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ABSTRACT 

This research aims to analyze smoke contamination using computational fluid dynamics 

(CFD) software in high-level atrium. The reasons beyond the rise of this study are; the 

dangerous extent of smoke effects upon human beings as it is found to be a major lives 

threat in fire incidents. The choice of high-level atrium was due to its large construction 

rate worldwide and in Malaysia particularly as there are more than 200 shopping malls in 

Malaysia. The developed model will be altered various times according to the combination 

of parameters changed; therefore, many cases will be simulated in order to propose a new 

correlation that aid designers/engineers to produce safe designs. The objectives of this 

research are; investigate the behavior of smoke due to fire in upper balconies at an atrium 

and utilize (CFD) software, Fire Dynamics Simulator (FDS) in modelling fire incident. 36 

cases will be simulated and evaluated for 3, 5, and 7 balcony buildings. The findings of 

this project show that smoke contamination increases with the increment of building 

height as well as the presence of down stand structures (brand display). Eventually, there 

are three correlations generated from the obtained results and it is recommended for 

engineers and architects to utilize them in designing safer Atrium in the future. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Smoke is a direct inevitable consequence of fire that has massive capability of spreading 

around long distances. The study of smoke behavior, its generation, spread, and 

consequences is one of the core fields of Fire Engineering.  

 

1.1.1 Nature of fire 

Fire is revered and sacred throughout history, as some people considered it a divine 

substance that has direct effects on souls and contains power. However, fire is not a 

tangible material but rather it is a visible result of continuous process called combustion 

were involved substances are chemically reacting. Fire occurrence is conditioned by the 

simultaneous existence of three elements which are: air (specifically oxygen), fuel (any 

combustible material), and heat (ignition temperature of the material) these in turn are 

called “The fire triangle components”. Recently, a forth element has been included that 

formed “The fire tetrahedron”, the new component is the uninhibited chain reaction which 

provides the heat necessary to maintain the fire and it’s utilized for certain fire suppression 

mechanism. Typically, resulting components (mainly smoke and the toxic waste of fire’s 

leftovers) are totally different from reacting ones. 

 

1.1.2 Nature of smoke  

Throughout this research, the term smoke will be employed in accordance with the 

explanation obtained from National Fire Protection Association (NFPA). According to 

NFPA 92A and NFPA 92B smoke consists of various components; the airborne solid, 

liquid particulates and gases evolved when a material undergoes pyrolysis or combustion, 

in addition to remarkable quantity of air that is entrained into the mass. Usually, the 
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products of combustion include particulates, unburned fuel, water vapor, carbon dioxide, 

carbon monoxide, and some other toxic and corrosive gases.  

As smoke moves through a building, air mixes into the smoke mass and the concentration 

of combustion products in the smoke decreases. Generally, smoke is thought of as being 

visible, but the above definition includes "invisible smoke" produced by burning of 

materials that produce little or no particulate matter, such as hydrogen, natural gas, and 

alcohol.  

 

1.2 Important terminologies 

There are significant terminologies used in this research. However, understanding them is 

crucial throughout the research to fully visualize the fruitful results at the end. 

 

1.2.1 Atrium 

An atrium within a building is a large space which connects openings in floors, and which 

is wholly or partially enclosed at the top by a floor or roof, and which is used for purposes 

other than those normally associated with the small shafts commonly enclosing stairways 

or lifts. The essential difference between an atrium and a traditional inner courtyard is that 

atrium is roofed over, and smoke from fire cannot readily 

escape to the outside atmosphere. 

Atriums have become popular because they are attractive as 

a means of allowing daylight into lower levels and creating 

an outdoor atmosphere which is protected from the extremes 

of climate. An atrium can contribute to visual appeal, 

achieve economies in the use of heat and light, and can 

provide recreational space.  

 

Figure 1: Atrium example - Berjaya 
Times Square in Kuala Lumpur 
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1.2.2 down stand structure 

A down stand structure is a vertical body required in any shop in a shopping mall to display 

the trade name of the shop. As it can be seen in next figure, the existence of a down stand 

structure will affect the behavior of smoke tremendously. Typically, smoke management 

in atrium focus on removing the smoke from the atrium and avoid personnel encountering 

with the smoke. One of the concerns is that smoke may curl into the balconies from 

balcony spill plume as shown in Figure 2. 

 

 
Figure 2: Schematic diagram for inwards curl and down stand structure (Morgan et al, 

1999) 

1.3 Problem Statement 

There are two main driving causes that influenced the decision of proceeding with the 

project which are; Smoke jeopardy upon human being lives and the wide spread of atrium 

designs across the whole world and Malaysia in particular where there are more than 200 

shopping mall nation wise. Smoke is a furious enemy of human beings; more than 50% 

of deaths in fire incidents are due to smoke contamination. Toxicity of smoke components 
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Compartment fire (in a shop) 
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Plume 
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is proved to be a major cause of fatality upon humans. Smoke is always accompanied with 

fire events, which in turn threats humans’ souls as it is capable of reaching people in a 

relative far distance from the fire source due to its notable spread ability. Nowadays, 

shopping malls in the form of atrium have been widely constructed for the reason of its 

attractive design and its massive open spaces which increases the possibility of smoke 

spread during fire incidents by curling inwards balconies and hence causes fatal 

contamination. Moreover, complex designs of atrium do not correspond to perspective 

standards, therefore a performance based design process is recommended to identify the 

characteristics of that specific design. Due to these motivations, this project is carried out 

as it is concerned about the causes of smoke spread in atria from various aspects and 

angles.  

 

1.4 Scope of Study 

The event of fire and analysis of smoke contamination in a high Atrium has unlimited 

scenarios and conditions as the involved causal factors are variant. Therefore, the core of 

this research is a process of developing a model using computational fluid dynamics 

(CFD) software, Fire Dynamic Simulator (FDS). Eventually there will be total of 36 

different cases or models, each model will differ in terms of at least one parameter than 

the others but the main fixed parameter is the existence of 1m depth down stand structure. 

The model will be an atrium with dimensions obtained from previous researches and 

targeted number of levels will be three, five, and seven levels, each one includes 12 cases. 

The main parameters that will be varied and analyzed are; number of floors of the atrium 

(height of the building), balcony breadth, plume width (channel opening width), heat 

release rate (fire size), and smoke layer height. Ultimately, various cases will be 

systematically simulated in order to obtain empirical correlations of the aforementioned 

parameters in order to propose effective ways to increase the safety measurements in 

atrium designs. 

 

 



5 
 

1.5 Objectives 

 

 To investigate the behavior and spread of smoke due to fire in upper balconies at an 

atrium by utilizing computational fluid dynamics (CFD) software, Fire Dynamics 

Simulator (FDS)  

 To produce a new correlation of smoke contamination of specific height of Atrium to 

be utilized by engineers and architects to ensure optimal safe designs for new Atrium 
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CHAPTER 2: LITERATURE REVIEW  

 

Reviewing the literature is a crucial tool at the first stage of the project as it has been used 

to spot the gaps of previous researches and consider these gaps for high precision findings 

and conclusions. 

