

EMBEDDED SYSTEM OBJECT TRACKING USING CMU

CAMERA

AGHILAN A/L NARAYANAN

13939

MR. PATRICK SEBASTIAN

ELECTRICAL & ELECTRONICS ENGINEERING

UNIVERSITI TEKNOLOGI PETRONAS

MAY 2014

A
G

H
IL

A
N

 N
A

R
A

Y
A

N
A

N

B
. E

N
G

. (H
O

N
S

) E
L

E
C

T
R

IC
A

L
 &

 E
L

E
C

T
R

O
N

IC
S

 E
N

G
IN

E
E

R
IN

G
 M

A
Y

 2
0
1
4

ii

Embedded System Object Tracking using CMU Camera

By

AGHILAN A/L NARAYANAN

13939

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

 in partial fulfilment of the requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2014

by

Aghilan Narayanan, 2014

iii

CERTIFICATION OF APPROVAL

Embedded System Object Tracking using CMU Camera

by

Aghilan a/l Narayanan

13939

A project dissertation submitted to the Electrical and Electronics Engineering

Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electronics & Electrical Engineering)

Approved by,

Mr. Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2014

iv

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

AGHILAN NARAYANAN

v

ABSTRACT

Computer vision has gone long way from 1980s till now. Before, computer

vision generally so robust and expensive. However, due to advancement in

embedded processing, computer vision can be implemented in cheaper computer

system. Raspberry Pi and CMUcam4 provides fantastic platform for interfacing and

also provides a simple robotic object motion tracking at school-level or university-

level. These simple computer vision systems can benefits in many ways such as

being applied to police task force, or bomb squad purpose, or firefighting purpose.

To achieve the interfacing, serial communication between the RPi and CMUcam

need to be achieved. Then we’ll develop the color tracking algorithm to track a color

and ask the camera to follow that colored object movement. From the

troubleshooting and findings, interfacing RPi and CMUcam requires a lot of

tweaking as both consists of two different systems. In the end, only servo platform

does not successfully work.

vi

ACKNOWLEDGEMENTS

 First and foremost, I would like to express my gratefulness to the Almighty

God for showing me the path and meeting important person that allow me to do the

project properly. I would like to express high gratitude to any individuals who

always gave their precious time to attend to me.

 Special thanks to my supervisor, Mr. Patrick Sebastian for his guidance and

assistance during my project duration. His encouragement and advices is what

pushed me to try harder during the project work. Thanks to the Final Year Project

Committees for their information and guidance given for the project.

 I would like to express my thanks to all the lab technician, lecturers and

friends who had provided many valuable advices throughout the project.

 Last but not least, I would like to thank my parent for their understanding and

patience with my project.

