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ABSTRACT 

 

The inability of natural drive mechanism of the reservoir to produce oil to the surface 

is the major problem faced by the oil and gas industry today. This research is mainly 

focusing on the method to recover the remaining oil after secondary recovery which is 

the Enhanced Oil Recovery (EOR) method. EOR method is essential in oil and gas 

industry nowadays since the natural drive mechanism can no longer bring up oil to the 

surface after time of production increases. In this study, the influence of magnetic 

nanoparticles on the oil recovery efficiency is being observed. The magnetic 

nanoparticles that are being used is Nickel-Zinc-Ferrites. The main objectives is to 

synthesis Nickel-Zinc-Ferrite magnetic nanoparticles into five different ratios of 

Nickel to Zinc by using Sol-Gel method. Then, the nanoparticles will be characterized 

using Thermal Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), Field 

Emission Scanning Electron Microscope (FESEM) and Vibrating Sample 

Magnometer (VSM). The sample of X=0.5 shows highest magnetization which is 61.9 

emu/g out of five samples which is annealed at 900OC. The samples that annealed at 

900 OC shows better magnetic saturation compared to the samples annealed at 700OC. 

Later, the nanofluid will be prepared using the deionised water as the dispersing fluid 

to be injected into the core sample in the core flooding experiment. This core flooding 

experiment will measure the oil recovery efficiency by evaluating the produced oil 

from the core sample after the secondary recovery stage. The sample X=0.5 shows 

highest oil recovery which is about 16% from Residual Oil in Place (ROIP). Thus, the 

highest magnetization among the five samples of the magnetic nanoparticles which 

will affect the oil recovery was determined and the objective was achieved. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

Today, the technology of enhanced oil recovery (EOR) has been developed in order to 

extract the remaining oil in the reservoir after the primary and secondary recovery. The 

third recovery or EOR is a technique that can recover about 30%-40% of remaining 

oil in the reservoir [1] thus can increase the revenue for the oil and gas company. To 

recover the oil after the first and second recovery, various conventional oil recovery 

techniques has been introduced and used. For instance, the injection of gases such as 

CO2 is injected in the reservoir by compressor to achieve miscibility in order to move 

the oil to the production zone [2]. Besides, there are also chemical injection such as 

surfactant and polymer to increase the mobility of the oil by decreasing the interfacial 

tension between oil and water.  

The high temperature and high pressure in the reservoir creates difficulties to recover 

the oil using the conventional oil recovery methods. For example, the chemical or gas 

injection to recover the oil cannot be applied at the high temperature and high pressure 

condition as the injection agents start to change the properties under the condition [3]. 

The more the depth, the higher the temperature and pressure thus it will be more 

difficult and creates more challenges to bring the oil to the surface.
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The development of nanoparticles has been a new phenomenon where recent research 

have shown that the nanoparticles can alter a certain factor in the oil properties and 

formations thus can bring such a huge benefit for oil recovery. Binshang has reported 

that reservoir that have water wet formation produce better than oil wet formation. 

These nanoparticles can change the wetting phase in the reservoir hence helps in EOR 

recovery [4]. 

In recent studies, magnetic nanoparticles have shown positive results in oil recovery 

efficiency.  The nickel-zinc-ferrite is being used as an oil recovery efficiency agent. 

The Nickel-Zinc-Ferrite is being used because it has shown the following properties 

such as low eddy current, high resistivity and high saturation magnetization [5] that 

helps in the oil recovery efficiency. 

 

1.2 Problem Statement 

Nowadays, the oil and gas industry are having a challenging problem in recover the 

remaining oil in the well to fulfil the hydrocarbon demand in around the world. The 

production of crude oil is decreasing because there is not enough pressure to bring the 

crude oil to the surface even the natural drive of the oil production cannot helps in 

produce the oil in large quantity. As this problem occur, many oil companies had 

involved with research to help increase the production by using different techniques in 

Enhanced Oil Recovery (EOR) method. In recent years, many different types of 

magnetic nanoparticles have been used and tested in EOR technique for instance Zinc 

Oxide, Ferro fluid, Zirconium Oxide, Tin oxide and Silicon Oxide [6]. 

The oil in the reservoir after the primary and secondary recovery usually have high 

interfacial tension and high viscosity to move in the porous media. Due to high 

pressure also, this remaining oil in the reservoir, basically around 30%-40% balance 

need to be extracted in order to achieve the economic value. Based on one of the 

research that study the effect on magnetisation on drilling fluid, the recovery of oil is 

higher with injection of optimized drilling fluid to achieve higher recovery [7].  
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This research will study on the effect of the magnetisation of the nanoparticles, Nickel-

Zinc-Ferrite on the recovery. The Nickel-Zinc-Ferrite with various composition of 

Nickel and Zinc exhibit different properties such as thermal, electrical, chemical 

properties and magnetisation; the most important parameter in this research [7]. The 

composition of the Nickel-Zinc-Ferrite are synthesized with the Sol-Gel method with 

different composition ratio of nickel and zinc to have a different magnetisation effect. 

Then, the Nickel-Zinc-Ferrite will be tested in core-flooding experiment to see the 

efficiency of different ratio of nickel to zinc in recovery of oil. 

 

1.3 Objectives and Scope of Study  

1.3.1 Objectives 

1) To synthesis the nickel-zinc-ferrite nanoparticles at five different ratio of Nickel to 

Zinc using the Sol-Gel method. 

