
i

EMBEDDED HTTP WEB SERVER USING FREESCALE FREEDOM PLATFORM

By

TUN AMSYAR HAZIQ BIN MOHAMAD SUBHI

13869

Dissertation Submitted in Partial Fulfilment of

The Requirements for the

Degree Bachelor of Engineering (Hons)

(Electrical and Electronics)

MAY 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

EMBEDDED HTTP WEB SERVER USING FREESCALE FREEDOM PLATFORM

By

TUN AMSYAR HAZIQ BIN MOHAMAD SUBHI

13869

A project dissertation submitted to the

Electrical and Electronics Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONICS)

Approved by,

(Dr. Mohd Zuki Bin Yusoff)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

MAY 2014

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my

own except as specified in the references and acknowledgements, and that the original work contained

herein have not been undertaken or done by unspecified sources or persons.

(TUN AMSYAR HAZIQ BIN MOHAMAD SUBHI)

iv

ABSTRACT

Through the advancement of microprocessors, embedded web servers are applicable to assist humans in

increasing productivity in terms of remote access and control. An embedded web server is the operation of a

single chip to communicate with users via Ethernet or wireless connection to the internet without a PC as the

medium. The Freescale Freedom Platform employs an ARM Cortex M0+ that has potential in embedded

systems. This project serves an investigation on the Freedom Platform utilizing an ARM microprocessor as

an embedded web server that functions as a remote data monitoring peripheral by means of a web browser

as the human machine interface. A simple HTTP web page was created using HTML as the user interface to

display the data.

v

ACKNOWLEDGEMENTS

I would like to dedicate this page to acknowledge the persons involved,

whether directly or indirectly, for the assistance, guidance and support from project

supervisor, lecturers, family and fellow colleagues throughout the process of my

dissertation.

I would like to express my deepest gratitude to my project supervisor, Dr.

Mohd Zuki bin Yusoff for giving me the opportunity to undergo this project under

his supervision as well as providing the guidelines throughout the duration of the

project. I would also like to thank Dr Likun Xia and Dr Ho Tatt Wei for their

participation in providing feedback and motivation to further progress in my project.

With this opportunity, I would like to thank my family for their encouraging

support for me to push forward and to try as hard as I can to complete my project.

Not to forget thanks to my colleagues for their contribution to the progression of the

project.

vi

CERTIFICATION... ii

ABSTRACT……………………………………...................................………………………………………………..iv

ACKNOWLEDGEMENTS.. v

LIST OF FIGURES………………………………………………………………………………..................................vii

LIST OF TABLES ……………………………………………………………....…………...................................….ix

LIST OF ABBREVIATIONS...x

CHAPTER 1: INTRODUCTION

 1.1 Background ...1

 1.2 Problem Statement ...2

 1.3 Objectives..3

 1.4 Scope of Study ..3

 1.5 Relevancy of the Project..4

 1.6 Feasibility of the Project..4

CHAPTER 2: LITERATURE REVIEW AND THEORY

 2.1 Embedded Web Server..6

 2.2 Freescale Freedom Platform..8

 2.3 ARM Processor..10

CHAPTER 3: METHODOLOGY

 3.1 Research Methodology...11

 3.2 Prototype Designing..12

 3.2.1 Hardware ...12

 3.2.2 Hardware Interfacing...14

3.2.3 Firmware Designing..15

 3.3 Project Work...16

 3.3.1 Project Design...16

 3.3.2 Integrated Development Environment (IDE)18

 3.3.3 Processor Expert CodeWarior...19

 3.3.4 Wi-Fi Shield...21

 3.3.5 KL26Z Programming..22

 3.3.6 KL26Z Debugging..23

 3.3.7 Serial Peripheral Interface (SPI) ...24

vii

 3.3.8 Code Synthesis...26

 3.3.9 Web Server Page Design..30

 3.4 Key Milestones..32

 3.4.1 Background Study..32

 3.4.2 Project Design..32

 3.4.3 Project Implementation...33

 3.4.4 Documentation and Report...33

3.4 Gantt Chart...34

3.5 Hardware and Tools……..35

CHAPTER 4: RESULTS AND DISCUSSION

 4.1 Wi-Fi Shield Library ..36

 4.2 CooCox Peripheral Library...37

 4.3 Temperature Sensor Module………………………………………………………………….37

 4.4 Results …………………………………………………………………………………………………..38

 4.4 Constraints and Problems Encountered...40

CHAPTER 5: CONCLUSION AND RECOMMENDATION

 5.1 Recommendation... 42

 5.2 Conclusion...43

REFERENCES..44

APPENDICES..45

viii

LIST OF FIGURES

1. FIGURE 2.1: Embedded Web Server System Architecture..........................7

2. FIGURE 2.2: FRDM-KL26Z Block Diagram...8

3. FIGURE 2.3: 64 PINS OF THE FRDM KL-26Z..9

4. FIGURE 2.4: ARM CORTEX M0+ Block Diagram...................................10

5. FIGURE 3.1: METHODOLOGY FLOW CHART......................................11

6. FIGURE 3.2: FRDM-KL26Z...12

7. FIGURE 3.3: Temperature Sensor Module..13

8. FIGURE 3.4: Temperature Sensor Module Diagram...................................13

9. FIGURE 3.5: Freedom Board I/O with Arduino Pin out Reference.............14

10. FIGURE 3.6: Block Diagram of Embedded Web Server………………….15

11. FIGURE 3.7: Hardware Connections...16

12. FIGURE 3.8: Embedded Web Server Process Structure..............................17

13. FIGURE 3.9: Setting Up a New Project...18

14. FIGURE 3.10: Selecting KL26Z From Menu Selection..............................19

15. FIGURE 3.11: Header Files and Start-up Codes Generated by Processor

Expert..20

16. FIGURE 3.12: Components Library of Processor Expert............................20

17. FIGURE 3.13: Diagram of WizFi Shield...21

18. FIGURE 3.14: Block Diagram of OpenSDA...23

19. FIGURE 3.15: Selecting OpenSDA Connection...23

20. FIGURE 3.16: SPI Mode 0 Timing Diagram..25

21. FIGURE 3.17: Simple Web Server Page...31

22. FIGURE 4.1: Output Values from Temperature Sensor…………………..37

23. FIGURE 4.2: KL26Z with Temperature Sensor…………………………..38

24. FIGURE 4.3: Systems Initialization Message...39

25. FIGURE 4.4: Default Interrupt Handler…………………………………..41

ix

LIST OF TABLES

1. TABLE 3.1: Temperature Sensor Module..13

2. TABLE 3.2: WizFi Shield Technical Specifications..............................14

3. TABLE 3.3: Gantt Chart...34

4. TABLE 3.4: Hardware Description..35

5. TABLE 3.5: Software Description...35

x

LIST OF ABBREVIATIONS

ADC Analogue-Digital Converter

 ARM Advanced RISC Machines

CMSIS Cortex Microcontroller Software Interface Standard

 CPU Central Processing Unit

 FSM Finite State Machine

FYP Final Year Project

 GUI Graphical User Interface

HMI Human-Machine Interface

 HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

 ICMP Internet Control Message Protocol

 IDE Integrated Development Environment

 IP Internet Protocol

kB Kilobyte

PC Personal Computer

RISC Reduced Instruction Set Computer

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TCP Transmission Control Protocol

USB Universal Serial Bus

1

CHAPTER 1

 INTRODUCTION

1.1 Background

Embedded web server or HTTP Server is a web server that is embedded on to

an embedded system that has limited computing capabilities but is efficient enough to

carry out a specific function especially in terms of remote processing or data

management. In recent years, the development of Advance RISC Machine (ARM)

chipsets have been the preferred microprocessors for embedded server

implementations. The implementation of embedded web servers provides advantages

in terms of cost due to its requirements which is less than the standard PC server in

both hardware and software wise[1].