vii

TABLE OF CONTENT

Certification i

Abstract iv

Acknowledgement v

Table of Content vi

List of Figures 1

List of Tables 2

List of Abbreviations 3

CHAPTER 1: INTRODUCTION

 1.1 Background of Study 4

 1.2 Problem Statement 5

 1.3 Objectives 6

 1.4 Scope of Study 6

CHAPTER 2: LITERATURE REVIEW

 2.1 Raspberry Pi as Embedded System 7

 2.2 Image Processing and Object Tracking 8

CHAPTER 3: METHODOLOGY/PROJECT WORK

 3.1 Research Methodology 10

 3.2 Project Methodology 11

 3.3 Project Activities 13

3.4 Key Milestone 14

 3.5 Gantt Chart 15

CHAPTER 4: RESULT AND DISCUSSION 16

CHAPTER 5: CONCLUSION 27

CHAPTER 6: REFERENCES 28

APPENDICES 29

1

LIST OF TABLES

Table 1 Gantt Chart 15

Table 2 Color Parameter (subject to lighting environment) 23

2

LIST OF FIGURES

Figure 1 Taken and Modified from Linux and User Developer 8

Figure 2 Methodology Flowchart 10

Figure 3 Data Movement Methodology 11

Figure 4 Camera Layout 11

Figure 5 Servo Positioning 12

Figure 6 Key Milestones Flowchart 14

Figure 7 Raspberry Pi Setup 16

Figure 8 UART to USB Adaptor and the connection 16

Figure 9 CMUCam4 17

Figure 10 Raspberry Pi Screen 17

Figure 11 CMUcam4GUI Start screen and after capturing an image 17

Figure 12 ACK Received 18

Figure 13 3.3V to 5V Logic Level Shifter 20

Figure 14 Servo Connection 21

Figure 15 Color bounding algorithm flowchart 22

Figure 16 Blue tracked pixel of a red keychain 23

Figure 17 Options available on CMUcam4GUI 23

Figure 18 T data packet and extraction of mx and my values 25

Figure 19 Weak signal of HDMI cause wrong display 26

3

LIST OF ABBREVIATIONS

RPi = Raspberry Pi

CMUcam = Carnegie-Mellon University camera

UART = Universal Asynchronous Receiver Transmitter

USB = Universal Serial Bus

RX = Receiver

TX = Transmitter

PWM = Pulse Width Modulation

mx = average of all tracked x-coordinates pixels.

my = average of all tracked y-coordinates pixes.

x1 = first x-coordinate of the tracked pixels

x2= second x-coordinate of the tracked pixels

y1= first y-coordinate of the tracked pixels

y2= second y-coordinate of the tracked pixels

4

CHAPTER 1

INTRODUCTION

1.1 Background of Study

 In the current modern technology world, the computer system getting more

and more advanced, with implementation of image processing, video processing, and

simplification of data size. The concepts of every computer systems are similar, that

is a complete, working computer. It includes the computer along the software and

peripherals devices that makes the computer function properly. [1]

 As a result of the advancement in computer system world, the robotics area is

also developed in rapid progress. The robotic applications are now being included in

people’s daily life and not only catered for industrial life. Most of the robotic

applications are being used for military, medical and educational purposes. In the old

time, robots are generally large, and taking a lot of wiring and troubleshooting to

make it function properly and such large robots are usually used to handle heavy

work. However, as time progresses, the robot applications start to become more

mobile thanks to the embedded processing and system-on-chip (SoC) as well as the

introduction of small size electronic components. Moreover, the type of robots that

usually made is autonomous type, which means it have the ability to make decision

with help of the pre-programmed functions in their hardware. The autonomous robot

usually has sensors, in order to connect to outside world. These sensors are required

in order to bring senses to the robot that is vision, and audio. Current image and

video processing is typically done in the complete computer system, and the said

computer system is not exactly cheap and mobile.

 This final year project aimed to use embedded system and CMUcam to track

an object movement. Raspberry Pi (RPi) and CMUcam4 will be used as embedded

5

system and image processing unit respectively. RPi is relatively new in the

technology world, and yet it becomes so popular that every time a batch of several

thousand units is produced, it will be sold out within a very short time frame. RPi is

basically a credit-card sized complete computer system, which can run an Operating

System (OS) on the board itself. [2] Provided that it can function as a normal PC, it

is relatively cheap compared to the PC. The retail price of RPi is 5 times less than the

price of normal PC. Besides, RPi has outlet to interface with other devices such as

microcontrollers and the motor servos through serial communication. CMUcam4 is a

camera sensor which has its own processor on the board. It is so powerful that it can

do basic image processing without any external circuitry by using several commands

that can be applied in programming. However, the current RPi only provide 3.3 V

DC power to the outlet, so several advanced outlet cannot really connect with RPi.

 Since a lot of programming, image processing algorithm and electronics

knowledge are required, it provides a good learning tool for robotics area. Further

study will eventually develop a more complete image processing on cheap computer

system like the CMUcam and RPi combo for bomb defusing skill, firefighting,

criminal prevention program, and various other purposes.

1.2 Problem Statement

In this final year project, several aspects need to be addressed before it can be

successfully demonstrated to public. First of all, the method of colour tracking

algorithm should be decided so it can be processed as close as possible in real time.

