Correlations analysis.

		MV 1	MV 2	MV 3
ents	C3	-0.173	-0.24	-0.491
Coeffici	iC4	-0.06	-0.2	-0.458
Spearman Correlation Coefficients	nC4	0.052	-0.179	-0.326
man Co	iC5	0.207	0.168	0.206
Spear	nC5	0.223	0.215	0.364

Table 15: Summary of Spearman's Correlation between Top Product Compositions and Manipulated Variable

Table 16: Summary of Spearman's Correlation between Top Product Compositions and Temperature Variable

		TEMP 1	TEMP 2	TEMP 3	TEMP 4	TEMP 5	TEMP 6
ents	C3	-0.033	-0.046	0.12	0.234	0.194	0.127
Coefficie	iC4	-0.170	0.181	0.126	0.315	0.1	-0.11
rrelation	nC4	-0.018	0.214	0.19	0.534	0.291	-0.152
Spearman Correlation Coefficients	iC5	0.177	0.183	-0.01	0.184	0.107	-0.174
Spea	nC5	0.19	0.047	-0.001	0.066	0.083	-0.126

		LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
ants	C3	0.016	-0.069	-0.096	0.229
Spearman Correlation Coefficients	iC4	0.027	0.044	-0.123	0.177
rrelation	nC4	-0.048	0.103	-0.077	0.191
urman Co	iC5	-0.061	0.139	0.11	0.043
Spe	nC5	-0.039	0.179	0.116	-0.073

Table 17: Summary of Spearman's Correlation between Top Product Compositions and Level Variables

Table 18: Summary of Spearman's Correlation between Top Product Compositions and Flow Variables

		FLOW 1	FLOW 2
ents	C3	0.059	0.039
Spearman Correlation Coefficients	iC4	0.019	0.168
rrelation	nC4	0.019	0.098
arman Co	iC5	-0.161	0.016
Spe	nC5	-0.181	0.006

		PRESSURE 1
ents	C3	0.355
Spearman Correlation Coefficients	iC4	0.0
orrelation	nC4	-0.125
arman Co	iC5	-0.393
Spec	nC5	-0.266

Table 19: Summary of Spearman's Correlation between Top Product Compositions and Pressure Variable

4.3.6 Control Charts (Individual Charts)

Individual chart is selected as control chart because the data obtained is just a onetime data. It is the simplest variable chart which has Upper Control Limit (UCL) and Lower Control Limit (LCL). The control limit is placed three standard deviations (from the Centreline (CL). The CL can be the mean or target value of the variable.

Based to the data used, the manipulated variables (MVs) are manipulated few times to see the changes on the compositions and other process variables. As the values of the MVs changing, the values of other variables also changing accordingly. The Individual Chart explain the state of the variable either in control (within UCL and LCL) or out of control (out of UCL and LCL) after the changes.

According to all the individual charts, all the compositions variables are not in control since many of the values are exceeding the UCL and LCL as indicate by the red dots. The red dots are showing the value that is in violation with the control chart. This happened when the value are exceeding the three sigma or the control limist (UCL and LCL). The green dots indicate that there is no violation and the values are inside the control limits.

Propane, i-Butane and n-Butane individual charts showing a similar trend. Many of the values are outside of the control limits, and at some point, it stabilizes along the CL. Individual charts for i-Pentane and n-Pentane also showing a similar trends but different than the other three charts aforementioned. The charts have fewer points outside the control limits compare to the other three charts. At some point also, the values are stabilizing along the CL. The violations might be because of the changes made on the manipulated variable. It causes sudden changes on the compositions. The compositions then slowly stabilizing inside the control limits. It might be because of the corrective action taken by the controller to bring the process under the control.

As the MVs changes, this requires the compositions to react based on the changes. From the individual charts, it can be seen that Propane, i-Butane, and n-Butane is highly affected by the changes in the MVs compare to i-Pentane and n-Pentane.

When the process is out of control, it is best to take action to bring back the process in control.

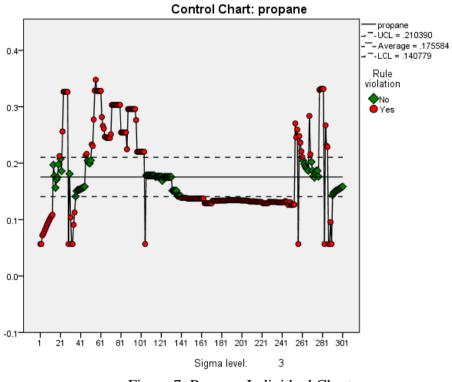


Figure 7: Propane Individual Chart

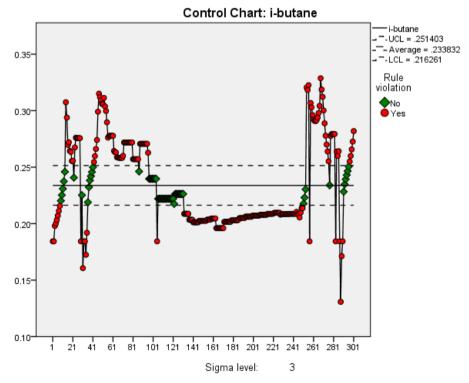


Figure 8: i-Butane Individual Chart

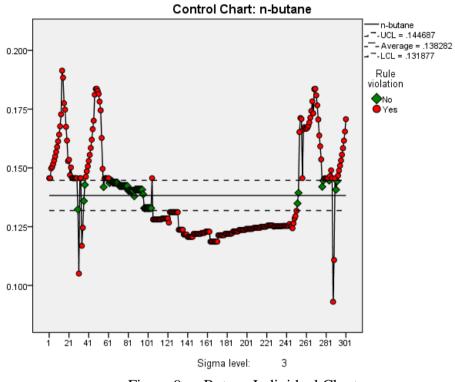


Figure 9: n-Butane Individual Chart

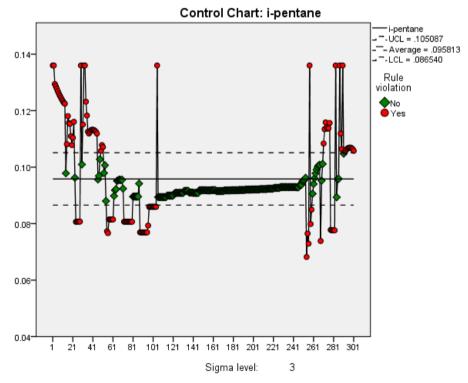


Figure 10: i-Pentane Individual Chart

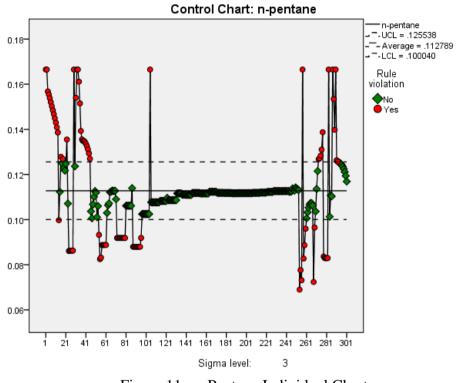


Figure 11: n-Pentane Individual Chart

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This project focuses on the application of Statistical Process Control on a distillation column, specifically on the debutanizer column which produces the main product, Liquefied Petroleum Gas (LPG). The interest is mostly on the relationship between the process variables and the product compositions.

Statistical Process Control is an interesting and proven method for monitoring, controlling and improving quality of desired product. To apply it in debutanizer column would enable us to see the variations effects on the process using statistical method especially on the relationship between the process variables and the top product compositions. Control charts especially individuals chart is used to observe the state of the process especially on the compositions. The methodologies for this project were constructed to follow the timeline given for completion as well as comply with the objectives that have been stated.

The result shows that there is small relationship between the variables analyzed. Most of the relationships are weak based on the Pearson's Correlations and Spearman's Correlation analysis. However it does not indicate that the process variables did not interact or associate with the compositions. From the individual charts, it can be seen that the changes in the manipulated variables haves effects on the compositions.

It is just a matter of the strength of the relationship between the variables to observe if it is affecting the product quality. The stronger the relationship, the more process variables affects the quality which are the top product composition.

From the statistical analysis, the manipulated variables (MVs) and the temperature variables have the most significant and medium relationship with the compositions.

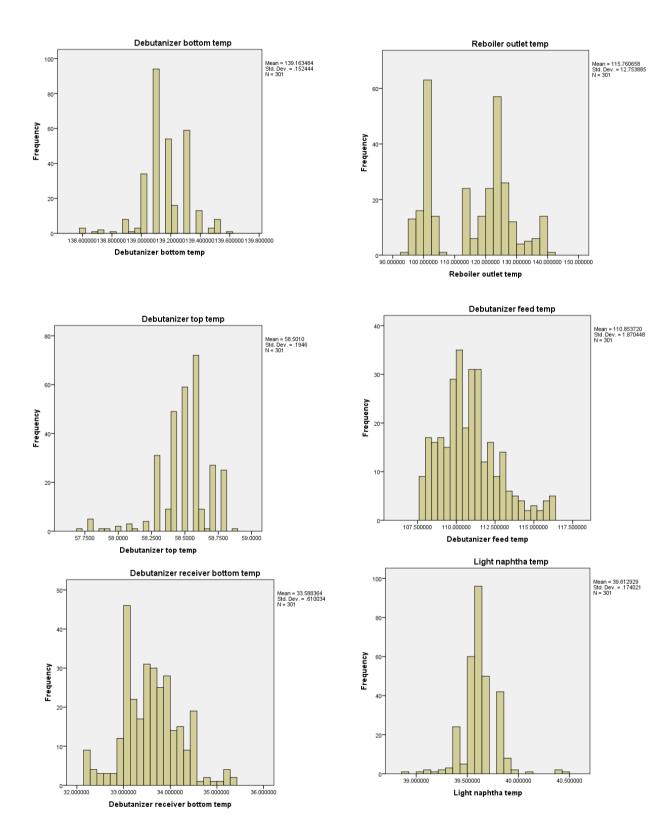
Therefore, it is best to monitor and control the MVs as well as the temperature variables to obtain the desired quality of the top product.

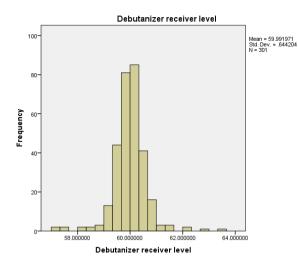
The way forward for this project is to investigate the variations that affecting the top product quality. It is no doubt that SPC is very crucial in understanding the process especially on the quality but also the possible variations that affecting the quality of the top product. In order to do that, a few samples of each of the variables have to be taken. This is to ensure this project have the mean of samples to plot the Shewhart chart or Mean and Range chart which is a prominent SPC tool for quality. Therefore, with the Shewhart chart or Mean and Range Chart, the top product quality can be further analyzed, monitored and controlled.

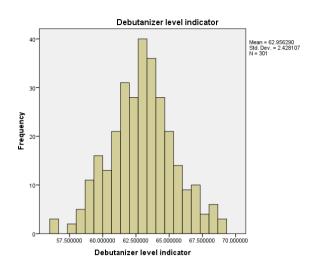
REFERENCES

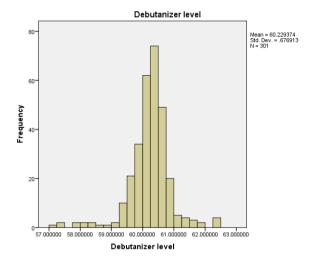
- Christobek, M. A. (2001). A comparison of the effectiveness of statistical process control charts. (9997255 Ph.D.), Temple University, Ann Arbor. Retrieved from http://search.proquest.com/docview/304732359?accountid=47520
 ProQuest Dissertations & Theses Full Text: The Sciences and Engineering Collection database.
- Driesen, K. E. (2004). Statistical process control as quantitative method to monitor and improve medical quality. (3145062 Ph.D.), The University of Arizona, Ann Arbor. Retrieved from http://search.proquest.com/docview/305210092?accountid=47520 ProQuest Dissertations & Theses Full Text: The Sciences and Engineering Collection database.
- Geankoplis, C. J. (2003). Transport Processes and Separation Process Principles: Includes Unit Operations: Prentice Hall Professional Technical Reference.
- Ibrahim, K. A. (1996). *Active Statistical Process Control.* (Doctor of Philosophy), University of Newcastle upon Tyne.
- Ipek, H., Ankara, H., & Ozdag, H. (1999). The application of statistical process control. *Minerals Engineering*, 12(7), 827-835. doi: <u>http://dx.doi.org/10.1016/S0892-6875(99)00067-9</u>
- Mohamed Ramli, N., Hussain, M. A., Mohamed Jan, B., & Abdullah, B. (2014). Composition Prediction of a Debutanizer Column using Equation Based Artificial Neural Network Model. *Neurocomputing*, 131(0), 59-76. doi: <u>http://dx.doi.org/10.1016/j.neucom.2013.10.039</u>

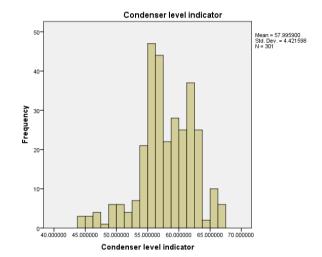
Oakland, J. S. (2008). Statistical Process Control: Elsevier Butterworth-Heinemann.

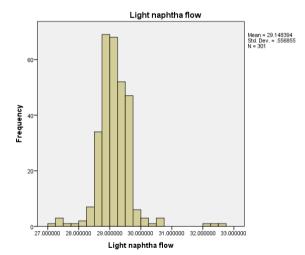

Smith, I. R., Garlick, B., Gardner, M. A., Brighouse, R. D., Foster, K. A., & Rivers, J. T. (2013). Use of Graphical Statistical Process Control Tools to Monitor and Improve Outcomes in Cardiac Surgery. *Heart, Lung and Circulation, 22*(2), 92-99. doi: <u>http://dx.doi.org/10.1016/j.hlc.2012.08.060</u>

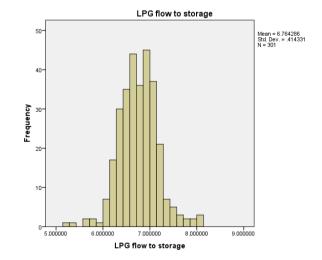

Stapenhurst, T. (2013). Mastering Statistical Process Control: Taylor & Francis.