2) To determine the magnetisation of five samples of Nickel-Zinc-Ferrite nanoparticles  

3) To study the effect of magnetisation of the nanoparticles on the oil recovery 

efficiency using core flooding experiment. 
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1.3.2 Scope of Study 

In this study, the magnetisation effect on the recovery of residual oil in the reservoir 

will be validated. This research will focus on Nickel-Zinc-Ferrite where this 

nanoparticles will be synthesized using the Sol-Gel method. The general formula for 

Nickel-Zinc-Ferrite is Ni1-x Znx Fe2 O4. Through this experiment, five samples will be 

produced with the changing value of x which are x=0, x=0.25, x=0.50 and x=0.75 and 

x=1. So, the samples will have different magnetisation that will be measured using the 

Vibrating Sample Magnetometer (VSM) Testing. 

In order to investigate the structure of nickel-zinc-ferrite, the samples will be 

characterized using the x-ray diffraction (XRD) and Field Emission Scanning Electron 

Microscope (FESEM) technique. The XRD will determine the structural phase of the 

prepared sample [8] while the FESEM will establish the crystallography of the 

nanoparticles such as crystallite phase, size and structure [9].  

Then the sample will be tested using Vibrating Sample Magnetometer (VSM) to 

measure the magnetisation of the five samples to determine the magnetisation of 

different ratio of Nickel to Zinc is achieved. All the data of XRD, FESEM and VSM 

testing will be recorded prior to the result of the research to see whether the 

magnetisation will have effect to the nanoparticles in recovery of the oil in the 

reservoir. To validate the objective of this research to recover more oil, core flooding 

experiment will be conducted to test whether the magnetisation of Nickel to Zinc ratio 

has effect or not on the recovery efficiency. In the core flooding experiment, the 

samples will be dispersed in the ionised water as the base fluid (solvent) to form the 

nanofluid. Then the nanofluid will be injected into the compacted glass bead (core 

sample) and the amount of oil recovered from the core will be evaluated 
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Figure 2.1: EOR process in field [2] 

CHAPTER 2 

  LITERATURE REVIEW 

2.1 Enhanced Oil Recovery (EOR) 

Enhanced Oil Recovery (EOR) has been a newest technology in recovery the oil in the 

reservoir. In Indonesia oil production had decreased from 1.434 million barrels per day 

in 1995 to 1 million barrels per day in 2007 which about 15% decline from year to 

year [10]. But, with EOR, the declination had been reduced to 6.7% per year hence 

increase back the profit. EOR is the methods used to improve the oil extraction by 

injecting different kind of materials which can change the physics and chemical 

properties of fluid in the reservoir rocks.  

There are three types of oil production recovery to get the maximum product in oil 

exploration and production (E&P).  

i. Primary Recovery = Production of oil only use the natural power to bring the 

oil to the surface for instance natural water movement, gas expansion and 

changes in pressure. 

ii. Secondary Recovery = Introduce the gas or water injection for oil recovery to 

push the oil from the rock as natural drives is decreasing. The basic concept is 

to maintain the pressure of the reservoir as the primary recovery 

iii. Tertiary Recovery = Extracting oil left behind after the primary and secondary 

recovery that also known as enhanced oil recovery and generally use more 

effective fluids as recovery agent. 
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The availability of oil is because of the reservoir rock’s heterogeneity. Only a part of 

the reservoir which can be swept by the fluid pressure whereas about 10%-40% 

unwashed oil remained stuck after secondary recovery in the pore volume due to high 

capillary pressure (Pc) and also interfacial tension (IFT) [11]. Besides, the large 

viscosity of the last oil also can hinder the flow rate to be extracted economically. So 

the usage of nanoparticles that being injected with the drilling fluids help to recover 

the last oil thus can produce the remaining balance oil in the reservoir. The study based 

on the magnetisation effect of the nanoparticles will help to increase the percentage of 

oil recovery. 

 

2.2 Nanoparticles in Enhance Oil Recovery (EOR) 

Nanoparticles had known to be a good recovery agents for problems occur in reservoir 

especially to recover the remaining oil in the production zone after first and second 

recovery. There are two reasons why the nanoparticles particularly attractive to be 

developed and research in the oil and gas business which are firstly is the size of the 

nanoparticles that have one dimension in the order of 100 nm or less and secondly the 

ability to manipulate the behaviour [12]. The spherically shaped of nanoparticles will 

be injected and transported successfully through the formation rock without any 

nanoparticles are trapped due to chemical, physical straining or electrostatic effects 

with the surface charge that compatible in the porous media [13].  

There are some selected types of nanoparticles that are likely used for research and 

studies for instance Aluminium, Zinc, Magnesium, Iron, Zirconium, Nickel, Tin, 

Ferrite and Silicon [6]. It is essential to study the effect of different nanoparticles in 

oil recovery since this is the main objective of the oil and gas industry. In this research 

the author will use the Nickel-Zinc-Ferrite nanoparticles that are synthesized at 

different composition ratio of Nickel to Zinc. The Nickel-Zinc-Ferrite has found used 

in electromagnetic applications that require a high permeability such as inductors and 
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electromagnetic wave absorbers [7]. The ability of the nanoparticles that can change a 

few factor of oil properties and in the formation [7] by introducing the nanoparticles 

and studying the effect on oil recovery efficiency.  