Fire is a major threat where miserable catastrophes result in loss of human life and 

property damage. Actually, smoke as well is acknowledged as a serious threat during fire 

events as it assassins lives unexpectedly due to its spread ability. Hence, the concentration 

during this study will be on smoke behavior in open spaces, atria in particular. In order to 

carry out the assigned tasks, performance base design approaches will be dedicated 

throughout the project as the analyzed atrium is not simply standardized. It is stated that 

fire releases fatal toxic gases into the atmosphere as a result of the combustion process 

such as CO, CO2, and HCN (Hasnain et al, 2013).  

 

 

Nowadays, Atrium has been widely found worldwide due to its attractiveness and 

roominess. However, this open space and lack of floor to floor separation exposes high 

risks in the case of fire, for the reason that smoke is capable of spreading within a large 

volume (Tan et al, 2009) and (Ho C. , 2010). 

 

2.1 Physical Modeling  

There are quite a number of previous and ongoing researches regarding the analysis of 

smoke behavior in high level atrium, and the probability of smoke contamination to occur 

in upper balconies. Various methodologies have been utilized to understand the behavior 

of smoke in atrium. One of the methodologies employed a physical scale modeling of in 

an atrium to detect smoke contamination in upper balconies (Tan et al, 2009). Tan et al. 

considered five story atrium with 1/10 modeling scale, utilized visual observations and 

photography of the experiments to interpret them into useful data, and focused on certain 

parameters in the study which have direct impact on extent of smoke behavior. They found 
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that increment of smoke contamination possibility is directly proportional to decreasing 

balcony breath, and increasing plume width, whereas fire size has insignificant effect upon 

contamination extent. The aspect ratio of plume width to balcony breadth (w/b) is 

highlighted an alternative handful parameter in atrium designs regarding smoke  

 

Figure 3: Schematic diagram of physical scale model and locations of sensors (Tan, 

2009) 
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contamination in high balconies. Eventually, Tan et al. (2009) declared that fire release 

rate changes were vital, as severer contamination was accompanied with lower heat 

release rate compared to higher one, and they had formulated an empirical correlation to 

find out the minimum height of contamination.  

 

 

 

 

2.2 Numerical simulation model using CFD 

Computational fluid dynamics (CFD) consists of dividing a space into a large number of 

control volumes and using a computer to calculate approximate solutions to the governing 

equations for each control volume. These control volumes are often called cells. 

Physical modeling is not the preferred way of carrying out researches, as the majority 

chooses numerical simulation for the sake of cutting cost, effort and time. Ho et al. (2010) 

had created a numerical simulation of a previous physical scaled model regarding smoke 

contamination of upper atrium levels by channeled balcony spill plume (Ho et al, 2010). 

In this study Ho has utilized computational fluid dynamics to verify the results of (Tan et 

al, 2009) as a validation process, and further upgraded the model to full scale instead of 

1/10 scaled model. In addition to verifying Tan et al outcomes, Ho had another purpose 

of his study which is assessing the capability of Fire Dynamic Simulator software to 

effectively simulate the scenario of smoke contamination from the previous experiment 

in order to carry out numerical studies. Again, Ho and Tan et al. had almost similar 

working parameters e.g. temperature severity, plume width, and height of smoke 

contamination. Likewise, the outcomes of the simulation via FDS from Ho’s research 

mostly matched formerly mentioned ones by Tan et al. (2009)  
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2.3 Inwards curls of smoke plume into balconies 

One of the major concerns in the analysis of smoke spread in high level atrium is the 

inwards curls of smoke plume into the balconies as figure 2 shows. A probable cause of 

such curls is the Coanda effect which is the phenomena where the fluid jet has a tendency 

to attach itself to a nearby surface and remains attracted even when it leaves the surface. 

Identifying the plume configuration is important since the amount of air entrained is 

dependent on it.  Generally, plumes are categorized as the following: Axisymmetric 

plume, Wall plume, Corner plume, Spill plume, Window plumes (Harrison et al, 2009). 

Since the project is focusing on spill plume, it is valuable to define it and highlight its 

features. Harrison et al. described a spill plume as it is basically created from a lateral 

moving buoyant layer of hot smoke in a confined enclosure, which subsequently rises 

from the opening of the enclosure and then flows upward after passing the balcony’s edge 

toward the atrium open space.  According to Ho et al. (2010) the spill plume will curl 

inwards a balcony as the balcony breadth is less than 1 m.   

 

2.4 Down stand structure model 

A more recent study is in the concern scope of the project as it concentrated on some 

factors which were neglected for a while. Nowadays, most atria have shopping malls that 

utilize a vertical down signs to exhibit the trade name of the respective shop. Down stand 

structures terminology will be denoted throughout the project. Although Harrison and 

Spearpoint (Harrison and Spearpoint, 2004) have modeled the down stand structure, they 

only focused on its effect on rising plume behavior and neglected its effect on smoke 

spread in atrium upper balconies. Hence, another numerical investigation study focused 

on the presence of down stand structures in fire compartment in atrium upper balconies 

and its effects upon smoke contamination (Hasnain et al, 2013). The initial stage of 

Hasnain et al. was the validation of the model against Ho’s results, and it is found that the 

results are in a reasonable agreement. Figure 4 clarifies the similarity of results between 

Ho et al’s results and Hasnain et al ones in the form of temperature distribution. 
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Figure 4: Comparison of temperature distribution between Ho’s results (right) and Hasnain et al (2013) 
ones (left). 

Figure 4 shows that Hasnain et al. model development was fully scaled with 5 levels 

atrium and a 1 m depth down stand structure at the exit of the specified fire compartment. 

The results of the previous research stated; the extent of smoke contamination increases 

with the existence of down stand structure in shopping malls. 

 

Figure 5: Five balconies atrium with down stand structure using FDS (Hasnain et al 

,2013) 
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The Study of Hasnain et al. (2013) has focused on the existence of the down stand structure 

considering only one case where the depth of the down stand is 1 m. A recent study 

analaysed the effect of changing the down stand depth upon smoke contamination carried 

out by Hassnain et.al proved that the existence of the down stand structure increses the 

severity of smoke contamination regardless of its depth dimension. 

 

2.5 Fire Dynamic Simulator (FDS) 

Users of computational fluid dynamics softwares are increasing, and it is significant to 

validate any model in order to obtain trustful information for best recommendations. As 

discussed earlier, Ho et al. used FDS to verify the results found by Tan et al. and stated 

that the under-prediction could only be approximated by 10%.  

Small-scale simulation results have indicated that FDS is capable of rationally modeling 

the smoke contamination, despite the predicted temperatures might be lower sometimes 

(Ho, 2010). Similarly, Hasnain et al. have utilized the FDS software to validate the model 

and then used it to simulate certain cases. 

 

During the process of using FDS, the geometry is considered as a 3-D numerical grid, 

which solves the related set of equations of mass, momentum, energy and species 

concentration (Harrison et al., 2009). Harrison et al. adds that the optimum use of CFD is 

conditional to the user competency and requires intensive knowledge of fire science and 

numerical analysis.  

 

The Fire Dynamics Simulator (FDS) model has a remarkable advantage among other CFD 

softwares as it is dedicated in particular for fire applications. Further research regarding 

FDS performance efficiency is recommended, and it crucial for a designer to be aware in 

defining the boundary conditions during FDS modeling for optimal results.  