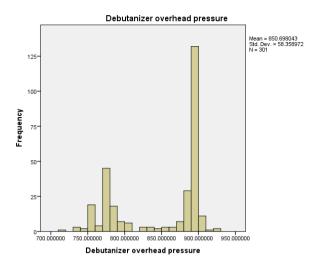

- Wetherill, G. B., & Brown, D. W. (1991). *Statistical process control: theory and practice*: Chapman and Hall.
- Wheeler, D. (2010). SPC Press. *Reading Room*. Retrieved February, 2014, from <u>www.spcpress.com</u>


APPENDIX I


HISTOGRAM







APPENDIX II

PEARSON'S CORRELATIONS

		Feed Flow	Reboile r Flow	Reflux Flow	Debuta nizer top temp	Debuta nizer bottom temp	Debuta nizer receiver bottom temp	Light naphtha temp	Reboile r outlet temp	Debuta nizer feed temp
Feed Flow	Pearson Correlation	1	106 [*]	.086	013	.033	.134 [*]	.077	.028	088
	Sig. (1- tailed)		.034	.069	.412	.284	.010	.092	.314	.064
	Ν	301	301	301	301	301	301	301	301	301
Reboiler Flow	Pearson Correlation	106 [*]	1	010	099 [*]	156 ^{**}	519 ^{**}	190**	349**	.130 [*]
	Sig. (1- tailed)	.034		.429	.043	.003	.000	.000	.000	.012
	Ν	301	301	301	301	301	301	301	301	301
Reflux Flow	Pearson Correlation	.086	010	1	.060	124 [*]	.355**	015	.206**	327**
	Sig. (1- tailed)	.069	.429		.151	.016	.000	.394	.000	.000
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer top temp	Pearson Correlation	013	099 [*]	.060	1	271**	.142**	.295**	.515**	.374**
	Sig. (1- tailed)	.412	.043	.151		.000	.007	.000	.000	.000
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer bottom temp	Pearson Correlation	.033	156 ^{**}	124 [*]	271**	1	019	017	105 [*]	268 ^{**}

Correlations

	Sig. (1- tailed)	.284	.003	.016	.000		.369	.384	.034	.000
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer receiver	Pearson Correlation	.134 [*]	519 ^{**}	.355**	.142**	019	1	.301**	.565**	471 ^{**}
bottom temp	Sig. (1- tailed)	.010	.000	.000	.007	.369		.000	.000	.000
	Ν	301	301	301	301	301	301	301	301	301
Light naphtha temp	Pearson Correlation	.077	190**	015	.295**	017	.301**	1	.574**	203**
	Sig. (1- tailed)	.092	.000	.394	.000	.384	.000		.000	.000
	Ν	301	301	301	301	301	301	301	301	301
Reboiler outlet temp	Pearson Correlation	.028	349**	.206**	.515**	105 [*]	.565**	.574**	1	.020
	Sig. (1- tailed)	.314	.000	.000	.000	.034	.000	.000		.364
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer feed temp	Pearson Correlation	088	.130 [*]	327**	.374**	268**	471 ^{**}	203**	.020	1
	Sig. (1- tailed)	.064	.012	.000	.000	.000	.000	.000	.364	
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer receiver level	Pearson Correlation	.034	.020	.015	081	.382**	012	266**	.043	013
	Sig. (1- tailed)	.277	.367	.400	.080	.000	.419	.000	.231	.413
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer level	Pearson Correlation	.025	.051	.327**	.092	406**	.122*	001	.050	225**

	Sig. (1- tailed)	.336	.190	.000	.056	.000	.017	.494	.195	.000
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer level indicator	Pearson Correlation	049	150 ^{**}	001	.401**	.069	231**	.073	.136**	.124 [*]
	Sig. (1- tailed)	.198	.005	.492	.000	.118	.000	.102	.009	.016
	Ν	301	301	301	301	301	301	301	301	301
Condenser level indicator	Pearson Correlation	.016	212**	161 ^{**}	042	.225**	.197**	.223**	.337**	.043
	Sig. (1- tailed)	.389	.000	.002	.232	.000	.000	.000	.000	.227
	Ν	301	301	301	301	301	301	301	301	301
Light naphtha flow	Pearson Correlation	.009	.128 [*]	086	.028	.239**	068	.331**	.143**	120 [*]
	Sig. (1- tailed)	.440	.013	.069	.316	.000	.119	.000	.006	.019
	Ν	301	301	301	301	301	301	301	301	301
LPG flow to storage	Pearson Correlation	038	.056	.131 [*]	274**	078	020	409**	360**	093
	Sig. (1- tailed)	.258	.167	.012	.000	.088	.368	.000	.000	.053
	Ν	301	301	301	301	301	301	301	301	301
Debutanizer overhead	Pearson Correlation	029	274**	.044	.437**	339**	.424**	.356**	.775**	.158**
pressure	Sig. (1- tailed)	.305	.000	.221	.000	.000	.000	.000	.000	.003
	Ν	301	301	301	301	301	301	301	301	301
propane	Pearson Correlation	- .157 ^{**}	201**	411**	058	.075	.156**	.161**	.127*	011

	Sig. (1- tailed)	.003	.000	.000	.160	.097	.003	.003	.014	.428
	Ν	301	301	301	301	301	301	301	301	301
i-butane	Pearson Correlation	102 [*]	192**	396**	048	.188**	.125 [*]	.261**	.124 [*]	129 [*]
	Sig. (1- tailed)	.039	.000	.000	.203	.001	.015	.000	.016	.012
	Ν	301	301	301	301	301	301	301	301	301
n-butane	Pearson Correlation	.023	151**	226 ^{**}	.056	.177**	.180**	.413**	.282**	177**
	Sig. (1- tailed)	.344	.004	.000	.165	.001	.001	.000	.000	.001
	Ν	301	301	301	301	301	301	301	301	301
i-pentane	Pearson Correlation	.198 ^{**}	.078	.179**	.224**	.005	.109 [*]	.332**	.339**	069
	Sig. (1- tailed)	.000	.089	.001	.000	.466	.029	.000	.000	.116
	Ν	301	301	301	301	301	301	301	301	301
n-pentane	Pearson Correlation	.198 ^{**}	.120 [*]	.236**	.225**	056	.055	.223**	.268**	008
	Sig. (1- tailed)	.000	.019	.000	.000	.168	.170	.000	.000	.442
	Ν	301	301	301	301	301	301	301	301	301

Correlations

		Debuta nizer receive r level	Debuta nizer level	Debuta nizer level indicato r	Conden ser level indicato r	Light naphth a flow	LPG flow to storage	Debuta nizer overhe ad pressur e	prop ane	i- buta ne	n- buta ne
Feed Flow	Pearson Correlation	.034	.025	049	.016	.009	038	029	- .157 **	- .102 *	.023
	Sig. (1- tailed)	.277	.336	.198	.389	.440	.258	.305	.003	.039	.344
	Ν	301	301	301	301	301	301	301	301	301	301
Reboiler Flow	Pearson Correlation	.020	.051	150 ^{**}	212**	.128 [*]	.056	274**	- .201 **	- .192 **	- .151 **
	Sig. (1- tailed)	.367	.190	.005	.000	.013	.167	.000	.000	.000	.004
	Ν	301	301	301	301	301	301	301	301	301	301
Reflux Flow	Pearson Correlation	.015	.327**	001	161 ^{**}	086	.131 [*]	.044	- .411 **	- .396 **	- .226 **
	Sig. (1- tailed)	.400	.000	.492	.002	.069	.012	.221	.000	.000	.000
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer top temp	Pearson Correlation	081	.092	.401**	042	.028	274**	.437**	- .058	- .048	.056
	Sig. (1- tailed)	.080	.056	.000	.232	.316	.000	.000	.160	.203	.165
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer bottom temp	Pearson Correlation	.382**	406**	.069	.225**	.239**	078	339**	.075	.188 **	.177 **

	Sig. (1- tailed)	.000	.000	.118	.000	.000	.088	.000	.097	.001	.001
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer receiver	Pearson Correlation	012	.122 [*]	231 ^{**}	.197**	068	020	.424**	.156	.125 ,	.180 **
bottom temp	Sig. (1- tailed)	.419	.017	.000	.000	.119	.368	.000	.003	.015	.001
	Ν	301	301	301	301	301	301	301	301	301	301
Light naphtha temp	Pearson Correlation	266 ^{**}	001	.073	.223**	.331**	409**	.356**	.161 **	.261 **	.413 **
	Sig. (1- tailed)	.000	.494	.102	.000	.000	.000	.000	.003	.000	.000
	Ν	301	301	301	301	301	301	301	301	301	301
Reboiler outlet temp	Pearson Correlation	.043	.050	.136**	.337**	.143**	360**	.775**	.127 *	.124 *	.282
	Sig. (1- tailed)	.231	.195	.009	.000	.006	.000	.000	.014	.016	.000
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer feed temp	Pearson Correlation	013	225**	.124 [*]	.043	120 [*]	093	.158 ^{**}	- .011	- .129 *	- .177 **
	Sig. (1- tailed)	.413	.000	.016	.227	.019	.053	.003	.428	.012	.001
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer receiver level	Pearson Correlation	1	294**	.033	.012	.524**	157**	036	.080	.053	.013
	Sig. (1- tailed)		.000	.285	.420	.000	.003	.265	.083	.180	.413
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer level	Pearson Correlation	294**	1	.075	143 ^{**}	284**	.520**	.106 [*]	- .084	.022	.086

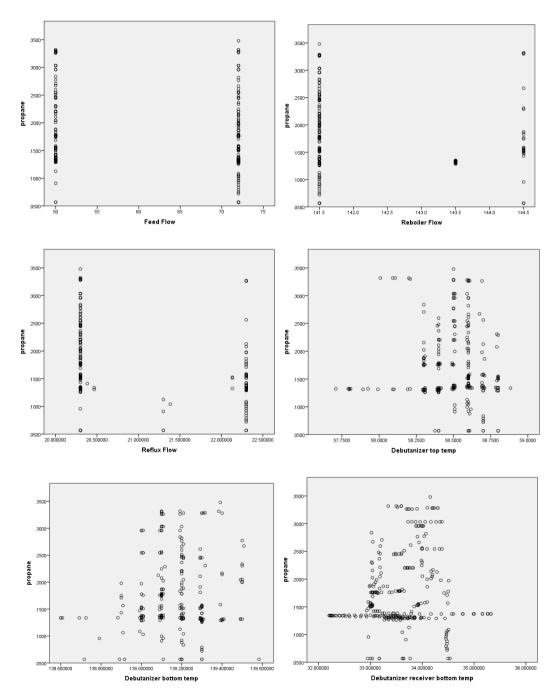
	Sig. (1- tailed)	.000		.097	.007	.000	.000	.033	.072	.352	.069
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer level indicator	Pearson Correlation	.033	.075	1	191**	005	219**	.037	- .095 *	- .080	- .032
	Sig. (1- tailed)	.285	.097		.000	.465	.000	.260	.050	.083	.292
	Ν	301	301	301	301	301	301	301	301	301	301
Condenser level indicator	Pearson Correlation	.012	143**	191**	1	043	198**	.152**	.198 **	.270	.316 **
	Sig. (1- tailed)	.420	.007	.000		.230	.000	.004	.000	.000	.000
	Ν	301	301	301	301	301	301	301	301	301	301
Light naphtha flow	Pearson Correlation	.524**	284**	005	043	1	446**	.059	.090	.077	.079
	Sig. (1- tailed)	.000	.000	.465	.230		.000	.155	.059	.091	.086
	Ν	301	301	301	301	301	301	301	301	301	301
LPG flow to storage	Pearson Correlation	157 ^{**}	.520**	219 ^{**}	198**	446**	1	215 ^{**}	.005	.071	.010
	Sig. (1- tailed)	.003	.000	.000	.000	.000		.000	.462	.111	.433
	Ν	301	301	301	301	301	301	301	301	301	301
Debutanizer overhead	Pearson Correlation	036	.106 [*]	.037	.152**	.059	215**	1	.290	.108 *	.058
pressure	Sig. (1- tailed)	.265	.033	.260	.004	.155	.000		.000	.031	.159
	Ν	301	301	301	301	301	301	301	301	301	301
propane	Pearson Correlation	.080	084	095 [*]	.198**	.090	.005	.290**	1	.774 **	.350 **

	Sig. (1- tailed)	.083	.072	.050	.000	.059	.462	.000		.000	.000
	Ν	301	301	301	301	301	301	301	301	301	301
i-butane	Pearson Correlation	.053	.022	080	.270**	.077	.071	.108 [*]	.774 **	1	.828
	Sig. (1- tailed)	.180	.352	.083	.000	.091	.111	.031	.000		.000
	Ν	301	301	301	301	301	301	301	301	301	301
n-butane	Pearson Correlation	.013	.086	032	.316**	.079	.010	.058	.350	.828	1
	Sig. (1- tailed)	.413	.069	.292	.000	.086	.433	.159	.000	.000	
	Ν	301	301	301	301	301	301	301	301	301	301
i-pentane	Pearson Correlation	083	.107 [*]	.116	.127 [*]	011	098 [*]	.000	- .622 **	- .246 **	.309
	Sig. (1- tailed)	.075	.031	.022	.014	.427	.045	.500	.000	.000	.000
	Ν	301	301	301	301	301	301	301	301	301	301
n-pentane	Pearson Correlation	098 [*]	.094	.139**	.025	032	108 [*]	003	- .763 **	- .532 **	- .012
	Sig. (1- tailed)	.045	.052	.008	.335	.289	.031	.478	.000	.000	.419
	Ν	301	301	301	301	301	301	301	301	301	301

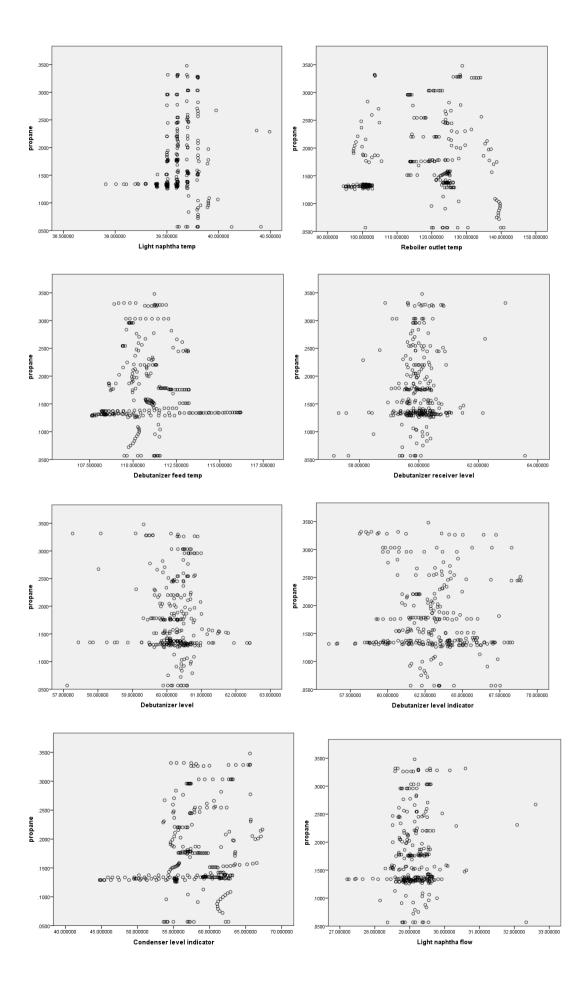
		i-pentane	n-pentane
Feed Flow	Pearson Correlation	.198**	.198**
	Sig. (1-tailed)	.000	.000
	Ν	301	301
Reboiler Flow	Pearson Correlation	.078	.120 [*]
	Sig. (1-tailed)	.089	.019
	Ν	301	301
Reflux Flow	Pearson Correlation	.179**	.236**
	Sig. (1-tailed)	.001	.000
	Ν	301	301
Debutanizer top temp	Pearson Correlation	.224**	.225**
	Sig. (1-tailed)	.000	.000
	Ν	301	301
Debutanizer bottom temp	Pearson Correlation	.005	056
	Sig. (1-tailed)	.466	.168
	Ν	301	301
Debutanizer receiver bottom temp	Pearson Correlation	.109 [*]	.055
	Sig. (1-tailed)	.029	.170
	Ν	301	301
Light naphtha temp	Pearson Correlation	.332**	.223**
	Sig. (1-tailed)	.000	.000
	Ν	301	301
Reboiler outlet temp	Pearson Correlation	.339**	.268**
	Sig. (1-tailed)	.000	.000

