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ABSTRACT 

According to KROHNE, a 1% oil leak in a 20 inch oil pipeline can cost 450, 000 

barrels and contaminate    10 m2 within 24 hours. Thus, it is compulsory to have a leak 

detection system in some jurisdictions. Despite there are various method of leak 

detection for a pipeline, yet there is no a solution that can fit all. This is due to the fact 

that different pipelines have different orientations and require different approaches. 

SmartBall, a pipeline leak detection device, utilizes acoustic for detecting leaks. It 

moves along the pipeline and detects a distinct leak noise. This device is different from 

a pig in the sense that it does not occupy the whole pipeline inner diameter and it is 

possible to launch it through either a pig launcher or a receive fittings. The ball was 

designed to accommodate sensors for data acquisition, memory card for storage and 

processor for data conversion. Dynamics of the SmartBall moving in a pipe that 

contains a flowing fluid was studied with different bends. For this analysis CFD 

ANSYS Fluent was used. Generally, the results show that as angle of inclination 

increases, the oil velocity required to propel the SmartBall increases.   
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background Study 

An undetected leak in a pipeline is a serious matter. According to KROHNE, a 1% 

leak in a 20 inch line can cost 450, 000 barrels and contaminate 10 square metre within 

24 hours and due to the severity of the consequences, it is compulsory to have some 

kind of leak detection system in some jurisdictions. Despite the various method of 

detecting leaks within a pipeline, there is yet a solution that can fits all. This is due to 

the fact that different pipelines have different orientation and requires different 

approach.  

There are various methods of detecting leaks. Among them are: 

 Self-Propelled Type Tools 

 Pumping/Wire Line Tools  

 Computational Method 

 Free Floater  

Pipeline inspection gauge also known as ‘pig’ is the most popular choice. Pig is a type 

of pumping/wire line tools as it will occupy the whole diameter of the pipeline and 

propulsion depends on the pressure of the product in the pipeline. However, with the 

rapid development in the pipeline leak detection system, there are now a lot of new 

technologies in the market.  

On the other hand, SmartBall, a pipeline leak detection device, utilize acoustic in 

detecting leaks. The SmartBall is a device that floats along the pipelines detecting a 

distinct leak noise. This device is different with a pig in the sense that it does not 

occupy the whole pipeline inner diameter and it is possible to launch it through a pig 

launcher or a receive fittings.  
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1.2 Problem Statements 

Leaks within a pipeline can be very challenging to detect. One of the reasons is because 

pipelines designs and configurations can be very complex; hence it is very important 

for us to have a method that is capable to meet the challenge. While pigging, a method 

that uses Pipeline Inspection Gauge or more known as PIG, is a very popular choice, 

there are limitations and sometimes can be troublesome.  

This is because occasionally during an operation a pig can get stuck due to 

inconsistency in diameter from wax build up. On top of that, since pigs require a certain 

amount of product pressure to propel it, it will be a problem when the pressure is not 

up to the requirement. 

Since the most common method to detect leaks are through inline inspection and there 

are very likely to be stuck in the pipeline, tracking an inline inspection device while 

inspection is very important. In this study, the author will used an inline inspection 

device called SmartBall and study its trajectory and minimum velocity required to push 

it through the pipeline.  

 

1.3 Objectives of the Study  

 To design a SmartBall for pipeline inspection  

 To study the dynamics of SmartBall along oil pipeline with different 

inclinations 
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1.4 Scopes of the Study  

The main scope of study for this project was to identify the velocity required to propel 

the SmartBall through various inclinations. This study covered the fluid dynamics of 

the oil travelling at the speed needed to propel the SmartBall and movement of the 

SmartBall along the pipeline. To achieve the scopes, the project had been divided into 

two important parts; 

The first part was study on SmartBall’s capabilities and applications and also the study 

on fundamental of fluid mechanics in a pipeline. 

The second part of this project was to construct a simulation using ANSYS Fluent to 

simulate the SmartBall movements. The simulation was able to determine the oil 

velocity required to propel the SmartBall along pipeline with multiple inclinations. 

Besides that, the simulation was also be able to convey the dynamics of the fluid and 

SmartBall along the pipeline. 
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CHAPTER 2 

2 Literature Review 

2.1 Overview of the SmartBall  

SmartBall was first introduced in the water pipeline industry. The technology was 

introduced by Pure Technologies, a Canadian technology company. After years of 

experiences in the water pipeline industry, the company had decided to venture in oil 

and gas [20]. While this is fairly a new method of pipeline inspection, the company 

had undergo many projects in the oil and gas industry all over the world and recently, 

they had appointed Applus+ VELOSI Malaysia as their representative in Malaysia. 

Applus+ VELOSI Malaysia is a company that provides asset integrity, quality 

assurance, quality control and various other engineering services to leading oil and gas 

industry worldwide.  

SmartBall is a pipeline inspection device that utilizes acoustic as it method to detect 

pinholes along pipelines [21]. This is because when a pressurized pipelines have leaks, 

a distinct anomalous acoustic activity is produced [20]. The SmartBall will then record 

the acoustic activities that will be analyze once the SmartBall had been retrieved.  

The SmartBall consist of two components (refer Figure 2.1). The first component is 

the core, it is fitted with instruments such as acoustic sensors, tri-axial accelerometer, 

tri-axial magnetometer; GPS synchronized ultrasonic transmitter, temperature and 

pressure transmitter. This instruments will be capsulated in an aluminum shell. The 

second component of the SmartBall is the outer layer which will primarily act as a 

protective measures and it is usually made of polyurethane. Besides providing 

protection, the outer layer will also reduce noise produced from the movement of the 

SmartBall and will also create a larger surface area for propulsion of the SmartBall. 

