Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Surface Acoustic Wave (Saw) Delay Lines & Rfid on Silicon/ Aluminium Nitride

Mohamed Ibrahim Elbadwy, Mohamed Fawzy (2014) Surface Acoustic Wave (Saw) Delay Lines & Rfid on Silicon/ Aluminium Nitride. Universiti Teknologi PETRONAS. (Unpublished)

Download (3003Kb) | Preview


Surface Acoustic Wave (SAW) devices exploit the principle of transducing radio frequency waves into mechanical sound waves propagating across surface of piezoelectric material. These mechanical waves are generated, detected, or reflected by set of metal electrodes. Physical phenomena or unique identification code information can be extracted from the measured /reflected waves based on its different properties such as time delay, phase change or frequency change. Radio identification code implementation methods as well as simulation of SAW device are reviewed in this report. Time pulse position coding is chosen because it provides less sensitivity to variations in temperature and SAW wave velocity. In addition, it is straightforward to implement and simplifies the reader design. To successfully implement the device, proper modeling and simulation is carried out to extract device physical and response parameters such as centre frequency, finger pairs’ number, spacing, scattering parameters and frequency response of the system. The equivalent circuit model is used in this study due to faster simulation speed and efficiency. Aluminum nitride (AlN) is chosen as piezoelectric material due to its high SAW velocity speed, higher coupling factor, cheaper fabrication cost and its chemical characteristics close to that of Silicon Non-reactive with normal semiconductor process chemicals and gases. Data processing and analysis is performed on SAW delay lines implemented on Aluminum nitride to extract device characteristics such as surface acoustic wave velocity, coupling coefficient and center resonance frequency.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 10 Oct 2014 11:06
Last Modified: 25 Jan 2017 09:37
URI: http://utpedia.utp.edu.my/id/eprint/14243

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...