 

However, it seems unpractical to formulate a fixed perspective approach regarding atrium 

design because that will limit creative and innovative designs; hence, the use of 

performance based design approach is highly recommended. 
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CHAPTER 3: METHODOLOGY 

3.1 Research Methodology 

 

Figure 6: Research methodology 

 

 

 

 

1
• Study the foundations and fundamentals of the project

2
• Review the literature and search for the gap

3
• Identify the problem and spot the scope of work

4

• Set feasible and achievable objectives within the given 
timeframe

5

• Learn how to use FDS software in order to build the model 
and carry out the needed simulations

6

• Attempt to develop preiminary model during FYP1 and get 
preliminary results

7

• Develop a fully scaled model in FYP2 according to literature 
dimensions and run the simulations

8
• Produce new correlations from the simulation findings

9

• Analyse the obtained results for discussion and 
recommendations
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3.2 Project activities 

 

 

 

Topic selection 

Develop preliminary model during FYP I 

Familiarization with FDS software Fire Engineering lectures 

Topic familiarization and literature review 

Develop a model according to criteria obtained from literature 

Analysis of the obtained results and the proposal of a correlation 

 Extended proposal 

 Proposal defense 

 Interim report 

 Progress report 

 Pre-sedex 

 Technical paper 

 Oral presentation 

 Dissertation 

Ongoing official process 

The end 

Start FYP I 

Complied to criteria 

Don’t Complied to criteria 

Identification of the work scope 



14 
 

3.3 Gantt chart and key Milestones 

  

Figure 7: Gantt chart and key milestones 

 

 

 

 

No. List of Activties 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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4 Fami l iarization with Simulation Software (FDS)
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Model development & Data interpretation 

4.1.1 Selection of Experiment Model 

Initially, the model development process started with distinguishing 12 primary cases out 

of 60 in order to generate the correlation equation. The choice of these 12 representative 

cases is based on the subsequent conditions: 

 Wide coverage of aspect ratios (w/b ≤ 3.0) from Tan et al.’s (2009) empirical 

results 

 Wide coverage of plume widths as well as various hear release rates 

 Involvement of mixture of contaminated and non-contaminated models 

The designated experiments for developing the models are shown below in table1. 

Table 1: Twelve primary scenarios scaled dimensions and HRR 

 

Experiment 

 

Balcony 

Breath, b 

(m) 

Plume Width, 

w 

(m) 

 

Aspect Ratio, 

 w /b 

Heat Release 

Rate, Q T 

(kW) 

1 0.5 1 2 5 

3 0.5 1 2 15 

8 0.5 0.6 1.2 10 

13 0.5 0.2 0.4 5 

19 0.3 0.8 2.7 5 

23 0.3 0.6 2 10 

27 0.3 0.4 1.3 15 

38 0.2 0.6 3 10 

41 0.2 0.4 2 10 

43 0.2 0.2 1 5 

56 0.15 0.4 2.7 10 

60 0.15 0.2 1.3 15 



16 
 

4.1.2 Fixed dimensions and materials 

The dimensions used in this project resemble what Tan et al. (2009) used for the physical 

model in order to update Ho et al.’s correlation which was originally corresponding to 

Tan’s research dimensions and materials. 

  

 

 

 

 

 

Figure 8: Schematic of Front view of the model with dimensions 
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The green lines are indicating the balcony’s floor and upstand while blue lines are 

representing the boundaries of the Perspex glass. The total height of the building is 

dependent on the number of balconies and it’s computed as the following: 

5 m (height from ground to 1st balcony) + 4 m (height of each balcony) * number of 

balconies + 8 m of Perspex glass 

In the case of 3 balconies, the total height is 25 m. 5 balconies and 7 balconies heights are 

33 m, and 41 m respectively. 

In this project the top ceiling of the building was removed instead of having a roof 

equipped with a mechanical exhausting fan since this issue has no relation or any effects 

upon smoke contamination level in the balconies.  

Figure 9: Schematic of Side view of the model with dimensions 
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Table 2: Materials properties utilized for model development 

CFI Board 

Conductivity (W/mk) 0.041 (Drysdale, 1998) 

Density (kg/m
3

) 
229 

Specific heat (kJ/kgK) 0.82  

Thickness (mm) 160 

 

 

Steel 

Conductivity (W/mk) 45.8 (Buchanan, 2002) 

Specific heat (kJ/kgK) 0.46 

Density (kg/m
3

) 
7850 

Thickness (mm) 10  

Acrylic Glass 

Conductivity (W/mk) 0.19 (Drysdale, 1998) 

Specific heat (kJ/kgK) 1.42 

Density (kg/m
3

) 
1190 

Thickness (mm) 120 

 

 

Ethanol 

Carbon 2  

Hydrogen 6  

Oxygen 1  

Heat of combustion (kJ/kg) 2680 (Karlsson & Quintiere, 2000) 

Radiative Fraction 0.2 (Drysdale, 1998) 
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4.1.3 Smoke Contamination 

One way of identifying whether smoke contamination took place or not is the use of 10°C 

above ambient temperature profile (30°C). The temperature profile is considered as 

smoke, when the profile of 30°C spread in more than 50% of the balcony’s height, it’s 

then considered as “deep smoke layer”, whereas a temperature profile less than 50% 

height is considered as “shallow smoke layer”. The aforementioned measurement was 

utilized by Tan et al (2009), the next figure is clarifying that. 

 

 

 

 

 

 

 

Figure 10: 30°C temperature profile of exp 3 for three balcony 
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4.1.4 Height of Smoke Contamination 

The detection of the height of the smoke contamination is clearly explained in figure 11. 

This method was used by Tan et al (2009), it has a simple mechanism where the spill edge 

is a reference. Full contamination is expressed by smoke when it reaches the floor (H = 0 

m). In the simulation, smoke contamination is spotted via layer height device in FDS 

which measures the height precisely apart from human caused errors. 

4.1.5 Modelling Parameters 

 

The fire sizes in this project were varied between 1581 kw, 3162 kw and 4746 kw 

according to Ho et al.’s findings.
 

The previous sizes were comparable to 5 kw, 10 w and 15 kw respectively of Tan’s scaled 

model. 

The ambient temperature for Tan et all (2009) is not mentioned in his writings. However, 

since his experiments took place between Nov 2008 and Jan 2009, an assumption was 

made that it is an ambient lab temperature of 20°C for that summer period. 

Figure 11: Height of smoke contamination 
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4.2 Developed models  

 

Figure 12: 3 level balcony model 
Figure 13: 5 level balcony model 

Figure 14: 7 level balcony model Figure 15: 7 level balcony – smoke rising during the simulation 
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4.3 Results 

4.3.1 Stability of Temperature Reading 

Three temperature readings from each balcony are selected for demonstration and the 

temperatures are from the balcony edge. Figure 17 shows that temperature stability is 

achieved after 330 s. While figure 18 and figure 19 shows that temperature stability is 

achieved after 200 s. 