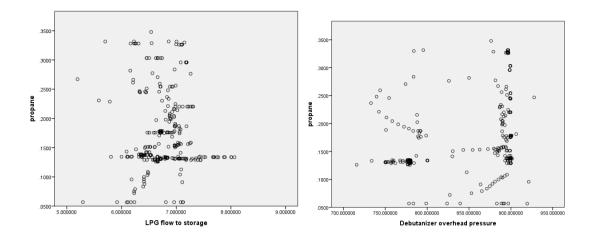
Correlations

	Ν	301	301
Debutanizer feed temp	Pearson Correlation	069	008
	Sig. (1-tailed)	.116	.442
	Ν	301	301
Debutanizer receiver level	Pearson Correlation	083	098 [*]
	Sig. (1-tailed)	.075	.045
	Ν	301	301
Debutanizer level	Pearson Correlation	.107 [*]	.094
	Sig. (1-tailed)	.031	.052
	Ν	301	301
Debutanizer level indicator	Pearson Correlation	.116 [*]	.139**
	Sig. (1-tailed)	.022	.008
	Ν	301	301
Condenser level indicator	Pearson Correlation	.127 [*]	.025
	Sig. (1-tailed)	.014	.335
	Ν	301	301
Light naphtha flow	Pearson Correlation	011	032
	Sig. (1-tailed)	.427	.289
	Ν	301	301
LPG flow to storage	Pearson Correlation	098 [*]	108 [*]
	Sig. (1-tailed)	.045	.031
	Ν	301	301
Debutanizer overhead pressure	Pearson Correlation	.000	003
	Sig. (1-tailed)	.500	.478
	Ν	301	301


propane	Pearson Correlation	622**	763**
	Sig. (1-tailed)	.000	.000
	Ν	301	301
i-butane	Pearson Correlation	246**	532 ^{**}
	Sig. (1-tailed)	.000	.000
	Ν	301	301
n-butane	Pearson Correlation	.309**	012
	Sig. (1-tailed)	.000	.419
	Ν	301	301
i-pentane	Pearson Correlation	1	.944**
	Sig. (1-tailed)		.000
	Ν	301	301
n-pentane	Pearson Correlation	.944**	1
	Sig. (1-tailed)	.000	
	Ν	301	301

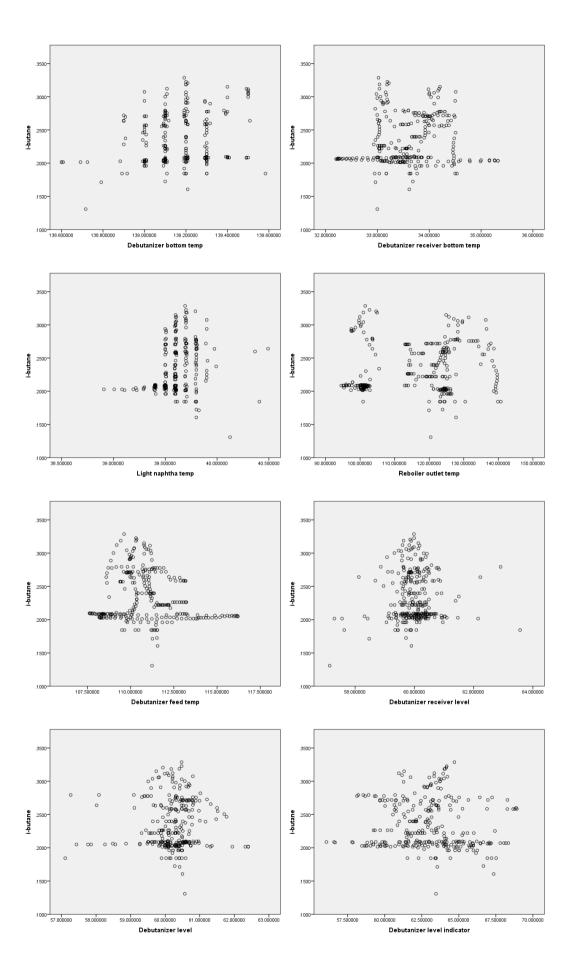
*. Correlation is significant at the 0.05 level (1-tailed).

