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ABSTRACT 

 
Drilling fluids play important roles in drilling operations to suspend cuttings, counter 

high formation pressure and to ensure wellbore stability. Amongst the different types 

of drilling fluids, currently synthetic based muds are the choice drilling fluid due to 

its high performance in HPHT wells in terms of wellbore stability and high 

penetration rates. However, under HPHT conditions, the well will encounter thermal 

degradation of mud properties, which will affect the performance of the mud, such as 

fluid loss, unstable rheology and barite sag. Barite sag is an effect of high density 

and high solid content in muds, in which the heavy solids in the mud settle at the 

bottom of the wellbore causing pipe sticking and lost of circulation. The experiment 

was carried out at LPLT, starting of HPHT and extreme HPHT conditions with a 

varying nano-silica concentration of 0%(base case) to 40%. At different mud weights, 

the formulated drilling fluid will be tested for HPHT filtrate loss, stable rheology and 

static sag at a 45° tilt. Nano-silica has been proven in this project to be only effective 

for fluid loss and improve mud rheology due to the nature of nano-silica as a 

plugging agent. The nano-silica had no effect on barite sag as proven in this 

experiment. Nevertheless, the newly formulated mud is still effective for solving and 

preventing downhole problems. 
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CHAPTER 1 
 

 

1.0 INTRODUCTION 

 1.1 Background 
 
Drilling fluids, also known as drilling mud, functions to suspend cuttings, control 

pressure, stabilize exposed rock, provide buoyancy, cool and lubricate the drill in the 

well (Tran, Soong, Martello, Rakesh, & Agharwal, 2011). During the third century 

BC, the Chinese had already been using drilling fluids (Jesil, Mohiuddin, Ruqeshi, 

Geetha, & Mohataram, 2013). The drilling fluids used then were water based, to 

assist in permeating the earth when drilling for crude. The term “drilling mud” was 

only conceived when at Spindle top in the United States. In a watered down field, 

drillers ran a herd of cattle through and used the ensued mud to lubricate the drill.  

 

Cuttings are present in the wellbore as a result of drilling. They are not a concern 

until drilling stops due to drill bit failure (Cho, Subhash, & Samuel, 2001). This is a 

complication as the cuttings are not being circulating, and will fill the hole again. 

Drilling fluids function as a suspension tool to prevent such situations (Nazari & 

Hareland, 2010). Drilling fluids have non-Newtonian properties, therefore when 

movement decreases, the viscosity of the drilling increases (Saasen, et al., 2009). 

This allows the fluid to possess liquid consistency while drilling, and become thicker 

like a solid substance when drilling has stopped. The fluid will then serve its purpose 

of suspending cuttings till the drilling resumes (Omland, et al., 2006).  

 

Apart from that, drilling fluids aid in pressure control in a well by offsetting the 

pressure of hydrocarbons and formation (Nygaard & Breholtz, Advanced Automatic 

Control for Dual Gradient Drilling, 2009). Formation pressure needs to be 

counterbalanced to achieve overbalanced/underbalanced conditions in the wellbore. 

This will prevent formation fluids (such as oil, gas, and water) from entering the well 

prematurely, which may lead to a kick/blowout and prevent the well from caving in 
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(Nygaard, et al., 2007). Another factor for using drilling fluids is rock stabilization. 

Certain fluid additives are used so that fluid will not be lost to formation pores and 

clog pores (Jung, Zhang, Chenevert, & Sharma, 2013). A deeper well will require a 

longer drill pipe, which will cause it to weigh heavier. Consequently, drilling fluid 

adds buoyancy, reduces stress, and helps to reduce friction with rock formation. 

Hence, reducing heat, lubricating to prolong the life of the bit and aid in hole 

cleaning (Noui-Mehidi & Amanullah, 2010) (Saboori, Sabbaghi, Mowla, & Soltani, 

2011).  

 

 

 1.2 Problem Statement 
 
At High Pressures and High Temperatures (HPHT), drilling operations are very 

challenging. In terms of drilling fluid, the designed mud weight must be higher in 

HPHT wells, and needs to be accurately controlled in narrow mud windows. Due to 

this requirement, the difficulties that arise will be high solid loading and barite sag.  

High solids loading with resulting higher pressures and rock incompetency at deeper 

depths lead to low rate of penetration (ROP). Apart from that, at HTHP conditions, 

the mud system degrades and becomes unstable at high-pressure high temperature 

(HPHT) conditions, causing fluid loss from mud. Fluid loss is an effect of mud cake 

not being able to form on the walls of the formation, which will lead to a decrease in 

hydrostatic pressure in the wellbore, hence a kick can occur. Therefore, there is a 

need in the oil and gas industry to enhance current conventional mud systems with 

effective fluid loss control agents, rheology modifiers and weighing agents. 

 

 

 1.3 Objective 
 
The main aim of this project is to study the effectiveness of nano-particles, mainly 

silica, as an additive to synthetic based muds to the extent of HPHT conditions. The 

objectives are: 

• To improve performance of synthetic based mud with silica nano-particles 

• To investigate the effect of nano-silica on mud density 
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• To investigate the quality of silica nano-particles as a fluid loss agent and 

rheology modifier 

 

 1.4 Scope of Study 
 
The study will focus on testing varying mud densities on mud performance at 

different parameters such as: 

• Mud Density 

o 12ppg  

o 13.5ppg 

o 17ppg  

• Temperature ranging from 275°F to 450°F 

o At 275°F (lower temperature)  

o At 350°F is considered the starting point of HPHT conditions 

o At 450°F, the study aims to investigate the SBM at extreme HPHT 

conditions 

• Size of nano-silica particles 

o 10-20nm 

• Concentration of nano-silica replacing conventional fluid loss agents 

o 0% - 40% 

 

Hence, overall the controlling parameter is mud density, as this study aims to 

investigate the effect of nano-silica on barite sag, which is an issue caused by high 

mud density. 
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CHAPTER 2  
 
 

2.0 LITERATURE REVIEW 

 2.1 Synthetic Based Mud (SBM) 
 
Synthetic based muds are non-aqueous, water internal (invert) emulsion muds in 

which the external phase is a synthetic fluid rather than oil (Glossary, 2014). The aim 

of a synthetic based drilling fluid is to be environmentally friendly for offshore use. 

The base fluid can be a hydrocarbon, ether, ester or acetal (Neff, McKelvie, & Ayers, 

2000). An example of synthetic fluids, which were used in the Gulf of Mexico, is 

linear alpha olefins (LOA), isomerized olefins (IOs), polyalphaolefins (PAOs) and 

esters (Omland, et al., 2006). The other ingredients of a synthetic based drilling fluid 

includes: 

• Emulsifiers 

• Barite 

• Clays 

• Lignite  

• Lime 

 

Synthetic based muds have many advantages, and are currently the drilling fluid 

choice for drilling operations in deep-water environment because of its ability in 

accomplishing high rates of penetration and maintaining wellbore integrity (Lee, 

Friedheim, Toups, & Oort, 2004). SBMs can achieve wellbore stability because the 

synthetic liquid forms the continuous phase while brine serves as the dispersed phase. 

During drilling operations, the solids in the mud system and the formations are 

primarily exposed to the synthetic liquid and not to the aqueous phase, preventing 

swelling and degradation of borehole walls (Burke & Veil, 1995).  
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As for high penetration rates, invert emulsion fluids improves hydraulic cleaning 

efficiency in hole intervals, which inherently increases penetration rates (Burke & 

Veil, 1995).The fluid prevents cuttings from adhering to the bit and hole surfaces. 