Although SmartBall characteristics seem similar with intelligent pigs, it is actually not. 

While pigs normally occupy the whole diameter of the pipe that it is travelling in, the 

SmartBall does not and instead it is designed to be smaller than the pipe’s diameter. 

Other than that, the SmartBall travels along the pipeline with some help from the 

pipeline product propulsion to roll through the pipeline it is required to do the 

inspection which in contrast to a pig that will occupy the whole diameter in order to 

generate enough pressure to propel it through the pipeline [20].     
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2.2 SmartBall Deployment and Retrieval  

Since SmartBall is deployed into the flow of pipelines, it will be collected at the 

downstream receiver after inspection is complete (refer Figure 2.2). The location of 

the SmartBall is monitored at known bench marked locations along the pipeline. This 

is to correlate the inspection data with position along the pipeline. There are 2 standard 

methods of deployment of the SmartBall [15]; 

 

2.2.1 Launching through a PIG launcher 

The aluminum core is encapsulated inside a protective outer foam shell (refer Figure 

2.3), which allows the device to be propelled through the pipeline by creating a larger 

surface area for the product flow to make contact with. This method is typically used 

for pipelines that is 16 inch in diameter or larger [15].  

Figure 2.2 SmartBall core and foam shell after extraction [15] 

Figure 2.1 SmartBall Components [20] 
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2.2.2 Launching through a Receive Fittings 

The aluminum core is encapsulated in a polyurethane coating (refer Figure 2.4) and is 

suitable for deployment into pipelines ranging from 4” to 14” in diameter [15].  

 

Figure 2.3 SmartBall tool with foam over shell at extraction [15] 

Figure 2.4 Polyurethane coated SmartBall tool at extraction [15] 
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2.3 Tracking the SmartBall within a Pipeline 

Tracking the location of the SmartBall position is very important in order to produce 

an accurate location of the leak. One of the components that being used to track the 

location of leaks is the accelerometer data. The accelerometer is located in the core 

and it will record the rotation of the SmartBall and then the data will be used to 

determine the angular velocity of the SmartBall (refer Figure 2.5) [15].  

In order to get the location of the leak, the angular velocity will be used to produce 

velocity profile and then will be aligned with the acoustic recording. In fact, to improve 

the precision of the leak location, reference points need to be established. This 

reference points (also referred as markers) will be place along the pipelines. Below are 

the 2 devices that commonly used as markers [15]:  

2.3.1 SmartBall Receivers (SBR) 

A number of these devices will be placed along the pipeline and the function of this 

device is to detect ultrasonic pulses emitted from the SmartBall. The position of the 

SBR along the pipeline will act as a checkpoint because it will records the time the 

SmartBall travels passed it and calculate approximate location of the SmartBall with 

respect to time. SBRs are mounted at the outer surface of the pipeline (refer Figure 

2.6) [15].  

 

 

Figure 2.5 Data from the Accelerometer [15] 
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2.3.2 Above Ground Markers (AGM) 

Any benchmarking device that is range 22 Hz can be used as a marker. The AGMs 

should be placed directly above the pipeline so that the SmartBall’s global positioning 

system (GPS) will be able to log the passage time by measuring the 22 Hz signal 

emitted by the SmartBall. Since the AGMs will act as a checkpoint, the data will then 

be analyzed and then location of the leaks will be able to be determined [15].  

 

 

 

 

 

 

 

 

 

Figure 2.6 The SBR that is connected to Acoustic Sensor [15] 
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2.4 SmartBall Data Gathering and Interpretations  

In the event of leaks within a pressurized pipeline, an acoustic signal will be produced. 

This is because as the pressurized product inside the pipeline escapes to the lower 

pressure atmosphere outside the pipeline which produces a distinct acoustic noise [20]. 

 As the SmartBall travels, it will continuously record the acoustic data of the pipeline. 

When the SmartBall approaches a leak, the intensity of the noise increases and exactly 

at the leak, the acoustic data will reach its peak (refer Figure 2.7). Then, as the 

SmartBall travels away from the leak, the noise intensity will be decreased [15]. 

This acoustic data obtained then compared with the velocity profile deduce from the 

data from the accelerometer. In order to determine the accurate location of the leak, 

the velocity profile will be aligned with the acoustic data so that the location of the 

peak of the acoustic signal which indicates the leak can be determined.  

 

 

 

Figure 2.7 The acoustic data recorded [15] 
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2.5 The SmartBall Specifications  

The SmartBall will be operating in a very challenging environment. Hence it is 

important that SmartBall is designed in such a way that it is up to the challenge. The 

SmartBall can operates at maximum pressure of 2000 psi and at the temperature range 

of -10 degree Celsius to 70 degree Celsius. Moreover, SmartBall will be able to operate 

in crude oil, synthetic crude, and natural gas. 

In order to be able to detect leaks effectively, SmartBall needs to have a leak detection 

threshold of leaks as small as 0.06 LPM and since pipeline can be have a very long 

terrain, the SmartBall requires a battery that can last throughout the inspection and for 

this case, SmartBall can be deploy up to 400 hours [22].  On top of that, SmartBall 

also have different diameters which have different features and the evaluation on 

which one to be deploy is based on the pipe size and length. Table 2.1 shows the 

different specifications of the SmartBall. 