In order to use nanoparticles as an EOR agents, some parameters need to be determined 

to ensure the efficiency of nanoparticles. In Hendraningrat et al research, they study 

about the effect of some parameters that influencing the oil recovery process such as 

nanoparticles size, rock permeability, injection rate and temperature. The hydrophilic 

silica nanoparticles had been chosen to be used in the experiment. This study shows 

that the oil that can be recovered in the core samples with the smallest size of 

nanoparticles because of the contact angle between the oil and rock has been decreased 

thus facilitate the displacement process [14]. Nanoparticles sizes play an important 

role in the efficiency in Enhanced Oil Recovery (EOR).  

Besides, the Hendraningrat et al also said, temperature also gives some effect on oil 

recovery using the nanoparticles. He said that, the increasing temperature may increase 

the oil recovery efficiency [14]. This had been explained by focusing on the interaction 

between the molecules which are weaker thus decreasing the Interfacial Tension (IFT). 

By decreasing the IFT, the mobility ratio of oil is increased and make the movement 

of oil to the production zone easier [11]. All the experiment temperature in the 

experiment is keep constant to ensure the changing temperature may affect the result. 

Nanoparticles existed in solid state after synthesized. In order to measure the oil 

recovery efficiency, the nanoparticles is dispersed in dispersing fluids and become 

nanofluids. One of the example of nanofluids is ferrofluid which are found to be 

partially magnetically controllable and smart nano-material [15]. The ferrofluid 

contains three elements which are the magnetic particles, surfactant and also liquid 

carrier [15]. The addition of the surfactant in the ferrofluid is to cease agglomeration 

which means the surfactant will prevent the nanoparticles from clumping together. The 

liquid carrier is as the solvent or the based fluid for instance deionise water, ethanol, 

diesel and brine [6]. Ogolo et al report that, the deionised water may become the best 

dispersing fluid or solvent for certain nanoparticles such as ferrites and oxides [6]. The 

nanofluids that form with distilled water has decrease the recovery efficiency. Ogolo 
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Figure 2.2: Ferrofluid under magnetic effect [15] 

et al stated that the distilled water may emphasized the significant role a fluids play 

because it can contribute positively or negatively in oil recovery [6]. 

Ferrofluid is a mixture of magnetic nanoparticles which is Nickel-Zinc-Ferrites 

nanoparticles in a carrier fluid or base fluid usually water or oil. When subjected to a 

magnetic field, the apparent viscosity of the ferrofluid will increase and it is known as 

viscoelastic [15]. Once the apparent viscosity is increased, it can push up the oil to the 

production zone to be extracted to the surface. According to Kothari, the viscosity of 

the magnetic fluid is depend on two factor. First is the viscosity of the carrier fluid 

(base fluid). Second, it is depend on the applied magnetic field when the core-flooding 

experiment is conducted. [15] 

 

 

 

 

 

 

 

 

For this research, the Nickel-Zinc-Ferrite will be dispersed in the deionise water to 

form the nanofluids. This nanofluids will be injected into the core sample to measure 

the oil recovery efficiency by the nanoparticles. Hendraningrat et al conclude that, the 

injection rate of the nanoparticles that are being injected into the core sample need to 

be constant. The increasing injection rate eventually will decreasing the oil recovery 
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as the nanoparticles may accumulate at the core inlet rather than flowing into the core 

[14]. 

Yahya (2012) said in his experiment, the recovery factor percentage with nanofluids 

injection without EM wave is about 8.7% while the recovery factor percentage of 

nanofluids with EM wave increase the percentage up to 13.6% [12]. This shown the 

effectiveness of the nanofluids is more when exposed under electromagnetic wave. 
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Figure 3.1: The flowchart process 

CHAPTER 3 

METHODOLOGY 

 

3.1 Flow Chart 

The figure below summarize the workflow and also experimental design for this 

research. 
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Table 3.1: composition ratio of nickel and zinc 

3.2 Synthesized the Nickel-Zinc-Ferrites. 

There are various techniques that have been used to synthesis the nanoparticles for 

instance sol-gel, hydrothermal and thermal evaporation [15]. In this research, sol-gel 

method have been chosen as the technique. It is because due to its simplicity means 

easy to conduct the synthesising process, low cost and the ability to control its 

properties and structure by changing different parameters such as type of solvent, 

annealing temperature, stirring period, precursor material and others. [5] 

The table 3.1 show the composition ratio of the three elements in Nickel-Zinc-

Ferrite: 

 

 

 

 

By using the Sol-Gel method, the starting materials that are used to start with are as 

follows: 

I. Ni (NO3)2. 6H2O – Nickel (II) Nitrate 

II. Zn (NO3)2. 6H2O- Zinc (II) Nitrate 

III. Fe (NO3)3. 9H2O – Iron (III) Nitrate 

The three starting materials with different weight samples were dissolved in the 100ml 

citric acid that have been prepared. Then the solutions was stirred using the magnetic 

stirrer with a constant rate about 200rpm at room temperature. The sample was left 

stirred for about 2-3 hours to mix all the materials. Then, the sample was heated on the 

hot plate at 80oC and be kept heated until the stirring bar was stopped and the gel was 

formed. Next, the gel was heated in the drying oven at temperature about 110oC for 

two days until it dried. Then, the dried gel was collected and crushed into powder. 