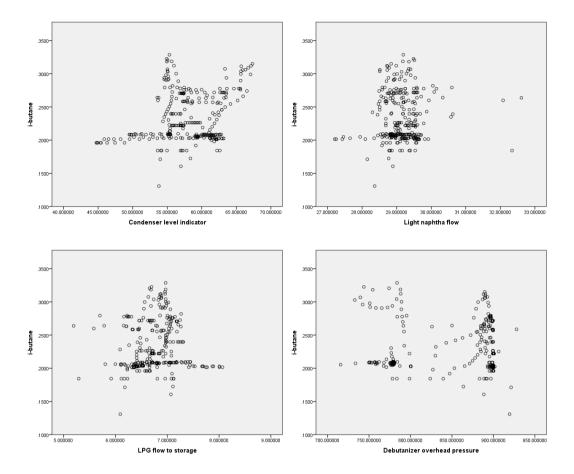

**. Correlation is significant at the 0.01 level (1-tailed).

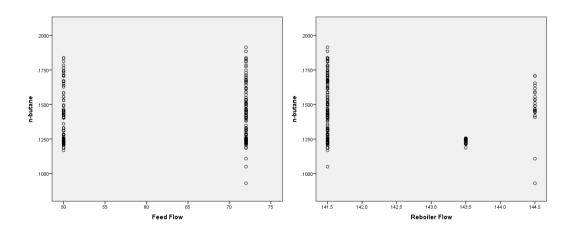

APPENDIX III

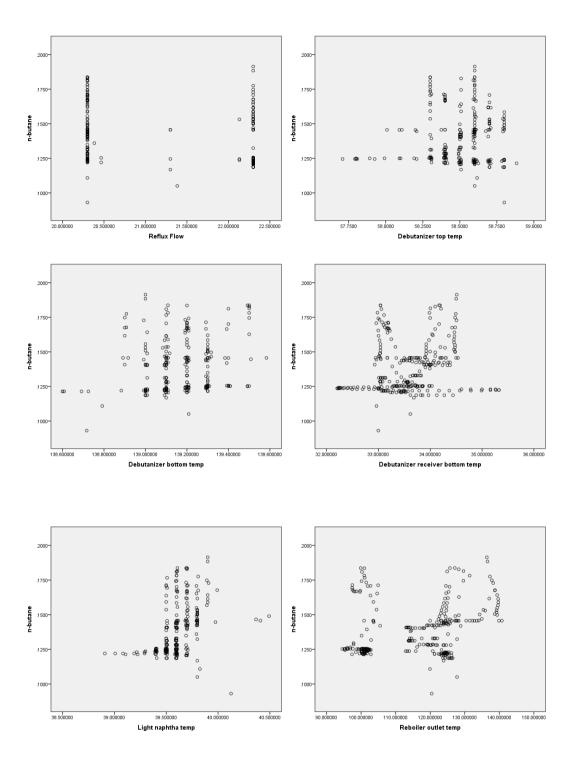
SCATTER PLOTS

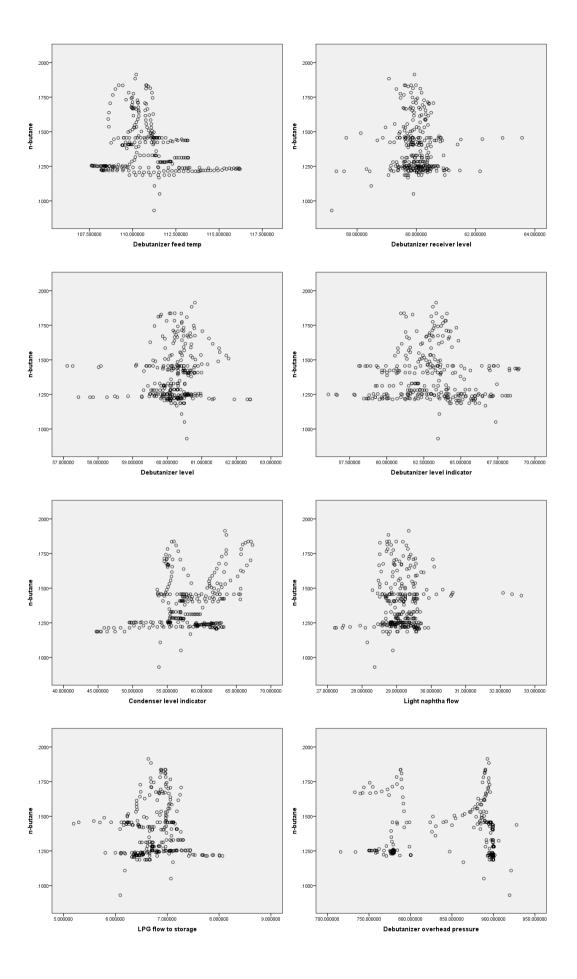


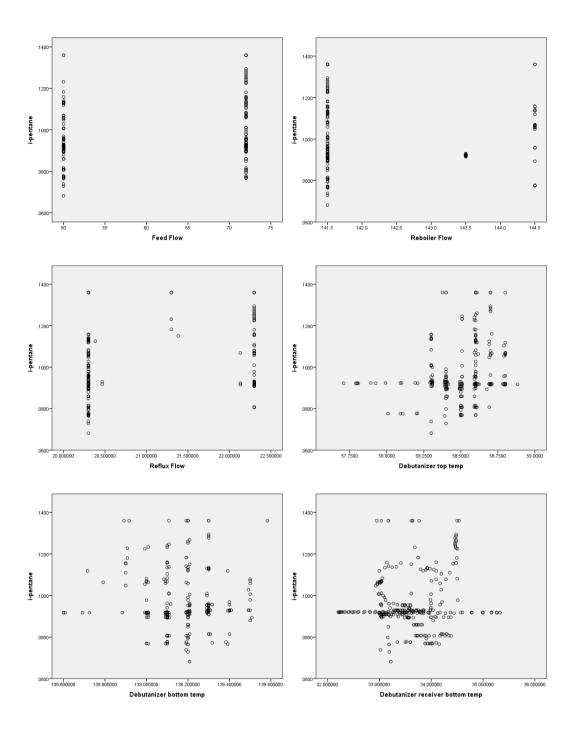

C3 vs Variables



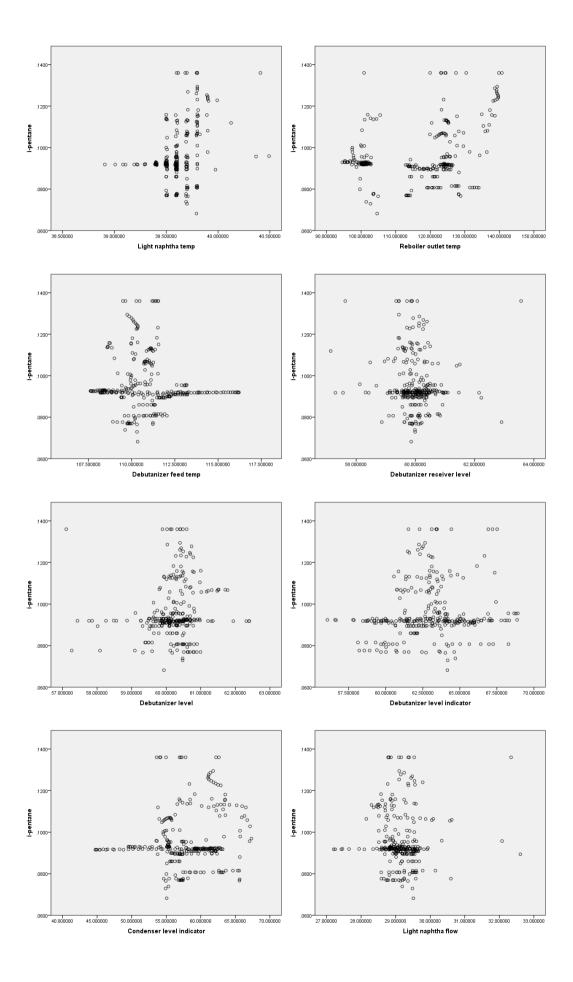

iC4 vs Variables

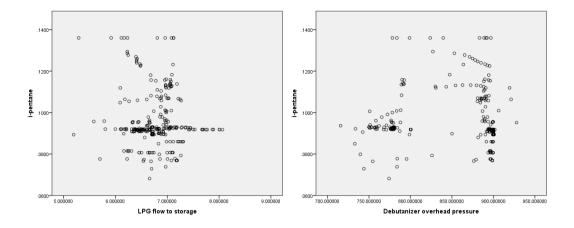


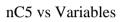


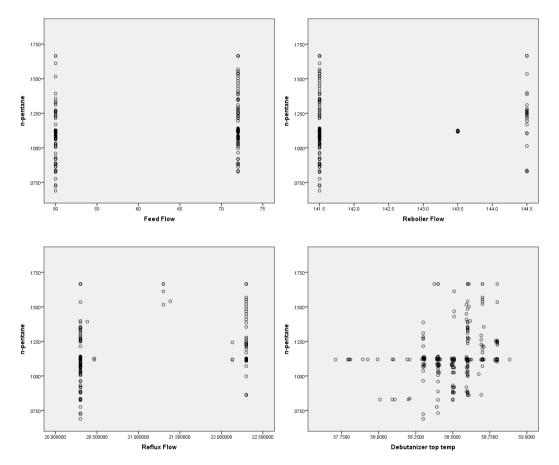


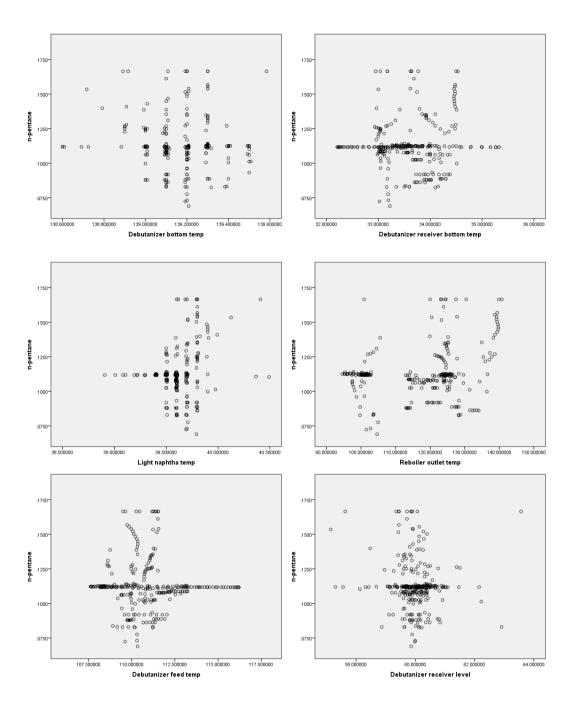
nC4 vs Variables

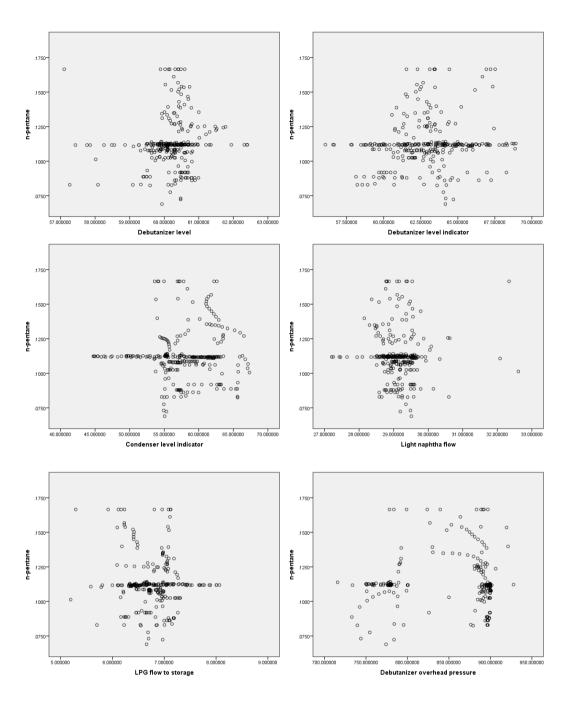









68



APPENDIX IV

REGRESSION

Dependent Variables: Compositions

Independent Variables: Manipulated Variables

Model Summary and Parameter Estimates

Dependent Variable: propane

_		Мос	del Summ	ary		Parameter Estimates			
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.025	7.527	1	299	.006	.236	001		
Logarithmic	.025	7.527	1	299	.006	.417	059		
Quadratic	.025	7.527	1	299	.006	.236	001	.000	
Cubic						.176	.000	.000	.000
Exponential	.029	9.009	1	299	.003	.239	006		

The independent variable is Feed Flow.

Model Summary and Parameter Estimates

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.040	12.604	1	299	.000	1.949	012		
Logarithmic	.041	12.667	1	299	.000	9.027	-1.786		
Quadratic	.040	12.604	1	299	.000	1.949	012	.000	
Cubic	.040	12.604	1	299	.000	1.949	012	.000	.000
Exponential	.040	12.333	1	299	.001	3754.731	071		

Dependent Variable: propane

Dependent va	ania 610 - pi	opane							
		Мос	del Summ	Parameter Estimates					
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.169	60.802	1	299	.000	.782	029		
Logarithmic	.169	61.002	1	299	.000	2.043	613		
Quadratic	.169	60.802	1	299	.000	.782	029	.000	
Cubic	.169	60.802	1	299	.000	.782	029	.000	.000
Exponential	.159	56.662	1	299	.000	4.739	160		

Dependent Variable: propane

The independent variable is Reflux Flow.

Model Summary and Parameter Estimates

Dependent Variable: i-butane									
		Мос	lel Summ	Parameter Estimates					
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.010	3.135	1	299	.078	.255	.000		
Logarithmic	.010	3.135	1	299	.078	.319	021		
Quadratic	.010	3.135	1	299	.078	.255	.000	.000	
Cubic						.234	.000	.000	.000
Exponential	.010	3.073	1	299	.081	.252	001		

The independent variable is Feed Flow.

Model Summary and Parameter Estimates

Dependent Variable:	i-butane
---------------------	----------

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.037	11.383	1	299	.001	1.145	006		
Logarithmic	.037	11.466	1	299	.001	4.785	918		
Quadratic	.037	11.383	1	299	.001	1.145	006	.000	
Cubic	.037	11.383	1	299	.001	1.145	006	.000	.000
Exponential	.037	11.626	1	299	.001	10.881	027		

Dependent Variable: i-butane									
		Мос	del Summ	Parameter Estimates					
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.157	55.699	1	299	.000	.549	015		
Logarithmic	.158	55.907	1	299	.000	1.205	319		
Quadratic	.157	55.699	1	299	.000	.549	015	.000	
Cubic	.157	55.699	1	299	.000	.549	015	.000	.000
Exponential	.156	55.176	1	299	.000	.860	062		

The independent variable is Reflux Flow.

Model Summary and Parameter Estimates

Dependent va	inabic. II	bulane								
		Мос	lel Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear							3.808E-			
	.001	.161	1	299	.689	.136	5			
Logarithmic	.001	.161	1	299	.689	.129	.002			
Quadratic	.001	.161	1	299	.689	.136	3.808E-	.000		
	.001	.101	'	299	.009	.150	5	.000		
Cubic						.138	.000	.000	.000	
Exponential	.000	.133	1	299	.716	.135	.000			

Dependent Variable: n-butane

The independent variable is Feed Flow.

Model Summary and Parameter Estimates

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.023	7.014	1	299	.009	.491	002		
Logarithmic	.023	7.090	1	299	.008	1.906	357		
Quadratic	.023	7.014	1	299	.009	.491	002	.000	
Cubic	.023	7.014	1	299	.009	.491	002	.000	.000
Exponential	.024	7.274	1	299	.007	1.665	018		

Dependent Variable: n-butane

Dependent Variable: n-butane									
		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.051	16.055	1	299	.000	.226	004		
Logarithmic	.051	16.096	1	299	.000	.409	089		
Quadratic	.051	16.055	1	299	.000	.226	004	.000	
Cubic	.051	16.055	1	299	.000	.226	004	.000	.000
Exponential	.057	18.107	1	299	.000	.262	031		

The independent variable is Reflux Flow.

Model Summary and Parameter Estimates

		Мос	lel Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.039	12.170	1	299	.001	.081	.000		
Logarithmic	.039	12.170	1	299	.001	.036	.015		
Quadratic	.039	12.170	1	299	.001	.088	.000	1.980E- 6	
Cubic						.096	.000	.000	.000
Exponential	.040	12.320	1	299	.001	.082	.002		

Dependent Variable: i-pentane

The independent variable is Feed Flow.

Model Summary and Parameter Estimates

Dependent Variable:	i-pentane
---------------------	-----------

		Мос	del Summ	ary		F	Parameter	Estimates	
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.006	1.823	1	299	.178	039	.001		
Logarithmic	.006	1.801	1	299	.181	573	.135		
Quadratic	.006	1.845	1	299	.175	.028	.000	3.347E- 6	
Cubic	.006	1.868	1	299	.173	.051	.000	.000	1.572E- 8
Exponential	.008	2.418	1	299	.121	.021	.011		

Dependent va												
		Мос	del Summ	ary		Parameter Estimates						
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.032	9.948	1	299	.002	.044	.002					
Logarithmic	.033	10.050	1	299	.002	065	.053					
Quadratic	.032	9.948	1	299	.002	.044	.002	.000				
Cubic	.032	9.948	1	299	.002	.044	.002	.000	.000			
Exponential	.037	11.352	1	299	.001	.055	.026					

Dependent Variable: i-pentane

The independent variable is Reflux Flow.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: n-pentane										
		Мос	lel Summa	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.039	12.233	1	299	.001	.093	.000				
Logarithmic	.039	12.233	1	299	.001	.033	.019				
Quadratic	.039	12.233	1	299	.001	.093	.000	.000			
Cubic						.113	.000	.000	.000		
Exponential	.041	12.683	1	299	.000	.094	.003				

The independent variable is Feed Flow.

Model Summary and Parameter Estimates

Dependent Variable: n-pentane

		Мос	lel Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.014	4.361	1	299	.038	163	.002			
Logarithmic	.014	4.343	1	299	.038	-1.259	.277			
Quadratic	.014	4.379	1	299	.037	025	.000	6.815E- 6		
Cubic	.014	4.397	1	299	.037	.021	.000	.000	3.188E- 8	
Exponential	.017	5.318	1	299	.022	.008	.018			

		e. n-pentane										
		Мос	del Summ	ary		Parameter Estimates						
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.056	17.650	1	299	.000	.022	.004					
Logarithmic	.056	17.821	1	299	.000	168	.092					
Quadratic	.056	17.650	1	299	.000	.022	.004	.000				
Cubic	.056	17.650	1	299	.000	.022	.004	.000	.000			
Exponential	.065	20.897	1	299	.000	.048	.040					

Dependent Variable: n-pentane

Dependent Variables: Compositions

Independent Variables: Temperature

Dependent Va	ariable: pr	e: propane									
		Мос	del Summ	ary		P	arameter	Estimates	6		
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.003	.994	1	299	.319	1.348	020				
Logarithmic	.003	.974	1	299	.324	4.888	-1.158				
Quadratic	.003	1.015	1	299	.315	.769	.000	.000			
Cubic	.003	1.035	1	299	.310	.576	.000	.000	-1.999E- 6		
Exponential	.006	1.866	1	299	.173	1572.778	157				

Model Summary and Parameter Estimates

The independent variable is Debutanizer top temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
Equation	R Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.006	1.699	1	299	.193	-4.470	.033			
Logarithmic	.006	1.704	1	299	.193	-22.787	4.652			
Quadratic	.006	1.699	1	299	.193	-4.470	.033	.000		
Cubic	.006	1.699	1	299	.193	-4.470	.033	.000	.000	
Exponential	.004	1.351	1	299	.246	8.178E- 12	.170			

Dependent Variable: propane

The independent variable is Debutanizer bottom temp.

Dependent Va	Dependent Variable: propane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.024	7.426	1	299	.007	405	.017				
Logarithmic	.025	7.729	1	299	.006	-1.907	.593				
Quadratic	.080	12.910	2	298	.000	-33.668	1.995	029			
Cubic	.080	13.016	2	298	.000	-22.680	1.011	.000	.000		
Exponential	.010	3.159	1	299	.077	.018	.065				

The independent variable is Debutanizer receiver bottom temp.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: propane										
		Мос	del Summa	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.026	7.911	1	299	.005	-2.299	.062				
Logarithmic	.026	7.992	1	299	.005	-8.984	2.490				
Quadratic	.026	7.911	1	299	.005	-2.299	.062	.000			
Cubic	.046	7.162	2	298	.001	-129.750	4.883	.000	001		
Exponential	.004	1.243	1	299	.266	.001	.143				

The independent variable is Light naphtha temp.

Model Summary and Parameter Estimates

Dependent Variable: propane

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.016	4.932	1	299	.027	.097	.001			
Logarithmic	.020	6.049	1	299	.014	231	.086			
Quadratic	.102	16.870	2	298	.000	-1.723	.033	.000		
Cubic	.102	16.870	2	298	.000	-1.723	.033	.000	.000	
Exponential	.003	.894	1	299	.345	.135	.002			

The independent variable is Reboiler outlet temp.

Dependent Va	ariable: pr	e: propane										
		Мос	del Summ	ary		Parameter Estimates						
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.000	.033	1	299	.855	.218	.000					
Logarithmic	.000	.016	1	299	.899	.315	030					
Quadratic	.077	12.423	2	298	.000	-48.257	.869	004				
Cubic	.077	12.347	2	298	.000	-31.948	.432	.000	-1.160E- 5			
Exponential	.000	.011	1	299	.915	.142	.001					

The independent variable is Debutanizer feed temp.

Model Summary and Parameter Estimates

Dependent Va	Pependent Variable: i-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.002	.691	1	299	.406	.761	009				
Logarithmic	.002	.675	1	299	.412	2.350	520				
Quadratic	.002	.708	1	299	.401	.501	.000	-7.812E- 5			
Cubic	.002	.724	1	299	.395	.415	.000	.000	-9.024E- 7		
Exponential	.003	.812	1	299	.368	2.526	041				

The independent variable is Debutanizer top temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.035	10.904	1	299	.001	-6.020	.045			
Logarithmic	.035	10.910	1	299	.001	-30.636	6.255			
Quadratic	.035	10.904	1	299	.001	-6.020	.045	.000		
Cubic	.035	10.904	1	299	.001	-6.020	.045	.000	.000	
Exponential	.036	11.066	1	299	.001	8.246E- 13	.189			

Dependent Variable: i-butane

The independent variable is Debutanizer bottom temp.

Dependent Va	Dependent Variable: i-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.016	4.738	1	299	.030	017	.007				
Logarithmic	.016	4.942	1	299	.027	669	.257				
Quadratic	.056	8.868	2	298	.000	-15.360	.920	014			
Cubic	.057	8.931	2	298	.000	-10.283	.465	.000	.000		
Exponential	.016	5.010	1	299	.026	.078	.032				

The independent variable is Debutanizer receiver bottom temp.

Model Summary and Parameter Estimates

-		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.068	21.892	1	299	.000	-1.938	.055			
Logarithmic	.069	22.056	1	299	.000	-7.793	2.182			
Quadratic	.068	21.892	1	299	.000	-1.938	.055	.000		
Cubic	.094	15.510	2	298	.000	-80.250	3.017	.000	001	
Exponential	.060	19.167	1	299	.000	4.520E- 5	.216			

Dependent Variable: i-butane

The independent variable is Light naphtha temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.015	4.638	1	299	.032	.193	.000			
Logarithmic	.016	4.736	1	299	.030	.040	.041			
Quadratic	.016	2.444	2	298	.089	.094	.002	-7.493E- 6		
Cubic	.016	2.444	2	298	.089	.094	.002	-7.493E- 6	.000	
Exponential	.016	4.749	1	299	.030	.194	.001			

Dependent Variable: i-butane

The independent variable is Reboiler outlet temp.

Dependent Variable: i-butane										
		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.017	5.080	1	299	.025	.514	003			
Logarithmic	.016	4.794	1	299	.029	1.521	273			
Quadratic	.114	19.114	2	298	.000	-28.864	.525	002		
Cubic	.113	18.909	2	298	.000	-18.926	.259	.000	-7.010E- 6	
Exponential	.016	4.810	1	299	.029	.722	010			

The independent variable is Debutanizer feed temp.

Model Summary and Parameter Estimates

Dependent Variable: n-butane										
		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.003	.948	1	299	.331	165	.005			
Logarithmic	.003	.961	1	299	.328	-1.099	.304			
Quadratic	.003	.948	1	299	.331	165	.005	.000		
Cubic	.003	.948	1	299	.331	165	.005	.000	.000	
Exponential	.003	.898	1	299	.344	.018	.035			

The independent variable is Debutanizer top temp.