Since the image processing algorithm and the servo control have delay times, we

need to program both the CMUcam4 and servo and RPi to work as close as possible

in the real time tracking. This probably can be achieved by using a method that will

not take a long image processing time.

The second aspect is to use Raspberry Pi and CMUcam together through

interfacing. Since RPi is relatively new in the market, interfacing both of them is

rarely done or never done before and therefore provide an open obstacle, which is to

find a solution and way to interface both of them. Programming using C or Python

language and GPIO know-how will probably best way to overcome the interfacing

6

problem. Provided that both CMUcam4 and RPi are two different systems, it proves

to be real challenges in interfacing them.

The third aspect is to connect to a good platform so that it able to track object

movement flawlessly. A good platform means that it needs a good and easy to use

servo or motor in order to track an object.

Last but not least, overall cost of production should be low compared to

available embedded system object tracker in the market as this is the reason of the

existence of this final year project.

1.3 Objective

The objective of this project is to build an embedded system object tracking

using Raspberry Pi and CMUcam4. There are two main functions, to track an object

and to move according to the object movement.

1.4 Scope of Study

The project mainly focuses on object tracking using Raspberry Pi and

CMUcam4. This includes interfacing the RPi and CMUcam4 by means of serial

communication. Since both RPi and CMUcam4 are of different systems, more study

on the schematic and board layout is needed before making any connection.

The next step is to do programming on the RPi and CMUcam4 to allow both

to work together in image processing. We need to learn C/Python programming and

GPIO know how as well as the CMUcam command list in order to do complete

programming. The next step will be in interfacing the now complete RPi+CMUcam

combination to be interfaced with servo platform.

The last step is to develop an algorithm to track the movement of an object.

The movement of the object will be done by means of color tracking and from there

on will be developed into more elaborate tracking which hopefully will be including

the predictive movement of the object.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Raspberry Pi as Embedded System

In the year 2011, RPi took the electronic world by storm. It is showcased as

the credit-card sized computer system, with ARM-11, an Ethernet port, USB port,

GPIO port, HDMI port, a 512MB memory and a SD card slot. All this goodness is in

one board with price of £25 (~RM115). According to the Eben Upton in his latest

conversation as documented in “Computing Conversations Magazine”, he’s been

working on introducing a cheap computer to reinstate the interest in computer

science and to provide a platform for people to work on their creativity since 2005.

[3] Since a more complete computer system is more expensive, most of the people

specialised in the computer science always take a risk on trying to tinkering with it.

Now that RPi has been introduced, it has been extensively used in developing many

applications and in many ways, such as being a GUI interface on an old microwave.

[3] Nowadays, all the mobile robots are being based on the Raspberry Pi since it

provides a more complete coverage and programming tinkering. In another

interview, Crispin Andrews said that they wanted a computer that people can do

things with. [4] This was of course backed up by the fact that one million units of

RPi have been shipped worldwide.

It is possible to connect the RPi to outside world thanks to implementation of

UART in the system. It is the key components which enables a serial between

devices. The following shows the UART of GPIO pin on the RPi.

8

2.2 Image Processing and Object Tracking

Simple computer vision algorithm proves to be extremely important in many

areas, which include military, sensing area, educational, robotics, medical and

various other areas. [5] [6] [7] [8] Since traditional vision system requires a camera,

frame grabber and a high speed processor, it proves to be real challenging in

implementing computer vision using embedded systems. However it becomes more

possible as there is availability of CMOS color camera modules like CMUcam4 and

low cost microcontrollers or computer system like RPi. Image process usually takes

a lot of process which in turn process a lot of computing power. However, thanks to

image buffering ability provided by the embedded system chip, the power

consumption and the image compression size are minimized. There are systems that

based on the image processing and sensing available in the market, but they are

usually too expensive to be done commercially and in bulk. For example, LIDAR

and stereo vision system which can stands at almost $40,000. [9]

Object tracking using low-cost camera module is now starts to be growing in

demands. Object tracking using computer vision is already done for a long time.