Samples Nickel Zinc Ferrite 

1 1% 0% Constant 

2 0.75% 0.25% Constant 

3 0.5% 0.5% Constant 

4 0.25% 0.75% Constant 

5 0% 1% Constant 
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Table 3.2: Chemical formula of Nickel-Zinc-Ferrite samples 

Then, the powder was annealed at two different temperature which is 700˚C and 900˚C, 

which is the optimum temperature to form powder with nanosizes. 

There are five samples with different ratio composition of Nickel and Zinc in the 

Nickel Zinc Ferrites. The table 3.2 show the formula of the produced samples. The 

general formula is Ni1-x Znx Fe2 O4. 

 

 

 

 

 

 

 

 

All the calculation is shown in the appendix. 

 

 

 

 

 

 

No of Samples Samples Formula 

1, x=0 Ni1  Fe2 O4 

2, x=0.25 Ni0.75 Zn0.25 Fe2 O4 

3, x=0.5 Ni0.5 Zn0.5 Fe2 O4 

4, x= 0.75 Ni0.25 Zn0.75 Fe2 O4 

5, x=1 Zn1 Fe2 O4 
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Figure 3.2: The XRD equipment 

3.3 Particle characterization 

3.3.1 X-Ray Diffraction (XRD) 

XRD is a technique like a fingerprint of a substance. The XRD technique is basically 

suited for identification and characterization of the crystalline phases. A crystal 

structure is being built by layers or planes. The X-rays with a wavelength which is 

same to the distances between this planes can be reflected. The angle of the reflection 

is known as angle of incidence and this behaviour likely to be called as diffraction. 

Besides, the peak intensities will gives information about how much the X-ray is 

contributing to the reflection for instance how much phase is present in a sample. 

Diffraction pattern analysis will help to determine the phases in a sample. So, it is 

possible to determine and quantify each phase present, the crystallinity of the sample, 

the lattice parameters, the crystal structure and all others material characterization for 

a sample. Figure 3.2 shows the XRD equipment. 
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Figure 3.3: The FESEM equipment 

3.3.2 Field Emission Scanning Electron Microscope (FESEM) 

FESEM equipment is shown in the figure 3.3 to capture the grain image of the 

nanoparticle. The field emission microscope consists of the metallic sample in the 

tip and a conducting fluorescent screen which is enclosed in an ultrahigh vacuum. 

The electron that are generated by the field emission source is accelerated in a field 

gradient. The beam that passes the electromagnetic lenses will focus on the sample. 

The sample will produced a secondary electron which will be captured by the 

detector and the image of the sample will be generated.  
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Figure 3.4: The core-flooding setup equipment 

3.3.3 Vibrating Sample Magnometer (VSM) 

The VSM is an instrument that is used to measure the magnetization of these 

samples. The samples will be magnetized by putting the sample inside a uniform 

magnetic field. The sample will be vibrated sinusoidally. The lock-in amplifier will 

measure the induced voltage using the piezoelectric signal as the reference. By 

measuring the external electromagnet field, the hysteresis curve can be formed. 

Hysteresis curve is when an external magnetic field is applied to a ferro magnet 

such as iron; the atomic dipoles align themselves with it. Once the magnet had 

been magnetized, it will stay it that form. Heat or magnetic field in opposite 

direction is needed to demagnetize the magnet. 

3.3.4 Core Flooding Experiment 

The core flooding experiment is basically an injection of fluids into the core sample 

to see the recovery efficiency of the fluids to displace the existing fluids in the 

core. The core flooding experiment is performed in an ambient temperature 

condition. The sequences of the fluid injection is brine, crude oil, brine and lastly 

the nanoparticles which being prepare in liquid form known as nanofluid. This 

experiment is the ways to stimulate the real process in the reservoir to enhance oil 

recovery. The figure 3.4 show the setup of the experiment.  

 

 

 

 

 

 

 

 

 

Pump 

Valv
e

Pressure Gauge 

Core Sample  
(filled with glass beads) 

Measuring 
Cylinder 
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Firstly, brine was injected in the porous media (core sample) which wasfilled with the 

two different sizes of glass bead. At this stage the pore volume is calculated using the 

formula: 

𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑔)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑟𝑖𝑛𝑒 (
𝑔

𝑚𝐿)
 

 

Noted that the weight difference in the formula indicates the weight difference between 

the weight of wet core sample and weight of dry core sample. 

 

After the brine had fully saturated the core, then the crude oil was injected into the 

core. The brine produced at the measuring cylinder will be collected and measured. 

The oil would push the brine out of the pore in the core. The volume of the brine 

collected is equal to the volume of the oil in the core which is known as the Original 

Oil in Place (OOIP). Then, the brine will be injected again into the core to simulate 

the secondary recovery until no more oil is produced. 

 

 

 

 

 

 

 

 

 

 

 

 

The nanofluids were prepared to simulate the tertiary recovery. The Nickel-Zinc-

Ferrite nanoparticles was dispersed into the deionize water to form nanofluids. The 

nanoparticles was ultrasonicated for about one hour to make sure the nanoparticles was 

dispersed well in the deionize water. The concentration of the nanofluids will be kept 

constant throughout the experiment which is about 0.1 wt %.  