The Freescale Freedom Platform utilizes a 32-bit ARM Cortex-M0 with 48

MHz operation. The Freedom Platform is designed to operate at low power and has

multiple on board peripherals such as GPIO, UART, I2C and SPI. It is also sold to the

market at a relatively low price making it affordable for developers. The high end

design of the Freedom Platform makes it suitable to operate a web server along with

its compatibility of external peripherals such as LCD, Ethernet and Wi-Fi. This feature

further enhances the capability of the web server to be controlled remotely in data

gathering or process control.

The ARM Cortex M microprocessor group was introduced in the year 2004

and since then has developed variants of the Cortex M specifically for embedded

microcontrollers. Particularly, the ARM Cortex-M0 processor was designed to cater

mostly for embedded systems to operate with real-time I/O hardware[2]. This project

aims to utilize and explore the potential of ARM based microcontrollers, specifically

the Freedom Platform, in remote access and data monitoring that can be applied in the

industrial and commercial sector.

2

1.2 Problem Statement

Data acquirement is essential for certain industrial processes. Measured data

such as temperature and pressure reading can be quite tedious and counterproductive

when collecting manually. For example, in certain industries it is required for the

company to send their employees to sites or stations to collect the measured data. Some

of which are located far away. This would cost travel expenditures as well as precious

time. Eventually it would result in decrease of productivity.

It is known fact that some industrial companies still use conventional

equipment in data measurement such as a mercury thermometer rather than a state of

the art equipment to save the company some money. However, such conventional ways

of measuring data are susceptible to contamination of human error. With inaccurate

data, it would eventually effect the company’s business.

Through today’s advancement in wireless technology as well as embedded

systems, an operator would be able to acquire data by means of an embedded web

server via a web browser as the human-machine interface. By means of the embedded

web server, data is able to be obtained through the internet from a remote location.

Automated data collection is also possible through the programmed ARM

microcontroller unit along with the required peripherals to establish internet

connectivity.

3

1.3 Objectives

The objective of this project is to design and implement a web server using the

ARM based Freedom Platform board in data collection. The particular model that shall

be used in this project is the FRDM-KL26Z which is an ARM M0+ Cortex Core. The

connectivity of choice for remote access is by means of Wireless Local Area Network

(WLAN). This means the board would be using an external Wi-Fi peripheral to enable

internet connectivity. This project also serves as exploration in prototyping with the

Freescale Freedom Platform. To study and explore the potential of the Freedom

Platform in pervasive systems. The Freedom Platform is relatively new and is

becoming a learning platform for universities abroad studying embedded systems.

The concept of data procurement via embedded web server can be implemented

in many real world scenarios. For example, the embedded web server can be attached

to the blood pressure equipment to transmit the patients’ blood pressure readings at the

time to the nurse’s station. The data collected would be up to date and increases the

efficiency in data collecting. The overall objectives are:

 To remotely acquire measured data from peripherals used by the

Freedom Platform

 To implement an embedded web server using the ARM based

Freescale Freedom Platform particularly FRDM-KL26Z

 To introduce a potential data procurement concept that can be applied

in real world applications

1.4 Scope of Study

In this project, the study of the implementation and design of ARM based

embedded web servers through website and journals as the fundamentals of building

the idea for the prototype. To study other works in order to create an improvement of

the previous study had done.

Based on ideas and suggestions, the hardware and software procurement such

as Wi-Fi Shield, USB cables and software compiler. After acquiring the necessary

equipment, the prototype is designed and built according the proposed plan.

4

Once the prototype has been built, testing and debugging is to be done in order for

the prototype to meet the minimum requirements. In the end, the prototype should be

able:

 Display data from input to the web site or Human Machine Interface

 To be controlled from remote access

 Automatically collect data periodically

 Data collected from the sensors

1.5 Relevancy of the Project

Recent technology these days focuses more on multitasking and the ability of

accomplishing work at just the end of your fingertips. These are necessary in order to

accommodate the ever face-paced working environment and further increase

efficiency. By means of remote controlled and monitoring peripherals, one would be

able to achieve a higher efficiency at multitask and work done. Along with today’s

wireless connectivity, this project would introduce a data monitoring concept by

means a simple human-machine interface where data can be collecting remotely

without having to travel to on-site location.

1.6 Feasibility of the Project

In today’s industrial sector, data gathering is still done manually, means

operators would have to travel to site location and gather the required readings of

meters or any measured parameters. Despite today’s technological advancement in

pervasive systems as well as wireless technology.

This project serves to prove the capabilities of embedded systems has to offer

in the industry sector especially in remote data gathering. By means of an embedded

web server that enables remote connection with a peripheral to collect data through a

simple web browser as the primary human-machine interface.

Today’s ARM processors have evolved in such a way that it has been used in

today’s smartphones and tablets. The ARM processor was chosen as the base of the

project for its relatively low cost price without compromising its quality and ability

in multitasking processes.

5

Through the embedded web server and a wireless network, an operator would

be able to collect measured data parameters from anywhere with just a ping of an

address. This would increase in efficiency of the operator for they would be able to

do more tasks at any given time.

6

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Embedded Web Server

Web servers are systems that host websites and provides particular services to

any requesting clients[3]. Through the modern technologies of microcontrollers,

web servers are able to be implemented to these chipsets making it easier for

process controlling and data wrangling via internet access. Constructing an

embedded web server based on HTTP terminal, HTML pages can be embed into

the server. Therefore, the terminal is able to send HTML pages to any browser to

enable server to browser access anytime and anywhere[4]. Just like any typical

web server, the embedded web server is capable of accepting and analyse requested

by the clients and responds accordingly with results back to the client as

requested[5].This shows the embedded web server is capable of providing a two-

way communication between client and server. Graphic User Interface (GUI) is

provided by the web browsers for a myriad browser server functions and is the

default interface for many application [6]. An embedded web server is superior

than the typical PC-server in terms of the low power consumption, low cost, high

performance and flexible portability[7]. An embedded web server device can be

implemented in our homes, businesses and even our body that can be accessed

through wired or wireless connection by the user at any given time or place [8].

By default, HTTP is actually based on a simple client and server concept. The

client and server are connected through a default TCP (Transmission Control

Protocol) port 80. When the client requests, the IP address of the server, the server

will respond by transmitting the HTML (Hyper Text Mark-up Language)

documents to the client. TCP is suitable for data transfer due to its safeguard

communication between client and server. The embedded web server would obtain

the IP address from the connection established with the SSID Wi-Fi network. From

there, the client would use said IP address to access the embedded web server.

Alternatively, the IP address can be fixed permanently by creating a private

7

Dynamic Domain Name System (DNS) host for a domain specifically to cater the

security of the embedded web servers data and connectivity.

Client

Internet

Embedded Web

Server

Sensors

FIGURE 2.1: Embedded Web Server System Architecture

Client: The user accesses from the web browser

and enters the EWS’s IP address

Embedded Web Server: The device is connected to

the internet via SSID network

Sensors: Will detect stimuli and relays the data to the

embedded web server

Internet: The connection between the embedded web

server and the user.