However, price seems to be the limiting factor here. For example, Newton Lab’s

Cognachrome system which is a computer vision sensors, costs around 2500 to 3500

dollars per unit. [10] Ability to track object with embedded system will benefit many

areas, such as the firefighting area, bomb defusing squad, or rescuing squad and

provides a huge cost effective alternative compared to current market products.

There are several methods used in image processing. For example, a research

uses Unscented Kalman Filter and Gaussian filter to process image. [11] [12] Most

recently, YCbCr method is the most commonly used in color space. This technique

detects the object by obtaining the threshold of a certain color. By getting the

UART

Figure 1: Taken and Modified from Linux and User Developer Issue 132 (2013)

9

threshold of the color using CMUcam4, we then can implement the code into RPi to

make it to track the object motion.

10

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

The flowchart below shows the overview of the research methodology in this

paper. The explanation is located in the next sub-chapter, project activities.

START

END

RESEARCH

INTERFACE PROTOTYPE

WITH SERVO

LITERATURE

REVIEW

RPi + CMUcam4

INTERFACING

PROGRAMMING THE IMAGE

PROCESSING/COLOR TRACKING

ALGORITHM

TROUBLESHOOT

T

DO VALIDATION TEST

TESTING WORKING?

WORKING?

TROUBLESHOOT

T

Figure 2: Methodology Flowchart

No

No

Yes

Yes

11

3.2 Project Methodology

Based on the figure above, RPi will send instructions to CMUcam4 through UART

in Python Language. The CMUcam4 then process the program and carry out the

intended tasks and then produces T data packet in form of [T mx my x1 y1 x2 y2

pixels confidence] to be displayed in the RPi’s terminal. The RPi is then extract

“mx” and “my” value to be fed into the servo for positioning. The T data packet in

form of [T mx my x1 y1 x2 y2 pixels confidence] is shown in the Figure 4 in

practice. Figure 5 shows the servo positioning. The planned positioning is as follow.

Case 1: If mx is equal to 30º, the servo needs to move to right until mx is

centered. The same goes to my coordinates.

Case 2: If mx is equal to 110º, the servo needs to move to left until mx is

centered.

159,0

0,11

9

mx,my

x2,y1 x1,y1

x1,y2 x2,y2

RPI UART

CMUcam4

PicoBorg Servo

Python

Python

T data packet

Mx,my

Mx,my

Mx,my

T data packet

Figure 4: Camera Layout

Figure 3: Data Movement Methodology

12

0º

90º

180º

Figure 5: Servo Positioning

13

3.3 Project Activities

The Research part is done on collecting more information on low-cost

camera module and how to interface them with the low-cost microprocessor. In the

research, all the sources of information are properly viewed and documented.

Literature Review part focuses on preparing the background of study,

outlining the problem statements, and then narrowing down the topic of interest on

the project.

Then interfacing RPi and CMUcam4 will be done to perform specific task.

The system must be error-free and must be able to communicate with each other.

Troubleshoot any problem that appeared in the process by gathering more

information and by asking expert. Raspberry Pi will act as the microprocessor that

communicate and tell the CMUcam4 the order. It also will act to get the image from

CMUcam4. CMUcam4 have various built in functions and needed to be tested under

various conditions, like lighting, or the surroundings.

Once interfacing done, programming is required to implement the image

processing and color tracking algorithm which will be used as basis of object motion

tracking. More troubleshooting will be expected in order to make the system

functioning properly. Programming in C will be extensively used throughout the

project since it is more hardware friendly.

The next step will be to interface the RPi and CMUcam4 with servo system

to enable more extensive camera coverage while tracking object motion. The servo

consists of pan/tilt header that will move according to the object movement. The last

step is to do validation test in order to call the whole project as a success.

14

3.4 Key Milestones

The following flowchart shows the key milestones that are achieved during

the weeks until the submission of Progress Report.