 

 

Figure 16: Stability of Temperature for exp1 – 3L 
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Figure 17: Stability of Temperature for exp1 – 5L 

 

Figure 18: Stability of Temperature for exp1 – 7L 
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4.3.2 Comparison of Smoke Layer Depth at Spill Edge 

Ho et al. (2010) and Tan et al. (2009) have assessed the smoke layer depth at the spill edge 

via Harrison’s (2009) data. The following table shows their numeric values compared to 

the ones obtained in this project. The data illustrates variations of values as the light green 

experiments’ values are less compared to Ho’s data, whereas the blue ones indicate 

experiments with higher values. 

Table 3: Comparison of smoke layer depth at spill edge 

Experiment Depth of Smoke layer at spill edge, d (m) - 3L 

Tan et al.’s data 

Scaled (1/10) 

Ho et al.’s data 

Scaled (1/10) 

Current data 

Exp1 0.1  0.07  0.68 

Exp3 0.125  0.09  0.73 

Exp8 0.12  0.1  0.82 

Exp13 0.12  0.11  0.98 

Exp19 0.105 0.10 0.78 

Exp23 0.135  0.12  0.98 

Exp27 0.145 0.11 1.22 

Exp38 0.12 0.13 1.49 

Exp41 0.125 0.13 1.75 

Exp43 0.135 0.13 1.66 

Exp56 0.125 0.14 1.97 

Exp60 0.17 0.15 2.14 
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4.3.3 Comparison of smoke contamination severity  

Since Ho has not considered the presence of down stand structures, the findings of this 

project will be different compared to Ho’s data due to the consideration of down stand 

structure existence. The results show that the severity of smoke contamination has 

remarkably increased in the new research due to the down stand structure. Tables 7,8, and 

9 includes all the parameters used for producing the correlation for 3,5, and 7 levels 

respectively. 

 

   

 

Table 5: Comparison of smoke contamination severity of 3 level Atrium 

Table 4: Comparison of smoke contamination severity of 5 level Atrium 

1 0.5 1 2 5 o O O O O

3 0.5 1 2 15 O O O O O

8 0.5 0.6 1.2 10 c o o O O

13 0.5 0.2 0.4 5 c c c c c

19 0.3 0.8 2.7 5 O O O O O

23 0.3 0.6 2 10 o O O O O

27 0.3 0.4 1.3 15 c o o O O

38 0.2 0.6 3 10 O O O O O

41 0.2 0.4 2 10 o o O O O

43 0.2 0.2 1 5 c c o o o

56 0.15 0.4 2.7 10 o O O O O

60 0.15 0.2 1.3 15 c o o O O

Experiment
Balcony 

Breath, b

Plume 

Width, w

Aspect 

Ratio, w /b

Heat 

Release 

Rate, Q T

Balcony 1 Balcony 2 Balcony 3 Balcony 4 Balcony 5

1 0.5 1 2 5 o O O

3 0.5 1 2 15 o O O

8 0.5 0.6 1.2 10 c c o

13 0.5 0.2 0.4 5 c c c

19 0.3 0.8 2.7 5 o o O

23 0.3 0.6 2 10 c o O

27 0.3 0.4 1.3 15 c c o

38 0.2 0.6 3 10 o o O

41 0.2 0.4 2 10 c c o

43 0.2 0.2 1 5 c c o

56 0.15 0.4 2.7 10 o O O

60 0.15 0.2 1.3 15 c c o

Experiment
Balcony 

Breath, b

Plume 

Width, w

Aspect 

Ratio, w /b

Heat 

Release 

Rate, Q T

Balcony 1 Balcony 2 Balcony 3
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1 0.5 1 2 5 O O O O O O O

3 0.5 1 2 15 O O O O O O O

8 0.5 0.6 1.2 10 o o O O O O O

13 0.5 0.2 0.4 5 c c c c c c c

19 0.3 0.8 2.7 5 O O O O O O O

23 0.3 0.6 2 10 o O O O O O O

27 0.3 0.4 1.3 15 o O O O O O O

38 0.2 0.6 3 10 O O O O O O O

41 0.2 0.4 2 10 o O O O O O O

43 0.2 0.2 1 5 c c o o O O O

56 0.15 0.4 2.7 10 O O O O O O O

60 0.15 0.2 1.3 15 c o O O O O O

Experiment
Balcony 

Breath, b

Plume 

Width, w

Aspect 

Ratio, w /b

Heat 

Release 

Rate, Q T

Balcony 7Balcony 1 Balcony 2 Balcony 3 Balcony 4 Balcony 5 Balcony 6

Table 6: Comparison of smoke contamination severity of 7 level Atrium 
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4.3.4 Correlations 

The core of this project is centered on the generation of the design correlations which will 

assist designers enhances Atrium in terms of smoke contamination safety. There are three 

correlations, one for each level category wherein the parameters involved are balcony 

breadth (m), smoke plume width (m), smoke layer height at spill edge (m), and the smoke 

contamination height (m). Tables 7,8, and 9 includes all the parameters used for producing 

the correlation for 3,5, and 7 levels respectively. 

Table 7: Summary of results of simulated 3 level Atrium configuration 

 

  

Experiment 

3 Levels 

 
H (m) 

 

b (m) 
 

w (m) 
 

d (m) 
 

H/b 
 

w/d 

1 3.12 0.50 1.0 0.68 6.24 1.47 

3 2.38 0.50 1.0 0.73 4.76 1.37 

8 7.23 0.50 0.6 0.82 14.46 0.73 

13    0 0.50 0.1 0.98 0

.

0

0 

0

.

1

0 

19 1.85 0.30 0.8 0.78 6.17 1.03 

23 3.25 0.30 0.6 0.98 10.83 0.61 

27 6.8 0.30 0.4 1.22 22.67 0.33 

38 2.5 0.20 0.6 1.49 12.50 0.40 

41 6.68 0.20 0.4 1.75 33.40 0.23 

43 11.75 0.20 0.2 1.66 58.75 0.12 

56 1.7 0.15 0.4 1.97 11.33 0.20 

60 2.2 0.15 0.2 2.14 14.67 0.09 

Figure 19: 3 levels Atrium correlation 
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Likewise for figures 20, 21, and 22 they show the new produced correlations with the 

respective graphs for 3,5, and 7 Atrium levels respectively.  

 

Table 8: Summary of results of simulated 5 level Atrium configuration 

 

  

Experiment

5 Levels 

 

H (m) 
 

b (m) 
 

w (m) 
 

d (m) 
 

H/b 
 

w/d 

1 3.23 0.50 1.0 0.68 6.46 1.47 

3 3.35 0.50 1.0 0.72 6.70 1.39 

8 6.5 0.50 0.6 0.8 13.00 0.75 

13   0 0.50 0.1 0.99 0

.

0

0 

0

.