8

2.2 Freescale Freedom Platform

The Freescale FRDM-KL26Z is an ultra-low-cost development platform built

on ARM Cortex M0+ processor that features 128 kB flash memory and expansion

board options which are compatible with a wide range of Freescale products and third-

party development software and hardware. It also features low-power operated form

factor as well as built-in debug interface for flash programming and run control.

FIGURE 2.2: FRDM-KL26Z Block Diagram

The FRDM KL26Z has a built in OpenSDA which is an open standard serial

and debug adapter that bridges the target embedded processor and USB host. The

OpenSDA features as a Mass Storage Device which provides the pathway of flash

programming and run-control debug interfaces rendered quick and easy.

The openness of the Freedom board enables the board to utilize third-party

hardware and software. The 64 I/O pins of the Freedom board is compatible with the

peripherals from Arduino shields such as Wi-Fi shield, LCD Shield and Ethernet

shield. This enables for board and shield stacking with ease. The Freedom board shall

be programmed using the integrated development environment provided by Freescale

which is called CodeWarrior. The software has all the necessary libraries and

components for developing the source codes for the Freedom board. Together with

CodeWarrior, Freescale’s Processor Expert Software serves as a plug-in to generate

9

FIGURE 2.3: 64 PINS OF THE FRDM-KL26Z

the codes written and stores libraries of the embedded components for the Freedom

Board.

10

2.3 ARM Processor

The FRDM-KL26Z utilizes the 32-bit ARM Cortex M0+ which is the most

energy efficient ARM processor. Built from the ARM Cortex M0 processor, it reduces

the energy consumption but increased in performance. It features the Thumb

Instruction Set which provides excellent code-density for minimal system memory size

and cost. It provides high level of performance and a wide conde-density range of

embedded applications. The ARM processor is what enables the input signals to be

received and remotely control the device from a distance[9]. The ARM processor is

the right choice due to its low cost and high powered which makes it capable of upload

real time data and gives instructions to the sensors[10]. The ARM based embedded

web server is capable of automation and controlling via online access[11].

.

FIGURE 2.4: ARM CORTEX M0+ Block Diagram

11

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

This project is like any other software and hardware integrated project which

requires a specific approach in executing. For this project the Incremental and

prototyping approach is most likely be suitable in its development. This approach

emphasizes on step-by-step development by finishing one step before advancing to the

other until it reaches the final stages of prototyping.

Start

Research

Hardware

Procurement

Prototype Designing

(Software and

Hardware)

Test

Results

End

PASS

FAIL

FIGURE 3.1: METHODOLOGY FLOW CHART

12

3.2 Prototype Designing

3.2.1 Hardware

 After thorough research for the basic prototype design during research and

literary reviews, several selection of hardware was made that deemed appropriate for

the project. As previously stated, the microcontroller that will be used for this project

is the Freedom Board KL26Z as pictured below.

This board was chosen because of it sophisticated open-sourced design,

compatibility with other peripherals and the ARM processor to cater the instructions

and processes as an embedded web server. The schematics of the board are shown in

Appendix A. From the schematics of the board, the I/O ports of the board are

compatible with those of Arduino architecture and are able to interface with many

other third party modules.

 The following hardware is the temperature sensor module. The Temperature

Sensor Module SN-Temp-Mod is chosen because it utilizes Negative Temperature

Coefficient (NTC) thermistor to detect temperature changes of the environment. It

has two output, analogue and digital. NTC thermistor will change the effective

resistor when there is a temperature change. The temperature is detected by

measuring the voltage from a resistor network.

FIGURE 3.2: FRDM-KL26Z

13

Pins Notes

VCC 3.5V to 5V Operating Voltage

GND Ground of power and signal

DO Digital output

AO Analogue Output

The hardware to establish connection for the embedded web server is the Wi-

Fi shield. Particularly the WizFi210 which is a low power-consuming Wi-Fi Module

that can be set to Standby mode and be woken up when the shield needed to work.

Wi-Fi Chip WizFi210

Radio Protocol IEEE 802.11b/g/n Compatible

Supported Data Rates 11, 5.5, 2, 1 Mbps (IEEE 802.11b)

Modulation DSSS and CCK

RF Operation Frequency 2.4 - 2.497 GHz

Antenna Options Chip antenna and U.FL connector for external antenna

Networking Protocols UDP, TCP/IP (IPv4), DHCP, ARP, DNS,

HTTP/HTTPS Client and Server(*)

FIGURE 3.3: Temperature Sensor

Module

TABLE 3.1: Temperature Sensor Module

Pins

FIGURE 3.4: Temperature Sensor Module Diagram

14

Power Consumption Standby = 34.0 µA Receive = 125.0 mA Transmit =

135.0 mA

RF Output Power 8dBm ± 1dBm

Security Protocols WEP, WPA/WPA2–PSK, Enterprise, EAP-FAST,

EAP-TLS, EAP-TTLS, PEAP

I/O Interface UART, SPI(*), I2C(*), WAKE, ALARM, GPIOs

System Working Voltage 3.3V

3.2.2 Hardware Interfacing

 During this part of the project, the author relied on the schematics of the

hardware in order to understand the I/O ports goes to which ports. Given the nature of

the Freedom Board that is compatible with the Arduino architecture, the I/O port

interface proves to be quite easy in the following figure. The Freedom platform utilizes

Serial Port Interface (SPI) peripheral in order to communicate with the Wi-Fi Shield.

For the temperature sensor, the Analogue Digital Converter (ADC) peripheral of the

Freedom Platform is used.

TABLE 3.2: WizFi Shield Technical Specifications

FIGURE 3.5: Freedom Board I/O with Arduino Pinout Reference

15

Figure 3.6 illustrates the connections that are involved in the embedded web

server. The Freedom platform is the centre of it all. The temperature sensor is

interfaced through the ADC peripheral. From the values obtained, the KL26Z will

relay the data to the Wi-Fi shield connected via SPI peripheral. The Wi-Fi shield

establishes connection to the internet and displays the obtained data through the User

Interface via web browser. Every data value obtained has to pass through the KL26Z

before it is transmitted to the user via Wi-Fi shield and the internet.

3.2.3 Firmware Designing

 Designing the firmware for the project is as not easy as the hardware assembly.

Various sources had to be referred to in order to construct the program’s coding.

Understanding how the coding works as well as working out the bugs that have

occurred during compiling the program. Some parts of the code are acquired through

examples found on the internet and had to be modified in order to fit with the

programming and hardware. Refer to Appendix D and E for the codes acquired from

Arduino library and the modified codes respectively. Both codes function the same

way but for different hardware. Appendix D works for Arduino WiFi Shield whereas

Appendix E works for WizFi Shield. The author would have to use both codes in order

to assimilate with the Freedom Board.

Wi-Fi SHIELD

SPI I/O

KL26Z MCU

ARM CORTEX M0+

ADC

I/O

TEMPERATURE

SENSOR

INTERNET

STIMULI

FIGURE 3.6: Block Diagram of Embedded Web Server

16

3.3 Project Work

During the course of the project, the author had thoroughly researched the internet

regarding the creation of embedded web servers and the Freedom platform. Despite

using the FRDM-KL26Z, resources that were found were mostly regarding an earlier

model of the Freedom platform, the FRDM-KL25Z. However, both Freedom

platforms are quite similar and the author had used said resources as reference

nonetheless.