Model Summary and Parameter Estimates

		Мос	lel Summ	ary		Parameter Estimates				
Equation	R Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.031	9.678	1	299	.002	-2.757	.021			
Logarithmic	.031	9.675	1	299	.002	-14.145	2.894			
Quadratic	.031	9.681	1	299	.002	-1.310	.000	7.477E- 5		
Cubic	.031	9.684	1	299	.002	827	.000	.000	3.583E- 7	
Exponential	.035	10.721	1	299	.001	9.228E- 11	.152			

Dependent Variable: n-butane

The independent variable is Debutanizer bottom temp.

Dependent Va	Dependent Variable: n-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.032	9.979	1	299	.002	039	.005				
Logarithmic	.033	10.162	1	299	.002	491	.179				
Quadratic	.048	7.433	2	298	.001	-4.647	.279	004			
Cubic	.048	7.475	2	298	.001	-3.134	.143	.000	-4.062E- 5		
Exponential	.034	10.570	1	299	.001	.039	.038				

The independent variable is Debutanizer receiver bottom temp.

Model Summary and Parameter Estimates

Dependent Va	ependent Variable: n-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.171	61.661	1	299	.000	-1.547	.043				
Logarithmic	.171	61.881	1	299	.000	-6.080	1.690				
Quadratic	.171	61.661	1	299	.000	-1.547	.043	.000			
Cubic	.183	33.433	2	298	.000	-27.924	1.040	.000	.000		
Exponential	.175	63.311	1	299	.000	9.969E- 7	.299				

The independent variable is Light naphtha temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.080	25.887	1	299	.000	.092	.000				
Logarithmic	.073	23.404	1	299	.000	067	.043				
Quadratic	.156	27.469	2	298	.000	.546	008	3.447E- 5			
Cubic	.158	27.865	2	298	.000	.253	.000	-3.010E- 5	1.824E- 7		
Exponential	.084	27.362	1	299	.000	.099	.003				

Dependent Variable: n-butane

The independent variable is Reboiler outlet temp.

Dependent Va	ariable: n-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.031	9.684	1	299	.002	.326	002				
Logarithmic	.030	9.248	1	299	.003	1.009	185				
Quadratic	.144	24.965	2	298	.000	-15.163	.276	001			
Cubic	.142	24.661	2	298	.000	-9.912	.136	.000	-3.692E- 6		
Exponential	.031	9.692	1	299	.002	.506	012				

The independent variable is Debutanizer feed temp.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: i-pentane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.050	15.826	1	299	.000	802	.015				
Logarithmic	.050	15.775	1	299	.000	-3.546	.895				
Quadratic	.050	15.877	1	299	.000	355	.000	.000			
Cubic	.051	15.927	1	299	.000	206	.000	.000	1.505E- 6		
Exponential	.051	16.064	1	299	.000	1.325E- 5	.152				

The independent variable is Debutanizer top temp.

Model Summary and Parameter Estimates

_		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.000	.007	1	299	.931	.035	.000		
Logarithmic	.000	.007	1	299	.933	196	.059		
Quadratic	.000	.008	1	299	.930	.065	.000	1.597E- 6	
Cubic	.000	.008	1	299	.928	.075	.000	.000	7.818E- 9
Exponential	.000	.010	1	299	.921	.048	.005		

Dependent Variable: i-pentane

The independent variable is Debutanizer bottom temp.

Dependent Va	ariable: i-p	pentane							
		Мос	del Summ	ary	Parameter Estimates				
	R	R							
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.012	3.616	1	299	.058	.016	.002		
Logarithmic	.012	3.573	1	299	.060	185	.080		
Quadratic	.014	2.136	2	298	.120	1.313	075	.001	
Cubic	.014	2.130	2	298	.121	.873	036	.000	1.125E- 5
Exponential	.008	2.521	1	299	.113	.049	.020		

The independent variable is Debutanizer receiver bottom temp.

Model Summary and Parameter Estimates

Dependent Variable: i-pentane										
		Мос	del Summ	ary	Parameter Estimates					
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.110	37.022	1	299	.000	911	.025			
Logarithmic	.110	36.916	1	299	.000	-3.607	1.006			
Quadratic	.110	37.123	1	299	.000	407	.000	.000		
Cubic	.115	19.404	2	298	.000	11.656	450	.000	.000	
Exponential	.094	30.979	1	299	.000	1.040E- 5	.230			

The independent variable is Light naphtha temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.115	38.765	1	299	.000	.055	.000			
Logarithmic	.102	34.031	1	299	.000	086	.038			
Quadratic	.282	58.416	2	298	.000	.555	008	3.799E- 5		
Cubic	.284	59.180	2	298	.000	.228	.000	-3.370E- 5	2.020E- 7	
Exponential	.102	33.853	1	299	.000	.065	.003			

Dependent Variable: i-pentane

The independent variable is Reboiler outlet temp.

Dependent Va	ariable: i-p	pentane							
		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.005	1.434	1	299	.232	.150	.000		
Logarithmic	.005	1.376	1	299	.242	.349	054		
Quadratic	.019	2.921	2	298	.055	-3.986	.074	.000	
Cubic	.019	2.892	2	298	.057	-2.584	.036	.000	-9.861E- 7
Exponential	.004	1.143	1	299	.286	.153	004		

The independent variable is Debutanizer feed temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.051	15.980	1	299	.000	-1.085	.020		
Logarithmic	.051	15.912	1	299	.000	-4.740	1.193		
Quadratic	.051	16.048	1	299	.000	488	.000	.000	
Cubic	.051	16.115	1	299	.000	289	.000	.000	2.009E- 6
Exponential	.051	15.962	1	299	.000	3.983E- 6	.175		

Dependent Variable: n-pentane

The independent variable is Debutanizer top temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.003	.926	1	299	.337	1.010	006		
Logarithmic	.003	.929	1	299	.336	4.546	898		
Quadratic	.003	.926	1	299	.337	1.010	006	.000	
Cubic	.003	.926	1	299	.337	1.010	006	.000	.000
Exponential	.004	1.127	1	299	.289	527.908	061		

Dependent Variable: n-pentane

The independent variable is Debutanizer bottom temp.

Model Summary and Para	meter Estimates
------------------------	-----------------

Dependent Variable: n-pentane										
		Мос	lel Summa	ary	Parameter Estimates					
	R	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.003	.912	1	299	.340	.059	.002			
Logarithmic	.003	.878	1	299	.349	073	.053			
Quadratic	.009	1.362	2	298	.258	2.919	168	.003		
Cubic	.009	1.360	2	298	.258	1.962	083	.000	2.497E- 5	
Exponential	.001	.388	1	299	.534	.083	.009			

The independent variable is Debutanizer receiver bottom temp.

Model Summary and Parameter Estimates

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.050	15.717	1	299	.000	787	.023		
Logarithmic	.050	15.624	1	299	.000	-3.191	.898		
Quadratic	.050	15.808	1	299	.000	338	.000	.000	
Cubic	.062	9.773	2	298	.000	24.520	934	.000	.000
Exponential	.030	9.314	1	299	.002	.000	.151		

Dependent Variable: n-pentane

The independent variable is Light naphtha temp.

Model Summary and Parameter Estimates

		Мос	lel Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.072	23.119	1	299	.000	.070	.000		
Logarithmic	.064	20.563	1	299	.000	078	.040		
Quadratic	.164	29.277	2	298	.000	.564	008	3.753E- 5	
Cubic	.166	29.658	2	298	.000	.242	.000	-3.318E- 5	1.994E- 7
Exponential	.057	18.089	1	299	.000	.080	.003		

Dependent Variable: n-pentane

The independent variable is Reboiler outlet temp.

Dependent Variable: n-pentane										
		Мос	del Summ	ary	Parameter Estimates					
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.000	.021	1	299	.884	.122	-7.958E- 5			
Logarithmic	.000	.019	1	299	.890	.153	008			
Quadratic	.001	.192	2	298	.825	-1.472	.029	.000		
Cubic	.001	.191	2	298	.826	936	.014	.000	-3.815E- 7	
Exponential	.000	.003	1	299	.953	.108	.000			

The independent variable is Debutanizer feed temp.

Dependent Variables: Compositions

Independent Variables: Level

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.006	1.923	1	299	.167	328	.008			
Logarithmic	.007	2.003	1	299	.158	-1.931	.515			
Quadratic	.016	2.485	2	298	.085	-19.511	.647	005		
Cubic	.016	2.485	2	298	.085	-19.511	.647	005	.000	
Exponential	.008	2.499	1	299	.115	.006	.055			

Dependent Variable: propane

The independent variable is Debutanizer receiver level.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.007	2.137	1	299	.145	.683	008			
Logarithmic	.007	2.107	1	299	.148	2.229	501			
Quadratic	.009	1.317	2	298	.269	-7.917	.279	002		
Cubic	.009	1.316	2	298	.270	-5.044	.135	.000	-1.332E- 5	
Exponential	.003	.947	1	299	.331	1.133	032			

Dependent Variable: propane

The independent variable is Debutanizer level.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.009	2.725	1	299	.100	.342	003			
Logarithmic	.009	2.820	1	299	.094	.878	170			
Quadratic	.014	2.039	2	298	.132	2.534	072	.001		
Cubic	.014	2.092	2	298	.125	1.863	039	.000	3.039E- 6	
Exponential	.010	2.902	1	299	.089	.437	016			

Dependent Variable: propane

The independent variable is Debutanizer level indicator.

Dependent Va	ependent Variable: propane										
		Мос	del Summ	ary		F	Parameter	Estimates			
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.039	12.241	1	299	.001	001	.003				
Logarithmic	.040	12.555	1	299	.000	527	.173				
Quadratic	.041	6.360	2	298	.002	299	.014	-9.309E- 5			
Cubic	.041	6.360	2	298	.002	299	.014	-9.309E- 5	.000		
Exponential	.032	9.867	1	299	.002	.066	.016				

The independent variable is Condenser level indicator.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: i-butane											
		Мос	del Summ	ary		Parameter Estimates						
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.003	.844	1	299	.359	.053	.003					
Logarithmic	.003	.928	1	299	.336	541	.189					
Quadratic	.027	4.169	2	298	.016	-16.104	.541	004				
Cubic	.027	4.169	2	298	.016	-16.104	.541	004	.000			
Exponential	.005	1.622	1	299	.204	.081	.017					

The independent variable is Debutanizer receiver level.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.000	.144	1	299	.704	.162	.001			
Logarithmic	.001	.155	1	299	.694	068	.074			
Quadratic	.004	.606	2	298	.546	-6.633	.228	002		
Cubic	.004	.616	2	298	.541	-4.410	.116	.000	-1.063E- 5	
Exponential	.001	.169	1	299	.682	.167	.005			

Dependent Variable: i-butane

The independent variable is Debutanizer level.

Dependent Va	Dependent Variable: i-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.006	1.931	1	299	.166	.310	001				
Logarithmic	.006	1.764	1	299	.185	.534	072				
Quadratic	.022	3.411	2	298	.034	-1.925	.070	001			
Cubic	.022	3.332	2	298	.037	-1.160	.034	.000	-2.937E- 6		
Exponential	.008	2.460	1	299	.118	.331	006				

The independent variable is Debutanizer level indicator.

Model Summary and Parameter Estimates

Dependent Va	endent Variable: i-butane									
		Мос	del Summ	ary		F	Parameter	Estimates		
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.073	23.597	1	299	.000	.104	.002			
Logarithmic	.072	23.334	1	299	.000	274	.125			
Quadratic	.075	11.998	2	298	.000	.254	003	4.653E- 5		
Cubic	.076	12.275	2	298	.000	.231	.000	-3.937E- 5	6.864E- 7	
Exponential	.076	24.451	1	299	.000	.133	.010			

The independent variable is Condenser level indicator.

Model Summary and Parameter Estimates

_		Мос	del Summ	ary		Parameter Estimates				
R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.000	.049	1	299	.825	.117	.000			
Logarithmic	.000	.062	1	299	.804	.040	.024			
Quadratic	.009	1.385	2	298	.252	-4.706	.161	001		
Cubic	.009	1.385	2	298	.252	-4.706	.161	001	.000	
Exponential	.001	.245	1	299	.621	.098	.006			

Dependent Variable: n-butane

The independent variable is Debutanizer receiver level.

Dependent Va	Dependent Variable: n-butane										
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.007	2.207	1	299	.138	.002	.002				
Logarithmic	.007	2.233	1	299	.136	421	.136				
Quadratic	.009	1.327	2	298	.267	-2.157	.074	001			
Cubic	.009	1.342	2	298	.263	-1.486	.040	.000	-3.459E- 6		
Exponential	.007	1.984	1	299	.160	.056	.015				

The independent variable is Debutanizer level.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: n-butane										
		Мос	lel Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.001	.300	1	299	.584	.153	.000				
Logarithmic	.001	.190	1	299	.663	.187	012				
Quadratic	.057	9.062	2	298	.000	-1.905	.065	001			
Cubic	.057	8.934	2	298	.000	-1.214	.032	.000	-2.731E- 6		
Exponential	.001	.409	1	299	.523	.155	002				

The independent variable is Debutanizer level indicator.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.100	33.149	1	299	.000	.064	.001			
Logarithmic	.097	32.274	1	299	.000	151	.071			
Quadratic	.106	17.602	2	298	.000	.215	004	4.703E- 5		
Cubic	.109	18.244	2	298	.000	.157	.000	-4.148E- 5	6.137E- 7	
Exponential	.102	34.018	1	299	.000	.081	.009			

Dependent Variable: n-butane

The independent variable is Condenser level indicator.

Dependent Va	ariable: i-p	le: i-pentane										
		Мос	del Summ	ary		Parameter Estimates						
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.007	2.087	1	299	.150	.199	002					
Logarithmic	.007	2.187	1	299	.140	.529	106					
Quadratic	.022	3.307	2	298	.038	4.785	154	.001				
Cubic	.022	3.349	2	298	.036	3.277	079	.000	7.106E- 6			
Exponential	.007	2.113	1	299	.147	.263	017					

The independent variable is Debutanizer receiver level.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: i-pentane											
		Мос	del Summ	ary		Parameter Estimates						
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.012	3.495	1	299	.063	032	.002					
Logarithmic	.011	3.474	1	299	.063	422	.126					
Quadratic	.012	1.797	2	298	.168	.760	024	.000				
Cubic	.012	1.789	2	298	.169	.459	010	.000	1.140E- 6			
Exponential	.013	4.020	1	299	.046	.025	.022					

The independent variable is Debutanizer level.

Model Summary and Parameter Estimates

		Mag		0.51		Parameter Estimates				
		IVIOC	lel Summ	ary		P	arameter	Estimates		
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.013	4.071	1	299	.045	.056	.001			
Logarithmic	.014	4.378	1	299	.037	076	.041			
Quadratic	.039	5.967	2	298	.003	965	.033	.000		
Cubic	.039	5.967	2	298	.003	965	.033	.000	.000	
Exponential	.014	4.332	1	299	.038	.063	.006			

Dependent Variable: i-pentane

The independent variable is Debutanizer level indicator.