Therefore, there will be an increased rock bit performance, and less hydraulic 

horsepower is needed to ensure efficient wellbore cleaning. Adequate salinity in the 

emulsified fluid also provides sufficient osmotic pressure to stop water absorption as 

absorbed water causes cuttings to stick to each other, to the bit and to the hole 

surfaces, thus, causing the need for high hydraulic horsepower for turbulent 

scrubbing for hole cleaning.  

 

 2.2 Effect of Mud Density on Mud Performance 
 
Mud weight is an important parameter in designing any drilling fluid. This parameter 

correlates with bottom hole pressure in the wellbore. Mud weight must be sufficient 

to transport cuttings to the surface, and maintain wellbore stability from caving or 

breakout (Swanson, Munro, Sanders, & Kelly, 2000). Higher down hole pressures 

equal to a higher mud weight requirement. Common weighing agents such as barium 

sulphate (barite) are used to achieve higher mud weight. 

 

  2.2.1 High Pressure High Temperature (HPHT) Conditions 
 
A HPHT well has been defined by United Kingdom Continental Shelf Operations 

Notice as any well where the undisturbed bottom hole temperature is 300°F or 

greater and either the pore pressure exceeds 0.8 psi/ft or pressure control equipment 

greater than 100,000 psi rates working pressure is required (Ogbonna, Boniface, & 

Ataga, 2012). Therefore, as mud weight is directly proportional to pressure, at HPHT 

drilling, a higher density drilling fluid will be required to withstand formation 

pressure (Ogbonna, Boniface, & Ataga, 2012). Normal mud densities are below 

15ppg, whereas a drilling fluid is classified as having high mud weight when its 

density is above 15ppg. 
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  2.2.2 Barite Sag 
 
As mentioned before, at HPHT conditions, a higher mud density is required to 

withstand formation pressure.  It occurs most in invert emulsion muds and can occur 

over a range of mud density from 11.7ppg to 20ppg (Tehrani, Popplestone, & 

Ayansina, 2009). Adding dispersed weight material such as barite can do this.  

 

The addition of barite increases dispersed solids concentration, which increases 

drilling fluid viscosity, thereby creating a situation known as barite sag in drilling 

fluids. Barite sag occurs when heavier mud sags at the bottom while light mud 

remains in the upper part of the well (Dye, Mullen, & Gusler, 2006). It can be caused 

by static and /or dynamic settling followed by slumping of the weighted material 

(Amighi & Shahbazi, 2010).The effects of barite sag are wellbore instability, down 

hole mud losses and stuck pipe. The high loading of barite creates high-pressure 

losses during circulation in long sections, leading to unacceptably high equivalent 

circulating density in narrow drilling windows (Godwin, Boniface, & Ogbonna, 

2011) 

 

A number of factors listed below influence barite sag (Amighi & Shahbazi, 2010): 

• Hole diameter 

• Hole angle 

• Wellbore length 

• Annular velocity 

• Drillpipe rotation 

• Flow regime 

• Mud viscosity 

• Mud gel strength 

• Fluid density 

• Weighting agent density 

• Particle size and shape 

• Particle concentration and time 
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  2.2.3 Static Sag 
 
Static sag occurs when circulation stops for a period of time, and the weighting 

agents begin to settle under the influence of gravity (Tehrani, Popplestone, & 

Ayansina, 2009). The boycott effect is the settling of solids and is enhanced by 

convective currents created by density differences in the fluid across the annulus 

cross section (Amighi & Shahbazi, 2010).The boycott settling effect was found to be 

a major contributor to sag in drilling fluids (Omland, et al., 2006). The effect of static 

sag ranges from insufficient mud density for pressure control to the risk of fracturing 

the formation when suspending a barite bed (Saasen, 2002). 

 

  2.2.4 Dynamic Sag 
 
Dynamic sag is the sag, which occurs while circulating mud (Saasen, et al., 2009). 

Primarily, sag was evaluated as and measured as static sag. However, recently, 

dynamic sag has been identified as a significant problem in drilling operations (Scott, 

Zamora, & Aldea, 2004). Dynamic sag is tougher to prevent as compared to static 

sag, as it does not correlate with conventional rheological properties. Instead, it is a 

function of low shear rate (Parvizinia, Ahmed, & Osisanya, 2011). Laboratory 

studies suggest that barite beds form while mud was circulating, thickened when 

flow was static and slumped (slid or oozed downwards) to create density variations 

in the fluid column (Zamora, 2009). Dynamic sag is amplified in deviated wells and 

under HPHT conditions (Dye, Hemphill, Gusler, & Gregory, 2001). To measure 

dynamic sag, a viscometer sag test device can be used where sag performance is 

investigated under (Tehrani, Cliffe, Williams, & Onwuzulike, 2011): 

• Laminar flow conditions (dominant effect is fluid rheology) 

• Flow loop (flow rate, eccentricity, pipe rotation and inclination are 

considered) 

 
 

  2.2.5 Conventional Methods to Reduce Barite Sag 
 
 Alternate Weighting Material 

Barite sag is a function of two physical properties of the weighing agent: size and 

weight of particle. Higher specific gravity weight materials such as ilmenite, 
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manganese tetroxide (Carbajal, Buress, Shumway, & Zhang, 2009) and finely ground 

hematite (relative to barite) provide lower solids content at equivalent mud densities 

(Pless, Bland, Mullen, Gonzalez, & Harvey, 2006). During thru-tubing rotary drilling 

and HT/HP applications, the usage of these products resulted in lower abrasion of 

tubular goods, higher rates of penetration due to lower solids loading and lower 

pressure loss (Amighi & Shahbazi, 2010). 

 

 

 Use Fine Weighting Agent Particles 

A much finer particle will sag less quickly. Stokes Law defines this by: 

 
Equation 1: Stokes Law 

𝑣 =
𝑎! 𝐷! − 𝐷! 𝑔

18𝜇  

 
 
 
Where: 
 
v  = Velocity (cm/s) 

a  = Particle diameter (cm) 

𝐷!  = Particle density (𝑔 𝑐𝑚!) 

𝐷! = Carrying fluid density (𝑔 𝑐𝑚!) 

𝜇 = Carrying fluid viscosity/viscosity of the suspending medium (cp) 

 
 
According to Amighi & Shahbazi (2010), 
 
 

Table 1: Settling Velocity of a Single Particle in Water 

Particle D50 𝐷! (SG) 𝐷!  (SG) Settling 

Velocity(cm/day) 

Barite 15 4.2 1 0.339 

Hematite 15 5.2 1 0.445 

Mn3O4 1 4.8 1 0.0018 
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Where; 

 

𝐷! (SG)   = Particle specific gravity 

𝐷! (SG)  = Carrying fluid specific gravity 

 

D50 is D-value method used to describe particle size distribution. It is commonly 

used to represent the midpoint and range of particles in a given sample (Jienian & 

Wenqiang, 2006). D50 diameter is the diameter at which 50% of a sample’s mass 

consists of smaller particles (Horiba, 2012). The D50 can also be known as the “mass 

median diameter” as the sample is equally divided by mass. 

Since barite sag is directly influenced by size and weight of the weighing agent, a 

much finer particle will settle less quickly than a larger, similar weighed particle. 