SmartBall® 

Diameter 
4” 6” 8” 10” 12” 

Outer 

Diameter of 

Tool 

3.15” 

(80 mm) 

5.3” 

(135 mm) 

7.125” 

(180 mm) 

8.75” 

(220 mm) 

10.75” 

(275 mm) 

Suitable 

pipe 

diameter 

4” 

(100 mm) 

6” 

(150 mm) 

8” 

(200 mm) 

10” 

(>250 mm) 

12” 

(>300mm) 

Power 

Source 

Lithium 

primary 
Lithium rechargeable 

Maximum 

Run Time 
29.5 hours 55 hours 115 hours 115 hours 400 hours 

Memory 

Capacity 
4 GB 32 GB 32 GB 32 GB 128 GB 

Table 2.1 SmartBall Specifications [22] 
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2.6 Fundamental Concepts of Fluid Flow  

2.6.1 Continuity  

The principle states that the total amount of the fluid travelling throughout the pipe 

will be constant. The principle is similar to conservation of mass where the liquid can 

be created nor destroyed as it flows through a pipeline.  Therefore: 

𝑴 = 𝑽𝒐𝒍 𝒙 𝝆 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕    (Equation 2.1) 

Where; 

𝑀 = 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒, 𝑘𝑔/𝑠 

𝑉𝑜𝑙 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒, 𝑚3/𝑠 

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒, 𝑘𝑔/𝑚3 

From equation 2.1, if we consider the volume flow rate of the product in the pipeline 

as the product of the area of cross section of the pipe and the average liquid velocity, 

the equation can be rewritten as below:  

𝑴 = 𝑨 𝒙 𝑽 𝒙 𝝆 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕    (Equation 2.2) 

Where; 

𝑀 = 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒, 𝑘𝑔/𝑠 

𝐴 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒, 𝑚2 

𝑉 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑚/𝑠 

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒, 𝑘𝑔/𝑚3 

Since liquids are generally incompressible, density will not change appreciably hence 

reducing the equation to  

𝑨𝑽 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕    (Equation 2.3) 
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2.7 Energy Equation 

Consider Figure 2.8 below as an elevated pipeline with fluid flowing from point 1 to 

point 2, elevation at point 1 and 2 are denoted as 𝑧1𝑎𝑛𝑑 𝑧2 respectively. Besides that, 

𝑝1𝑎𝑛𝑑 𝑝2 will denote the pressure at point 1 and 2 and assuming a typical case where 

diameter 1 is different that diameter 2, we will discuss the velocity at 1 and 2.  

Consider a particle of liquid flowing from point 1 with a weight W, this particle can 

be considered to possess a total energy E that have 3 components:  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑜𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑊𝑍1 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 =
𝑊𝑃1

𝛾
 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑜𝑟 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 =
𝑊(𝑉1

2)

2𝑔
 

Where: 

𝛾 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 

Therefore:  

𝐸 =  𝑊𝑍1 +   
𝑊𝑃1

𝛾
+ 

𝑊(𝑉1
2)

2𝑔
   (Equation 2.4) 

Figure 2.8 Energy of liquid in pipe flow 



22 

 

 

Dividing equation 2.4 by W to get total energy per unit weight at point 1: 

𝐻1 =  𝑍1 + 
𝑃1

𝛾
+  

𝑉1
2

2𝑔
   (Equation 2.5) 

Where: 

𝐻1 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 1 

Considering the same amount of energy of liquid particle at point 2, the total energy 

per unit weight at point 2 will be: 

𝐻2 =  𝑍2 +  
𝑃2

𝛾
+  

𝑉2
2

2𝑔
   (Equation 2.6) 

Where: 

𝐻2 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 2 

Due to conservation energy: 

𝐻1 =  𝐻2 

Therefore: 

𝑍1 +  
𝑃1

𝛾
+  

𝑉1
2

2𝑔
=  𝑍2 +  

𝑃2

𝛾
+  

𝑉2
2

2𝑔
 (Equation 2.7) 

Equation 2.7 is one of the form of a Bernoulli’s Equation and in the real practice we 

will need to consider friction loss to the pipe surface and also energy added to the 

system through pumps. Therefore modifying equation 2.7 will result in:  

𝑍1 +  
𝑃1

𝛾
+  

𝑉1
2

2𝑔
+  𝐻𝑝 =  𝑍2 +  

𝑃2

𝛾
+ 

𝑉2
2

2𝑔
+  ∑ 𝐻𝐿 (Equation 2.8) 

Where: 

𝐻𝑝 = 𝑝𝑢𝑚𝑝 ℎ𝑒𝑎𝑑 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 1 

∑ 𝐻𝐿 = 𝑎𝑙𝑙 ℎ𝑒𝑎𝑑 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 1 𝑎𝑛𝑑 2 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 



23 

 

2.8 Inspection Device Malfunctions 

A stuck inspection device can be very costly due to the fact that for a retrieval to be 

done, a shutdown must be initiated and this can cost a huge loss to a company. If the 

inline inspection device does not arrive at its intended destination, most likely it is 

stuck in the pipeline [23]. On June 11, 2004, a pig was stuck in the BP deep-water Gulf 

of Mexico Marlin Tension Leg Platform (TLP) oil export pipeline. The pig was stuck 

approximately nine miles from the Marlin TLP in 1200 feet of water depth and it took 

10 days to remove the pig.   

There are various reasons a pig can get stuck during an operation and among them are 

[23]: 

i. Pipe, flange or a gasket misalignment  

ii. Wax build up causing inconsistency in pipe diameters 

iii. The pig was strongly worn out causing the propellant to flow through it 

resulting in insufficient propulsion. 

iv. Insufficient pressure to propel the pig  

Besides that, tracking an inspection device is very crucial as it used either to locate 

deformities or in case of stuck pig, a location can be determined to retrieve the pig.  
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CHAPTER 3 

3 Methodology 

3.1 Project Methodology 

Throughout this project, the author had designed a method in order to achieve the 

objectives of the project: 

Step 1: Identifying Problem Statements 

In order for a research to initiate, problems need to be identified. This is important 

because it will give the research a purpose to fulfill at the end of the day. Besides that, 

by knowing the problems it will help steer the research into the right direction. In this 

paper, the main problem statement that the author had underlined was about the need 

to study the dynamics of an inline pipeline inspection device and its trajectory during 

inspection.  