Figure 6: Key Milestones Flowchart

Set Up Raspberry Pi + CMUcam4

Serial Programming using Python Language

ACK received, success in serial interfacing

Attempt to program a simple color tracking algorithm

T-data type packet is received

Extraction of the specific value from T-data packet to be feed

into servo succeeded.

15

3.5 Gantt Chart

Project Schedule Weeks No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

System Interfacing

System Programming

Progress Report

PRE-SEDEX

Draft Dissertation

Dissertation (softbound)

Viva

Dissertation (hardbound)

Table 1: Gantt Chart

16

CHAPTER 4

RESULT AND DISCUSSION

4.1 Setup of the FYP

4.1.1 Initial RPi Setup

In the project, the following is needed for setting up the FYP. In the figures below,

the UART to USB connector is connected to USB port of Raspberry Pi and UART

connector of CMUcam4.

Figure 7: Raspberry Pi Setup

Raspberry Pi

SD Card (storage)

Power Supply

USB Extension Port (For

WiFi Dongle and

Keyboard/Mouse) Leave

another USB port free

for CMUcam4

HDMI to VGA Adapter

(All monitor using VGA,

RPi only got HDMI port)

Figure 8: UART to USB Adapter and

the connection

VCC
TX0
RX0
DTR
RTS
GND

VCC
RXD
TXD
DTR
RTS
GND

CMUcam4 USB

17

The following screenshot shows the successful connection of Raspberry Pi and

CMUcam4GUI.

Figure 9: CMUcam4

Figure 10: Raspberry Pi Screen

Figure 11: CMUcam4GUI start

screen and after capturing an image

18

Several setting of RPi is tweaked for purpose of displaying it using an external

monitor. This involves setting the display brightness, the hotplugging of monitor, the

setting of RPi network for access of file using my laptop as well.

4.1.2 Setup of Serial Communication

There is several way tested in order to serially connect to CMUcam4. First was to

connect the jumper into the CMUcam4 UART to Pi UART. The following setting is

tweaked.

Backup the /boot/cmdline.txt file before editing(in case things go wrong)

 sudo cp/boot/cmdline.txt /boot/cmdline_backup.txt

Edit the file

 sudo nano /boot/cmdline.txt

Delete parameters involving the serial port "ttyAMA0"

 console=ttyAMA0, 115200 kgdboc=tyAMA0, 115200

Save and Close. And edit file:

 sudo nano /etc/inittab

Search for serial port usage by typing /ttyAMA0/ and comment it out by putting "#" at the beginning

of the text and reboot

The next step is to set up a terminal console, in this case, using SimpleIDE for the

communication. The following figure shows the ACK received.

However it stops at this. Beyond the “GV” command, we are unable to give any

other instructions and sometimes the camera freezes.

Figure 12: ACK Received

19

 In the end the UART-USB is used whereby the CMUcam4 is connected

using UART and USB is connected to the Raspberry Pi as shown in Figure 8 and 9.

This method is used indefinitely since all the instructions and commands available in

the CMUcam4 Command List V02 can be passed to CMUcam4. CMUcam4GUI is

successfully set up as shown in the Figure 11 which proves that the serial

communication is successful.

4.1.3 Setup of PWM for usage of LED and Servo

 In the Pi, it is stated that it only contains Hardware PWM which is pin 17 of

its GPIO connector. Several ways is tested to connect the Hardware PWM to the

LED first. Blinking of LED is successful since the pin output required voltage and

using C language and Python language are both successful. However, connecting

servo to it is not successful therefore it is requiring a logic level shifter from 3.3V to

5V. PicoBorg serves the purpose as the logic level shifter in this case, allowing the

servo to move 0º, 90º and 180º within a given time. However setting the servo using

PWM proves to be daunting, since there is too much fluttering. For example a servo

might move from 0º to 180º in 3 seconds but returning to 0º will take 5 minutes

before start to return to 0º. This is later found to be Pi problem where there is too

much interruption such as using CMUcam4 at the same time, and using programmer

in Pi and using PicoBorg all at the same time.