It can be observed from Table 1 that manganese tetroxide settles almost 200 times 

slower than barite in water (Amighi & Shahbazi, 2010). Indirectly, this confirms the 

major reduction in sag when using micro fine particles. 

 

 

 2.3 Usage of Nano-particles in SBM 
 

Nanofluids for oil and gas field applications are defined herein as drilling, drill-in, 

completion, stimulation or any other fluids used in the exploration and exploitation 

of oil and gas that contain at least one additive with particle size in the range of 0.1-

100 nanometers (Nabhani & Tofighi, 2012). Nanoparticles are defined as object with 

a diameter less than 100nm (Riley, et al., 2012).  

 

High solids content in drilling fluids is one of the factors that attributes to wellbore 

instability, reduces productivity index and decreases penetration rates.As nano-based 

fluid needs small volume of nanoparticles due to their huge surface areas per unit 

volume, nano-based mud additive can dramatically reduce the desirable solids 

content of a mud with a significant increase in the ROP (Amanullah & Al-Tahini, 

2009). 
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Figure 1: Comparison of Increased Surface Area of Nanoparticles, (Amanullah 

& Al-Tahini, 2009) 

 

Besides that, nanoparticles also aid in fluid loss. Due to extremely fine particle sizes, 

that are smaller than pore throat sizes of shale and unconsolidated formations, it can 

easily inhibit shale- drilling fluid interactions. As shown in Figure 1, the extremely 

high surface area to volume ratio of nano-materials compared to the macro and micro 

materials of the same mother source provides them dramatically increased interaction 

potentials with reactive shale to eliminate shale-drilling mud interactions and the 

associated borehole problems (Amanullah, Al-Arfaj, & Al-Abdullatif, 2011). 

 

 2.4 Benefits of Nano-silica in Drilling Fluids 
 
Silica, also known as, silicon dioxide is found in many different forms; 

amorphous/crystalline, porous and non-porous, anhydrous and hydroxylated. It is 

synthesized either by dissociating monomeric silic acid or from the vapor of a silicon 

compound, from aqueous solutions. Nano silica solutions are widely used, and come 

in sizes ranging from 5 to 100nm (Hendraningat, Li, & Torsaetor, 2013) (Long, et al., 

2013). Adding sized silica to drilling fluids also inhibits filtrate invasion into 

formations, which cause formation-induced damage, strenuous effort to remove filter 

cake and inherently reduces well productivity (Srivatsa & Ziaja, 2012). The 

experimental results proved that the usage of nano-silica had better fluid loss control 

as compared to standard polymer-based fluid loss additive because the nanoparticles 

acted as a better bridging agent to form an effective filter cake than the internal filter 

cake formed by the polymer additive as shown in Figure 2. (Long, et al., 2013).  
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So far, to solve the issue of borehole instability in unconventional reservoir, nano 

silica particles were used as plugging tools to stop the invasion of water into the 

small sized shale pores (10-30nm) (Holster, Stefano, Riley, & Young, 2012). The 

main issue faced when drilling in shale formations is water invasion, which causes 

shale swelling. The pressure penetration cannot be prevented with standard filtration 

additives, because shale pores are extremely small (approximately 0.01 micron) and 

shale permeability is extremely low (typically 0.01 microdarcy or less); therefore, a 

filter cake does not develop on shales as commonly used drilling additives such as 

barite and bentonite have larger particles in the range of 100-10,000nm (Russel, 

Russel, & Keith, 2009).  

 

In experiments as depicted in Figure 3, where the nano-silica particles were used on 

Atoka shale; as the concentration of nano-silica was increased from 5% to 29%wt, an 

increase in plugging properties was observed this reducing permeability of the shale 

(Riley, et al., 2012). Aside from that, nanoparticles varying from 7-15nm with 

10%wt concentration were shown to be effective in reducing shale permeability; 

hence, reducing interaction between water based mud and Atoka shale (Chai, 

Chenevert, Sharma, & Friedheim, 2012).  

 

 

 

 

 

 

 

 

Figure 2: Thickness of Filter Cake, (Riley, et al., 2012) 
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Figure 3: Plugging Effect with Different Nano-silica Concentrations. (Riley, et al., 2012) 
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CHAPTER 3 
 
 

3.0 METHODOLOGY 

 3.1 Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 4: Flowchart of FYP 
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  3.1.1 Flowchart Breakdown 
 

The constituents below explain Figure 4 in detail. 

 

Step 1: Start 

Project begins. 

 

Step 2: Literature Review 

Journals, articles, books and websites are reviewed and compared to gain 

understanding and knowledge as depicted in Figure 4, on the subject of: 

• Synthetic based muds 

• Methodology of mud formulation  

• Methodology of tests carried out on drilling fluids 

• Nano-particles and nano-technology 

 

Step 3: Mud Formulation 

The mud is designed for three wellbore conditions: LPLT, starting point of HPHT 

conditions and extreme HPHT conditions. The mud formulations were obtained from 

a service company in the oil and gas industry. They have a joint venture with us 

where the chemicals are provided for us to be able to carry out the research, under 

their guidance and advise. The mud formulation will change slightly as nano-silica is 

added in varying concentrations, as depicted in Figure 4. The formulations are listed 

in Table 2 – Table 10. 

 

Step 4: Determination of Nano-silica concentration 

The nano-silica concentration was decided based on a limitation that the percentage 

of nano-silica within the mud should not exceed 0.5% of entire mud weight for 

economic purposes. The nano-silica was sent for characterisation at Block 17, UTP 

for nano-particle characterisation under the Scanning Electron Microscope (SEM). 

 

Step 5 - 11: Testing the mud at different conditions 

The mud will be tested at three conditions: 

• Lower temperature conditions at 275°F 
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• Starting point of High Pressure High Temperature (HPHT) conditions of at 

350°F 

• Extreme HPHT conditions of at 450°F 

• Nano-silica (10-20nm) will be added into these formulations as a fluid loss 

agent of 0 - 40%. The percentage of nano-silica added is the percentage of 

conventional fluid loss agent replaced. The tests carrried out can be divided 

into before static aging (BSA) and after static aging(ASA). 

 

I. Before Static Aging Tests  

o Rheology Tests 

o Gel strength measurement 

o Plastic Viscosity and Yield Point measurement 

o Mud Balance Test 

II. After Static Aging Tests 

o Rheology Test 

o Gel strength measurement 

o Plastic Viscosity and Yield Point measurement 

o Mud Balance Test 

o Sag Test 

o Filtration Test 

 

*Note: All tests are explained in detail in procedures. 