Step 2: Setting Up Objectives and Scope of Study 

Once problems were identified, objectives of the research were underlined. For this 

study, the author had underlined a few objectives that he aims to achieve at the end of 

the day. One of his main objective is to design a SmartBall for pipeline inspection and 

the minimum oil velocity required to push the SmartBall through various inclinations. 

Besides that, the author had specified his scope of study for this project.   

Step 3: Information Gathering 

Once problem statement and objectives had been identified, the author gathered as 

much information as possible related to the field of study. Then, he was able to 

understand the field he is studying. In this process, the author gathered the information 

necessary for his study from materials such as research papers, conference paper, 

journals, and books. At the end of the day, the author identified necessary parameters 

(flow related) that will ensure the SmartBall travel throughout the pipeline.   
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Step 4: Design and Run the SmartBall Simulation 

From the information obtained on previous step, the author was able to run simulations 

to study the oil velocity required to propel the SmartBall throughout the pipeline. 

Besides that, the simulation was a tool to study the behavior of the SmartBall 

movement in a pipeline and with the aid of the simulation, the author was able to study 

different scenario of the movement of the SmartBall such as at an elevation and a bent.  

Step 5: Data Interpretations   

Once the simulation had been done, the data collected from the simulation were 

interpreted. This is important as it will determine the outcome of the study. The result 

from the interpretation was used to deduce whether future study need to be done in 

order to refine the study.  

Step 6: Developing Conclusion and Recommendations   

Based on the outcome of the simulation, the author developed conclusions of his study 

and recommendations. This will be crucial as this is where the author decides whether 

the objectives set in the initial stage of his study are met or not. Besides, based on his 

study, the author will also be able to make recommendations that will improve the 

outcome of future study. 

`

 

Figure 3.1 Summary of Project Methodology 

Identifying 
Problem 

Statements

Setting Up 
Objectives and 
Scope of Study

Information 
Gathering

Design a 
Simulation

Data Collection 
and Interpretations

Develop 
Conclusion and 

Recommendations 
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3.2 Simulation Methodology 

For this project, the author had used ANSYS Fluent as his simulation tool. One of the 

main aim of the simulation was to predict the trajectory of the SmartBall being propel 

by oil flow along a pipeline. The flow was assumed to be fully developed and the 

software uses Lagrangian reference frame to analyze the model.  

 

Step 1: Drawing the Geometries 

For this project the author had created seven pipe geometries; basically a pipe section 

of one meter length with 7 angles of inclination. The angles that he had designed for 

are 0°, 15°, 30°, 45°, 60°, 75°, and 90° (refer Figure 3.2 to 3.8).  The pipe diameter is 

set to be 4.026 inch and total length is 2 meter with bend starting after 1 meter.  

 

 

 

 

Figure 3.2 Geometry 1 with 0° degrees inclination 
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Figure 3.3 Geometry 2 with 15° degrees inclination 

Figure 3.4 Geometry 3 with 30° degrees inclination 
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Figure 3.5 Geometry 4 with 45° degrees inclination 

Figure 3.6 Geometry 5 with 60° degrees inclination 
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Step 2: Meshing the Geometries 

Meshing is one of the most critical steps in a simulation. In order to yield the best result 

for the simulation, a right meshing approach need to be done, too many number of 

cells will result in long solving duration while too few will result in inaccurate results. 

Figure 3.7 Geometry 6 with 75° degrees inclination 

Figure 3.8 Geometry 6 with 90° degrees inclination 
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For this project, the author had used the cut cell Cartesian meshing which will 

generates a high percentage of hexahedral cells to produce accurate fluid flow results.  

Besides that, to verify the meshing accuracy, the author had done analysis on the 

statistics of mesh element quality and aspect ratio for each case. If the result of the 

analysis is unsatisfactory, the author reduced the mesh size until a satisfactory meshing 

is achieved. The aspect ratio need to be as minimum as possible while element quality 

need to be as maximum as possible. Figure 3.10 and 3.11 is the analysis run for 

geometry 1. 

Step 3: Setting Up Simulation Parameters and Run Calculations 

Once meshing had been satisfactory, the simulation parameters is being set up. The 

SmartBall has a diameter of 0.08 meter and mass of 0.5 kg and was injected at the 

horizontal end of the pipe section (inlet). The velocity of the oil flow was initialized 

as 0.25 m/s and increases 0.01 m/s until the SmartBall managed to travel through the 

pipe section.  Once parameters had been set up, the calculation had been run until 

solution is converged. 

Step 4: Yielding Results 

Once calculation is done, the results can be yield. For this project the result needed is 

the fluid velocity contour, fluid pressure contour and the SmartBall velocity contour. 

Figure 3.9 shows the flow chart of the simulation process. 
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3.3 The Design of SmartBall  

The design process of the project was done in two phases: conceptual design and 

detailed design. Conceptual design was done by drawing multiple hand sketches and 

the best design concept will be selected. The best conceptual design was used to create 

a detailed design using CATIA. 