1

0 

19 1.2 0.30 0.8 0.81 4.00 0.99 

23 3.54 0.30 0.6  1 11.80 0.60 

27 6.9 0.30 0.4 1.19 23.00 0.34 

38 1.6 0.20 0.6 1.47 8.00 0.41 

41 2.9 0.20 0.4 1.71 14.50 0.23 

43 10.7 0.20 0.2 1.65 53.50 0.12 

56 1.4 0.15 0.4 1.96 9.33 0.20 

60 3.6 0.15 0.2 2.13 24.00 0.09 

Figure 20: 5 levels Atrium correlation 
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Table 9: Summary of results of simulated 7 level Atrium configuration 

 

 

   

Experiment

7 Levels 

 

H (m) 
 

b (m) 
 

w (m) 
 

d (m) 
 

H/b 
 

w/d 

1 0.8 0.50 1.0 0.7 1.60 1.43 

3 0.6 0.50 1.0 0.72 1.20 1.39 

8 2.7 0.50 0.6 0.8 5.40 0.75 

13   0 

 

 

0.50 0.1 0.97 0

.

0

0 

0

.

1

0 

19 1.1 0.30 0.8 0.76 3.67 1.05 

23 3.15 0.30 0.6 0.97 10.50 0.62 

27 6.8 0.30 0.4 1.21 22.67 0.33 

38 0.9 0.20 0.6 1.54 4.50 0.39 

41 1.8 0.20 0.4 1.75 9.00 0.23 

43 10.9 0.20 0.2 1.64 54.50 0.12 

56 0.8 0.15 0.4 1.99 5.33 0.20 

60 2.4 0.15 0.2 2.13 16.00 0.09 

H/b = 3.03(w/d)-0.94

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

H
/b

w/d

7 Levels Atrium correlation

Figure 21: 7 levels Atrium correlation 
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4.4 Discussion 

4.4.1 Delay of Smoke Contamination at Upper Balcony 

It has been noticed that smoke contamination is delayed at upper balcony in some cases. 

The main factors that change the velocity of smoke discharge from fire compartment are 

the compartment opening (plume width), and the fire size. In the case of wide exist and 

small fire as in figure 23 (A), the smoke tend to attach to the balcony directly without 

delay. However, figure 23 (B) represents the other case where the exist is narrow with 

large fire, wherefore the smoke is discharged far away from the balcony causing the delay 

of reattachment and contamination. 

 

  

Figure 22: Delay of smoke contamination 

 

4.4.2 Mechanism for Re-attachment  

From the simulation, it is clear that there is a pressure change inside and outside the 

balconies. Velocity vectors are used to spot that change by visualizing the plume and its 

movements. Figure 24, visualizes experiment 23 for 3 level Atrium, and the color variation 

indicates numeric value difference for air velocity. It is vivid that air is entrained into the 

smoke plume from the balcony air causing the plume to be larger and hence increase 

smoke contamination. 

A B 
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.  

 

4.4.3 Smoke Contamination Starts from the Highest Balcony  

The simulations showed that smoke contamination begins from the highest balcony and 

gradually move downwards. The reason beyond that could be the increment of air 

entrainment while spill plume is rising. Figure 25 illustrates the movement of air 

represented be the vectors and the profile color, which point to the entrainment of air 

towards the spill plume. 

Figure 23: Smoke-view air Re-attachment 

Figure 24: Smoke-view air entrainment in a balcony 
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4.4.4 Cause of Increased Smoke Contamination in Higher Atrium 

The level of smoke contamination is directly proportional to the Atrium height. As the 

height increases, smoke contamination increases. Tables 4, 5, and 6 show the severity 

of smoke contamination of 3, 5, and 7 level Atria where a quick glance comparing same 

experiment from different categories proves that.  

As spill plume rises toward the top of the Atrium, it encounters air entrainment, which 

will enlarge the cross-section of the plume, and in turn higher differential pressure will 

be created.  

For the case of high rising atrium, the pressure difference will be higher wherein it will 

push the spill plume toward the balcony causing smoke contamination. 

One of the major causes that would lead to higher smoke contamination is the presence 

of down stand structures especially in shopping malls where it is used to display the 

brand name.  
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CHAPTER 5: CONCLUSION AND REOMMENDATIONS 

5.1 Conclusion 

 

Smoke contamination jeopardy and wide spread construction of atriums were the main 

drivers for this research as it aims to propose an enhanced correlation that could assist 

engineers and architects during the process of designs of atria for the sake of optimum 

safety. Past researches have not studied the effect of down stand structure at fire 

compartment opening on smoke contamination in upper balconies of the atrium. 

 

Fire dynamics simulator (FDS) has been utilized as a CFD software in order to develop 

12 primary scenarios of fully scaled models of Tan (2009) small scale models. The 

outcomes of the research are fruitful and as planned. Eventually, FYP‘s long term 

objectives have been successfully accomplished. 

 

The results obtained enabled the researcher to successfully producing new correlation that 

depicts the behavior of smoke in Atrium (3, 5, and 7 levels). There are moderate 

differences in the smoke layer height compared to previous findings attained by Tan et al. 

(2009) and Ho et al.  (2010) due to the presence of down stand structures. 

 

Developing a model via FDS requires high level of competency as the boundary 

conditions are sensitive towards the accuracy of the results. The major hardship in using 

FDS is that it does not have a flexible interface where clicking and dragging are direct 

ways of designing. Therefore, commands have to be written as a text file saved as a 

notepad file with the extension (.fds). Another problem faced was that each simulation of 

the 36 case needed around 50 continuous hours of running, hence the researcher utilized 

the lab computers but occasionally some simulations were shut down by user, which 

created the necessity of monitoring the computers frequently up to the end of each 

simulation. 
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5.2 Recommendations 

 

The researcher encourages for further future research regarding the topic in order to 

produce a collective correlation that include the number of levels as a major factor instead 

of having specific correlation for certain Atrium height. 

Ultimately, the researcher strongly recommends the use of the new developed correlations 

especially for architects and engineers encountered with direct Atrium design. The new 

correlations ensure higher safety standards in the incidents of fire where smoke 

contamination is expected to take place in upper balconies. 

Eventually, it is recommended that further research should consider developing new 

correlation that includes the atrium height as a variable in the new correlation equation. 
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APPENDIX 

FDS input for exp1 – 7L written in a notepad. 

&HEAD CHID='exp1',TITLE='7L'/ 

 

&MESH IJK=105.0,108.0,215.0, XB=0.0,21.0,-0.8,20.8,-1.0,42.0/200mm mesh size for Atrium domain 

&MESH IJK=55.0,60.0,37.0, XB=-11.0,0.0,4.0,16.0,-1.2,6.2/200mm mesh size for fire compartment 

 

&TIME T_END=600./ 

 

/&MISC RESTART = .TRUE./ RESUME 

&VENT MB='XMIN', SURF_ID='OPEN'/ 

&VENT MB='XMAX', SURF_ID='OPEN'/ 

&VENT MB='YMIN', SURF_ID='OPEN'/ 

&VENT MB='YMAX', SURF_ID='OPEN'/ 

&VENT MB='ZMIN', SURF_ID='OPEN'/ 

&VENT MB='ZMAX', SURF_ID='OPEN'/ 

 

/DEFINING A BURNING OBJECT 

&REAC ID='Ethanol' 

 C = 2 

 H = 6 

 O = 1 

 HEAT_OF_COMBUSTION = 26800 

 CO_YIELD = 0.022 

 SOOT_YIELD = 0.11/ Ethanol properties 
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------------------------------------------------------------ 

 

/Materials 

&MISC SURF_DEFAULT='CFI board'/ 

&MATL ID='CFI board' 