3.3.1 Project Design

The user would connect to the WLAN and enter the IP address of the embedded

web server via the web browser. The web browser then would display the user interface

(web page) served by the embedded web server. From the figure below, the user would

not necessarily be connected from only a computer. A web browser from a smartphone

or tablet would also be able to access the embedded web server.

 Generally, an embedded web server is a finite state machine that administers

HTML requests in a step by step sequence [12]. Below is the embedded web server

process structure. It is from this process structure, the author would be able to write

the codes enabling the functionality of the embedded web server.

FIGURE 3.7: Hardware Connections

17

Initial State

Listen to Connection

Parse Header Request,IP

Address request

Direct to HTML

file

Create Response

Send HTML Page

Wait for new

request

Close Connection

Error Message

FIGURE 3.8: Embedded Web Server Process Structure

18

3.3.2 Integrated Development Environment (IDE)

For the development of the project, the author used CodeWarrior

Development Studio version 10.5. This particular IDE was chosen due to its

cohesiveness with the Freedom Board. It has the required specification to cater the

Freedom Board architecture application development. To create a new project, go to

File > New> Bareboard Project and it will pop out a window.

After which the author has to select the target processor in which case is the

Kinetis Microcontroller Unit, MKL26Z128. If the wrong processor is chosen the IDE

will prepare the wrong board and components. The IDE will also load the wrong

source files and header files incompatible with the board.

In addition to CodeWarrior, the author also used Arduino IDE 1.5 to refer

Arduino source codes in reference to the KL26Z programming. The author used the

source codes to understand how Arduino based web servers’ work and to apply the

information gained in the programming for the KL26Z. Since both Arduino and

Freedom platforms use C language, there would not be any problem translating the

FIGURE 3.9: Setting Up a New Project

19

languages. The problem was to understand and implement the communication

between the microcontrollers and the peripherals.

3.3.3 Processor Expert CodeWarrior

The Processor Expert (PEx) is a plug-in for CodeWarrior designed for rapid

application development of embedded applications. The PEx plug-in generates the

codes from the embedded components while the CodeWarrior IDE manages the

project files, compilation and debug processes. The PEx has internal definition of the

microcontroller along with all of the integrated peripherals making it much easier to

understand and writing the program for the project.

 The PEx works with user choosing the desired peripheral from the list of

components provided along with the required settings of the peripheral. After which,

the PEx would automatically generate the initialization codes for the peripheral.

From there, the user is able utilize the peripheral codes for its desired function.

FIGURE 3.10: Selecting KL26Z from Menu Selection

20

FIGURE 3.11: Header Files and Start-up Codes Generated by Processor

Expert

FIGURE 3.12: Components Library of Processor

Expert

21

3.3.4 Wi-Fi Shield

This particular shield utilizes WIZnet’s Wi-Fi module, WizFi210 for the

implementation of wireless communication in Arduino development environments.

Note that even the shield is built for Arduino environments, the Freedom Board is

made compatible with Arduino peripherals. Therefore, there should not be any

compatibility issues between the peripheral and the Freedom Board. Although, there

are certain library files for the Wi-Fi shield had to be searched on the internet in

order to program the Wi-Fi shield. Some files had to be taken from the Arduino IDE.

FIGURE 3.13: Diagram of WizFi

Shield

22

3.3.5 KL26Z Programming

For the programming of the KL26Z, the author had used C programming language

for this project. There are two ways of programming the KL26Z. One is utilizing the

Processor Expert that would generate codes for the on board pins of the KL26Z

board according to the desired pin peripheral. The other is manually coding the pins

in accordance to the desired pin peripheral. The author had used both in order to

learn and to generate the program codes for the project.

There are several important initialization and declaration that are included in the

program:

 MKL26Z4.h – KL26Z Peripheral Memory Map Implementation Header File

 __arm_start.c – Entry point for ARM programs Source File

 __arm_end.c – Interface for board-level termination Source File

 kinetis_sysinit.c – Default initialization routines for Kinetis ARM systems

Source File

 kinetis_sysinit.h – Default initialization routines for Kinetis ARM systems

Header File

 main.c – Main project program

 makefile – Compile project

Before setting the peripherals of the KL26Z, the system clock has to be

initialized. For this project, the author decided to use the maximum frequency clock

speed which is 48MHz. The KL26Z uses clock gating for each peripheral. Therefore

for each peripheral used, the PORT has to be gated on in order to use. This will be

further discussed below on SPI initialization.

For the Wi-Fi shield peripheral, the author had to use Wi-Fi libraries from

Arduino IDE as reference in order to generate the codes and functions for wireless

connection. All the necessary header files would be included in main program. The

functions used are already included in the Wi-Fi libraries. So in the main program the

author only had to call said functions and modify the required parameters for the

function. Changes to the functions used were to be done in the Wi-Fi libraries’

source files. The most heavily changed codes were regarding the interface between

the Wi-Fi shield and the Freedom board.

23

3.3.6 KL26Z Debugging

The Freedom Board KL26Z has a built-in OpenSDA. OpenSDA is an open-

standard serial and debug adapter that acts as a bridge for serial and debug

communications between a USB host and an embedded target processor as shown in

Figure. The author used the P&E Debug Application as the OpenSDA Application

that provides debugging and a virtual serial port in one application. The P&E Debug

Application is designed to debug the resident target processor in the OpenSDA system

with limited support for off-board devices within the same processor family as the

resident target processor.

FIGURE 3.14: Block Diagram of OpenSDA

FIGURE 3.15: Selecting OpenSDA Connection

24

 During the debugging and compiling process, several errors had occurred that

rendered compiling the program unsuccessful. Most common error that occurred was

no definition of the used function. This is a result of the function was not properly

linked in the header files. At the same time of errors, there were also warnings that

appear mostly related to redefinition of variables that were already declared in the

header files. Despite the program has warning flags, the programs was still able to be

compiled and execute.

3.3.7 Serial Peripheral Interface (SPI)

 Each I/O pins of the KL26Z have alternative modes that are to be set by the

developer depending on its usages. Refer to APPENDIX E for pin out modes. For this

project, SPI is the method of interfacing of the KL26Z with the Wi-Fi Shield. Most

Arduino shields utilize SPI protocol in communication with microcontrollers. Arduino

IDE supplies the user with SPI.h for initializing I/O pins of the Arduino boards.

However, it is the opposite for the Freedom Boards.

 The KL26Z board has to be manually initialized by the user according to the

pins with SPI capabilities. A total of four pins had to be used of the KL26Z to initiate

SPI. One pin for Master Output Slave Input (MOSI), one pin for Master Input Slave

Output (MISO), one pin for Slave Select or Chip Select (SS) and one pin for Serial

Clock (SCK). Per the norm, the microcontroller device (KL26Z) is usually set as the

Master and the secondary device (Wi-Fi Shield) as the Slave.

 Utilizing the Wi-Fi Shield, an additional General Purpose I/O (GPIO) is needed

to indicate the Wi-Fi Shield is awake and is sending data to the Master device. The

Wi-Fi Shield also requires the SPI to run only at Motorola mode which means Clock

Polarity (CPOL) = 0 and Clock Phase (CPHA) = 0. This mode allows data to be

captured on the falling edge of the clock and propagates the data during the rising edge

of the clock.