 

Step 12: Data Analysis 

Data is then analyzed using the results obtained from the tests as depicted in Figure 

4. The data will be tabulated in a manner shown in Chapter 3.7: Data Analysis.  

 

Once the objective of the experiment is achieved, the report will be written and the 

project ends. If the objectives are not achieved, the loop is repeated from beginning 

from Step 3: Mud Formulation to investigate the cause of failure. The objectives are: 

• To investigate effect of nano-silica on density of mud 

• To obtain stable rheology at HPHT conditions 

• To reduce fluid loss and obtain thin mudcake 
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 3.2 Gantt Chart 
 

 

 
 

Figure 5: Gantt Chart 



 17 

 3.3 Mud Formulation 
 

I. Base Case 

 

Table 2: Formulation for 275°F @ 12ppg 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil - - 160.08 ppb 

Primary Emulsifier 1 2 3 ppb 

Secondary Emulsifier 2 2 6 ppb 

Viscosifier (premium 

organophilic clay) 

3 5 3.75 ppb 

Fluid Loss Agent 4 2 4 ppb 

Lime 5 2 10 ppb 

Drill Water 6 15 51.97 ppb 

Calcium Chloride, 94% 

powder 

25.06 ppb 

Barite, 4.39SG 7 5 217.5 ppb 

Drill Solids (Rev Dust) 8 5 20 ppb 
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Table 3: Formulation for 350°F @ 13.5ppg 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 143.86 ppb 

Primary Emulsifier 2 13.8 ppb 

Secondary Emulsifier 3 1.0 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 2.5 ppb 

Others 5 2 1.3 ppb 

Fluid Loss Agent 6 2 9.9 ppb 

Lime 7 2 11.3 ppb 

Drill Water  

8 

15 46.71 ppb 

Calcium Chloride, 95% 

powder 

16.5 ppb 

Barite, 4.39SG 9 2 297.8 ppb 

Drill Solids (Rev Dust) 10 2 20.00 ppb 

 

 

Table 4: Formulation for 450°F @ 17ppg 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 122.5 ppb 

Primary Emulsifier 2 15.6 ppb 

Secondary Emulsifier 3 1.9 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 0.1 ppb 

Others 5 2 1.0 ppb 

Fluid Loss Agent 6 2 1.5 ppb 

Lime 7 2 18.5 ppb 

Drill Water  

8 

15 39.8 ppb 

Calcium Chloride, 95% 

powder 

9.4 ppb 

Barite, 4.2SG 9 2 482.4 ppb 

Drill Solids (Rev Dust) 10 2 19.5 ppb 
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II. Base Case + 20% nanosilica concentration (10-20nm) 

 
Table 5: Formulation for 275°F@ 12ppg (20% nano-silica) 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 160.15 bbl 

Primary Emulsifier 2 3 ppb 

Secondary Emulsifier 3 6 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 3.75 ppb 

Fluid Loss Agent 5 2 1.06 ppb 

20% nanosilica (10-20nm) 6 2 0.8 ppb 

Lime 7 2 10 ppb 

Drill Water 8 15 52 bbl 

Calcium Chloride, 95% 

powder 

25.06 ppb 

Barite, 4.39SG 9 2 216.98 ppb 

Drill Solids (Rev Dust) 10 2 20 ppb 
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Table 6: Formulation for 350°F @ 13.5ppg (20% nano-silica) 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 144.59 bbl 

Primary Emulsifier 2 13.8 ppb 

Secondary Emulsifier 3 1 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 2.50 ppb 

Others 5 2 1.3 ppb 

Fluid Loss Agent 6 2 7.92 ppb 

20% nanosilica (10-20nm) 7 2 1.98 ppb 

Lime 8 2 11.3 ppb 

Drill Water 9 15 46.95 bbl 

Calcium Chloride, 95% 

powder 

16.5 ppb 

Barite, 4.39SG 10 2 296.81 ppb 

Drill Solids (Rev Dust) 11 2 20 ppb 
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Table 7: Formulation 450°F @ 17ppg (20% nano-silica) 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 122.57 bbl 

Primary Emulsifier 2 15.6 ppb 

Secondary Emulsifier 3 1.9 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 0.1 ppb 

Others 5 2 1.0 ppb 

Fluid Loss Agent 6 2 1.2 ppb 

20% nanosilica (10-20nm) 7 2 0.3 ppb 

Lime 8 2 18.5 ppb 

Drill Water 9 15 39.8 bbl 

Calcium Chloride, 95% 

powder 

9.4 ppb 

Barite, 4.39SG 10 2 482.23 ppb 

Drill Solids (Rev Dust) 11 2 19.5 ppb 
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III. Base Case + 40% Nano Concentration 

 

Table 8: Formulation for 275°F @ 12ppg (40% nano-silica) 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 160.67 bbl 

Primary Emulsifier 2 3 ppb 

Secondary Emulsifier 3 6 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 3.75 ppb 

Fluid Loss Agent 5 2 2.4 ppb 

40% nanosilica (10-20nm) 6 2 1.6 ppb 

Lime 7 2 10 ppb 

Drill Water 8 15 52.16 bbl 

Calcium Chloride, 95% 

powder 

25.06 ppb 

Barite, 4.39SG 9 2 216.69 ppb 

Drill Solids (Rev Dust) 10 2 20 ppb 
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Table 9: Formulation for 350°F @ 13.5ppg (40% nano-silica) 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 145.32 bbl 

Primary Emulsifier 2 13.8 ppb 

Secondary Emulsifier 3 1 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 2.50 ppb 

Others 5 2 1.3 ppb 

Fluid Loss Agent 6 2 5.94 ppb 

40% nanosilica (10-20nm) 7 2 3.96 ppb 

Lime 8 2 11.3 ppb 

Drill Water 9 15 47.18 bbl 

Calcium Chloride, 95% 

powder 

16.5 ppb 

Barite, 4.39SG 10 2 295.83 ppb 

Drill Solids (Rev Dust) 11 2 20 ppb 
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Table 10: Formulation for 450°F @ 17ppg (40% nano-silica) 

Mud Materials Mixing 

Order 

Time 

(minutes) 

T1 

Base Oil 1 4 122.69 bbl 

Primary Emulsifier 2 15.6 ppb 

Secondary Emulsifier 3 1.9 ppb 

Viscosifier (premium 

organophilic clay) 

4 2 0.1 ppb 

Others 5 2 1.0 ppb 

Fluid Loss Agent 6 2 0.9 ppb 

40% nanosilica (10-20nm) 7 2 0.6 ppb 

Lime 8 2 18.5 ppb 

Drill Water 9 15 39.83 bbl 

Calcium Chloride, 95% 

powder 

9.4 ppb 

Barite, 4.39SG 10 2 482.07 ppb 

Drill Solids (Rev Dust) 11 2 19.5 ppb 

 

*Certain chemicals are not stated in the Tables 3 to 10 due to confidentiality. 

 

Function of chemicals:  

• Base oil: Base fluid of the drilling fluid 

• Emulsifiers: Creates an emulsion of two insoluble fluids (eg, water and oil) 

• Viscosifier: To increase viscosity of drilling fluids 

• Fluid Loss Agent: To prevent fluid loss from mud 

• Lime: Increases mud viscosity by flocculation  

• Drill Water:Also known as brine 

• Calcium Chloride: To prevent formation swelling 

• Barite: Weighing agent to increase weight of mud 

• Drill solids: Acts as contamination to the mud to evaluate stability of the 

system 
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 3.4 Nano-silica Characterization 
 

Results from the Scanning Electron Microscope (SEM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Spot 1: 

 

 

 

Figure 7: Spectrum of Nano-silica at Spot 1 

Figure 6: Nano-silica Image under SEM 
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Table 11: Quantification of Nano-silica 

Element 
Number 

Element 
Symbol 

Element 
Name 

Confidence Concentration Error 

14 Si Silicon 100.0 23.9 0.3 
8 O Oxygen 100.0 76.1 0.4 

 
 

• Spot 2 

 

 

 
Table 12: Quantification of Nano-silica at Spot 2 

Element 
Number 

Element 
Symbol 

Element 
Name 

Confidence Concentration Error 

14 Si Silicon 100.0 20.9 0.4 
8 O Oxygen 100.0 73.5 0.6 
6 C Carbon 100.0 5.6 1.2 
 

 
Figure 6 shows analyses of selected point locations on the nano-silica sample. The 

scanning electron microscope (SEM) uses a focused beam of high-energy electrons 

to generate a variety of signals at the surface of solid specimens. The signals that 

derive from electron-sample interactions reveal information about the sample (nano-

silica) including external morphology (texture) as depicted in Figure 6, chemical 

composition (Table 11, 12), and illustrating contrasts in composition in multiphase 

samples (i.e. for rapid phase discrimination) as depicted in Figure 7 and 8. 