Dependent Va	ariable: i-j	le: i-pentane									
		Мос	del Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.016	4.888	1	299	.028	.074	.000				
Logarithmic	.016	4.719	1	299	.031	.010	.021				
Quadratic	.017	2.618	2	298	.075	.124	001	1.570E-			
	.017	2.010	2	230	.075	.127	001	5			
Cubic	.017	2.629	2	298	.074	.099	.000	-1.007E-	1.564E-		
			_	200				5	7		
Exponential	.015	4.417	1	299	.036	.077	.004				

The independent variable is Condenser level indicator.

Model Summary and Parameter Estimates

Dependent Variable: n-pentane											
		Мос	lel Summ	ary		Parameter Estimates					
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.010	2.889	1	299	.090	.274	003				
Logarithmic	.010	3.045	1	299	.082	.790	165				
Quadratic	.035	5.422	2	298	.005	8.274	269	.002			
Cubic	.035	5.450	2	298	.005	5.614	136	.000	1.233E- 5		
Exponential	.009	2.636	1	299	.106	.416	022				

The independent variable is Debutanizer receiver level.

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates			
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.009	2.653	1	299	.104	035	.002		
Logarithmic	.009	2.630	1	299	.106	486	.146		
Quadratic	.009	1.420	2	298	.243	1.364	044	.000	
Cubic	.009	1.412	2	298	.245	.859	020	.000	2.077E- 6
Exponential	.011	3.330	1	299	.069	.027	.023		

Dependent Variable: n-pentane

The independent variable is Debutanizer level.

Dependent Va	endent Variable: n-pentane										
		Мос	del Summ	ary		P	arameter	Estimates			
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.019	5.852	1	299	.016	.049	.001				
Logarithmic	.020	6.050	1	299	.014	154	.065				
Quadratic	.027	4.087	2	298	.018	692	.025	.000			
Cubic	.027	4.087	2	298	.018	692	.025	.000	.000		
Exponential	.019	5.638	1	299	.018	.065	.008				

The independent variable is Debutanizer level indicator.

Model Summary and Parameter Estimates

Dependent va											
		Мос	del Summ	ary			Parameter	- Estimates			
	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3		
Linear	.001	.182	1	299	.670	.107	9.872E- 5				
Logarithmic	.001	.185	1	299	.667	.090	.006				
Quadratic	.001	.104	2	298	.901	.088	.001	-5.797E- 6			
Cubic	.001	.115	2	298	.891	.090	.001	.000	-4.606E- 8		
Exponential	.000	.072	1	299	.788	.108	.001				

Dependent Variable: n-pentane

The independent variable is Condenser level indicator.

Dependent Variables: Compositions

Independent Variables: Flow

Model Summary and Parameter Estimates

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.008	2.446	1	299	.119	144	.011			
Logarithmic	.008	2.527	1	299	.113	932	.329			
Quadratic	.010	1.578	2	298	.208	-2.996	.204	003		
Cubic	.010	1.578	2	298	.208	-2.996	.204	003	.000	
Exponential	.004	1.206	1	299	.273	.045	.044			

Dependent Variable: propane

The independent variable is Light naphtha flow.

Model Summary and Parameter Estimates

Dependent Variable: propane

		Мос	del Summa	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.000	.009	1	299	.925	.170	.001			
Logarithmic	.000	.027	1	299	.870	.156	.010			
Quadratic	.007	1.031	2	298	.358	643	.242	018		
Cubic	.008	1.190	2	298	.306	420	.132	.000	001	
Exponential	.004	1.210	1	299	.272	.109	.059			

The independent variable is LPG flow to storage.

Model Summary and Parameter Estimates

		Мос	del Summa	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.006	1.796	1	299	.181	.086	.005			
Logarithmic	.006	1.884	1	299	.171	283	.153			
Quadratic	.010	1.465	2	298	.233	-1.857	.137	002		
Cubic	.010	1.465	2	298	.233	-1.857	.137	002	.000	
Exponential	.008	2.287	1	299	.132	.115	.024			

Dependent Variable: i-butane

The independent variable is Light naphtha flow.

		Мос	del Summ	ary		Parameter Estimates				
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.005	1.494	1	299	.223	.192	.006			
Logarithmic	.006	1.874	1	299	.172	.145	.047			
Quadratic	.034	5.209	2	298	.006	708	.273	020		
Cubic	.037	5.767	2	298	.003	452	.149	.000	001	
Exponential	.006	1.737	1	299	.188	.191	.028			

Dependent Variable: i-butane

The independent variable is LPG flow to storage.

Model Summary and Parameter Estimates

Dependent Variable: n-butane										
		Мос	del Summa	Parameter Estimates						
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.006	1.880	1	299	.171	.064	.003			
Logarithmic	.006	1.927	1	299	.166	118	.076			
Quadratic	.007	1.081	2	298	.341	415	.035	001		
Cubic	.007	1.081	2	298	.341	415	.035	001	.000	
Exponential	.009	2.670	1	299	.103	.074	.021			

The independent variable is Light naphtha flow.

Model Summary and Parameter Estimates

Dependent Variable:	n-butane
---------------------	----------

		Мос	del Summ	ary	P	Parameter Estimates			
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.000	.029	1	299	.865	.135	.000		
Logarithmic	.000	.086	1	299	.770	.129	.005		
Quadratic	.021	3.208	2	298	.042	241	.112	008	
Cubic	.024	3.668	2	298	.027	136	.061	.000	.000
Exponential	.000	.009	1	299	.923	.136	.002		

The independent variable is LPG flow to storage.

Dependent Variable: i-pentane										
		Мос	del Summ	ary	Parameter Estimates					
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.000	.034	1	299	.853	.103	.000			
Logarithmic	.000	.052	1	299	.819	.127	009			
Quadratic	.008	1.163	2	298	.314	1.112	069	.001		
Cubic	.008	1.199	2	298	.303	.782	035	.000	1.310E- 5	
Exponential	.000	.138	1	299	.710	.110	005			

The independent variable is Light naphtha flow.

Model Summary and Parameter Estimates

Dependent Variable: i-pentane										
		Мос	del Summa	Р	Parameter Estimates					
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.010	2.897	1	299	.090	.117	003			
Logarithmic	.010	3.049	1	299	.082	.137	022			
Quadratic	.011	1.703	2	298	.184	.197	027	.002		
Cubic	.011	1.703	2	298	.184	.197	027	.002	.000	
Exponential	.008	2.395	1	299	.123	.115	028			

The independent variable is LPG flow to storage.

Model Summary and Parameter Estimates

		Мос	lel Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.001	.309	1	299	.579	.143	001		
Logarithmic	.001	.368	1	299	.545	.224	033		
Quadratic	.011	1.634	2	298	.197	1.661	104	.002	
Cubic	.011	1.663	2	298	.191	1.158	053	.000	1.961E- 5
Exponential	.002	.603	1	299	.438	.159	012		

The independent variable is Light naphtha flow.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: n-pentane											
		Мос	del Summ	ary	Parameter Estimates							
	R											
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.012	3.506	1	299	.062	.144	005					
Logarithmic	.013	3.829	1	299	.051	.174	032					
Quadratic	.019	2.918	2	298	.056	.368	071	.005				
Cubic	.019	2.921	2	298	.055	.295	038	.000	.000			
Exponential	.009	2.578	1	299	.109	.140	034					

The independent variable is LPG flow to storage.

Dependent Variables: Compositions

Independent Variables: Pressure

		Мос	del Summ	ary	Parameter Estimates				
	R	R							
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.084	27.440	1	299	.000	111	.000		
Logarithmic	.083	26.916	1	299	.000	-1.692	.277		
Quadratic	.104	17.338	2	298	.000	3.882	009	5.787E- 6	
Cubic	.104	17.326	2	298	.000	2.584	005	.000	2.344E- 9
Exponential	.066	21.115	1	299	.000	.038	.002		

Model Summary and Parameter Estimates

Dependent Variable: propane

The independent variable is Debutanizer overhead pressure.

Model Summary and Parameter Estimates

Dependent Variable: i-butane										
		Мос	del Summ	ary		Parameter	Estimates	6		
	R									
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3	
Linear	.012	3.533	1	299	.061	.176	6.763E- 5			
Logarithmic	.011	3.477	1	299	.063	142	.056			
Quadratic	.013	1.989	2	298	.139	.762	001	8.494E- 7		
Cubic	.013	1.938	2	298	.146	.526	001	.000	3.042E- 10	
Exponential	.014	4.119	1	299	.043	.178	.000			

The independent variable is Debutanizer overhead pressure.

Model Summary and	Parameter Estimates
-------------------	----------------------------

Dependent Va	Dependent Variable: n-butane											
		Мос	lel Summ	ary		Paramete	r Estimates	6				
	R	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.003	.999	1	299	.318	.123	1.771E- 5					
Logarithmic	.004	1.081	1	299	.299	.035	.015					
Quadratic	.025	3.790	2	298	.024	966	.003	-1.579E- 6				
Cubic	.027	4.161	2	298	.017	653	.001	.000	-6.750E- 10			
Exponential	.004	1.277	1	299	.259	.122	.000					

The independent variable is Debutanizer overhead pressure.

Model Summary and Parameter Estimates

Dependent Variable:	i-pentane

		Мос	del Summ	ary	Parameter Estimates				
	R								
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.000	.000	1	299	1.000	.096	-1.019E- 9		
Logarithmic	.000	.012	1	299	.912	.088	.001		
Quadratic	.142	24.613	2	298	.000	-1.986	.005	-3.018E- 6	
Cubic	.151	26.477	2	298	.000	638	.000	3.211E- 6	- 2.565E- 9
Exponential	.000	.031	1	299	.860	.097	-2.285E- 5		

The independent variable is Debutanizer overhead pressure.

Model Summary and Parameter Estimates

Dependent Va	Dependent Variable: n-pentane											
		Мос	del Summ	ary	Parameter Estimates							
	R	R										
Equation	Square	F	df1	df2	Sig.	Constant	b1	b2	b3			
Linear	.000	.003	1	299	.956	.114	-9.710E- 7					
Logarithmic	.000	.002	1	299	.963	.108	.001					
Quadratic	.116	19.473	2	298	.000	-2.381	.006	-3.617E- 6				
Cubic	.121	20.437	2	298	.000	757	.000	3.809E- 6	- 3.043E- 9			
Exponential	.000	.026	1	299	.872	.114	-2.419E- 5					

The independent variable is Debutanizer overhead pressure.

APPENDIX V

PAIRED T-TEST

C3 – Variables

-				Paired Sam	ipies rest		-		
			Paired Differences						
					95% Confide	nce Interval of			Sig. (2-
			Std.	Std. Error	the Dif	ference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pai	propan								
r 1	e - Feed	-62.3958443	10.91612 14	.6291948	-63.6340386	-61.1576500	-99.168	30 0	.000
	Flow							0	
Pai r 2	propan e - Reboil er Flow	- 142.005478 8	1.107060 2	.0638099	- 142.131050 5	- 141.879907 1	- 2225.44 6	30 0	.000
Pai r 3	propan e - Reflux Flow	- 20.9180463 85	.9980208 80	.0575249 67	- 21.0312499 41	- 20.8048428 28	- 363.634	30 0	.000

Paired	Samples	Test

_			Pai	red Differer	nces				Sig.
				Std.	95% Confide	ence Interval			(2-
			Std.	Error	of the Di	ifference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	propane								
ir	-			.012083	_	_	-	30	
1	Debutani	58.3254122	.2096456	.012003	58.3491919	58.3016325	4826.75	0	.000
	zer top	50.5254122		0	50.5451515	30.3010323	5	0	
	temp								
Ра	propane								
ir	-								
2	Debutani	- 138.987899	.16208568	.009342	- 139.006284	- 138.969514	- 14877.0	30	.000
	zer	936	1	463	997	874	08	0	.000
	bottom	930			991	074	08		
	temp								

Pa ir 3	propane - Debutani zer receiver bottom temp	- 33.4127792 02	.60321250 0	.034768 590	- 33.4812004 16	- 33.3443579 88	- 961.005	30 0	.000
Pa ir 4 Pa	propane - Light naphtha temp propane	- 39.4373444 78	.17630768 0	.010162 206	- 39.4573427 14	- 39.4173462 43	- 3880.78 6	30 0	.000
ir 5	- Reboiler outlet temp	- 115.585073 509	12.745436 776	.734634 763	- 117.030763 471	- 114.139383 547	- 157.337	30 0	.000
Pa ir 6	propane - Debutani zer feed temp	- 110.678136 177	1.8723873 99	.107922 615	- 110.890517 417	- 110.465754 937	- 1025.53 2	30 0	.000

Paired Samples Test

			Pa	ired Differer	nces				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the D	ifference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	propane -								
ir 1	Debutani zer receiver level	- 59.8163867 90	.64234682 4	.0370242 55	- 59.8892469 34	- 59.7435266 47	- 1615.6 00	30 0	.000
Pa ir 2	propane - Debutani zer level	- 60.0537899 76	.68594255 0	.0395370 71	- 60.1315950 97	- 59.9759848 54	- 1518.9 24	30 0	.000
Pa ir 3	propane - Debutani zer level indicator	۔ 62.7807055 41	2.4354736 79	.1403783 69	- 63.0569565 56	- 62.5044545 26	- 447.22 5	30 0	.000

Pa propane -								
ir 4 Condens	- 57.8203161	4.4086702	.2541115		- 57.3202492	- 227.53	30	.000
er level	25	67	30		57.3202492 80	227.55	0	.000
indicator	25			09	00	5		

Paired Samples Test

			Pa	aired Differe	nces				Sig.
					95% Confider	nce Interval of			(2-
			Std.	Std. Error	the Diff	erence			taile
	_	Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pai	propan								
r 1	e - Light naphth a flow	- 28.9728099 35	.5548684 74	.0319820 87	- 29.0357475 80	- 28.9098722 89	- 905.90 7	30 0	.000
Pai r 2	propan e - LPG flow to storag e	- 6.58870140 7	.4194608 78	.0241773 23	- 6.63628003 4	- 6.54112278 0	- 272.51 6	30 0	.000

			Pa	ired Differen	ces				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the Di	fference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pa	propane -								
ir	Debutani	-	58.339378	3.362625	-	-	-	30	
1	zer	850.522458	159	3.302025 855	857.139780	843.905137	252.9	30 0	.000
	overhead	891	159	000	436	346	34	0	
	pressure								

iC4 – Variables

Γ			Pa	aired Differe	-				Sig.
					95% Confider	nce Interval of			(2-
			Std.	Std. Error	the Diff	ference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pai r 1	butane - Feed Flow	-62.3375966	10.90908 78	.6287894	-63.5749931	-61.1002001	-99.139	30 0	.000
Pai r 2	i- butane - Reboil er Flow	- 141.947231 1	1.099034 1	.0633473	- 142.071892 4	- 141.822569 8	- 2240.77 9	30 0	.000
Pai r 3	i- butane - Reflux Flow	- 20.8597986 76	.9833230 16	.0566777 96	- 20.9713350 82	- 20.7482622 70	- 368.042	30 0	.000