Figure 3.5: The brine being injected 

into the core sample and slowly 

saturated the core at rate 1mL/min 

Figure 3.6: The crude oil being 

injected into the core sample and 

slowly saturated the core at rate 0.8 

mL/min 
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The crude oil recovered by the nanofluid was collected as effluent using the measuring 

cylinder. As the crude oil was produced, the nanofluid was also is produced and was 

collected in the measuring cylinder. In order to take the reading, the collected fluid 

was left for at least 15 minutes to differentiate between the crude oil and the nanofluid 

or brine. This phenomenon is due to different density between the crude oil and also 

the nanofluid or brine. The figure 3.7 shows the collected fluid after the nanofluid 

injection. 

 

 

 

 

 

 

 

 

 

 

 

 

The figure below shows the collected crude oil that being recovered during the tertiary 

recovery injection. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: The crude oil + nanofluid collected 

Figure 3.8: The crude oil that has been recovered 
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Figure 3.9: The Gantt chart of FYP 1 

Figure 3.10: The Gantt chart of FYP 2 

3.4 Gantt chart 

 

 

FYP 1 

 

No Detail Work 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Topic collection                             

2 

Preliminary research, discuss 

with SV, RO and collect data                             

3 Synthesising three sample                             

4 Submission Extended Proposal                             

5 Proposal Defence                             

6 

sample characterization (XRD, 

VSM)                             

7 

Draft submission of Interim 

Report                             

8 Submission of Interim Report                             

 

 

 

 

FYP 2 

 

No Detail Work 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

Sample characterisation 

(XRD,VSM)                               

2 Nanofluid preparation                               

3 Recovery Test (core flooding)                               

4 

Submission of Progress 

Report                               

5 Pre-SEDEX                               

6 

Submission of Draft Final 

Report                               

7 

Submission of Dissertation 

(softcopy)                               

8 

Submission of Technical 

Paper                               

 Viva                               

10 

Submission of Dissertation 

(hardcopy)                               

 

 

 

 Process  

Key milestone 
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Table 4.1: The chemical formula of the five samples 

Figure 4.1: The Nanoparticles samples. 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Results 

All five samples have been synthesized using the Sol-Gel method consists of different 

ratio of Nickel to Zinc which are 1:0, 3:1, 1:1, 1:3 and 0:1. The table below shows the 

chemical formula for the five nanoparticles samples. The general formula for Nickel-

Zinc-Ferrite nanoparticle is Ni1-x Znx Fe2 O4.  

 

 

 

 

 

 

The figure 9 below shows some of the Nickel-Zinc-Ferrites nanoparticles that are 

already synthesized. 

 

 

 

 

 

Samples  Samples Formula 

x=0 Ni1  Fe2 O4 

x=0.25 Ni0.75 Zn0.25 Fe2 O4 

x=0.5 Ni0.5 Zn0.5 Fe2 O4 

x= 0.75 Ni0.25 Zn0.75 Fe2 O4 

x=1 Zn1 Fe2 O4 
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4.1.1 Thermal Gravimetric Analysis (TGA) Results 

All of the five samples are tested using the TGA analysis to identify the best 

temperature for calcination process. The figure below show the result of the TGA 

analysis. 

 

 

 

 

 

 

 

 

 

                                                

The optimum temperature for calcination process is based on the graph when it is 

become constant which means that no more weight loss due to decomposition and loss 

of water, combustion evaporation and vaporization. The temperature of the calcination 

is selected at 700˚C and 900˚C by looking at the constant phase of all the five samples. 

Both of the temperature are selected as annealing temperature to see the relationship 

between magnetization effect and also temperature. This relationship is obtained using 

the VSM Testing. 

 

Figure 4.2: The TGA Graph Result 
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Figure 4.3: The standard card of Nickel-Zinc-Ferrites Nanoparticles 

4.1.2 X-ray Diffraction (XRD) Results 

For the XRD results, the characterization of the ten samples are determined. The figure 

4.3 show the example of the Nickel Zinc Ferrite standard card that indicates the 

formation of pure cubic structure in the annealing temperature.  

                             

 

It is very important to compare the peak of the XRD results with the standard card to 

make sure that the samples actually are Nickel Zinc Ferrite without other impurities 

exists in the samples. If there are others impurities contain, it may affect the cubic 

spinal structure as well as affect the magnetization.  

From the graph also, the average crystallite size of the nanoparticles of various 

composition of Nickel and Zinc element can be calculated using the Scherer’s 

equation. 
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The table 4.2 and table 4.3 shows the crystallite size that were calculated using the 

formula. All the data was analysed in the XRD software. Based on the calculation, 

sample X=0.5 shows the highest crystallite size for both annealing temperature. This 

result can be validate using the FESEM result to see the difference in crystallite and 

particles size. 

 

Calcination Temperature = 700˚C 

Samples 2-Theta FWHM Crystallite size (nm) 

x=0 47.33 0.8039 11.27 

x=0.25 42.85 0.2886 30.9 

x=0.5 43.70 0.2755 32.46 

x=0.75 42.62 0.3280 27.16 

x=1 51.36 0.3436 26.8 

 

Calcination Temperature = 900˚C 

Samples 2-Theta FWHM Crystallite size (nm) 

X=0 47.60 0.2854 31.79 

x=0.25 41.00 0.2165 41.00 

x=0.5 107.90 0.1181 119.36 

x=0.75 42.54 0.1246 71.49 

x=1 42.64 0.1509 59.05 

 

 

Where:  

K =0.9    θ = Bragg’s Angle 

Β = FWHM   = X-ray wavelength (1.5406 Äm) 

𝐷 =
𝐾

𝛽 cos 𝜃
 

Table 4.2: Crystallite size for 700˚C Temperature 

Table 4.3: Crystallite size for 900˚C Temperature 
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Figure 4.5: Result XRD for X=0.25 at 700˚C 
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The figures 4.4 to figure 4.8 shows all the results of XRD Testing for the samples 

annealed at 700OC. 