Figure 8: Spectrum of Nano-silica at Spot 2 
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 3.5 Parameter Range 
 

 

Table 13: Parameter Range 

Temperature, °F 275 350 450 

Mud Weight, ppg 12 13.5 17 

 

 

The other manipulated variables are nano-particle concentration and size: 

• Nano-particle: nano-silica 

• Nano-particle size:  

o 10-20nm 

• Nano-particle concentration: 0 - 40% of fluid loss agent 

 

 

3.6 EXPERIMENT METHODOLOGY 

 3.6.1 Proposed Experimental Procedure 
 

Mud Rheology 

Fann 35 Viscometer can determine the mud rheology. For the procedure, API 13B is 

suitable for field-testing water based muds. The six readings will be taken at 120°F.  

 

 

 

 
 

 

 

 

 

 

 

 

Figure 9: Fann 35 Viscometer 
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Procedure of Checking Mud Rheology 

1. The drilling mud is filled into a measuring cup. The sleeve is then immersed into 

the cup until the sleeve’s holes are covered mud. 

2. The VG meter is switched on at 600rpm. 

3. The experiment is left till the drilling mud reaches 120°F. 

4. The reading is taken at 600rpm, 300rpm, 200rpm, 100rpm, 6rpm and 3rpm.  

5. The plastic viscosity and yield point is calculated. 

 

Measuring Gel Strength 

1. The sample is stirred thoroughly at 600rpm. 

2. The gearshift knob is set to 3rpm position, and then the motor is turned off. 

3. After the desired wait time, the motor is turned back on at low speed. 

4. The reading is taken when the gel breaks as noted by a peak dial reading. The 

gel unit strengths are lb/100ft2. 

 

Measuring Plastic Viscosity and Yield Point 

From the rheological properties obtained from 600rpm and 300rpm, the readings can 

be converted into plastic viscosity (PV) and yield point(YP). 

 

1. Plastic Viscosity (PV), cp = Reading at 600 rpm- Reading at 300rpm 

2. Yield Point (YP) lb/100ft2 = Reading at 300 rpm - PV 

 

Sag Test 
 
1. Initial density is measured and the mud is placed in an aging cell. 

2. The mud is static aged over a certain period of time at the desired bottom hole 

pressure at a 45° tilt. 

3. The mud density difference before and after the static aging is measured and sag 

index is calculated.  

 

Calculation:  

The specific gravity of the upper part (D1) and bottom part (D3) of mud is weighed 

and sag index is calculated as follows: 
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Method 1: GRTC 

 

Equation 2: Sag Factor 

𝑆𝑎𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑆𝐺 𝑏𝑜𝑡𝑡𝑜𝑚

𝑆𝐺 𝑡𝑜𝑝 + 𝑆𝐺 𝑏𝑜𝑡𝑡𝑜𝑚 

 

 

SG = specific gravity 

 

*Note: Free fluid is combined with top section of mud 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filtration Test 

Aim: To measure the filtration rate and fluid loss of mud. 

1. The API cell and the filter screen are assembled. 

2. The filter paper and O-ring are inserted into the cell assembly and the cell 

assembly is tightened. 

Figure 11: Sag Test 

Figure 10: Procedure of Sag 
Test 



 30 

3. The drilling mud is poured until it fills ¾ from the top of the cell. 

4. The top of the cell is closed tightly to prevent pressure leakage. 

5. A graduated cylinder is placed below the cell’s tube. 

6. The red button is pulled out and the valve is opened. 

7. 100 psi of pressure is applied for 30 minutes. 

8. After 30 minutes, the filtrate collected in the cylinder is measured. 

9. The pressure valve is closed and the pressure is released. The cell is taken apart. 

10. If there is need to measure mud cake thickness, the cake is formed on the filter 

paper. 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 

3.6.2 Tools and Equipment 
 

• Fann 35 viscometer 
• Stopwatch 
• Mud cup 
• Thermometer 
• Aging cell 
• Retort cup 
• Weighting scale 
• Filtration cell 
• Filter paper 
• Measuring cylinder 

Figure 12: Total Filtrate Loss 
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 3.7 Data Analysis 
 

Table 14: Rheology Properties Results 

Mud Weight, ppg 12 13.5 17 
Oven Temperature,°F 275 350 450 
Plastic Viscosity, cP       
Yield Point, lb/100 sqft       
10' gel strength, lb/100ft2       
10'' gel strength, lb/100ft2       
600 rpm dial reading       
300 rpm dial reading       
200 rpm dial reading       
100 rpm dial reading       
6 rpm dial reading       
3 rpm dial reading       
HTHP (300F), ml       
Filter Cake, 32inch       
ES, volt        
Sag Factor       

 

 

  3.7.1 Data Analysis Breakdown 
 

• Oven Temperature: Temperature at three conditions of LPLT (275°F), starting 

point of HPHT (350°F), and extreme HPHT (450°F). 

• Plastic viscosity is the resistance to fluid flow, which functions to suspend 

cuttings via high viscosity. Therefore, the PV must be sufficient enough to 

transport cuttings effectively. 

• Yield point functions as the ability of a mud to circulate cuttings out of the 

annulus. Therefore, the YP must be high enough to suspend cuttings as the travel 

up the annulus. 

• 10’ and 10” gel strength: Gel strength functions to suspend drill solid and 

weighing materials when circulation stops. The function of the 10minutes reading 

is to investigate the mud’s ability to form gel during an extended static period. 

• 600, 300, 200, 100, 6, 3 rpm: Different viscosities measures at different rotational 

speeds to obtain PV, YP and gel strength. 
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• HPHT @ 300°F: Fluid expelled at a certain temperature and pressure in 30 

minutes intervals. 

• Filter Cake: Filter cake should be in the range of 1” – 2/32”. 

• Electrical Stability (ES):To monitor fluid’s emulsion and oil wetting stability.  