 Several libraries are tested, such as WiringPi libraries, DMA libraries, and

others, but none of it gives required movement of servo. Therefore the setup of

PWM is considered not successful. The only successful setup is mentioned in

Section 4.4. The following shows several testing of PWM on LED using WiringPi

libraries and adapted to servo.

20

#include

<stdio.h>

 #include <wiringPi.h>

 // LED Pin - wiringPi pin 0 is BCM_GPIO 17.

 // Testing LED on RPi.

 #define LED 0

 int main (void)

 {

 printf ("Raspberry Pi blink\n") ;

 if (wiringPiSetup () == -1)

 return 1 ;

 pinMode (LED, OUTPUT) ;

 for (;;)

 {

 digitalWrite (LED, 1) ; // On

 delay (500) ; // mS

 digitalWrite (LED, 0) ; // Off

 delay (500) ;

 }

 return 0 ;

 }

The code above works since LED can be used in 3.3V environment. Tweaking the

code to suits the servo, does not work since it requires 4.8V to 6V. Acquisition of the

PicoBorg helps to shift the logic level as shown in the image below, where yellow

line is the input (3.3V) and blue line (5V) is the output.

Figure 13: 3.3V to 5V logic level

21

import wiringpi2 as wiringpi

wiringpi.wiringPiSetup()

M1 = 7

M2 = 1

wiringpi.softPwmCreate(M1, 0, 100)

wiringpi.pinMode(M2, 2)

wiringpi.softPwmWrite(M1,50) # 0 to 100

wiringpi.pwmWrite(M2, 512) # 0 to 1024, 512 is central

The code above shows how we used WiringPi libraries to control the servo in

Python. SoftPWMCreate is one of the ways to let us control more than just one

PWM output, since we are using Pan/Tilt Servo, we needed two PWM outputs. So,

creating the Software PWM and Hardware PWM allows us to control two servos.

The following connection is required since PicoBorg actually just drives motor, not

the servo. The weak pull-up resistor (about 10k) is required.

Figure 14: Servo Connection

22

4.2 Colour bounding for Red, Green and Blue Object

The CMUcam4GUI have two purposes, to show that it is working and to bound

color for color tracking purposes. The following shows the flowchart of properly

bounding the color according to the creator of CMUcam4, Kwabena Agyeman from

Carnegie-Mellon University.

Start CMUcam4GUI

Turn on YUV mode

Turn off Automatic White Balance and Automatic Gain

Set the “Send Frame” to 160x120 (This is the size of tracking window used)

Click Send Frame (make sure camera and object not moving)

Picture clear?

Select an area of the object and click “Track Selection”. Set the confidence level at 50 first.

If object has blue drawn on it, then proceed with higher confidence level until you

bound unwanted things

Still bounding unwanted

things?

Refresh by sending bitmap

Set the Green Min and Max to 0 and 255 respectively.

Try less wide bound range

Take the colour parameter for tracking

purposes

No

Yes

Yes

No

Figure 15: Color bounding algorithm

flowchart

23

The following shows the color parameters taken for a Red, Green and Blue

Keychain.

Colour RMin RMax GMin GMax BMin BMax

Blue 76 94 113 129 188 207

Green 66 95 86 100 66 90

Red 186 253 0 90 66 121

Table 2: Color parameter (subject to lighting environment)

Figure 16: Blue tracked pixel of a red keychain

Figure 17: Options available on CMUcam4GUI

24

4.3 Interfacing RPi and CMUcam4 using Python

The reason for using Python is that it is higher level language compared to C and it is

easier to pass the instructions to CMUcam4 using python compared to the C

language. The following code snippet shows several initialization of the CMUcam4

before start tracking the object.