 

 

 

 

 

 

 

Figure 4.4: Result XRD for X=0 at 700OC 
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Figure 4.6: Result XRD for X=0.5 at 700˚C 

Figure 4.7: Result XRD for X=0.75 at 700˚C 
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Figure 4.8: Result XRD for X=1 at 700OC 

Figure 4.9: Summary Result XRD at 700˚C 

X=1 

X=0 

X=0.25 

X=0.5 

X=0.75 

 

The figure 4.9 show the summary of the XRD result which at 700˚C of annealing 

temperature. 
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Figure 4.10 : Result XRD for X=0 at 900˚C 

Figure 4.11: Result XRD for X=0.25 at 900˚C 

The figures 4.10 to figure 4.14 shows all the results of XRD Testing for the samples 

annealed at 900˚C 

 

x = 0   - 900C

01-079-1741 (C) - Hematite, syn - Fe2O3 - Y: 2.08 % - S-Q 13.1 % - d x by: 1. - WL: 1.5406 - Hexagonal (Rh) - a 5.03420 - b 5.03420 - c 13.74600 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - R-3c (167) - 6 - 301.695 - I/Ic PDF 3.2 - F28=100

01-074-2081 (C) - Nickel Iron Oxide - NiFe2O4 - Y: 20.84 % - S-Q 86.9 % - d x by: 1. - WL: 1.5406 - Cubic - a 8.33790 - b 8.33790 - c 8.33790 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fd-3m (227) - 8 - 579.656 - I/Ic PDF 4.8 - F17=10

Operations: Smooth 0.150 | Background 1.000,1.000 | Import

x = 0   - 900C - File: XRD1  x =   0    - 900C.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 25 °C (Room) - Company: KULIM - Creation: 6/5/2014 7:41:40 PM - User Values: 6/5/2014 7:41:40 PM

L
in

 (
C

p
s
)

0

10

20

30

40

50

2-Theta - Scale

10 20 30 40 50 60 70 80 90

x = 0 25  - 900C

00-008-0234 (N) - Nickel Zinc Iron Oxide - (Ni,Zn)Fe2O4/(Ni,Zn)O·Fe2O3 - Y: 44.24 % - d x by: 1. - WL: 1.5406 - Cubic - a 8.39900 - b 8.39900 - c 8.39900 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fd3m (227) - 8 - 592.492 - F16= 11(

Operations: Smooth 0.150 | Background 1.000,1.000 | Import

x = 0 25  - 900C - File: XRD1  x =   0 25   - 900C.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 25 °C (Room) - Company: KULIM - Creation: 6/5/2014 8:48:37 PM - User Values: 6/5/2014 8:48:37 PM

L
in

 (
C

p
s
)

0

10

20

30

40

50

60

70

80

90

100

110

120

2-Theta - Scale

10 20 30 40 50 60 70 80 90



27 
 

Figure 4.12: Result XRD for X=0.5 at 900˚C 

Figure 4.13: Result XRD for X=0.75 at 900˚C 
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Figure 4.14: Result XRD for X=1 at 900˚C 

Figure 4.15: Summary Result of XRD at 900˚C 
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The figure 4.15 show the summary of the XRD result which at 900OC of annealing 

temperature.  
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Figure 4.16: Result VSM for X=0 at 700˚C 

Figure 4.17: Result VSM for X=0 at 900˚C 

4.1.3 Vibrating Sample Magnetometer (VSM) Results 

The magnetization saturation is determined using the testing. Below are the results of 

all the VSM Testing for ten samples.  

 

 

The figure 4.16 and figure 4.17 shows the magnetic saturation of the sample, Ni1 Fe2 

O4 (X=0) of two different temperature which are 700˚C and 900˚C.  
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Figure 4.19: Result VSM for X=0.25 at 900˚C 

Figure 4.18: Result VSM for X=0.25 at 700˚C 

 

 

The figure 4.18 and figure 4.19 shows the magnetic saturation of the sample, Ni0.75 

Zn0.25Fe2 O4 (X=0.25) of two different temperature which are 700˚C and 900˚C.  
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Figure 4.21: Result VSM for X=0.5 at 900˚C 

Figure 4.20: Result VSM for X=0.5 at 700˚C 

 

 

 

The figure 4.20 and figure 4.21 shows the magnetic saturation of the sample, Ni0.5Zn0.5 

Fe2 O4 (X=0.5) of two different temperature which are 700˚C and 900˚C.  
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Figure 4.23: Result VSM for X=0.75 at 900˚C 

Figure 4.22: Result VSM for X=0.75 at 700˚C 

 

 

The figure 4.22 and figure 4.23 shows the magnetic saturation of the sample, Ni0.25 

Zn0.75Fe2 O4 (X=0.75) of two different temperature which are 700˚C and 900˚C.  
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Figure 4.25: Result VSM for X=1 at 900˚C 

Figure 4.24: Result VSM for X=1 at 700˚C 

 

 

The figures 4.24 and figure 4.25 shows the magnetic saturation of the sample, Zn Fe2 

O4 (X=1) of two different temperature which are 700˚C and 900˚C.  
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Table 4.2: Magnetic Saturation of each samples 

The table below show the summary of the magnetic saturation of both temperature of 

all the samples. 