• Oil Water Ratio (OWR): To indicate the level and amount of water and oil 

extracted 

• Sag Factor: Sag factor of 0.5 and below indicates no weighing agent 

sedimentation. 
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CHAPTER 4 
 

4.0 RESULTS & DISCUSSION 

 4.1 Criterion After Static Aging Results 
 

Table 15:  Criterion Results for SBM of 275°F @ 12ppg 

Mud Type Non-Aqueous Fluid (NAF) 

Static Age Temperature (°F) 275 

Mud Density (ppg) 12 

Plastic Viscosity, cP < 35 

Yield Point, lb/100 sqft 15-25 

Initial Gel Strength, lb/100 sqft 6-10 

6 rpm Fann reading 8-12 

HPHT Fluid Loss, cc/30min ≤ 5(275°F/500psi) 

Free Water in Filtrate - 

HPHT Filter Cake, 32nd inch < 2 

Electrical Stability, volts > 500 

Water Phase Salinity 

 (% CaCl2 by weight) 

24%-27% 

OWR 75/25 

Excess Lime, ppb 2-3 
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Table 16: Criterion Results for SBM of 350°F @ 13.5ppg 

Mud Type Non-Aqueous Fluid (NAF) 

Static Age Temperature (°F) 350 

Mud Density (ppg) 13.5 

Plastic Viscosity, cP < 45 

Yield Point, lb/100 sqft 15-30 

Initial Gel Strength, lb/100 sqft 6-12 

6 rpm Fann reading 8-12 

HPHT Fluid Loss, cc/30min ≤ 4(275°F/500psi) 

Free Water in Filtrate - 

HPHT Filter Cake, 32nd inch ≤ 2 

Electrical Stability, volts > 500 

Water Phase Salinity 

 (% CaCl2 by weight) 

24%-27% 

OWR 80/20 

Excess Lime, ppb 2-3 

Sag Factor < 0.53 
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Table 17: Criterion Results for SBM of 450°F @ 17ppg  

Mud Type Non-Aqueous Fluid (NAF) 

Static Age Temperature (°F) 450 

Mud Density (ppg) 17 

Plastic Viscosity, cP < 65 

Yield Point, lb/100 sqft 15-30 

Initial Gel Strength, lb/100 sqft 6-12 

6 rpm Fann reading 8-12 

HPHT Fluid Loss, cc/30min ≤ 4(275°F/500psi) 

Free Water in Filtrate - 

HPHT Filter Cake, 32nd inch ≤ 2 

Electrical Stability, volts > 500 

Water Phase Salinity 

 (% CaCl2 by weight) 

24%-27% 

OWR 85/15 

Excess Lime, ppb 2-3 

Sag Factor < 0.53 
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 4.2 Obtained Experimental Results 
 

Condition: Static Aging in Oven  

Nano-particle size: 10-20nm 

 

Table 18: Rheology Results of Base Case vs Nano Mud at 275°F @ 12ppg 

Initial properties  

 Base Case 
 Mud 

Nano 
Mud@20% 

Nano 
Mud@40% 

Rheology at 120F  120F 120F 
600 rpm dial reading 50 50 53 
300 rpm dial reading 29 29 32 
200 rpm dial reading 21 21 25 
100 rpm dial reading 13 13 16 
6 rpm dial reading 9 7 7 
3 rpm dial reading 4  5 6 
Plastic viscosity, cP 21 21 19 
Yield point, lb/100ft2 8 8 13 
10' gel strength, lb/100ft2 14 7 9 
10'' gel strength, lb/100ft2 16 12 13 
ES, volt  651 613 624 
Mud Weight (MW) 12 12 12 

Static Properties @ 275°F, 16 hours 
600 rpm dial reading 51 53 50 
300 rpm dial reading 29 30 31 
200 rpm dial reading 21 22 23 
100 rpm dial reading 14 15 15 
6 rpm dial reading 6  7 6 
3 rpm dial reading 5  6 5 
Plastic viscosity, cP 22 23 19 
Yield point, lb/100ft2 8 7 12 
10' gel strength, lb/100ft2 9 8 8 
10'' gel strength, lb/100ft2 11 12 11 
ES, volt  658 736 630 
Mud Weight (MW) 11.95  11.95 12 
HTHP (300F),ml 6 5.2 4.8 
Filter Cake, 32inch 4 / 32 2.5 / 32 2 / 32 
Sag factor 0.616 0.618 0.563 
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Table 19: Rheology Results of Base Case vs Nano Mud at 350°F @ 13.5ppg 

Initial properties  

 Base Case 
Mud 

Nano 
Mud@20%  

Nano 
Mud@40% 

Rheology at:  120F  120F 120F 
600 rpm dial reading 96 100 98 
300 rpm dial reading 58 60 59 
200 rpm dial reading 44  45 45 
100 rpm dial reading 29 29 29 
6 rpm dial reading 12 12 12 
3 rpm dial reading 11 11 10 
Plastic viscosity, cP 38 40 39 
Yield point, lb/100ft2 20  20 20 
10' gel strength, lb/100ft2 18 12 14 
10'' gel strength, lb/100ft2 37 44 40 
ES, volt  757 744 787 
Mud Weight (MW) 13.5 13.5 13.5 

Static Properties @ 350°F, 16 hours 
600 rpm dial reading 143 112 103 
300 rpm dial reading 84 66 60 
200 rpm dial reading 62 49 44 
100 rpm dial reading 38 30 28 
6 rpm dial reading 11 9 8 
3 rpm dial reading 8 6 7 
Plastic viscosity, cP 59 46 43 
Yield point, lb/100ft2 25 20 16 
10' gel strength, lb/100ft2 12 8 10 
10'' gel strength, lb/100ft2 46 38 33 
ES, volt  1113 1197 859 
Mud Weight (MW) 14.2 13.5 13.5 
HTHP (300F), ml 5.6 4.8 4 
Filter Cake, 32inch 3.5 / 32 2 / 32 1.5/32 – 2/32 
Sag factor 0.629 0.625 0.565 
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Table 20: Rheology Results of Base Case vs Nano Mud at 450°F @ 17ppg 

Initial properties 

 Base Case  
Mud 

 
Nano 

Mud@20%  

Nano 
Mud@40% 

Rheology at  120F  120F 120F 
600 rpm dial reading 122 105 117 
300 rpm dial reading 68 60 68 
200 rpm dial reading 50 45 51 
100 rpm dial reading 31 28 32 
6 rpm dial reading 9 10 12 
3 rpm dial reading 8 8 10 
Plastic viscosity, cP 54 45 49 
Yield point, lb/100ft2 14 25 21 
10' gel strength, lb/100ft2 11 26 16 
10'' gel strength, lb/100ft2 22 28 33 
ES, volt  932 1093 1298 
Mud Weight (MW) 17 17 17 

Static Properties @ 450°F, 16 hours 
600 rpm dial reading 243 192 160 
300 rpm dial reading 164 116 99 
200 rpm dial reading 129 88 76 
100 rpm dial reading 84 56 50 
6 rpm dial reading 34 19 25 
3 rpm dial reading 39 18 23 
Plastic viscosity, cP 79 76 61 
Yield point, lb/100ft2 85 40 38 
10' gel strength, lb/100ft2 52 29 32 
10'' gel strength, lb/100ft2 75 39 60 
ES, volt  924 947 1018 
Mud Weight (MW) 16.95 17.05 17.15 
HTHP (300F), ml 5.2 4.6 4.4 
Filter Cake, 32inch 3/32 2.5/32 1.5/32 – 2/32 
Sag factor 0.503 0.508 0.498 

 

 

 
 



 39 

 4.3 Discussion of Results 
 

*BSA=Before Static Aging 

*ASA= After Static Aging 

 

 

  4.3.1 Rheology Properties 
 
 

i. Dial Reading 
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Figure 13: Dial Reading vs Speed @ 12ppg 
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Figure 14: Dial Reading vs Speed @ 13.5ppg 

Figure 15: Dial Reading vs Speed @ 17ppg 
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The graphs above illustrate the change in dial reading at different speeds after static 

heating. The speeds are: 

• 600 rpm 

• 300 rpm 

• 200 rpm 

• 100 rpm 

• 6 rpm 

• 3 rpm 

 

The 6-speed viscometers consisting of the above speeds, as shown above, are used on the 

oilfield to permit rheology of the mud to be measured at a range of shear rates in the mud 

circulation system. Comparing the results of both base case mud and nano enhanced 

mud, it appears that with the usage of 10-20nm sized nano-silica at 20% and 40% 

concentration in Figure 13, 14 and 15, the rheology properties are more stable than 

base case mud without any nano-silica additive. With the usage of nano-silica, the 

values of the dial readings after static heating are closer to the values of the mud 

before static heating, thereby indicating a stable rheology over a range of 

temperature conditions. This proves that nano-silica can act as a rheology modifier 

due to its high thermal stability (Zhang, et al., 2012) with approximately 1700°C 

melting point, which is higher than normal additives. Constant rheology can reduce 

downhole surge pressures and equivalent circulating density (ECD), thereby 

minimizing frequency and severity of lost circulation incidents (Rojas, et al., 2007). 