 CONDUCTIVITY = 0.041 

 SPECIFIC_HEAT = 0.82 

 DENSITY = 229.0/ 

&SURF ID='CFI board' 

 MATL_ID = 'CFI board' 

 COLOR = 'BRICK' 

 TRANSPARENCY = 0.4 

 BACKING = 'VOID' 

 THICKNESS = 0.16 / wall properties 

 

&SURF ID = 'STEEL SHEET' 

 MATL_ID = 'STEEL' 

 COLOR = 'KELLY GREEN' 

 BACKING = 'VOID' 

 THICKNESS = 0.01 

 TRANSPARENCY = 0.4/ STRUCTURAL DESIGN FOR FIRE SAFETY TABLE 3.4 

&MATL ID = 'STEEL' 

 CONDUCTIVITY = 45.8 

 SPECIFIC_HEAT =0.46 

 DENSITY = 7850.0/ 

&SURF ID = 'PERSPEX SHEET' 



38 
 

 MATL_ID = 'PERSPEX' 

 COLOR = 'BLUE' 

 BACKING = 'VOID' 

 THICKNESS = 0.12 

 TRANSPARENCY = 0.4/ FROM HARRISON (2009) 

&MATL ID = 'PERSPEX' 

 CONDUCTIVITY = 0.19 

 SPECIFIC_HEAT =1.42 

 DENSITY = 1190.0/ 

 

------------------------------------------------------------ 

/Obstacle dimensions - b=5m - w=10m 

/FIRE SIZE 

&SURF ID = 'BURNER', HRRPUA = 252.96, COLOR = 'RED'/ To use with 1581kW 

/Atruim walls 

&OBST XB= 0.0,20.16,-0.12,0.0,33.0,41.0, SURF_ID='PERSPEX SHEET'/ Acrylic glass wall 

&OBST XB= 0.0,20.16,20.0,20.16,5.0,41.0/ N wall 

&OBST XB= 0.0,0.16,0.0,20.0,5.0,41.0/ W wall 

&OBST XB= 20.16,20.32,0.0,20.16,5.0,41.0/ E wall 

&OBST XB= 0.0,20.0,0.0,20.0,-0.16,0.0/ The ground floor 

 

/Fire compartment walls 

&OBST XB= -10.0,0.0,4.84,5.0,0.0,5.0/ S wall 

&OBST XB= -10.0,0.0,15.0,15.16,0.0,5.0/ N wall 

&OBST XB= -10.16,-10.0,5.0,15.0,0.0,5.0/ W wall 

&OBST XB= -10.0,0.0,5.0,15.0,5.0,5.16/ ceilling 
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&OBST XB= -10.0,0.0,5.0,15.0,-0.16,0.0/ ground 

 

/Balconies & downstand 

&OBST XB=0.0,5.0,0.0,20.0,5.0,5.01, COLOR='BRICK' ,TRANSPARENCY = 0.7/BALCONY 1 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,5.0,6.0, SURF_ID = 'STEEL SHEET'/BALCONY 1 - upstand 

&OBST XB=0.0,0.01,5.0,15.0,4.0,5.0, COLOR='FIREBRICK', SURF_ID = 'STEEL SHEET'/BALCONY 1 - DOWN 

STAND 

&OBST XB=0.0,5.0,0.0,20.0,9.0,9.01, SURF_ID = 'STEEL SHEET'/BALCONY 2 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,9.0,10.0, SURF_ID = 'STEEL SHEET'/BALCONY 2 - upstand 

&OBST XB=0.0,5.0,0.0,20.0,13.0,13.01, SURF_ID = 'STEEL SHEET'/BALCONY 3 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,13.0,14.0, SURF_ID = 'STEEL SHEET'/BALCONY 3 - upstand 

&OBST XB=0.0,5.0,0.0,20.0,17.0,17.01, SURF_ID = 'STEEL SHEET'/ BALCONY 4 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,17.0,18.0, SURF_ID = 'STEEL SHEET'/BALCONY 4 - upstand 

&OBST XB=0.0,5.0,0.0,20.0,21.0,21.01, SURF_ID = 'STEEL SHEET'/BALCONY 5 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,21.0,22.0, SURF_ID = 'STEEL SHEET'/BALCONY 5 - upstand 

&OBST XB=0.0,5.0,0.0,20.0,25.0,25.01, SURF_ID = 'STEEL SHEET'/BALCONY 6 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,25.0,26.0, SURF_ID = 'STEEL SHEET'/BALCONY 6 - upstand 

&OBST XB=0.0,5.0,0.0,20.0,29.0,29.01, SURF_ID = 'STEEL SHEET'/BALCONY 7 - FLOOR 

&OBST XB=4.99,5.0,0.0,20.0,29.0,30.0, SURF_ID = 'STEEL SHEET'/BALCONY 7 - upstand 

&OBST XB=0.0,5.0,0.0,20.0,33.0,33.01, SURF_ID = 'STEEL SHEET'/BALCONY 7 - CEILING FOR BALCONY 

 

/CHANNEL SCREEN - PLUME WIDTH - & OPENING = 10.0M 

&OBST XB = 0.0, 5.0, 4.84, 5.0, 2.5, 5.0, COLOR='BLUE VIOLET',TRANSPARENCY = 0.4/ S CHANNEL 

&OBST XB = 0.0, 5.0, 15.0, 15.16, 2.5, 5.0, COLOR='BLUE VIOLET',TRANSPARENCY = 0.4/ S CHANNEL 

&HOLE XB = 0.0, 4.0, 5.0, 15.0, 0.0, 4.0/ FRONT OPENING 
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/Fire obstclae dimensions 2.5mx2.5mx0.15m 

&OBST XB=-7.5,-5.0,8.75,11.25,0.0,0.15, SURF_IDs='BURNER','INERT','INERT'/Burner location and dimensions 

------------------------------------------------------------ 

/Sensors 

/Slice File 

&SLCF PBX = 5.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBY = 10.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBX = 5.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBX = 2.5, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBX = 5.0, QUANTITY = 'carbon dioxide'/ 

&SLCF PBX = 5.0, QUANTITY = 'carbon monoxide'/ 

&SLCF PBX = 5.0, QUANTITY = 'PRESSURE'/ 

&SLCF PBX = 5.0, QUANTITY = 'oxygen'/ 

&SLCF PBX = 5.0, QUANTITY = 'VELOCITY', VECTOR=.TRUE./ 

&SLCF PBY = 10.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBY = 10.0, QUANTITY = 'VELOCITY', VECTOR=.TRUE./ 

&SLCF PBY = 17.5, QUANTITY = 'VISIBILITY'/ 

&SLCF PBY = 17.5, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBY = 17.5, QUANTITY = 'carbon dioxide'/ 

&SLCF PBY = 17.5, QUANTITY = 'carbon monoxide'/ 

&SLCF PBY = 17.5, QUANTITY = 'PRESSURE'/ 

&SLCF PBX =  7.5, QUANTITY = 'oxygen'/ 

/EXTRA SLCF TO SEE THE PRESSURE DISTRIBUTION AT 2M ABOVE EACH BALCONY 

&SLCF PBZ = 7.0, QUANTITY = 'PRESSURE'/ 

&SLCF PBZ = 11.0, QUANTITY = 'PRESSURE'/ 

&SLCF PBZ = 15.0, QUANTITY = 'PRESSURE'/ 
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&SLCF PBZ = 19.0, QUANTITY = 'PRESSURE'/ 