 

Figure 3.9 Simulation Process 
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Figure 3.10 Bar chart of Aspect Ratio VS Number of Elements for Geometry 1 
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Figure 3.11 Bar chart of Element Quality VS Number of Elements for Geometry 1 
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3.4 Project Milestones 

 

Milestone 1 Determining Necessary Parameters for Simulation 

Duration 18th – 20th of June 2014 

Description 
The author will established and finalize the key 

parameters for his study before running simulations 

 

Milestone 2 Design and Run the SmartBall Simulation  

Duration 20th – 30th of June 2014 

Description 

The author will design and run the SmartBall simulation 

in order to study the behavior of the SmartBall movement 

within a pipeline.  

 

Milestone 3 Data Interpretation  

Duration 30th of June – 15th of July 2014 

Description 

The author will interpret the data obtained from the 

simulation executed and will determine the outcome of 

the study 

 

Milestone 4 Develop Conclusion and Recommendations 

Duration 15th – 25th of July 2014 

Description 

The author will finalize the outcome of the experiment 

and decide whether the objectives set are met or not. He 

will also make recommendations in order to refine the 

experiment.  
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3.4 Project Timeline (FYP 1) 

NO TASK 
JANUARY FEBRUARY MARCH APRIL MAY  

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1.0 

Pipeline Leak Detection System Study                                         

1.1  Outsource Reading Materials                                         

1.2  Compose Project Proposal                                         

1.3  Submit Project Proposal to Supervisors                                         

2.0 

Project Preliminary                                         

2.1  Conduct research on software options                                         

        2.1.1  Catia (3D Modelling Software)                                         

        2.1.2  AutoCAD (3D CAD Modelling)                                         

        2.1.3  ANSYS (Modelling and Simulation)                                         

2.2  ANSYS Training                                         

2.3  Background Study of the SmartBall Concept                                          

2.4  Identifying Necessary Parameters to Achieve Objectives                                         

3.0 

Project Execution                                         

3.1  Design the SmartBall                                         

3.2  Run Simulation of the SmartBall                                         

4.0 

Project Analysis                                         

4.1 Data Collection from the Simulation                                         

4.2 Data Analysis                                         

5.0 

Project Finalization                                         

5.1  Develop Conclusion and Recommendations                                          

5.2  Final Report Preparation                                          
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3.5 Project Timeline (FYP 2) 

NO TASK 
MAY  JUNE JULY AUGUST  SEPTEMBER 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1.0 

Pipeline Leak Detection System Study                                         

1.1  Outsource Reading Materials                                         

1.2  Compose Project Proposal                                         

1.3  Submit Project Proposal to Supervisors                                         

2.0 

Project Preliminary                                         

2.1  Conduct research on software options                                         

        2.1.1  Catia (3D Modelling Software)                                         

        2.1.2  AutoCAD (3D CAD Modelling)                                         

        2.1.3  ANSYS (Modelling and Simulation)                                         

2.2  ANSYS Training                                         

2.3  Background Study of the Smartball Concept                                          

2.4  Identifying Necessary Parameters to Achieve Objectives                                         

3.0 

Project Execution                                         

3.1  Design the SmartBall                                         

3.2  Run Simulation for the SmartBall                                          

4.0 

Project Analysis                                         

4.1 Data Collection from the Simulation                                         

4.2 Data Analysis                                         

 

Project Finalization                                         

5.1  Develop Conclusion and Recommendations                                          

5.2  Final Report Preparation                                          
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CHAPTER 4 

4 Results and Discussion 

4.1 Modelling Development 

4.1.1 Geometries Drawing  

The author had model a pipe section with seven different inclinations. The pipe 

sections have 4 inch diameter with one meter in length. The inclination set were 0°, 

15°, 30°, 45°, 60°, 75°, and 90°.  The reason the angles were chosen is because in a 

pipeline, the SmartBall may have to travel along various path and one of the most 

challenging path that the SmartBall needs to travel could be through an incline path. 

Hence, the author had decided to design a simulation which will test whether the 

SmartBall will be able to travel through the incline path with specified mass flow rate 

of fluid in this case oil.  

4.1.2 Meshing the Geometries 

Meshing is one of the most important steps in a CFD simulation as it will determine 

the accuracy. Two factors that need to be look at when checking the accuracy of a 

meshing are aspect ratio and element quality.  

4.1.2.1 Aspect Ratio VS Number of Elements 

In any CFD simulations, there will be a certain degree of errors due to the evaluation 

of continuous problems using discrete analysis.  Therefore, steps need to be taken in 

order to minimize this error and one way to judge the errors in a simulation is through 

aspect ratio. Aspect ratio is defined as the ratio of longest dimension to the shortest 

dimension of a quadrilateral element in a mesh. As the aspect ratio increases, the 

accuracy of simulation decreases. Based on Figure 3.10, total aspect ratio is less than 

9.12 and most of the elements have an aspect ratio between 1.22 and 2. This shows 

that the simulations were within acceptable range of accuracy and this also applies for 

the rest of the geometries. 
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4.1.2.2 Element Quality VS Number of Elements 

Besides aspect ratio, element quality can also be used to judge the magnitude of errors 

in the simulation. Element quality shows the generated mesh quality. A mesh with 

high percentage of quality will result in better accuracy and hence producing a reliable 

simulation. Based on Figure 3.11, majority of the elements in geometry 1 have more 

than 90 percent quality which shows that the simulation is within an acceptable margin 

of errors and this is also the same for the rest of the geometries. 

4.1.3 Simulation Calculations and Assumptions 

The setup used was the Discrete Phase Model (DPM) in ANSYS Fluent. DPM is 

designed to track motion of a particle in a flow. The particle can be a fluid, gas or solid. 