 

 

The highest magnetization based on the annealing temperature will be selected for 

proceeding to the next stage which is the core-flooding experiment. Based on the 

result, the higher the annealing temperature will give more magnetic saturation of the 

nanoparticles. 

Next, the samples which are annealed at 900˚C will be chosen since it has higher 

magnetic saturation than samples annealed at 700˚C. The samples will be injected into 

the core sample (sand beads) in the form of nanofluid after being immersed and 

prepared with deionised water. 

 

 

 

 

 

Samples 
Magnetic Saturation (emu/g) 

Temperature: 700 ˚C Temperature: 900 ˚C 

X=0 20.3 21.6 

X=0.25 58.9 59.2 

X=0.5 59.9 61.9 

X=0.75 24.6 27.6 

X=1 16.7 22.2 
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Figure 4.26: FESEM Results for X=0 at 100K Magnification 

4.1.4 Field Emission Scanning Electron Microscope (FESEM) Results 

4.1.4.1 Sample X=0  

Figure 4.26 show the microscope image of grain of the sample Nickel-Zinc-Ferrites 

nanoparticles that are annealed at 900˚C.  

 

 

 

 

 

 

 

 

From the figure 4.26, it can be observed that the grain size is at range from 96.77 – 

98.64 nm. It shows the irregular shape. 
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Figure 4.27: FESEM Results for X=0.25 at 100K Magnification 

4.1.4.2 Sample X=0.25 

Figure 4.27 shows the microscope image of grain of the sample Nickel-Zinc-Ferrites 

nanoparticles that are annealed at 900˚C.  

 

 

 

 

 

 

 

 

 

From the figure 4.27, it can be observed that the grain size is at range from 115.4- 

130.7 nm. It shows the irregular shape of grain. 
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Figure 4.28: FESEM Results for X=0.5 at 100K Magnification 

4.1.4.3 Sample X=0.5 

Figure 4.28 show the microscope image of grain of the sample Nickel-Zinc-Ferrites 

nanoparticles that are annealed at 900˚C.  

 

 

From the figure 4.28, it can be observed that the grain size is at range from 119.1– 

103.3 nm. It shows the irregular shape. 
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Figure 4.29: FESEM Results for X=0.75 at 100K Magnification 

4.1.4.4 Sample X=0.75 

Figure 4.29 show the microscope image of grain of the sample Nickel-Zinc-Ferrites 

nanoparticles that are annealed at 900˚C.  

 

 

From the figure 4.29, it can be observed that the grain size is at range from 96.77– 

163.9 nm. It shows the irregular shape. 
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Figure 4.30: FESEM Results for X=1 at 100K Magnification 

4.1.4.4 Sample X=0.1 

Figure 4.30 show the microscope image of grain of the sample Nickel-Zinc-Ferrites 

nanoparticles that are annealed at 900˚C.  

 

 

From the figure 4.30, it can be observed that the grain size is at range from 100.2-132.2 

nm. It shows the irregular shape. 
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4.1.5 Core-Flooding Experiment Results 

The core flooding experiment has been conducted to test the effect of nanoparticles on 

Enhanced Oil Recovery which means how much oil can be recovered after injecting 

the nanofluid into the core sample. The core sample consists of two different sizes of 

glass bead using the setup apparatus as shown in the methodology part. 

Consistently, about two pore volume has been injected into the core sample. This is to 

make sure 1 pore volume is to push the oil from the pore space and another 1 pore 

volume to make sure the nanofluid has already saturated in the core sample. The figure 

4.31 show the crude oil that recover from the glass bead using two pore volume 

injection of nanofluid. The reading is taken at every 0.2 pore volume to see the 

relationship between the pore volume and also the oil recovery percentage. 

 

 

 

 

 

Figure 4.31: Crude Oil recover in Nanofluid Injection 
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Table 4.3: The injection sequence for X=0 

4.1.5.1 Sample X=0 

The table 4.3 show the data for the experiments that carried out using the sample X=0, 

Ni1 Fe2 O4  

 

 

 

 

 

 

Brine Injection 

Flow rate (mL/min) 1.0 

Dry weight of the core sample (g) 774 

Wet weight of the core sample (g) 803 

Δ weight (g) 29 

Density of the brine (g/cm³) 1.005 

pressure (psi) 0.22 

Pore Volume (mL) 28.86 

2PV (mL) 57.71 

Oil injection 

Flow rate (mL/min) 0.8 

pressure (psi) 0.75 

Original Oil in Place, OOIP (mL) 25 

Water Flooding (Secondary Recovery) 

Flow rate (mL/min) 1.0 

Pressure (psi) 0.53 

Volume of Oil Recovered (mL) 10 

Nanofluid Injection (EOR) 

Concentration (wt. %) 0.1 

Flow rate (mL/min) 1.0 

Average Pressure during injection (psi)  0.34 
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Table 4.4: The Nanofluid Injection Data for X=0 

The table 4.4 show the data when injecting the nanofluid as Tertiary Recovery. Two 

pore volume of nanofluid has been injected into the core sample to see how much oil 

can be recovered.  

 

From the data in table 4.4, it is observed that the sample X=0 is recover almost 9.7% 

of oil from the Residual Oil in Place (ROIP) which is about 1.45 mL. The figure 4.32 

show the trending of the recovery of oil and the pore volume injected.  