import threading
import serial
import time
import RPi.GPIO as GPIO
import re

cam = serial.Serial("/dev/ttyUSB0", baudrate=19200, timeout=0)
cam.bytesize = serial.EIGHTBITS
cam.parity = serial.PARITY_NONE
cam.stopbits = serial.STOPBITS_ONE
cam.xonxoff = False
cam.rtscts = False
cam.dsrdtr = False
cam.writeTimeout = 2

cam.write("GV"+chr(13))
ACK1 = cam.read(18)
print repr(ACK1)
time.sleep(3)
print "Testing LED for successful communication"
time.sleep(2)
print "now LED blinking at 10Hz"
cam.write("L1 10"+chr(13))
time.sleep(2)
print "Setting back LED to 0Hz"
cam.write("L1 0"+chr(13))
time.sleep(2)
print "Turn Automatic Gain and Auto White Balance off"
cam.write("AG 0"+chr(13))
cam.write("AW 0"+chr(13))
time.sleep(1)
print "Tracking color mode is set to YUV"
cam.write("CT 1"+chr(13))
time.sleep(1)

The following snippet shows how the extraction of the mx and my value value to be

feed into servo.

while True:
response = cam.read(60)
if response.startswith('T'):
 print response
 val = response.split()
 print val[1] #mx value
 print val[2] #my value
 time.sleep(0.033333333333333)
 cam.close()

25

4.4 Servo Positioning

Since the pan/tilt servo requires two PWM (Pulse Width Modulation) for its

operation and only one hardware PWM is generated by the Raspberry Pi, the focus is

now on how to convert any of GPIOs into semi-hardware PWM. This is made

possible thanks to WiringPi library that is available on the github.com. The

following is C code to implement the PWM setting in both the hardware PWM

GPIO (pin 18) and semi-hardware PWM GPIO (pin 17). The code is however

implemented in C language, and therefore need to be done in Python language.

The current progress is that 0º, 90º and 180º are able to be implemented. This is done

by setting a time for each degree such as 0.3ms for 0º and 2.1ms for 180º. However,

it still fails to go to right or left in accordance to the CMUcam4 tracking data. This

may be due to lack of real-time application or just some unfamiliarity with Python

language and servo.

Figure 18: T data packet and extraction of mx and my value

26

4.5 Problems Faced during Setup of Project

Figure 16 shows the screen of a monitor that became red in colour. This

means the HDMI signal from the Raspberry Pi does not possess enough power to

display the colour correctly in large monitors (19inches). The solution is to use

smaller monitor like 15in Samsung SyncMaster 153v model, or using HDMI boost

option (but this can burns out Pi) or using better HDMI-VGA adapter.

Another problem is that the Raspberry Pi might not even boot into the home

screen, i.e. rebooting many times. This is caused by corrupted SD card image of the

operating system, or just incorrect setup, i.e. the monitor cable is not plugged in

properly, and some component might take too much power from the Raspberry Pi

until it shorts. The solution is to recheck every connection and make sure SD card is

readable. Also remove any unwanted USB connection or other hardware attachment

and try again. Usually the case that happens with the FYP’s Raspberry Pi is, the

hardware attached will short it. The hardware mentioned is the Wi-Fi dongle from D-

Link and once removed the dongle, Raspberry Pi works as usual.

 A more technical problem will be in terms of serial communication between

Pi and CMUcam4. First try using only jumper from CMUcam4 UART to Pi UART.

But this is not successful method. In the end, a virtual USB communication module

is needed, so we used UART-USB Adaptor that helps to communicate and set up

serial programming successfully.

Figure 19: Weak signal of HDMI cause wrong display

27

CHAPTER 5

CONCLUSION

 Following the result that is gathered, we are able to track an object. However,

the servo still needs to be interfaced in order to confirm the workability of the

project. The value of mx and my will help to determine the centroid positioning for

servo later. Thus far, we are able interface the RPi and CMUcam4 successfully, able

to track a red keychain and able to find the position of the keychain. However, the

servo is not yet able to work with the rest of the system and this proves that more

hardware is required to successfully conclude this project. The hope of this project in

the future is to further develop the way to get the distance of the camera from the

object and then develop specific action, i.e. grabbing the object. The other

recommendation is to develop a way to predict the object movement based on the

velocity of the object and specific distance to be fixed.