Paired Samples Test

-			14	ired Samp	163 1631			1	
			Pai	red Differer	nces				Sig.
				Std.		ence Interval			(2-
			Std.	Error	of the Di	fference			taile
	_	Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pa ir	i-butane - Debutani	-	.1996667	.011508	-	-	- 5062.92	30	.000
1	zer top temp	58.2671645		6	58.2898123	58.2445167	4	0	
Pa ir	i-butane - Debutani	-			-	-	-		
2	zer	138.929652	.14994739 4	.008642 824	138.946660	138.912643	16074.5	30 0	.000
	bottom temp	227			467	988	67		

			1 1	l	1	1	1		
Ра	i-butane -								
ir	Debutani								
3	zer	- 33.3545314	.60655537	.034961	- 33.4233318	- 33.2857311	-	30	.000
	receiver		3	270			954.042	0	.000
	bottom	93			83	04			
	temp								
Ра	i-butane -								
ir	Light	-	.16821762	.009695	-	-	-	30	000
4	naphtha	39.3790967	5	903	39.3981773	39.3600161	4061.41	0	.000
	temp	70			66	74	6		
Ра	i-butane -								
ir	Reboiler	115 506005	12.749422	.734864	116 070067	-	-	30	000
5	outlet	115.526825	339	487	116.972967	114.080683	157.208	0	.000
	temp	801			837	764			
Ра	i-butane -								
ir	Debutani	-	1.8755179	.108103	-	-	-	30	000
6	zer feed	110.619888	84	059	110.832624	110.407152	1023.28	0	.000
	temp	469			805	133	2		

-			Pa	ired Differer	nces				Sig.
						ence Interval			(2-
			Std.	Std. Error	of the Di	ifference			taile
	-	Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	i-butane -								
ir 1	Debutani	-	.64330120	.0370792	-	-	-	20	
	zer	59.7581390			59.8311074	59.6851706	1611.6	30	.000
	receiver	82	1	65	79	85	32	0	
	level								
Ра	i-butane -	-	07700500	0000074	-	-	-	20	
ir 2	Debutani	59.9955422	.67709582 3	.0390271 54	60.0723439	59.9187406	1537.2	30 0	.000
	zer level	67	3	54	22	13	77	0	
Ра	i-butane -								
ir 3	Debutani	- 62.7224578	2.4313051	.1401381	- 62.9982360	- 62.4466796	- 447.57	30	.000
	zer level		65	00	02.9902300		_	0	.000
	indicator	33			22	44	6		
Ра	i-butane -								
ir 4	Condens	- 57.7620684	4.4118601	.2542953	- 58.2624970	- 57.2616397	- 227.14	30	000
	er level		27	90				0	.000
	indicator	16			80	53	6		

				aired Differe					Sig.
					95% Confider	nce Interval of			(2-
			Std.	Std. Error	the Diff	ference			tailed
		Mean	Deviation	Mean	Lower	Upper	t	df)
Pai r 1	i- butane - Light naphth a flow	- 28.9145622 26	.5552286 74	.0320028 49	- 28.9775407 29	- 28.8515837 24	- 903.50 0	30 0	.000
Pai r 2	i- butane - LPG flow to storag e	- 6.53045369 9	.4133649 46	.0238259 59	- 6.57734087 6	- 6.48356652 2	- 274.09 0	30 0	.000

Paired Samples Test

			Pa	ired Differen	ces				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the Di	fference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	i-butane -								
ir	Debutani	-	58.355036	3.363528	-	-	-	30	
1	zer	850.464211	753	401	857.083308	843.845113	252.8	0	.000
	overhead	183	700	-01	851	514	49	0	
	pressure								

nC4 – Variables

		Pa	aired Differe	nces				Sig.
				95% Confider	nce Interval of			(2-
		Std.	Std. Error	the Diff	ference			taile
	Mean	Deviation	Mean	Lower	Upper	t	df	d)

Pai r 1	n- butane - Feed Flow	-62.4331468	10.90490 61	.6285483	-63.6700689	-61.1962246	-99.329	30 0	.000
Pai r 2	n- butane - Reboil er Flow	- 142.042781 3	1.094309 3	.0630749	- 142.166906 7	- 141.918655 9	- 2251.96 9	30 0	.000
Pai r 3	n- butane - Reflux Flow	- 20.9553488 64	.9724768 86	.0560526 36	- 21.0656550 15	- 20.8450427 13	- 373.851	30 0	.000

			Pai	red Differer	nces				Sig.
				Std.	95% Confide	ence Interval			(2-
			Std.	Error	of the Di	fference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	n-butane								
ir	-			014000			-		
1	Debutani	-	.1943686	.011203	-	-	5209.46	30 0	.000
	zer top	58.3627147		2	58.3847615	58.3406678	0	0	
	temp								
Ра	n-butane								
ir	-								
2	Debutani	- 139.025202	.15030936	.008663	- 139.042251	- 139.008153	- 16046.8	30	.000
	zer	415	9	688	713	139.000133	85	0	.000
	bottom	+15			715	110	00		
	temp								
Ра	n-butane								
ir	-								
3	Debutani	-	.60707079	.034990	-	-	-	30	
	zer	33.4500816	.00707073	.004930 979	33.5189405	33.3812228	955.963	0	.000
	receiver	81	0	575	35	28	000.000		
	bottom								
	temp								

Pa ir 4	n-butane - Light naphtha temp	- 39.4746469 58	.16741226 7	.009649 483	- 39.4936362 04	- 39.4556577 12	- 4090.85 6	30 0	.000
Pa ir 5	n-butane - Reboiler outlet temp	- 115.622375 989	12.748841 132	.734830 987	- 117.068452 100	- 114.176299 877	- 157.346	30 0	.000
Pa ir 6	n-butane - Debutani zer feed temp	- 110.715438 657	1.8737025 60	.107998 420	- 110.927969 073	- 110.502908 241	۔ 1025.15 8	30 0	.000

Paired Samples Test									
			Pa	ired Differer	nces				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the Di	ifference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	n-butane								
ir 1	-								
	Debutani	-	.64422395	.0371324	-	-	-	30	
	zer	59.8536892	9	52	59.9267623	59.7806162	1611.8	0	.000
	receiver	70	, C		34	07	97	•	
	level								
Ра	n-butane								
ir 2		-	.67561531	.0389418	-	-	-	30	
	Debutani	60.0910924	0	19	60.1677261	60.0144587	1543.0	0	.000
	zer level	55	, i i i i i i i i i i i i i i i i i i i		78	32	99	•	
Ра	n-butane								
ir 3	-	-			-	-	-		
	Debutani	62.8180080	2.4287399	.1399902	63.0934952	62.5425207	448.73	30	.000
	zer level	21	48	43	42	99	1	0	
	indicator								
Ра	n-butane								
ir 4	-	-			-	-	-		
	Condens	57.8576186	4.4159731	.2545324	58.3585138	57.3567234	227.30	30	.000
	er level	05	64	62	02	07	9	0	
	indicator								

			Pa	aired Differe	nces				Sig.
					95% Confidence Interval of				(2-
			Std.	Std. Error	the Diff	erence			tailed
		Mean	Deviation	Mean	Lower	Upper	t	df)
Pai r 1	n- butane - Light naphth a flow	- 29.0101124 14	.5557264 66	.0320315 41	- 29.0731473 80	- 28.9470774 48	- 905.67 3	30 0	.000
Pai r 2	n- butane - LPG flow to storag e	- 6.62600388 7	.4145423 36	.0238938 23	- 6.67302461 3	۔ 6.57898316 1	- 277.31 0	30 0	.000

Paired Samples Test

_			Pa	ired Differen	ces				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the Di	fference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	n-butane								
ir	-								
1	Debutani	- 850.559761	58.357941	3.363695	- 857.179188	- 843.940334	- 252.8	30	.000
	zer	371	637	836	535	207	2 <u>5</u> 2.0	0	.000
	overhead	571			555	207	00		
	pressure								

iC5 – Variables

	Pa	aired Differei	nces				Sig.
	95% Confidence Interval						(2-
Std. Std. Error of the Difference							tailed
Mean	Deviation	Mean	Lower	Upper	t	df)

Pai r 1	i- penta ne - Feed	- 62.4756154	10.90268 03	.6284200	- 63.7122851	- 61.2389457	-99.417	30 0	.000
Pai r 2	Flow i- penta ne - Reboil er Flow	- 142.085250 0	1.090498 7	.0628553	- 142.208943 1	- 141.961556 8	- 2260.5 13	30 0	.000
Pai r 3	i- penta ne - Reflux Flow	- 20.9978175 32	.9659761 32	.0556779 39	- 21.1073863 15	- 20.8882487 49	- 377.13 0	30 0	.000

				red Differer					
			Fai						Sig.
				Std.		ence Interval			(2-
			Std.	Error	of the Di	fference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pa i-pen	tane								
ir -							-		
1 Debu	utani	-	.1920042	.011066	-	-	5277.44	30	.000
zer to	op	58.4051833		9	58.4269620	58.3834047	8	0	
temp							0		
Pa i-pen									
-	liane								
ir -		-			-	-	-		
2 Debu	utani	139.067671	.15295832	.008816	139.085020	139.050321	15773.7	30	.000
zer		083	8	371	847	319	99	0	
botto	m				-				
temp)								
Pa i-pen	ntane								
ir -									
3 Debu	utani	-			-	-			
zer		33.4925503	.60872158	.035086	33.5615964	33.4235042	-	30	.000
recei	iver	49	8	129	48	50	954.581	0	
botto	m								
temp									

Pa ir 4	i-pentane - Light naphtha temp	- 39.5171156 26	.17006479 8	.009802 372	- 39.5364057 43	- 39.4978255 08	- 4031.38 3	30 0	.000
Pa ir 5	i-pentane - Reboiler outlet temp	- 115.664844 656	12.749378 483	.734861 959	- 117.110981 718	- 114.218707 594	- 157.397	30 0	.000
Pa ir 6	i-pentane - Debutani zer feed temp	- 110.757907 325	1.8714148 97	.107866 561	- 110.970178 256	- 110.545636 394	- 1026.80 5	30 0	.000

Paired Samples Test										
			Pa	ired Differer	nces				Sig.	
			Std.	Std. Error	95% Confidence Interval of the Difference				(2- taile	
		Mean	Deviation	Mean	Lower	Upper	t	df	d)	
Pai r 1	i-pentane - Debutaniz er receiver	- 59.8961579 38	.64544930 1	.0372030 79	- 59.9693699 89	- 59.822945 886	- 1609.9 79	30 0	.000	
Pai r 2	level i-pentane - Debutaniz er level	- 60.1335611 23	.67561056 9	.0389415 46	- 60.2101943 08	- 60.056927 938	- 1544.2 01	30 0	.000	
r 3	i-pentane - Debutaniz er level indicator	- 62.8604766 88	2.4265987 52	.1398668 27	- 63.1357210 38	- 62.585232 339	- 449.43 1	30 0	.000	
Pai r 4	i-pentane - Condens er level indicator	- 57.9000872 72	4.4199286 13	.2547604 50	- 58.4014311 29	- 57.398743 415	- 227.27 3	30 0	.000	
Paired Samples Test										
	T	t	df	Sig.						

			Std.	Std. Error		nce Interval of erence			(2- tailed
		Mean	Deviation	Mean	Lower	Upper)
Pai	i-								
r 1	penta								
	ne - Light napht	- 29.0525810 82	.5571569 69	.0321139 94	- 29.1157783 07	- 28.9893838 57	- 904.67 0	30 0	.000
	ha								
	flow								
Pai	i-								
r 2	penta ne - LPG	- 6.66847255	.4158474 30	.0239690 47	- 6.71564131	- 6.62130379		30 0	.000
	flow to storag e	4			5	4	2		

			Pa	ired Differen	ces				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the Di	fference			taile
	-	Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	i-pentane								
ir	-								
1	Debutani	- 850.602230	58.358973	3.363755	- 857.221774	- 843.982685	- 252.8	30	.000
	zer	038	942	337	294	782	232.0 73	0	.000
	overhead	030			294	702	73		
	pressure								

nC5 – Variables

			Pa	aired Differer	nces				Sig.
					95% Confidence Interval				(2-
			Std.	Std. Error	of the Di	fference			tailed
		Mean	Deviation	Mean	Lower	Upper	t	df)
Pai	n-								
r 1	penta	-	10.90181		_	_		30	
	ne -	62.4586398	55	.6283702	63.6952114	61.2220682	-99.398	0	.000
	Feed	02.7000390			00.0002114	01.2220002		0	
	Flow								

Pai r 2	n- penta ne - Reboil er Flow	- 142.068274 4	1.089476 5	.0627964	- 142.191851 6	- 141.944697 2	- 2262.3 64	30 0	.000
Pai r 3	n- penta ne - Reflux Flow	- 20.9808419 56	.9642565 96	.0555788 26	- 21.0902156 96	- 20.8714682 17	- 377.49 7	30 0	.000

			Pai	red Differer	nces				Sig.
				Std.	95% Confide	ence Interval			(2-
			Std.	Error	of the Di	ifference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pa ir 1	n- pentane - Debutani zer top temp	- 58.3882078	.1913462	.011029 0	- 58.4099118	- 58.3665037	- 5294.05 6	30 0	.000
Pa ir 2	n- pentane - Debutani zer bottom temp	- 139.050695 507	.15443794 1	.008901 655	- 139.068213 101	- 139.033177 913	- 15620.7 69	30 0	.000
Pa ir 3	n- pentane - Debutani zer receiver bottom temp	- 33.4755747 73	.60931447 4	.035120 302	- 33.5446881 22	- 33.4064614 24	- 953.169	30 0	.000
Pa ir 4	n- pentane - Light naphtha temp	- 39.5001400 50	.17094142 3	.009852 900	- 39.5195296 01	- 39.4807504 99	- 4008.98 6	30 0	.000

-										-
Pa	n-									
ir	pentane -	-	12.749160	.734849	-	-		30		
5	Reboiler	115.647869	063	.734849	117.093981	114.201756	- 157.376	30 0	.000	
	outlet	080	003	309	367	793	157.570	0		
	temp									
Ра	n-									
ir	pentane -	-	1.8706799	.107824	-	-	-	30		
6	Debutani	110.740931	07	197	110.953119	110.528744	1027.05		.000	
	zer feed	749	07	197	311	186	1	0		
	temp									

			Paired Differences						Sig.
			Std.	Std. Error	95% Confide of the Di				(2- taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Pai r 1	n-pentane - Debutaniz er	- 59.8791823 62	.64617272	.0372447 76	- 59.9524764 70	- 59.805888 254	- 1607.7 20	30 0	.000
Pai r 2	receiver level n-pentane - Debutaniz er level	- 60.1165855 47	.67548381 5	.0389342 40	- 60.1932043 55	- 60.039966 739	- 1544.0 54	30 0	.000
Pai r 3	n-pentane - Debutaniz er level indicator	- 62.8435011 12	2.4257202 58	.1398161 91	- 63.1186458 16	- 62.568356 409	- 449.47 2	30 0	.000
Pai r 4	n-pentane - Condens er level indicator	- 57.8831116 96	4.4211971 43	.2548335 67	- 58.3845994 40	- 57.381623 953	- 227.14 1	30 0	.000