&SLCF PBZ = 23.0, QUANTITY = 'PRESSURE'/ 

&SLCF PBZ = 7.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBZ = 11.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBZ = 15.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBZ = 19.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBZ = 23.0, QUANTITY = 'VISIBILITY'/ 

&SLCF PBZ = 7.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBZ = 11.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBZ = 15.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBZ = 19.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBZ = 23.0, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBZ = 7.0, QUANTITY = 'carbon dioxide'/ 

&SLCF PBZ = 11.0, QUANTITY = 'carbon dioxide'/ 

&SLCF PBZ = 15.0, QUANTITY = 'carbon dioxide'/ 

&SLCF PBZ = 19.0, QUANTITY = 'carbon dioxide'/ 

&SLCF PBZ = 23.0, QUANTITY = 'carbon dioxide'/ 

&SLCF PBZ = 7.0, QUANTITY = 'carbon monoxide'/ 

&SLCF PBZ = 11.0, QUANTITY = 'carbon monoxide'/ 

&SLCF PBZ = 15.0, QUANTITY = 'carbon monoxide'/ 

&SLCF PBZ = 19.0, QUANTITY = 'carbon monoxide'/ 

&SLCF PBZ = 23.0, QUANTITY = 'carbon monoxide'/ 

&SLCF PBZ = 7.0, QUANTITY = 'oxygen'/ 

&SLCF PBZ = 11.0, QUANTITY = 'oxygen'/ 

&SLCF PBZ = 15.0, QUANTITY = 'oxygen'/ 

&SLCF PBZ = 19.0, QUANTITY = 'oxygen'/ 
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&SLCF PBZ = 23.0, QUANTITY = 'oxygen'/ 

/TEMPERATURE SENSOR FOR COLUMN A, IMMEDIATELY OUTSIDE THE FIRE CELL 

&DEVC XYZ = 5.0, 10.0, 4.7, QUANTITY = 'TEMPERATURE', ID = 'T-A1'/ 0.3M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 4.3, QUANTITY = 'TEMPERATURE', ID = 'T-A2'/ 0.7M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 3.9, QUANTITY = 'TEMPERATURE', ID = 'T-A3'/ 1.1M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 3.5, QUANTITY = 'TEMPERATURE', ID = 'T-A4'/ 1.5M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 3.1, QUANTITY = 'TEMPERATURE', ID = 'T-A5'/ 1.9M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 2.7, QUANTITY = 'TEMPERATURE', ID = 'T-A6'/ 2.3M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 2.0, QUANTITY = 'TEMPERATURE', ID = 'T-A7'/ 3.0M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 1.0, QUANTITY = 'TEMPERATURE', ID = 'T-A8'/ 4.0M BELOW BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 0.0, QUANTITY = 'TEMPERATURE', ID = 'T-A9'/ 5.0M BELOW BALCONY 1 

 

/CHECK LAYER HEIGHT 

&DEVC XB = 5.0, 5.0, 10.0, 10.0, 0.0, 5.0, QUANTITY = 'LAYER HEIGHT', ID = 'LAY-A1'/ 

 

/TEMPERATURE SENSOR FOR COLUMN B, IMMEDIATELY OUTSIDE THE BALCONY 

&DEVC XYZ = 5.0, 10.0, 6.0, QUANTITY = 'TEMPERATURE', ID = 'T-B01'/ 1.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 7.0, QUANTITY = 'TEMPERATURE', ID = 'T-B02'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 8.0, QUANTITY = 'TEMPERATURE', ID = 'T-B03'/ 3.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 10.0, QUANTITY = 'TEMPERATURE', ID = 'T-B04'/ 5.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 11.0, QUANTITY = 'TEMPERATURE', ID = 'T-B05'/ 6.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 12.0, QUANTITY = 'TEMPERATURE', ID = 'T-B06'/ 7.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 14.0, QUANTITY = 'TEMPERATURE', ID = 'T-B07'/ 9.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 15.0, QUANTITY = 'TEMPERATURE', ID = 'T-B08'/ 10.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 16.0, QUANTITY = 'TEMPERATURE', ID = 'T-B09'/ 11.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 18.0, QUANTITY = 'TEMPERATURE', ID = 'T-B10'/ 13.0M ABOVE BALCONY 1 
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&DEVC XYZ = 5.0, 10.0, 19.0, QUANTITY = 'TEMPERATURE', ID = 'T-B11'/ 14.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 20.0, QUANTITY = 'TEMPERATURE', ID = 'T-B12'/ 15.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 22.0, QUANTITY = 'TEMPERATURE', ID = 'T-B13'/ 17.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 23.0, QUANTITY = 'TEMPERATURE', ID = 'T-B14'/ 18.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 24.0, QUANTITY = 'TEMPERATURE', ID = 'T-B15'/ 19.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 26.0, QUANTITY = 'TEMPERATURE', ID = 'T-B16'/ 21.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 27.0, QUANTITY = 'TEMPERATURE', ID = 'T-B17'/ 22.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 28.0, QUANTITY = 'TEMPERATURE', ID = 'T-B18'/ 23.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 30.0, QUANTITY = 'TEMPERATURE', ID = 'T-B19'/ 25.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 31.0, QUANTITY = 'TEMPERATURE', ID = 'T-B20'/ 26.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 32.0, QUANTITY = 'TEMPERATURE', ID = 'T-B21'/ 27.0M ABOVE BALCONY 1 

 

/VISIBILITY SENSOR FOR COLUMN B, IMMEDIATELY OUTSIDE THE BALCONY 

&DEVC XYZ = 5.0, 10.0, 6.0, QUANTITY = 'VISIBILITY', ID = 'V-B01'/ 1.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 7.0, QUANTITY = 'VISIBILITY', ID = 'V-B02'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 8.0, QUANTITY = 'VISIBILITY', ID = 'V-B03'/ 3.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 10.0, QUANTITY = 'VISIBILITY', ID = 'V-B04'/ 5.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 11.0, QUANTITY = 'VISIBILITY', ID = 'V-B05'/ 6.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 12.0, QUANTITY = 'VISIBILITY', ID = 'V-B06'/ 7.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 14.0, QUANTITY = 'VISIBILITY', ID = 'V-B07'/ 9.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 15.0, QUANTITY = 'VISIBILITY', ID = 'V-B08'/ 10.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 16.0, QUANTITY = 'VISIBILITY', ID = 'V-B09'/ 11.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 18.0, QUANTITY = 'VISIBILITY', ID = 'V-B10'/ 13.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 19.0, QUANTITY = 'VISIBILITY', ID = 'V-B11'/ 14.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 20.0, QUANTITY = 'VISIBILITY', ID = 'V-B12'/ 15.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 22.0, QUANTITY = 'VISIBILITY', ID = 'V-B13'/ 17.0M ABOVE BALCONY 1 
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&DEVC XYZ = 5.0, 10.0, 23.0, QUANTITY = 'VISIBILITY', ID = 'V-B14'/ 18.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 24.0, QUANTITY = 'VISIBILITY', ID = 'V-B15'/ 19.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 26.0, QUANTITY = 'VISIBILITY', ID = 'V-B16'/ 21.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 27.0, QUANTITY = 'VISIBILITY', ID = 'V-B17'/ 22.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 28.0, QUANTITY = 'VISIBILITY', ID = 'V-B18'/ 23.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 30.0, QUANTITY = 'VISIBILITY', ID = 'V-B19'/ 25.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 31.0, QUANTITY = 'VISIBILITY', ID = 'V-B20'/ 26.0M ABOVE BALCONY 1 