28

CHAPTER 6

REFERENCES

1. Wikipedia. Computer. 2014; Available from:

http://en.wikipedia.org/wiki/Computer.

2. Mitchell, G., The Raspberry Pi single-board computer will revolutionise

computer science teaching [For & Against]. Engineering & Technology,

2012. 7(3): p. 26-26.

3. Severance, C., Eben Upton: Raspberry Pi. Computer, 2013. 46(10): p. 14-16.

4. Andrews, C., Easy as pi. Engineering & Technology, 2013. 8(3): p. 34-37.

5. Kavithaa, R., R.U. Babu, and C.R. Deepak. Simple pendulum analysis

— A vision based approach. in Computing, Communications and

Networking Technologies (ICCCNT),2013 Fourth International Conference

on. 2013.

6. Lyons, K.R. and S.S. Joshi. Paralyzed subject controls telepresence mobile

robot using novel sEMG brain-computer interface: Case study. in

Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on.

2013.

7. Kaifu, Y., et al. Efficient Color Boundary Detection with Color-Opponent

Mechanisms. in Computer Vision and Pattern Recognition (CVPR), 2013

IEEE Conference on. 2013.

8. Chandan, B., et al. Novel approach to lane and path detection in unmanned

ground vehicles. in Advances in Technology and Engineering (ICATE), 2013

International Conference on. 2013.

9. Hummel, S., et al., A comparison of accuracy and cost of LiDAR versus

stand exam data for landscape management on the Malheur National Forest.

Journal of forestry, 2011. 109(5): p. 267-273.

10. Bikman, J.D., T.W. Meiswinkel, and J.M. Conrad. A vehicle implementation

of a color following system using the CMUcam3. in Southeastcon, 2009.

SOUTHEASTCON '09. IEEE. 2009.

11. Wan, E.A. and R. Van Der Merwe. The unscented Kalman filter for

nonlinear estimation. in Adaptive Systems for Signal Processing,

Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000.

2000. IEEE.

12. Jain, R., R. Kasturi, and B.G. Schunck, Machine vision. Vol. 5. 1995:

McGraw-Hill New York.

http://en.wikipedia.org/wiki/Computer

29

APPENDICES

APPENDIX I: Python Programming

tunedpytest.py

import threading
import serial
import time
import RPi.GPIO as GPIO
import re

cam = serial.Serial("/dev/ttyUSB0", baudrate=19200, timeout=0)
cam.bytesize = serial.EIGHTBITS
cam.parity = serial.PARITY_NONE
cam.stopbits = serial.STOPBITS_ONE
cam.xonxoff = False
cam.rtscts = False
cam.dsrdtr = False
cam.writeTimeout = 2

cam.write("GV"+chr(13))
ACK1 = cam.read(18)
print repr(ACK1)
time.sleep(3)

print "Testing LED for successful communication"
time.sleep(2)
print "now LED blinking at 10Hz"
cam.write("L1 10"+chr(13))
time.sleep(2)
print "Setting back LED to 0Hz"
cam.write("L1 0"+chr(13))
time.sleep(2)
print "Turn Automatic Gain and Auto White Balance off"
cam.write("AG 0"+chr(13))
cam.write("AW 0"+chr(13))
time.sleep(1)
print "Tracking color mode is set to YUV"
cam.write("CT 1"+chr(13))
time.sleep(1)
print "Resetting tracking parameter for tracking a red keychain"
cam.write("ST 186 253 0 90 66 121"+chr(13))
time.sleep(1)
ACK = cam.read(60)
print repr(ACK)
time.sleep(1)
print "Tracking a red keychain"
cam.write("TC"+chr(13))
time.sleep(0.3)

30

while True:
response = cam.read(60)
if response.startswith('T'):
 print response
 val = response.split()
 print val[1] #mx value
 print val[2] #my value

APPENDIX II: CMUcam4 Command List (cmucam.org)

31