25

FIGURE 3.16: SPI Mode 0 Timing Diagram

26

3.3.8 Code Synthesis

Peripheral Initialization

This is to illustrate how to initialize a peripheral of the Freedom Platform. In this

case is the SPI peripherals. As previously stated, the SPI of the KL26Z has to be

manually initiated by the developer in order the pins to act accordingly. The

following are the steps to initialize the SPI pins:

1. Enable the clock to the ports involved

a. The SPI pins are located in PORT D and therefore the clock is to be

enable to the entire PORT D.

b. The SPI clock must also be enabled

c. The clock is controlled by the System Clock Gating Registers of the

KL26Z.

d. There are specific bits on the registers must be enabled (Logic 1) that

controls specific ports. For example, PORT D is located at System

Clock Gating Register 5(SIM_SCGC5) bit number 12. By default,

the bit is set to 0 and therefore must be enabled to 1 in order to enable

clock at PORT D only. SIM_SCGC5 only caters for PORT pins.

e. Clock for the SPI is also controlled by the System Clock Gating

Register. But it is on System Clock Gating Register 4(SIM_SCGC4)

bit 23 and must also be enabled to 1. SIM_SCGC4 only caters for

interfacing modes.

f. The specified bits in the registers must be the only bit to be enabled

using the specific register mask e.g.: SIM_SCGC5_PORTD_MASK

provided by the KL26Z header file, MKL26Z4.h.

Code:

SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK; //Enable Clock on

PORTD

SIM_SCGC4 |= SIM_SCGC4_SPI0_MASK; //Enable Clock on SPI0

27

2. Enable the pins to be in the SPI mode

a. The mode of the pins are controlled by the PORT Control Registers

(PORTx_PCRn)

b. In this case, the pins used are in PORT D, PORT Control Registers

0,1,2 and 3 e.g.: PORTD_PCR0.

c. To configure the pins, the Pin Mux Control must be set according to

the specific pin’s available options.

d. In this case for example, to activate SPI mode in PORT D Pin 0, the

Pin Mux Control must be set to 2 e.g.: PORT_PCR_MUX(2). For

PORT D Pin 0, it is specified as the SPI0 Chip Select pin.

Code:

PORTD_PCR0 = PORT_PCR_MUX(2); //PTD0 TO MUX 2

[SPI0_PCS0]

PORTD_PCR1 = PORT_PCR_MUX(2); //PTD1 TO MUX 2

[SPI0_SCK]

PORTD_PCR2 = PORT_PCR_MUX(2); //PTD2 TO MUX 2

[SPI0_MOSI]

PORTD_PCR3 = PORT_PCR_MUX(2); //PTD3 TO MUX 2

[SPI0_MISO]

3. Setting KL26Z as the SPI Master and other options of SPI

a. SPI mode is controlled by SPI Control Register 1 (SPIx_C1)

b. To configure as SPI Master, the SPIx_C1 bit 4 has to be set as 1.

c. To set the Clock Polarity and Clock Phase to 0 for Motorola mode 0

respectively, the bit 3 has to be 0 and bit 2 as 1 respectively in

SPIx_C1.

d. However, by default the logic bit setting of the bits 3 and 2 equals to 0

and 1 respectively. Therefore, no need to configure the register.

e. To configure SPIx_C1 to master we must use the Master

Mask(SPI_C1_MSTR_MASK)

28

f. SPI Control Register 2 (SPIx_C2) controls the optional functions of

the SPI

g. Configuring SPI Master mode-fault function enable is to enable the

master SS pin as the slave select output.

h. The Master mode-fault function is located in SPI Control Register 2

(SPIx_C2) bit 4 and must be set to logic 1.

i. To configure SPIx_C2 to mode-fault function, the MODFEN

MASK IS USED (SPI_C2_MODFEN_MASK)

j. The Baud rate is configured in the SPI Baud Rate Register

(SPIx_BR)

k. The SPI Baud rate prescale divisor (SPPR) is set to 3

(SPI_BR_SPPR(0x02)) and SPI baud rate divisor (SPR) is set to

256 (SPI_BR_SPR(0x08)).

Code:

SPI0_C1 = SPI_C1_MSTR_MASK ; //SET SPIO TO

MASTER & SS PIN TO AUTO SS

SPI0_C2 = SPI_C2_MODFEN_MASK; //MASTER SS PIN

ACTS AS SLAVE SELECT OUTPUT

SPI0_BR = (SPI_BR_SPPR(0x02) | SPI_BR_SPR(0x08)); // SET

BAUD RATE

SPI0_C1 |= SPI_C1_SPE_MASK; // ENABLE SPI0

4. SPI Initializing function

Code:

void spi_init(void)

{

 SIM_SCGC4 |= SIM_SCGC4_SPI0_MASK; //ENABLE SPIO

CLOCK

 SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK; //ENABLE CLOCK

ON PORTD

 PORTD_PCR0 = PORT_PCR_MUX(2); //PTD0 TO MUX 2

[SPI0_PCS0]

29

 PORTD_PCR1 = PORT_PCR_MUX(2); //PTD1 TO MUX 2

[SPI0_SCK]

 PORTD_PCR2 = PORT_PCR_MUX(2); //PTD2 TO MUX 2 [SPI0_MOSI]

 PORTD_PCR3 = PORT_PCR_MUX(2); //PTD3 TO MUX 2 [SPI0_MISO]

 SPI0_C1 = SPI_C1_MSTR_MASK ; //SET SPIO TO MASTER & SS

PIN TO AUTO SS

 SPI0_C2 = SPI_C2_MODFEN_MASK; //MASTER SS PIN ACTS AS

SLAVE SELECT OUTPUT

 SPI0_BR = (SPI_BR_SPPR(0x02) | SPI_BR_SPR(0x08)); // SET BAUD

RATE

 SPI0_C1 |= SPI_C1_SPE_MASK; // ENABLE SPIO

}

int main(void)

{

 spi_init();

}

5. SPI Write and Read function

Code:

uint8_t SPI_status(void) {

 return SPI0_S;

}

// Write out all characters in supplied buffer to register at

address

void SPI_write(uint8_t* p, int size, uint8_t addr) {

 int i;

 for (i = 0; i < size; ++i) {

 // poll until empty

 while ((SPI_status() & 0x20) != 0x20);

 SPI0->D = p[i];

 }

}

// Read size number of characters into buffer p from register at

address

void SPI_read(uint8_t* p, int size, uint8_t addr) {

 int i;

 for (i = 0; i < size; ++i) {

 // poll until full

 SPI0->D = 0x00;

 while ((SPI_status() & 0x80) != 0x80);

 p[i] = SPI0->D;

 }

}

30

3.3.9 Web Server Page Design

The webpage was designed in the simplest way as possible. The webpage was

created using the HyperText Markup Language (HTML) and was done in text editor

Notepad.exe. The data is displayed in a tabular form to make it easier for viewing.

Prior to the project, the author has had experience with HTML by self-experimenting

with the language.

<!doctype html>

<html>

 <head><title> Freedom Embedded Web Server</title></head>

 <body>

 <div>

 <center><h1>Freedom Web Server</h1></center>

 <center>

<style>table,th,td

{

border: solid black;

}

 </style>

<table>

 <thead>

 <tr>

 <th>Parameter</th>

 <th>Status</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Temperature</td>

 <td>(sensor_reading)</td>

31

 </tr>

 <tr>

 <td>Connection</td>

 <td>(connection_status)</td>

 </tr>

 </tbody>

</table>

<center><a href="http://mcuoneclipse.com/2014/01/25/frdm-with-
arduino-ethernet-shield-r3-part-3-embedded-web-server/">Click Here
to Find Out How I Did It!</center>

<center><h6>Created by: Tun
Amsyar</h6></center>

</div>

</body>

</html>

The web server should serve a simple website like this:

The (sensor_reading) and (connection_status) is meant for the output from the

collected data to be displayed in the respective spaces. The webpage is to refresh

automatically to provide real time data display.