	Pa	aired Differe	nces				Sig.
			95% Confider			(2-	
	Std.	Std. Error	the Difference				tailed
Mean	Deviation	Mean	Lower	t	df)	

Pai	n-								
r 1	penta								
	ne -	-	.5577033	.0321454	-	-	-	30	
	Light	29.0356055	.5577655	88	29.0988647	28.9723463	903.25	0	.000
	napht	06	00	00	08	04	6	0	
	ha								
	flow								
Pai	n-								
r 2	penta								
	ne -	-	.4166054	.0240127	-	-	-	30	
	LPG	6.65149697		.0240127	6.69875172	6.60424223	276.99	0	.000
	flow to	8	97	42	5	2	9	0	
	storag								
	е								

			Pa	ired Differen	ices				Sig.
					95% Confide	ence Interval			(2-
			Std.	Std. Error	of the Di	fference			taile
		Mean	Deviation	Mean	Lower	Upper	t	df	d)
Ра	n-								
ir	pentane -				_	_	_		
1	Debutani	850.585254	58.359031	3.363758	857.204805	843.965703	252.8	30	.000
	zer	462	704	666	271	654	68	0	.000
	overhead	102			271	001	00		
	pressure								

APPENDIX VI

ANALYSIS OF VARIANCE (ANOVA)

Compositions – Manipulated Variables

	ANOVA ^a										
Мо	del	Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	.034	1	.034	7.527	.006 ^b					
	Residual	1.341	299	.004							
	Total	1.375	300								

a. Dependent Variable: propane

b. Predictors: (Constant), Feed Flow

Mode	4	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.004	1	.004	3.135	.078 ^b
	Residual	.396	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Feed Flow

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.161	.689 ^b
	Residual	.096	299	.000		
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Feed Flow

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.002	1	.002	12.170	.001 ^b
	Residual	.051	299	.000	l l	
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Feed Flow

	ANOVAª						
Mod	lel	Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	.004	1	.004	12.233	.001 ^b	
	Residual	.090	299	.000			
	Total	.094	300				

b. Predictors: (Constant), Feed Flow

			ANOVA ^a			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.056	1	.056	12.604	.000 ^b
	Residual	1.320	299	.004		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Reboiler Flow

ANOVA^a

Model Sum of Squares df	Mean Square F Sig.
1 Regression .015	1 .015 11.383 .001 ^b
Residual .386 2	.001
Total .400 3	00

a. Dependent Variable: i-butane

b. Predictors: (Constant), Reboiler Flow

ANOVA^a

			ANOVA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.002	1	.002	7.014	.009 ^b
	Residual	.094	299	.000		
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Reboiler Flow

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	1.823	.178 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Reboiler Flow

	ANOVAª							
Mo	odel	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.001	1	.001	4.361	.038 ^b		
	Residual	.092	299	.000				
	Total	.094	300					

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Reboiler Flow

			ANOVA ^a			
Mode	-	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.232	1	.232	60.802	.000 ^b
	Residual	1.143	299	.004		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Reflux Flow

			ANOVA ^a			
Mode	1	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.063	1	.063	55.699	.000 ^b
	Residual	.337	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Reflux Flow

ANOVA^a

Ν	Vlodel	Sum of Squares	df	Mean Square	F	Sig.
1	l Regression	.005	1	.005	16.055	.000 ^b
	Residual	.091	299	.000	l l	
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Reflux Flow

ANOVA^a

			AIIOIA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.002	1	.002	9.948	.002 ^b
	Residual	.052	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Reflux Flow

			ANOVA ^a			
M	lodel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.005	1	.005	17.650	.000 ^b
	Residual	.089	299	.000	u	
	Total	.094	300			

b. Predictors: (Constant), Reflux Flow

Compositions – Temperature Variables

			ANOVA ^a			
Mod	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.005	1	.005	.994	.319
	Residual	1.371	299	.005		

300

1.375

a. Dependent Variable: propane

Total

b. Predictors: (Constant), Debutanizer top temp

	ANOVAª									
Mode	I	Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	.008	1	.008	1.699	.193 ^b				
	Residual	1.368	299	.005	u					
	Total	1.375	300							

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer bottom temp

	ANOVAª									
Mo	del	Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	.033	1	.033	7.426	.007 ^b				
	Residual	1.342	299	.004						
	Total	1.375	300							

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer receiver bottom temp

			ANOVA ^a			
Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.035	1	.035	7.911	.005 ^b
	Residual	1.340	299	.004		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Light naphtha temp

	ANOVAª									
Мо	odel	Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	.022	1	.022	4.932	.027 ^b				
	Residual	1.353	299	.005	u li					
	Total	1.375	300							

a. Dependent Variable: propane

b. Predictors: (Constant), Reboiler outlet temp

ANOVA^a

			-			
Мо	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.033	.855 ^b
	Residual	1.375	299	.005		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer feed temp

ANOVA^a Model Sum of Squares df Mean Square F Sig. .406^b 1 Regression .001 1 .001 .691 .001 Residual .399 299 Total 300 .400

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer top temp

ANOVA^a

Mod	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.014	1	.014	10.904	.001 ^b
	Residual	.386	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer bottom temp

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.006	1	.006	4.738	.030 ^b
	Residual	.394	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer receiver bottom temp

	ANOVA									
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	.027	1	.027	21.892	.000 ^b				
	Residual	.373	299	.001						
	Total	.400	300							

ANOVA^a

a. Dependent Variable: i-butane

b. Predictors: (Constant), Light naphtha temp

			ANOVA ^a			
Mode	əl	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.006	1	.006	4.638	.032 ^b
	Residual	.394	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Reboiler outlet temp

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.007	1	.007	5.080	.025 ^b
	Residual	.394	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer feed temp

ANOVA^a Sig. Model Sum of Squares df Mean Square F .331^b 1 Regression .000 1 .000 .948 Residual .096 299 .000 Total .096 300

a. Dependent Variable: n-butane

b. Predictors: (Constant), Debutanizer top temp

ANOVA^a

Mod	lel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.003	1	.003	9.678	.002 ^b
	Residual	.093	299	.000		
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Debutanizer bottom temp

ANOVA^a

			-			
Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.003	1	.003	9.979	.002 ^b
	Residual	.093	299	.000	u	
	Total	.096	300			

b. Predictors: (Constant), Debutanizer receiver bottom temp

ANOVAª								
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.016	1	.016	61.661	.000 ^b		
	Residual	.080	299	.000				
	Total	.096	300					

a. Dependent Variable: n-butane

b. Predictors: (Constant), Light naphtha temp

ANOVA^a

				-			
	Model		Sum of Squares	df	Mean Square	F	Sig.
F	1 Re	gression	.008	1	.008	25.887	.000 ^b
	Res	sidual	.089	299	.000		
	Tot	al	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Reboiler outlet temp

ANOVA^a Model Sum of Squares df Mean Square F Sig. .002^b 1 Regression .003 1 .003 9.684 Residual .093 299 .000 Total .096 300

a. Dependent Variable: n-butane

b. Predictors: (Constant), Debutanizer feed temp

ANOVA^a

I	Model		Sum of Squares	df	Mean Square	F	Sig.
	1	Regression	.003	1	.003	15.826	.000 ^b
		Residual	.051	299	.000	ı	
		Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Debutanizer top temp

ANOVA^a F Model Sum of Squares df Mean Square Sig. 1 Regression .000 .000 .007 .931^b 1 .053 .000 Residual 299 Total .053 300

Total

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Debutanizer bottom temp

			ANOVA ^a			
Mode)	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	3.616	.058 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Debutanizer receiver bottom temp

ANOVA ^a

Mode	əl	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.006	1	.006	37.022	.000 ^b
	Residual	.047	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Light naphtha temp

ANOVA^a Model Sum of Squares df Mean Square F Sig. .000^b 1 Regression .006 1 .006 38.765 Residual .047 299 .000 .053 300 Total

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Reboiler outlet temp

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	1.434	.232 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Debutanizer feed temp

	ANOVAª							
Mod	lel	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.005	1	.005	15.980	.000 ^b		
	Residual	.089	299	.000				
	Total	.094	300					

b. Predictors: (Constant), Debutanizer top temp

			ANOVA ^a			
Мо	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.926	.337 ^b
	Residual	.093	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

Model

1

b. Predictors: (Constant), Debutanizer bottom temp

		ANOVA ^a		
	Sum of Squares	df	Mean Square	F
Regression	.000	1	.000	

.093

.094

Sig.

.340^b

.912

.000

a. Dependent Variable: n-pentane

Residual

Total

b. Predictors: (Constant), Debutanizer receiver bottom temp

ANOVA^a

299

300

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.005	1	.005	15.717	.000 ^b
	Residual	.089	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Light naphtha temp

ANOVA^a

Mo	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.007	1	.007	23.119	.000 ^b
	Residual	.087	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Reboiler outlet temp

			ANOVA ^a			
Mod	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.021	.884 ^b
	Residual	.094	299	.000	U	
	Total	.094	300			

b. Predictors: (Constant), Debutanizer feed temp

Compositions – Level Variables

	ANOVAª							
Mod	el	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.009	1	.009	1.923	.167 ^b		
	Residual	1.366	299	.005				
	Total	1.375	300					

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer receiver level

	ANOVAª								
Мс	odel	Sum of Squares	df	Mean Square	F	Sig.			
1	Regression	.010	1	.010	2.137	.145 ^b			
	Residual	1.366	299	.005	l l				
	Total	1.375	300						

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer level

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.012	1	.012	2.725	.100 ^b
	Residual	1.363	299	.005	u	
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer level indicator

	ANOVAª							
Мо	del	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.054	1	.054	12.241	.001 ^b		
	Residual	1.321	299	.004	u .			
	Total	1.375	300					

a. Dependent Variable: propane

b. Predictors: (Constant), Condenser level indicator

			ANOVA			
Mo	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	.844	.359 ^b
	Residual	.399	299	.001		
	Total	.400	300			

ANOVA^a

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer receiver level

_	ANOVA ^a								
N	lodel	Sum of Squares	df	Mean Square	F	Sig.			
1	Regression	.000	1	.000	.144	.704 ^b			
	Residual	.400	299	.001	l l				
	Total	.400	300						

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer level

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.003	1	.003	1.931	.166 ^b
	Residual	.398	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer level indicator

ANOVA^a

Ν	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.029	1	.029	23.597	.000 ^b
	Residual	.371	299	.001		
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Condenser level indicator

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.049	.825 ^b
	Residual	.096	299	.000		
a	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Debutanizer receiver level

	ANOVAª							
Mod	del	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.001	1	.001	2.207	.138 ^b		
	Residual	.096	299	.000				
	Total	.096	300					

b. Predictors: (Constant), Debutanizer level

			ANOVA ^a			
Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.300	.584 ^b
	Residual	.096	299	.000	l l	
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Debutanizer level indicator

ANOVA ^a	

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.010	1	.010	33.149	.000 ^b
	Residual	.087	299	.000		
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Condenser level indicator

ANOVA^a

			-			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	2.087	.150 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Debutanizer receiver level

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	3.495	.063 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Debutanizer level

F Model Sum of Squares df Mean Square Sig. .045^b 1 Regression .001 .001 4.071 1 .053 .000 Residual 299 Total .053 300

ANOVA^a

b. Predictors: (Constant), Debutanizer level indicator

			ANOVA ^a			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	4.888	.028 ^b
	Residual	.052	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Condenser level indicator

ANO\	/A ^a
------	-----------------

Mode	1	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	2.889	.090 ^b
	Residual	.093	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Debutanizer receiver level

ANOVA^a

			AILOTA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	2.653	.104 ^b
	Residual	.093	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Debutanizer level

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.002	1	.002	5.852	.016 ^b
	Residual	.092	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Debutanizer level indicator

			ANOVA ^a			
Mod	lel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.182	.670 ^b
	Residual	.094	299	.000		
	Total	.094	300			

b. Predictors: (Constant), Condenser level indicator

Compositions – Flow Variables

ANOVA ^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.011	1	.011	2.446	.119 ^b
	Residual	1.364	299	.005		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Light naphtha flow

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.009	.925 ^b
	Residual	1.375	299	.005		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), LPG flow to storage

	ANOVA ^a							
N	lodel	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	.002	1	.002	1.796	.181 ^b		
	Residual	.398	299	.001				
	Total	.400	300					

a. Dependent Variable: i-butane

b. Predictors: (Constant), Light naphtha flow

	ANOVA®								
Model		Sum of Squares	df	Mean Square	F	Sig.			
1	Regression	.002	1	.002	1.494	.223 ^b			
	Residual	.398	299	.001					
	Total	.400	300						

2

a. Dependent Variable: i-butane

b. Predictors: (Constant), LPG flow to storage

	ANOVAª						
Mod	del	Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	.001	1	.001	1.880	.171 ^b	
	Residual	.096	299	.000			
	Total	.096	300				

b. Predictors: (Constant), Light naphtha flow

ANOVA^a Model Sum of Squares df Mean Square F Sig. .865^b 1 1 .029 Regression .000 .000 Residual .096 299 .000 .096 300 Total

a. Dependent Variable: n-butane

b. Predictors: (Constant), LPG flow to storage

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.034	.853 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), Light naphtha flow

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	2.897	.090 ^b
	Residual	.053	299	.000		
	Total	.053	300			

a. Dependent Variable: i-pentane

b. Predictors: (Constant), LPG flow to storage

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.309	.579 ^b
	Residual	.094	299	.000		
	Total	.094	300			

a. Dependent Variable: n-pentane

b. Predictors: (Constant), Light naphtha flow

			ANOVA ^a			
Ν	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	1	.001	3.506	.062 ^b
	Residual	.093	299	.000		
	Total	.094	300			

b. Predictors: (Constant), LPG flow to storage

Compositions – Pressure Variable

			ANOVA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.116	1	.116	27.440	.000 ^b
	Residual	1.260	299	.004		
	Total	1.375	300			

a. Dependent Variable: propane

b. Predictors: (Constant), Debutanizer overhead pressure

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.005	1	.005	3.533	.061 ^b
	Residual	.396	299	.001	u .	
	Total	.400	300			

a. Dependent Variable: i-butane

b. Predictors: (Constant), Debutanizer overhead pressure

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	1	.000	.999	.318 ^b
	Residual	.096	299	.000		
	Total	.096	300			

a. Dependent Variable: n-butane

b. Predictors: (Constant), Debutanizer overhead pressure

ANOVA ^a							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	.000	1	.000	.000	1.000 ^b	
	Residual	.053	299	.000			
	Total	.053	300				

- a. Dependent Variable: i-pentane
- b. Predictors: (Constant), Debutanizer overhead pressure

ANOVAª							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	.000	1	.000	.003	.956 ^b	
	Residual	.094	299	.000			
	Total	.094	300				

b. Predictors: (Constant), Debutanizer overhead pressure