The dial readings indicate pump pressure/strength required to achieve the pre-

determined speed(rpm). Therefore, the readings are always higher after exposure to 

high temperatures because of thermal degradation, gelation, degradation of 

weighting material, breakdown of polymeric additives (viscosifiers, surfactants, and 

fluid loss additives) caused by HPHT conditions on the properties of the mud. This 

same principle applies to all other readings. 
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ii. Plastic Viscosity 
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Figure 16: PV vs Nano-silica Concentration @ 13.5ppg 

Figure 18: PV vs Nano-silica Concentration @ 17ppg 
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Figure 16, 17 and 18 shows the plot of plastic viscosity versus nano-silica 

concentrations for all 12ppg, 13.5ppg and 17ppg mud weight. From the figure, it can 

be concluded that as nano-silica concentration increases, the plastic viscosity 

becomes more stable as the readings showed little variation before and after static 

aging in the oven. As mentioned before, plastic viscosity is the resistance to fluid 

flow. An increase in solids content will increase the plastic viscosity of the drilling 

fluid. According to (Agharwal, Tran, Soong, Martello, & Gupta, 2011), when 

emulsion stabilized by a polymer surfactant was aged, it degraded severely, and oil 

and water phases separated and could not be emulsified again. However, using nano-

silica, emulsion stability was maintained even when the mud was exposed to high 

temperatures. This can explain the stable values of plastic viscosity at higher 

concentration of nano-silica. When the sizes of nanoparticles are smaller than the 

wavelength of conduction electrons (100nm), the periodic boundary conditions 

become damaged, and therefore, magnetic, internal pressure, optical absorption, 

thermal resistance, chemical activity, catalysis, and melting point undergo massive 

changes as opposed to normal particles (Kong & Ohadi, 2010).  

 

 

 

iii. Yield Point 

 
 

 

 

 

 

 

 

 
 

Figure 19: YP vs Nano-silica Concentration @ 12ppg 
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The acceptable ranges for Yield Point after static aging are shown below: 

Table 21: Acceptable Yield Point Range at given Conditions 

Conditions Yield Point (lb/100ft2) 

275°F, 12ppg 15 – 25 

350°F, 13.5ppg 15 – 30 

450°F, 17ppg 15 – 30 
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Figure 20: YP vs Nano-silica Concentration @ 13.5ppg 

Figure 21: YP vs Nano-silica Concentration @ 17ppg 
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Referring to Figures 19, 20 and 21, the yield point of the mud is within the 

acceptable range at 40% concentration, except for a fluctuation in the 17ppg after 

static aging. As mentioned before, yield point is the ability of the mud to lift cuttings 

out of the wellbore.  

 

 

 

 

 

 

 

 

 

Figure 22 above shows how plastic viscosity is related to yield point. Yield point can 

be derived as plastic viscosity at zero shear rate. According to (Agharwal, Tran, 

Soong, Martello, & Gupta, 2011), if the aged drilling fluid was again homogenized 

by high-speed stirring, an emulsion with fine droplets was obtained, which will 

increase in yield stress values to stabilize the emulsion. This can also explain the 

stable yield point and plastic viscosity values at higher concentration of nano-silica. 

 

 

iv. Gel Strength 

 

 

 

 

 

 

 

 

 

 

 

0 

5 

10 

15 

20 

0  10  20  30  40 

Ge
l S
tr
en
gt
h 
(l
b/
10
0f
t2
) 

Nano‐silica concentration (%) 

Gel Strength vs Nano‐silica 
Concentration at 275°F 

10' GS BSA 

10' GS ASA 

10"GS BSA 

10"GS ASA 

Figure 22: Bingham Plastic Model 

Figure 23: Gel Strength vs Nano-silica Concentration @ 12ppg 
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From Figure 23, 24 and 25, the gel strength of 10seconds (10’) and 10 minutes (10”) 

show less variation before and after static aging with the addition of nano-silica. 
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Figure 24: Gel Strength vs Nano-silica Concentration @ 
13.5ppg 

Figure 25: Gel Strength vs Nano-silica Concentration @ 
13.5ppg 
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Table 22: Acceptable Range of Gel Strength 

Conditions Gel Strength (lb/100ft2) 

275°F, 12ppg 6-10 

350°F, 13.5ppg 6-12 

450°F, 17ppg 6-12 

 

Gel strength depicts the capability of the mud to suspend solids and weighting 

material when circulation ceases, and also to flow when force is applied. Generally, 

addition of nano-silica increases the gel strength of the mud. Drilling muds 

exhibiting high gel strength will create the need for high pump pressure to break the 

static condition the mud was in for an extended period of time. The reasons that may 

cause high gel strength in a mud is due to over treatment with organic gelling 

material or build up of fine solid particles in the mud. The gel strength of a mud 

needs to be within the operational limit as shown in Table 22 to avoid problems such 

as:  

• Cutting suspension disability: gel strength lower than the operational range 

will cause cuttings to drop once the pumps are not working (no suspension), 

which can lead to pipe sticking, accumulation of cutting beds and hole pack 

off. 

• High break circulation pressure: gel strength above the operational limit 

will require a huge amount of pressure to break the mud into circulation. This 

high pumping pressure can cause formation damage (break formation), which 

will result in mud loss and loss circulation. 
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v. Electrical Stability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: ES vs Nano-silica Concentration @ 12ppg 
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Figure 27: ES vs Nano-silica Concentration @ 13.5ppg 

Figure 28: ES vs Nano-silica Concentration @ 17ppg 
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Figures 26, 27 and 28 shows electrical stability changes with the usage of nano-

silica. Electrical stability (ES), measured in volts is the quality of emulsion and oil-

wetting qualities of solids of a sample of mud. Nano-particles can replace polymeric 

surfactants as a water-in-oil emulsion stabilizers it also can be hydrophobic, 

hydrophilic or amphiphillic (Agharwal, Tran, Soong, Martello, & Gupta, 2011). 

They can exhibit a large free energy of adsorption and attach themselves to the oil-

water interface, especially for particles of intermediate wettability (Agharwal, Tran, 

Soong, Martello, & Gupta, 2011). Therefore, oil in water emulsions is formed by 

hydrophilic particles whereas water in oil emulsions is formed by hydrophobic 

particles. 

 

The acceptable range of values for emulsion stability is above 500 volts. For all 

samples, the electrical stability is above 500, therefore indicating a stable emulsion 

and oil wetting properties in the drilling mud since nano-silica is hydrophobic. 