FIGURE 3.17: Simple Web Server Page

32

3.4 Key Milestones

To be able to achieve the project’s objectives, several key milestones had been

underlined in order to meet the desired requirements. Below are the key milestones

set:

3.4.1 Background Study

Using various sources such as online journals and articles to understand more

about the problem statements as well as design ideas to overcome said problem

statements. The concept of embedded web server is able to be fathomed through in-

depth study and analysis. The author had also spent time reviewing C and HTML

languages in order to create essential parts of the project. Some online references were

also used such as Freescale Community forum in order to understand more about the

Freedom platform.

3.4.2 Project Design

Throughout FYP 1, the author had outlined the necessary procedures,

hardware, software and tools required for designing the project. The author initially

experimented with the Freedom board in order to comprehend the usage of

CodeWarrior and the functionality of the Freedom board. From the basic ‘Hello

World’ program, to the complexity of interfacing with peripherals. The designing of

the prototype program was purely by trial and error. Of course some heavy

modifications of the original guidelines had to be done in order to fix several problems

that had occurred.

Due to time constraints, the project had to be amended to suit the given time.

Rather than being able to connect to the embedded web server from anywhere in the

world, the project’s programming had to be amended to be able to access the embedded

web server if the user was in the same wireless local area network. Initially the project

was to utilize a Dynamic Domain Name System (DDNS) service which would

ultimately provide security and enable connectivity with the user from anywhere in the

world.

33

3.4.3 Project Implementation

Freescale Codewarrior IDE would be used to create the codes and load the

program to the KL26Z. The loaded code would configure the KL26Z to be the

embedded web server. The connection of the KL26Z to the internet is manually

configured by the user. The user manually configures the IP address, Wi-Fi network

name and password of the embedded web server in the source code.

To confirm the connection of the embedded web server and the user, the IP

address of the embedded web server would be pinged by means of the command

prompt. Once the connection established and confirmed, the user would use the web

browser to enter the IP address and requests the server connection of the KL26Z.

Through the web browser, the user interface, in the form of HTTP page, would display

the data acquired by the sensors attached to the KL26Z.

3.4.4 Documentation and Report

Each progress of the project is documented. Every complications encountered

is recorded for future reference. Findings and development are discussed and analysed

thoroughly. Any lessons learned shall be recorded for future improvement. Relevant

sources such as website links, video tutorials and user manuals shall be included in a

CD-ROM for future references as well as the project work, source codes and header

files.

34

3.5 Gantt Chart

No Activities
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 Title Selection

2 Literary Research

3 Prototype Designing

4 Hardware Procurement

5 Prototype Building

6 Firmware Designing

7
Firmware Testing And

Troubleshooting

8
Prototype and Firmware

Completion

9 Report and Thesis

TABLE 3.3: Gantt Chart

FIGURE 8: Temperature Sensor Module Diagram

35

3.6 Hardware and Tools

HARDWARE DESCRIPTION

Laptop For every programming and compiling

purposes of the project

FRDM-KL26Z Board The platform for the embedded web

server

Mini USB Cable The wired link between the Freedom

Board and laptop

Temperature Sensor The sensor will be used to collect

temperature reading as the data

parameters

LED To indicate the sensor is running and

others

WiFi Shield The peripheral to enable internet

connectivity for the Freedom board

TABLE 3.4: Hardware Description

SOFTWARE DESCRIPTION

CodeWarrior Development Tools The Integrated Development

Environment for the Freedom

board.

 The debugging and coding of the

program is made using this

software by Freescale

 Compatible with the FRDM-

KL26Z

 Made free for evaluation by

Freescale

Processor Expert Software Provides the embedded

components library to

CodeWarrior

 External libraries may be

installed as well

 Generates the code for the

Freedom Board

TABLE 3.5: Software Description

36

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Wi-Fi Shield Library

The Wi-Fi shield relies heavily on the library files of the Arduino IDE. This meant

several modifications of the related Arduino header files had to be done to enable the

Wi-Fi shield to work with the KL26Z. Modifications were mostly done to the driver

source files of the Wi-Fi shield. The following are the source code files used by the

Wi-Fi shield that were modified:

• server_drv.cpp – Server Driver Source File

• server_drv.h – Server Driver Header File

• spi_drv.cpp - SPI Driver Source File

• spi_drv.h – SPI Driver Header File

• wifi_drv.cpp – Wi-Fi Driver Source File

• wifi_drv.h – Wi-Fi Driver Header File

• WiFi.cpp – Wi-Fi Functions Source File

• WiFi.h – Wi-Fi Functions Header File

• WiFiClient.cpp – Wi-Fi Client Functions Source File

• WiFiClient.h – Wi-Fi Client Functions Header File

• WiFiServer.cpp – Wi-Fi Server Functions Source File

• WiFiServer.h – Wi-Fi Server Functions Header File

The author had use references from the internet particularly microcontroller

development forums in order to apply the changes to the files. The aforementioned

Wi-Fi shield library contains the functions and declarations of variables for the Wi-Fi

shield to carry out the necessary steps for wireless network connectivity.

37

4.2 Coocox Peripheral Library

 The Coocox Peripheral Library or CoX is a group of interface function

definition. CoX defines the functional access functions of common MCU peripherals

such as UART, SPI and I2C. The author utilized the CoX library due to its

comprehensive functions that is compatible with most ARM chip processors

especially the Cortex M0. It also provides special APIs for specific MCUs’ features.

The CoX library officially caters for the KL25Z MCU. However, since the KL26Z is

very similar to the KL25Z, it is possible that the CoX library is compatible with the

KL26Z.

 The author had used the CoX library as a guideline to write the code for the

KL26Z and the Wi-Fi shield. The CoX also has several source codes function of the

Arduino Wi-Fi shield which was later used and referenced for interfacing between

the Wi-Fi shield and the Freedom platform. Using both CoX library and Arduino

IDE examples to create the codes for the embedded web server. The CoX would later

be included in the project documentations as references for future use.

4.3 Temperature Sensor Module

As previously stated, the temperature sensor used is a thermistor whereby the

resistivity changes with temperature and the voltage value is used to be converted

into temperature by means of a formula. The temperature sensor is interfaced with

the Freedom platform through the Analogue-Digital-Converter (ADC) peripheral.

The ADC functions to acquire the raw voltage value from the temperature sensor and

is converted through several equations in order to acquire the real voltage of the

temperature sensor detected.

 FIGURE 4.1: Output Values from Temperature Sensor

38

From the real voltage, it is able to be used in the equation to convert from

voltage to temperature (Celsius). The temperature measured has a 3% percentage of

error from the actual temperature.

𝑇𝑒𝑚𝑝 = 27 − ((𝑉 − 1.45) ÷ 0.0537)

The value 27 is the temperature when the voltage is at 1.45V. The value

0.0537 is the temperature sensor slope according to the temperature sensor’s

datasheet. Variable V is the converted voltage from the raw voltage acquired.

4.4 Results

 During the course of FYP I, the author had spent most of the time as possible

to understand the functionality of embedded web servers and learning about coding

the Freedom board. Throughout the course, the author was able to create the

necessary header files for the Freedom board with the help of CoX library of course.

The hardest during which was trying to accommodate the Arduino library with the

Freedom Board. Most time was spent to understand the interfacing algorithms

between the Wi-Fi Shield and Freedom Platform.