This method is also known as the Lagrangian setup as it is based on Lagrangian 

reference frame.  

Lagrangian reference frame is an approach of tracking position and velocity of each 

individual particle and take it to be a fixed identity or in other words each particles has 

its own x,y and z coordinate.  

In this setup, the flow was assumed to be a fully developed flow and the movement 

of the SmartBall is being calculated using equation 4.1 below:   

𝑑𝑢𝑖
𝑝

𝑑𝑡
= 𝐹𝐷(𝑢𝑖 − 𝑢𝑝) + 

𝑔𝑖(𝜌𝑝− 𝜌)

𝜌𝑝
+ 

𝐹𝑖

𝜌𝑝
                      (Equation 4.1) 
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4.2 SmartBall Design 

In order to replicate this technology, the author need to be able to proposed a SmartBall 

design that will be able to perform its function in detecting leaks. The fundamental 

part of the SmartBall is its core. Figure 4.1 is the proposed design of the SmartBall 

core. 

 

Figure 4.1 The SmartBall Core Design 

Based on the design, the author had placed 6 crucial components in the core. The first 

component was the power cell which is the source of power for the core. There was 

also a microprocessor in the core to process and converts the data received from the 

acoustic and pressure sensors to be stored in the memory card.  

On top of that, there were 2 sensors which are omnidirectional acoustic sensor to detect 

the acoustic noise produced by leaks and pressure sensors to get evaluate the pressure 

along the pipeline.  Finally, the breadboard is a construction based where all the 

electronics component will be mounted. 

Since positioning of the SmartBall during an inspection is one of the most critical 

element in determining the position of a leak, the author would like to suggest that a 

‘checkpoint’ being placed along the pipeline. This ‘checkpoint’ is actually the places 

where we will place frequency emitting device so that the frequency can be pick up by 

the acoustic sensors to mark the position of the SmartBall in time. The frequency need 

to be distinct so that it will not be mistaken as a leak.  
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4.3 Forces Acted on the SmartBall  

Figure 4.2 shows the forces acted on the SmartBall as it is being deploy in a pipeline. 

Force due to gravity and force due to buoyancy are basically constant. On the other 

hand the lift and drag force depends on the flow conditions.  

Lift force are forces acting perpendicular to the direction of the relative motion of the 

fluid. It is created due to different pressure on opposite sides of an object due to fluid 

flowing past the object. On the other hand, buoyant force comes from the pressure 

exerted on the object by the fluid. Because the pressure increases as the depth 

increases, the pressure on the bottom of an object is always larger than the force on the 

top - hence the net upward force. Besides that, drag forces are the resistive forces acting 

on a body moving through a fluid while gravitational forces are the forces resultant 

from gravity.  

In order to move the SmartBall the lift and buoyant force need to be able to overcome 

the gravitational force. One way to make it possible is by increasing the velocity of oil 

which will increase lift force.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Forces acting on the SmartBall 
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4.4 Simulation Results 

For the project, the author had obtain 3 type of results which are:  

i. The oil velocity contours 

ii. The oil pressure contours 

iii. The SmartBall’s velocity contours 

4.4.1 The Oil Velocity Contours 

Based on the result obtained from the simulation, generally for all of the cases, there 

were no separation of the oil flow on the horizontal part, however for cases with more 

than 0° degrees of inclinations, there were separation region at the bend. This is 

because when a flowing fluid approaches a bend, there will be force acting radially 

inward on the fluid that will caused centripetal acceleration and this is similar to a car 

that been thrown off the road when entering a corner too fast. After the bend, the faster 

moving portion of oil is being displaced outward. This is due to inertial effects.  

 

Figure 4.3 Oil Velocity Contour for 0° degrees inclination  

The final oil velocity at inlet set for 0° degrees inclination that was able to push the 

SmartBall through the pipeline was 0.50 m/s. Based on the contour in Figure 4.3, the 

high velocity region was at the middle section of the pipe while the region near the 

walls has lower velocity. This is due to friction loss between the oil and the wall.      
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Figure 4.4 Oil Velocity Contour for 15° degrees inclination 

The final oil velocity at inlet set for 15° degrees inclination that was able to push the 

SmartBall through the pipeline was 1.75 m/s. Based on the contour in Figure 4.4, on 

the horizontal part, the high velocity region was at the middle section of the pipe while 

the region near the walls has lower velocity. This is due to friction loss between the oil 

and the wall. However, at the bend, separation occurs. Since the inclination angle was 

small the separation region is relatively small.     

 

Figure 4.5 Oil Velocity Contour for 30° degrees inclination 
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The final oil velocity at inlet set for 30° degrees inclination that was able to push the 

SmartBall through the pipeline was 1.90 m/s. Based on the contour in Figure 4.5, on 

the horizontal part, the high velocity region was at the middle section of the pipe while 

the region near the walls has lower velocity. This is due to friction loss between the oil 

and the wall. However, at the bend, separation occurs. Since the inclination angle was 

bigger compared to 15° degrees inclination, the separation region is relatively bigger.     

 

Figure 4.6 Oil Velocity Contour for 45° degrees inclination 

 

The final oil velocity at inlet set for 45° degrees inclination that was able to push the 

SmartBall through the pipeline was 1.90 m/s. Based on the contour in Figure 4.6, on 

the horizontal part, the high velocity region was at the middle section of the pipe while 

the region near the walls has lower velocity. This is due to friction loss between the oil 

and the wall. However, at the bend, separation occurs. Since the inclination angle was 

bigger compared to previous cases, the separation region was relatively bigger.     
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Figure 4.7 Oil Velocity Contour for 60° degrees inclination 

The final oil velocity at inlet set for 60° degrees inclination that was able to push the 

SmartBall through the pipeline was 2.20 m/s. Based on the contour in Figure 4.7, on 

the horizontal part, the high velocity region was at the middle section of the pipe while 

the region near the walls has lower velocity. This was due to friction loss between the 

oil and the wall. However, at the bend, separation occurs. Since the inclination angle 

was bigger compared to previous cases, the separation region was relatively bigger. 