 

 
 
 
vi. Mud Weight 

 
 

Table 23: Changes in Mud Weight Before & After Static Age 

Temperature (°F) Mud Weight (ppg) 

Before Static Age After Static Age 

Base 

case 

Nano 

@20% 

Nano 

@40% 

Base 

case 

Nano 

@20% 

Nano 

@40% 

275 12 12 12 11.95 11.95 12 

350 13.5 13.5 13.5 14.2 13.5 13.5 

450 17 17 17 16.95 17.05 17.15 

 

 

From the Table 23, it is obvious that there are changes in the mud weight either 

decreasing or increasing after static aging at the given temperatures. This irregularity 

can be due to not measuring surface mud weight at a constant flowline temperature 

of 120°F. According to (Godwin, Boniface, & Ogbonna, 2011), geothermal 
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temperature gradient was assumed from the drill floor to the top of the reservoir, 

which is the maximum pore pressure gradient at 13,8731 ft TVD is 2.7°F/100ft 

TVD. the hydraulics program calculated that at 120°F the surface mud weight would 

be the equivalent of the downhole mud weight with the drill floor temperature of 

60°F. This statement supports the reason for the need to measure mud weight at a 

constant flowline temperature of 120ºF, or there will be irregularities in the reading 

of the mud weight.  An increase in the mud weight after static aging can be caused 

by water evaporation and accumulation of fine solids. Therefore, the surface mud 

weight can be allowed to fluctuate within a 0.10ppg (0.01 SG) band (Godwin, 

Boniface, & Ogbonna, 2011). Likewise mud weight can decrease after static aging 

due to thermal expansion. In conclusion, as long as there is a deviation from the 

flowline temperature, surface mud weight can fluctuate or drop according to 

conditions. 
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  4.3.2 Fluid Loss and Barite Sag 
 
 

i. Filtrate Loss 
 

 

 

 

 

 

 

 

 
 

 

Figure 29: Filtrate Loss vs Nano-silica Concentration 

 

Referring to Figure 26, the graph shows that when nano-silica is added, the filtrate 

loss decreases. This coincides with the function of nano-silica as a fluid loss agent. 

The thickness of a filter cake is dependent on the fluid loss into the formation 

(Holster, Stefano, Riley, & Young, 2012).  

 

 

Table 24: Comparison of Mud Cake Thickness 

Mud Weight (ppg) Thickness (32inch) 

Normal Mud Nano 

Mud@20% 

Nano 

Mud@40% 

12 3/32 2/32 1.5/32 

13.5 3.5/32 2/32 1.5/32 

17 3/32 2.5/32 1.8/32 

 

From Table 24, as fluid loss decreases, the mud cake thins. The thickness of a 

mudcake should be less than 2/32 inches, as a mudcake, which is too thick, will 

narrow wellbore diameter. This causes the drill bit to easily come in contact with the 
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mud cake (stuck). The nano-silica has a diameter of 10-20nm, which is smaller than 

the pore throats of shale and other formations. Therefore, mud cake can form on the 

formation as the nano-silica acts as a bridging agent to plug the pores of the 

formation. Thus, reducing fluid loss of the mud into the formation. This is in line 

with claims that the application of nanoparticles in drilling fluids is to form a thin 

layer of non-erodible, and impermeable nanoparticles membrane around the wellbore 

which prevents clay swelling, spurt loss and mud loss due to circulation (Srivatsa & 

E, 2010). According to Table 24, the mud cake thickness decreases with the usage of 

nano-silica. Therefore, proving that nano-silica is useful as a fluid loss agent. 

 

 

 

ii. Sag Factor 

 

 
Figure 30: Scatter Plot of Sag Factor vs Nano-silica Concentration 
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sag factor against nano-silica concentration. According to the graph, at 20% 

concentration, the nano-silica does not show any significant effect in sag. At 40% 

concentration, there seems to be a slight decrease in sag factor. However, this 

decrease is very little and is only visible in 12ppg and 13.5ppg mud. Aside from that, 

according to (Godwin, Boniface, & Ogbonna, 2011), the 100rpm dial reading has to 

be within 35 lb/100ft2 – 42 lb/100ft2 (Shearwater Project). Any reading below 35 

lb/100ft2 will result in barite sag. As shown in Table 18, 19, the 100rpm dial reading 

showed values below 35lb/100ft2, whereas only for Table 20, the 100rpm reading 

was above 35lb/100ft2. Therefore, from these results, nano-silica does not have an 

adverse effect on sag at concentration lesser or equal to 40% of fluid loss agent. The 

nature of nano-silica is as a plugging agent. Figure 31 to Figure 33 shows synthetic 

based mud mixed at 40% nano-silica concentration for the three given conditions. 

Figure 34 and Figure 35 shows the mud cake formed from the HPHT filter press at 

275ºF, 500psi. 

 

 
 

 

 

 

 

 

 
 

Figure 33: Mud formulated 
at 275°F 

Figure 34: Mudcake for 
450°F 

Figure 35: Mudcake 
for 350°F 

Figure 31 Figure 32: Mud 
Formulated at 350°F 

Figure 33: Mud 
formulated at 450°F 
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CHAPTER 5 
 
 

5.0 SUMMARY & FUTURE WORK 
 

To summarize, synthetic based muds are currently the drilling fluids of choice due to 

their high performance in wellbore stability and rate of penetration, especially under 

High Pressure High Temperature (HPHT) conditions.  

 

Among the most significant problems faced by the oil and gas industry in drilling 

operations is barite sag, which can lead to fatal incidents such as kick, blowout and 

complete shutdown of operations. To combat this, static sag and dynamic sag of the 

mud must be overcome.  

 

Nano-particles are currently the pioneer subjects of research as they have been 

proven to solve many drilling fluid problems such as fluid loss, wellbore sloughing 

and formation damage. In fact, addition of nanoparticles has been proven to 

overcome challenges drilling fluids are unable to.  
 
According to the results, at 20% nano-silica concentration, there is little to no effect 

on sag. At 40% however, there are slight reductions in 12 and 13.5ppg mud, but the 

change is not sufficient to conclude that nano-silica has a positive effect on barite 

sag. However, for fluid loss, nano-silica proves to be a very credible fluid loss agent 

up until 40% concentration. The nano-silica also has proven to be a functional 

rheology modifier due to the fact that under its usage, the rheology is stable after 

static aging. 

 

For future work, the concentration of nano-silica can be increased to to 60%, to 

observe any further changes in sag, fluid loss and rheology. Furthermore, 

experimenting on changing the size of the nano-particle from 10-20nm to 5-15nm, 
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and observing any changes in the results at different concentrations can be looked 

into.  

 

The other option for combatting barite sag would be to change the weighting agent 

from barite to hematite, ilmenite or manganese tetroxide (micromax) whilst still 

substituting a fixed percentage of nano-silica as a fluid loss agent. Hematite has a 

specific gravity higher than 5, whereas barite has a specific gravity of 4 to 4.39. 

Therefore, for a certain mud weight, formulated mud with hematite will contain less 

solids by volume which will reduce the sag index of a mud. The nano-silica is not 

economically feasible to be substituted as a weighting agent. 

 

Table 25: Price Comparison of Nano-silica and Hematite 

Material Price (RM) 

Nano-silica (10-20nm) 1660.65 /0.5kg 

Hematite 1.80/ 1kg 

Barite 0.80/ 1kg 

 

 

Without a doubt, extensive research on barite sag will always be ongoing as I 

encountered irregularities in my results or plainly for better understanding. All in all, 

I look forward to working with my supervisor, Mr. Aslam to make this project 

successful. 
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