 Several attempts were made in testing the functionality the Wi-Fi shield and

the Freedom platform which had led to repeated errors. Such example of errors will

be discussed below in the following section.

FIGURE 4.2: KL26Z with Temperature Sensor

39

 The author had based the source codes of the project from various examples

found in Freescale Community Forums as well as MCU on Eclipse blog. Several

demonstration codes were also found and attempted to run on the KL26Z despite the

demonstration codes were meant for the KL25Z.

In the end, the source codes for the project was able to be generated and

compiled with success. The execution of the program however was unsatisfactory.

Supposedly, the KL26Z and Wi-Fi shield was instructed to initialize the system

before being connected to the wireless network. However, after said system

initialization, the program seems to have no further execution of the program. The

systems initialization is the initialization of the drivers for the SPI peripheral of the

KL26Z. Should system initialization was done, a message would appear in the

console as shown in Figure 4.1.

The author had spent most of the time during FYP II attempting to rectify the

problem by sieving through every line of code to find what had caused the program

not to function. The author had even modified pin connections of the board to ensure

the hardware connection was fine. However, it had proven to no avail whatsoever as

the time was not forgiving and still the quandary was not resolved. Therefore, the

author decided to make due of what has been achieved so far and use this project as a

baseline for future projects to come regarding the Freedom platform and embedded

web servers.

FIGURE 4.3: Systems Initialization Message

40

4.5 Constraints and Problems Encountered

During the beginning of the project, the author had difficulties of starting the

project in terms of the software and hardware. Despite having undergone Structured

Programming course previously, the author was not exposed to the microcontroller

programming environment thoroughly. To overcome these difficulties, the author had

to research on ARM based, C language programming and embedded web server from

scratch. The author had use various references to learn such as example projects,

related literature and online forums and tutorials.

Freescale Freedom boards are all open sourced to third-party applications for

its development. Therefore, there are many Integrated Development Environments

(IDEs) that are compatible with the Freedom Board. The author had difficulty of

choosing which IDE to use for this project. It was a choice between IAR Embedded

Workbench and CodeWarrior Development Studio. Both IDEs support the Freedom

Board and have the necessity library files needed for the project. However, the author

decided to use the CodeWarrior Development Studio due to its user friendly interface

and the software itself provides step-by-step tutorials on how use the development

studio.

Among other complications that aroused was the references about the Freedom

Board. Since the Freedom Board KL26Z is still new in its development, there are not

many tutorials and references regarding the board. However, there are a lot of

references regarding the KL25Z board. Both boards are similar and have the same

ARM architecture but different pin outs and certain on-board components. The author

had to refer to KL25Z examples and tutorials as the baseline of creating the codes for

the KL26Z. From the KL25Z examples, the author translated and modified certain

codes to match the suitability of the KL26Z especially regarding the pin outs. The

author used the schematics of the KL25Z and KL26Z to cross-reference the pin outs

of the boards. This causes the author to spend a lot of trial and error in order to get the

correct code.

 During the compiling and debugging process, the author encountered several

error messages that were unknown. To rectify these errors, the author referred to online

forums by Freescale Freedom Board developers to understand the solution to the

problem and to avoid them from reoccurring.

41

Several problems encountered also when utilizing the libraries regarding the

Wi-Fi Shield and Arduino IDE. The Wi-Fi Shield relies much of its functions and

header files on Official Arduino libraries. This made it difficult to use said header files

and libraries. Particularly the Arduino’s SPI.h, is heavily used in the Wi-Fi Shield’s

header files. More time is required to synthesize an alternative for the header file so

that would enable to interface the Wi-Fi Shield and KL26Z through SPI.

In addition to the header files of the Wi-Fi Shield, the header files also are

dependent on the Arduino Library avr/pgmspace.h which is Arduino board program

space utilities. Some modifications had to be done in order to suit compatibility for the

KL26Z. Since most Arduino shields are compatible with Freedom Boards,

modifications to libraries have to be made or synthesize alternatives to accommodate

functionality between the shield and the Freedom board.

One particular complication that had occurred was during the debugging

process, the program would stop half way. It was discovered from the disassembly of

the program, that the program had entered a Default Interrupt Handler which led to a

breakpoint (bkpt) instruction. This instruction causes the ARM to enter a HardFault.

The probable causes of this fault are enabling improper interrupt declaration and

mathematical error.

 This complication had cost the author a substantial amount of time. The

author had to go through every line of code used in the program in order find the root

cause of the problem. After thorough searching the codes and online forums, it was

found that the Freedom board was not able to execute printf without having to

initialize a low level Universal Asynchronous Receiver Transmitter (UART). The

low level UART is needed to display printf in a console.

FIGURE 4.4: Default Interrupt Handler

42

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Recommendation

 Given the lack of resources and examples for KL26Z, most of the steps taken

during the duration of the project are referred from projects and tutorials from the

internet regarding the KL25Z. Therefore the author would document the relevant

sources that might help for future projects regarding the Freescale Freedom Board

Kinetis series. The sources include sample projects, video tutorials and relevant data

sheets of the KL25Z and KL26Z.

It is also recommended to use an external real time clock with an independent

power source such as a coin battery in order to add a real time clock feature to the

embedded web server. If an on-board real time clock function is implemented, it would

only work until to the point where the board is disconnected from a power source.

When the board restarts the time is reset and the user would have to reset the clock

again which proves to be a tedious chore to do. The external real time clock serves to

solve this predicament.

As a suggestion for future projects regarding the Freedom Platform and

embedded web servers to create a project to use the embedded web server to remotely

control a servo along with other peripherals. This is to further explore the capabilities

of the Freedom platform in handling multiple peripherals in a single application. For

example, using the Freedom platform and servos to create a remote controlled robot

by means of an embedded web server and web browser as the user interface to control

the robot.

 For security and remote access purposes, it is recommended for the embedded

web server to use a Dynamic Domain Name System (DDNS) service as a replacement

for the user fixed IP address. By hosting a domain, the operator would be able to access

the web server without a having to be in the same wireless network. The operator

would only have to enter the host name to access the web server.

43

 The user interface can also be improved by using elements and coding styles

of Cascading Style Sheets (CSS) as well as JavaScript. This is to give the user interface

much more functionality and complexity. The aforementioned coding elements should

be supported by current generation of web browsers.

5.2 Conclusion

The project was not able to operate successfully and there are substantial room for

improvement. This paper serves as a reference point for future applications regarding

the Freedom platform. Despite the lack of experience in embedded systems, the author

had achieved an understanding regarding the technical aspects involved in creating an

embedded system such as an embedded web server. Although the objectives of the

project was not achieved, hopefully this paper would assist future students in

continuing this project.

44

REFERENCES

[1] F. Y. Limpraptono, H. Sudibyo, A. A. P. Ratna, and A. S. Arifin, "The design of
embedded web server for remote laboratories microcontroller system
experiment." pp. 1198-1202.

[2] K. Takaya, "Transputer-like multicore parallel processing on the array of ARM
Cortex-M0 microprocessors." pp. 1-4.

[3] M. Can Filibeli, O. Ozkasap, and M. Reha Civanlar, “Embedded web server-based
home appliance networks,” Journal of Network and Computer Applications, vol. 30,
no. 2, pp. 499-514, 2007.

[4] Y. Guangyou, L. Ming, and Z. Shuangqing, "Remote measuring and control terminal
based on linux platform and embedded web server." pp. 3-104-3-108.