 

Figure 4.8 Oil Velocity Contour for 75° degrees inclination 
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The final oil velocity at inlet set for 75° degrees inclination that was able to push the 

SmartBall through the pipeline was 2.20 m/s. Based on the contour in Figure 4.8, on 

the horizontal part, the high velocity region was at the middle section of the pipe while 

the region near the walls has lower velocity. This was due to friction loss between the 

oil and the wall. However, at the bend, separation occurs. Since the inclination angle 

was bigger compared to previous cases, the separation region is relatively bigger. 

 

Figure 4.9 Oil Velocity Contour for 90° degrees inclination 

 

The final oil velocity at inlet set for 90° degrees inclination that was able to push the 

SmartBall through the pipeline was 4.0 m/s. Based on the contour in Figure 4.9, on 

the horizontal part, the high velocity region was at the middle section of the pipe while 

the region near the walls has lower velocity. This was due to friction loss between the 

oil and the wall. However, at the bend, separation occurs. Since the inclination angle 

was bigger compared to previous cases, the separation region was relatively bigger. 
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4.4.2 The Oil Pressure Contours 

For the purpose of this simulation, the pressure was initialized and fixed at 3 bar. 

Overall, the pressure drop between inlet and outlet were small. However, in all of the 

pipes with more than 0° degrees inclination, a high pressure region was observed at 

the bend. This is because the bend causes sudden change of direction and due to inertia, 

it will be difficult for the fluid to change direction as per the sudden change of direction 

which causes a high impact collision between the oil particle and the boundary walls 

at the bend. The greater angle of the bend and the speed of oil, the higher the pressure 

experienced at the bend.     

 

Figure 4.10 Oil Pressure Contour for 0° degrees inclination 

Based on Figure 4.10, the pressure across the region decreases as the distance 

increases. Since there is no elevation or bend, there were minimum pressure drop.  
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Figure 4.11 Oil Pressure Contour for 15° degrees inclination 

Figure 4.11 shows the oil pressure across the pipe with 15° degrees inclination. As the 

distance increases, the pressure decreases. However, a relatively higher pressure 

region was developed at the outer part of the bend and as the distance from the bend 

increases, pressure decreases.  

 

Figure 4.12 Oil Pressure Contour for 30° degrees inclination 

Figure 4.12 shows the oil pressure across the pipe with 30° degrees inclination. As the 

distance increases, the pressure decreases. However, a relatively higher pressure 

region was developed at the outer part of the bend and as the distance from the bend 

increases, pressure decreases. Besides that, the high pressure region at the bend was 

also bigger compared to the previous pipe with smaller inclination.    
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Figure 4.13 Oil Pressure Contour for 45° degrees inclination 

Figure 4.13 shows the oil pressure across the pipe with 45° degrees inclination. As the 

distance increases, the pressure decreases. However, a relatively higher pressure 

region was developed at the outer part of the bend and as the distance from the bend 

increases, pressure decreases. Besides that, the high pressure region at the bend was 

also bigger compared to the previous pipe with smaller inclination.    

 

Figure 4.14 Oil Pressure Contour for 60° degrees inclination 
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Figure 4.14 shows the oil pressure across the pipe with 60° degrees inclination. As the 

distance increases, the pressure decreases. However, a relatively higher pressure 

region was developed at the outer part of the bend and as the distance from the bend 

increases, pressure decreases. Besides that, the high pressure region at the bend was 

also bigger compared to the previous pipe with smaller inclination.    

 

 

Figure 4.15 Oil Pressure Contour for 75° degrees inclination 

Figure 4.15 shows the oil pressure across the pipe with 75° degrees inclination. As the 

distance increases, the pressure decreases. However, a relatively higher pressure 

region was developed at the outer part of the bend and as the distance from the bend 

increases, pressure decreases. Besides that, the high pressure region at the bend was 

also bigger compared to the previous pipe with smaller inclination.    
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Figure 4.16 Oil Pressure Contour for 90° degrees inclination 

Figure 4.16 shows the oil pressure across the pipe with 90° degrees inclination. As the 

distance increases, the pressure decreases. However, a relatively higher pressure 

region was developed at the outer part of the bend and as the distance from the bend 

increases, pressure decreases. Besides that, the high pressure region at the bend was 

also bigger compared to the previous pipe with smaller inclination.   
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4.4.3 The SmartBall Velocity Contours 

For this simulation, the SmartBall initial velocity was set to be 0 m/s because we want 

it to rely solely on oil propulsion. SmartBall is different than the conventional PIG 

because it doesn’t occupy the whole pipe diameter and does not rely on pressure 

propulsion to move along a pipeline. SmartBall is a device which moves freely in a 

pipeline recording acoustic activities as it travels.  

 

 

Figure 4.17 The SmartBall Velocity Contour for 0° degrees inclination 

Figure 4.17 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case was 0.5 m/s and based on Figure 4.17, the 

average SmartBall velocity was between 0.29 m/s and 0.40 m/s which was slower than 

the velocity of oil. This is because the SmartBall is denser than oil, hence it is relatively 

heavier which results to SmartBall lower velocity compared to oil velocity.  
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Figure 4.18 The SmartBall Velocity Contour for 15° degrees inclination 

 

Figure 4.18 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case was1.75 m/s and based on Figure 4.18, the 

average SmartBall velocity was between 1.06 m/s and 1.59 m/s which was slower than 

the velocity of oil. This is because the SmartBall is denser than oil, hence it is relatively 

heavier which results to SmartBall lower velocity compared to oil velocity.  