&DEVC XYZ = 5.0, 10.0, 32.0, QUANTITY = 'VISIBILITY', ID = 'V-B21'/ 27.0M ABOVE BALCONY 1 

 

/TEMPERATURE SENSOR FOR COLUMN C, INSIDE THE BALCONY 

&DEVC XYZ = 0.5, 10.0, 7.0, QUANTITY = 'TEMPERATURE', ID = 'T-C1O'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 2.5, 10.0, 7.0, QUANTITY = 'TEMPERATURE', ID = 'T-C1I'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 0.5, 10.0, 11.0, QUANTITY = 'TEMPERATURE', ID = 'T-C2O'/ 2.0M ABOVE BALCONY 2 

&DEVC XYZ = 2.5, 10.0, 11.0, QUANTITY = 'TEMPERATURE', ID = 'T-C2I'/ 2.0M ABOVE BALCONY 2 

&DEVC XYZ = 0.5, 10.0, 15.0, QUANTITY = 'TEMPERATURE', ID = 'T-C3O'/ 2.0M ABOVE BALCONY 3 

&DEVC XYZ = 2.5, 10.0, 15.0, QUANTITY = 'TEMPERATURE', ID = 'T-C3I'/ 2.0M ABOVE BALCONY 3 

&DEVC XYZ = 0.5, 10.0, 19.0, QUANTITY = 'TEMPERATURE', ID = 'T-C4O'/ 2.0M ABOVE BALCONY 4 

&DEVC XYZ = 2.5, 10.0, 19.0, QUANTITY = 'TEMPERATURE', ID = 'T-C4I'/ 2.0M ABOVE BALCONY 4 

&DEVC XYZ = 0.5, 10.0, 23.0, QUANTITY = 'TEMPERATURE', ID = 'T-C5O'/ 2.0M ABOVE BALCONY 5 

&DEVC XYZ = 2.5, 10.0, 23.0, QUANTITY = 'TEMPERATURE', ID = 'T-C5I'/ 2.0M ABOVE BALCONY 5 

&DEVC XYZ = 0.5, 10.0, 27.0, QUANTITY = 'TEMPERATURE', ID = 'T-C6O'/ 2.0M ABOVE BALCONY 6 

&DEVC XYZ = 2.5, 10.0, 27.0, QUANTITY = 'TEMPERATURE', ID = 'T-C6I'/ 2.0M ABOVE BALCONY 6 

&DEVC XYZ = 0.5, 10.0, 31.0, QUANTITY = 'TEMPERATURE', ID = 'T-C7O'/ 2.0M ABOVE BALCONY 7 

&DEVC XYZ = 2.5, 10.0, 31.0, QUANTITY = 'TEMPERATURE', ID = 'T-C7I'/ 2.0M ABOVE BALCONY 7 

 

/VISIBILITY SENSOR FOR COLUMN C, INSIDE THE BALCONY 
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&DEVC XYZ = 0.5, 10.0, 7.0, QUANTITY = 'VISIBILITY', ID = 'V-C1O'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 2.5, 10.0, 7.0, QUANTITY = 'VISIBILITY', ID = 'V-C1I'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 0.5, 10.0, 11.0, QUANTITY = 'VISIBILITY', ID = 'V-C2O'/ 2.0M ABOVE BALCONY 2 

&DEVC XYZ = 2.5, 10.0, 11.0, QUANTITY = 'VISIBILITY', ID = 'V-C2I'/ 2.0M ABOVE BALCONY 2 

&DEVC XYZ = 0.5, 10.0, 15.0, QUANTITY = 'VISIBILITY', ID = 'V-C3O'/ 2.0M ABOVE BALCONY 3 

&DEVC XYZ = 2.5, 10.0, 15.0, QUANTITY = 'VISIBILITY', ID = 'V-C3I'/ 2.0M ABOVE BALCONY 3 

&DEVC XYZ = 0.5, 10.0, 19.0, QUANTITY = 'VISIBILITY', ID = 'V-C4O'/ 2.0M ABOVE BALCONY 4 

&DEVC XYZ = 2.5, 10.0, 19.0, QUANTITY = 'VISIBILITY', ID = 'V-C4I'/ 2.0M ABOVE BALCONY 4 

&DEVC XYZ = 0.5, 10.0, 23.0, QUANTITY = 'VISIBILITY', ID = 'V-C5O'/ 2.0M ABOVE BALCONY 5 

&DEVC XYZ = 2.5, 10.0, 23.0, QUANTITY = 'VISIBILITY', ID = 'V-C5I'/ 2.0M ABOVE BALCONY 5 

&DEVC XYZ = 0.5, 10.0, 27.0, QUANTITY = 'VISIBILITY', ID = 'V-C6O'/ 2.0M ABOVE BALCONY 6 

&DEVC XYZ = 2.5, 10.0, 27.0, QUANTITY = 'VISIBILITY', ID = 'V-C6I'/ 2.0M ABOVE BALCONY 6 

&DEVC XYZ = 0.5, 10.0, 31.0, QUANTITY = 'VISIBILITY', ID = 'V-C7O'/ 2.0M ABOVE BALCONY 7 

&DEVC XYZ = 2.5, 10.0, 31.0, QUANTITY = 'VISIBILITY', ID = 'V-C7I'/ 2.0M ABOVE BALCONY 7 

 

/FED SENSOR, INSIDE THE BALCONY 

&DEVC XYZ = 2.5, 10.0, 7.0, QUANTITY = 'FED', ID = 'FED-1'/ 2.0M ABOVE BALCONY 1 

&DEVC XYZ = 2.5, 10.0, 11.0, QUANTITY = 'FED', ID = 'FED-2'/ 2.0M ABOVE BALCONY 2 

&DEVC XYZ = 2.5, 10.0, 15.0, QUANTITY = 'FED', ID = 'FED-3'/ 2.0M ABOVE BALCONY 3 

&DEVC XYZ = 2.5, 10.0, 19.0, QUANTITY = 'FED', ID = 'FED-4'/ 2.0M ABOVE BALCONY 4 

&DEVC XYZ = 2.5, 10.0, 23.0, QUANTITY = 'FED', ID = 'FED-5'/ 2.0M ABOVE BALCONY 5 

&DEVC XYZ = 2.5, 10.0, 27.0, QUANTITY = 'FED', ID = 'FED-6'/ 2.0M ABOVE BALCONY 6 

&DEVC XYZ = 2.5, 10.0, 31.0, QUANTITY = 'FED', ID = 'FED-7'/ 2.0M ABOVE BALCONY 7 

 

&TAIL / 