[5] L. Yakun, and C. Xiaodong, "Design and implementation of embedded Web server
based on arm and Linux." pp. 316-319.

[6] F. Lidong, Z. Peiqiang, and D. Qian, "A lightweight embedded Web server for non-
PC device." pp. 4756-4758.

[7] M.-h. Wu, "Research for the Embedded WEB Server." pp. 776-779.
[8] K. Qinma, H. Hong, and W. Hongrun, "Study on Embedded Web Server and

Realization." pp. 675-678.
[9] M. Poongothai, "ARM Embedded Web Server Based on DAC System." pp. 1-5.
[10] L. Jian-feng, W. Chun-yi, and H. Jie, “A High Performance Data Storage Method for

Embedded Linux Real-time Database in Power Systems,” Energy Procedia, vol. 16,
pp. 883-888, 2012.

[11] D. C. Karia, V. Adajania, M. Agrawal, and S. Dandekar, "Embedded web server
application based automation and monitoring system." pp. 634-637.

[12] P. A. C. R. Gopi Krishna S, K.Gerard Joe Nigel, “Web based Remote Accessing of
Medical Devices with ARM Cortex-M3,” International Journal of Recent Technology
and Engineering (IJRTE), vol. 2, no. 3, pp. 51-54, July 2013, 2013.

45

APPENDIX A: KL26Z SCHEMATIC

46

APPENDIX B: KL25Z SCHEMATIC

47

APPENDIX C: WIZFI SHIELD SCHEMATIC

48

APPENDIX D: ARDUINO LIBRARY CODE

#include <SPI.h>

#include <WiFi.h>

char ssid[] = "yourNetwork"; // your network SSID (name)

char pass[] = "secretPassword"; // your network password

int keyIndex = 0; // your network key Index number (needed only for WEP)

int status = WL_IDLE_STATUS;

WiFiServer server(80);

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for Leonardo only

 }

 // check for the presence of the shield:

 if (WiFi.status() == WL_NO_SHIELD) {

 Serial.println("WiFi shield not present");

 // don't continue:

 while (true);

 }

 String fv = WiFi.firmwareVersion();

 if (fv != "1.1.0")

 Serial.println("Please upgrade the firmware");

 // attempt to connect to Wifi network:

 while (status != WL_CONNECTED) {

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:

 status = WiFi.begin(ssid, pass);

 // wait 10 seconds for connection:

49

 delay(10000);

 }

 server.begin();

 // you're connected now, so print out the status:

 printWifiStatus();

}

void loop() {

 // listen for incoming clients

 WiFiClient client = server.available();

 if (client) {

 Serial.println("new client");

 // an http request ends with a blank line

 boolean currentLineIsBlank = true;

 while (client.connected()) {

 if (client.available()) {

 char c = client.read();

 Serial.write(c);

 // if you've gotten to the end of the line (received a newline

 // character) and the line is blank, the http request has ended,

 // so you can send a reply

 if (c == '\n' && currentLineIsBlank) {

 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println("Connection: close"); // the connection will be closed after completion of the
response

 client.println("Refresh: 5"); // refresh the page automatically every 5 sec

 client.println();

 client.println("<!DOCTYPE HTML>");

 client.println("<html>");

 // output the value of each analog input pin

 for (int analogChannel = 0; analogChannel < 6; analogChannel++) {

 int sensorReading = analogRead(analogChannel);

 client.print("analog input ");

 client.print(analogChannel);

50

 client.print(" is ");

 client.print(sensorReading);

 client.println("
");

 }

 client.println("</html>");

 break;

 }

 if (c == '\n') {

 // you're starting a new line

 currentLineIsBlank = true;

 }

 else if (c != '\r') {

 // you've gotten a character on the current line

 currentLineIsBlank = false;

 } } }

 // give the web browser time to receive the data

 delay(1);

 // close the connection:

 client.stop();

 Serial.println("client disonnected");

 }

}

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your WiFi shield's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");}

51

APPENDIX D: MODIFIED CODE FOR WIZFI SHIELD

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <SPI.h>

#include <WizFi2x0.h>

#include <WizFiClient.h>

#include <WizFiServer.h>

#include <TimerOne.h>

#define SSID "" // SSID of your AP

#define Key "" // Key or Passphrase

// Wi-Fi security option (NO_SECURITY, WEP_SECURITY, WPA_SECURITY, WPA2PSK_SECURITY)

//#define Security WPA_SECURITY

#define MAX_SOCK_NUM 4

unsigned int SrcPort = 80;

WizFi2x0Class myWizFi;

WizFiClient myClient[MAX_SOCK_NUM];//(SIP, ServerPort);

WizFiServer myServer(SrcPort);

boolean Wifi_setup = false;

// 1msec Timer

void Timer1_ISR()

{

 myWizFi.ReplyCheckTimer.CheckIsTimeout();

}

void setup() {

 byte retval, i;

 Serial.begin(9600);

 Serial.println("\r\nSerial Init");

 for(i=0; i<MAX_SOCK_NUM; i++)

 myClient[i] = WizFiClient();

52

 myWizFi.begin();

 // Timer1 Initialize

 Timer1.initialize(1000); // 1msec

 Timer1.attachInterrupt(Timer1_ISR);

 myWizFi.SendSync();

 myWizFi.ReplyCheckTimer.TimerStart(3000);

 Serial.println("Send Sync data");

 while(1)

 {

 if(myWizFi.CheckSyncReply())

 {

 myWizFi.ReplyCheckTimer.TimerStop();

 Serial.println("Rcvd Sync data");

 break;

 }

 if(myWizFi.ReplyCheckTimer.GetIsTimeout())

 {

 Serial.println("Rcving Sync Timeout!!");

 return;

 } }

 // AP association

 while(1)

 {

 byte tmpstr[32];

 retval = myWizFi.associate(SSID, Key, Security, true);

 if(retval == 1){

 myWizFi.GetSrcIPAddr(tmpstr);

 Serial.println("WizFi2xo AP Associated");

 Serial.print("MY IPAddress: ");

 Serial.println((char *)tmpstr);

 Wifi_setup = true;

 break;

 }else{

53

 Serial.println("AP association Failed");} }

 if(myServer.begin())

 Serial.println("Server Listen OK");

 else

 Serial.println("Server Listen Failed");

}

void loop()

{

 uint8_t retval, i;

 byte rcvdBuf[129];

 memset(rcvdBuf, 0, 129);

 if(Wifi_setup)

 {

 myWizFi.RcvPacket();

 for(i=0; i<MAX_SOCK_NUM; i++)

 {

 if(myClient[i].available()){

 retval = myClient[i].read(rcvdBuf);

 if(retval > 0)

 {

 Serial.print("CID[");

 Serial.print((char)myClient[i].GetCID());

 Serial.print("]");

 Serial.println((char *)rcvdBuf);

 if((rcvdBuf[retval - 1] == 0x0A) && (rcvdBuf[retval - 2] == 0x0D) && (rcvdBuf[retval - 3] == 0x0A)

&& (rcvdBuf[retval - 4] == 0x0D))

 {

 Serial.print("Receiving Completed");

 myClient[i].write((byte *)"HTTP/1.1 200 OK\r\n");

 myClient[i].write((byte *)"Content-Type: text/html\r\n");

 myClient[i].write((byte *)"\r\n");

 myClient[i].write((byte *)"Hello World !\r\n");

 delay(100);

 myClient[i].disconnect(); } } } } }}

54

APPENDIX E: KL26Z PINOUTS