 

Figure 4.19 The SmartBall Velocity Contour for 30° degrees inclination 
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Figure 4.19 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case was 1.90 m/s and based on Figure 4.19, 

the average SmartBall velocity was between 1.27 m/s and 1.90 m/s which was slower 

than the velocity of oil. This is because the SmartBall is denser than oil, hence it is 

relatively heavier which results to SmartBall lower velocity compared to oil velocity.  

 

 

Figure 4.20 The SmartBall Velocity Contour for 45° degrees inclination 

 

Figure 4.20 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case was 1.90 m/s and based on Figure 4.20, 

the average SmartBall velocity was around 1.34 m/s which was slower than the 

velocity of oil. This is because the SmartBall is denser than oil, hence it is relatively 

heavier which results to SmartBall lower velocity compared to oil velocity. However, 

there were very small regions has a speed around 2.02 m/s, slightly higher than the 

velocity of the oil because of it travels passed high pressure region at the bend which 

help propel the SmartBall as based on Figure 4.13, the bend experienced a bigger 

higher pressure region compared to previous cases.  
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Figure 4.21 The SmartBall Velocity Contour for 60° degrees inclination 

Figure 4.21 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case was 2.20 m/s and based on Figure 4.21, 

the average SmartBall velocity was around 1.64 m/s which was slower than the 

velocity of oil. This is because the SmartBall is denser than oil, hence it is relatively 

heavier which results to SmartBall lower velocity compared to oil velocity. However, 

there were very small regions has a speed around 3.29 m/s, slightly higher than the 

velocity of the oil because of it travels passed high pressure region at the bend which 

help propel the SmartBall as based on Figure 4.14, the bend experienced a bigger 

higher pressure region compared to previous cases.  
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Figure 4.22 The SmartBall Velocity Contour for 75° degrees inclination 

Figure 4.22 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case was 2.20 m/s and based on Figure 4.22, 

the average SmartBall velocity was around 1.81 m/s which was slower than the 

velocity of oil. This is because the SmartBall is denser than oil, hence it is relatively 

heavier which results to SmartBall lower velocity compared to oil velocity. However, 

there are very small regions has a speed around 3.62 m/s, slightly higher than the 

velocity of the oil because it travels passed high pressure region at the bend which help 

propel the SmartBall as based on Figure 4.15, the bend experienced a bigger higher 

pressure region compared to previous cases. 
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Figure 4.23 The SmartBall Velocity Contour for 90° degrees inclination 

Figure 4.23 shows the SmartBall trajectory along the pipeline as it travels with oil flow 

propulsion. The velocity of oil for this case is 4.00 m/s and based on Figure 4.23, the 

average SmartBall velocity was around 3.89 m/s which was slower than the velocity 

of oil. This is because the SmartBall is denser than oil, hence it is relatively heavier 

which results to SmartBall lower velocity compared to oil velocity. However, there are 

very small regions has a speed of around 5.84 m/s, slightly higher than the velocity of 

the oil probably because it travels passed high pressure region at the bend which help 

propel the SmartBall as based on Figure 4.16, the bend experienced a bigger higher 

pressure region compared to previous cases. 

  



57 

 

Table 4.1 shows the summary of the results obtained from the simulation. Generally 

as the angle of inclination increases, the velocity of oil required to push the ball 

increases and the average velocity of SmartBall are less than the velocity of oil.  

 

Angle of Inclination  

(° degree) 

Velocity of Oil (m/s) 
Average SmartBall 

Velocity Range (m/s) 

0 0.5 0.29 – 0.40 

15 1.75 1.06 – 1.59 

30 1.9 1.27 – 1.90 

45 1.9 Around 1.34 

60 2.2 Around 1.64 

75 2.2 Around 1.81 

90 4 Around 3.89 

Table 4.1 Summary of the Results
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CHAPTER 5 

5 Conclusion and Recommendations  

5.1 Conclusion 

Despite the importance of inspection, steps need to be taken to avoid inspection device 

malfunction. Tracking an inspection device in this case, the SmartBall will be crucial 

in order to not only locate the leaks but also to track it in case it got stuck. Since 

SmartBall doesn’t occupy the whole diameter of the pipe like the conventional PIG, 

necessary parameters need to be determined to avoid it being stuck in a pipeline.  

Besides that, based on observations from the simulation results, the SmartBall work 

best at inclinations below 60° as it does not wobble too much which may distort the 

acoustic recordings. However, steps can be taken to ensure it works above 60°, such 

as increase the diameter of the outer layer to increase propulsion area and reduce 

wobbling.  

From this study, the author had design a SmartBall and was able to predict the velocity 

required to propel the SmartBall through the pipeline with various inclination. The 

simulation was also able to display probable trajectory of the SmartBall movement 

along the pipeline.   

5.2 Recommendation 

Based on the study conducted, there are a few recommendations that need to be 

considered in order to improve the foundation of this study: 

i. Conduct a laboratory scale experiment 

In order to validate the results of this simulation, a prototype need to be 

constructed and tested in a laboratory. This is important because we need to 

make sure that the SmartBall will be able to travel along a pipeline in its real-

case application. 

ii. Conduct an experiment based on a case study 

A case study based on a pipeline used in the oil and gas industry need be taken 

as reference so that a more realistic evaluation can be done.  
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