 

 

 

 

 

 

 

Pore 
Volume Δ Pressure (psi) 

Volume of Oil 
Recovered (mL) 

Cumulative 
Recovery (mL) 

Percentage 
Recovery (%) 

0.2 0.38 0.1 0.1 0.67 

0.4 0.34 0.2 0.3 2.00 

0.6 0.36 0.15 0.45 3.00 

0.8 0.3 0.2 0.65 4.33 

1.0 0.34 0.25 0.9 6.00 

1.2 0.38 0.25 1.15 7.67 

1.4 0.36 0.25 1.4 9.33 

1.6 0.32 0.05 1.45 9.67 

1.8 0.32 0 1.45 9.67 

2.0 0.32 0 1.45 9.67 

Figure 4.32: Percentage Recovery vs Pore Volume Chart for X=0  
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4.1.4.2 Sample X=0.25 

The table 4.5 show the data for the experiments that carried out using the sample 

X=0.25, Ni0.75 Zn0.25 Fe2 O4. 

Brine Injection 

Flow rate (mL/min) 1.0 

Dry weight of the core sample (g) 778 

Wet weight of the core sample (g) 806 

Δ weight (g) 28 

Density of the brine (g/cm³) 1.005 

pressure (psi) 0.27 

Pore Volume (mL) 27.86 

2PV (mL) 55.72 

Oil injection 

Flow rate (mL/min) 0.8 

pressure (psi) 0.78 

Original Oil in Place, OOIP (mL) 25 

Water Flooding (Secondary Recovery) 

Flow rate (mL/min) 1.0 

Pressure (psi) 0.54 

Volume of Oil Recovered (mL) 10 

Nanofluid Injection (EOR) 

Concentration (wt. %) 0.1 

Flow rate (mL/min) 1.0 

Average Pressure during injection (psi)  0.35 

 

 

 

 

Table 4.5: The injection sequence for X=0.25 
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Table 4.6: The Nanofluid Injection Data for X=0.25 

The table 4.6 show the data recorded when injecting the nanofluid as Tertiary 

Recovery.  

Pore 

Volume Δ Pressure (psi) 

Volume of Oil 

Recovered 

(mL) 

Cumulative 

Recovery (mL) 

Percentage 

Recovery (%) 

0.2 0.38 0.1 0.1 0.67 

0.4 0.42 0.15 0.25 1.67 

0.6 0.46 0.15 0.4 2.67 

0.8 0.42 0.2 0.6 4.00 

1.0 0.45 0.25 0.85 5.67 

1.2 0.46 0.25 1.1 7.33 

1.4 0.46 0.25 1.35 9.00 

1.6 0.48 0.1 1.45 9.67 

1.8 0.40 0.1 1.55 10.33 

2.0 0.41 0 1.55 10.33 

 

From the data in table 4.6, it is observed that the sample X=0.25 is recover almost 

10.4% of oil from the Residual Oil in Place (ROIP) which is about 1.55 mL. The figure 

4.33 show the trending of the recovery of oil and the pore volume injected. 

 

 

 

 

 

 

 

 

 

Figure 4.33: Percentage Recovery vs Pore Volume Chart for X=0.25 
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4.1.4.3 Sample X=0.5 

The table 4.7 show the data for the experiments that carried out using the sample 

X=0.5, Ni0.5 Zn0.5 Fe2 O4. 

 

Brine Injection 

Flow rate (mL/min) 1.0 

Dry weight of the core sample (g) 778 

Wet weight of the core sample (g) 806 

Δ weight (g) 28 

Density of the brine (g/cm³) 1.005 

pressure (psi) 0.27 

Pore Volume (mL) 27.86 

2PV (mL) 55.72 

Oil injection 

Flow rate (mL/min) 0.8 

pressure (psi) 0.78 

Original Oil in Place, OOIP (mL) 25 

Water Flooding (Secondary Recovery) 

Flow rate (mL/min) 1.0 

Pressure (psi) 0.53 

Volume of Oil Recovered (mL) 10 

Nanofluid Injection (EOR) 

Concentration (wt. %) 0.1 

Flow rate (mL/min) 1.0 

Average Pressure during injection (psi) 0.35  

 

Table 4.7: The injection sequence for X=0.5 
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Table 4.8: The Nanofluid Injection Data for X=0.5 

The table 4.8 show the data recorded when injecting the nanofluid as Tertiary 

Recovery.  

Pore 

Volume 

Δ Pressure 

(psi) 

Volume of Oil 

Recovered (mL) 

Cumulative 

Recovery (mL) 

Percentage 

Recovery (%) 

0.2 0.32 0.15 0.15 1.00 

0.4 0.29 0.2 0.35 2.33 

0.6 0.35 0.25 0.6 4.00 

0.8 0.36 0.3 0.9 6.00 

1.0 0.42 0.3 1.2 8.00 

1.2 0.4 0.3 1.5 10.00 

1.4 0.36 0.4 1.9 12.67 

1.6 0.32 0.25 2.15 14.33 

1.8 0.32 0.15 2.3 15.33 

2.0 0.3 0.1 2.4 16.00 

 

From the data in table 4.8, it is observed that the sample X=0.5 is recover almost 16% 

of oil from the Residual Oil in Place (ROIP) which is about 2.4 mL. The figure 4.34 

show the trending of the recovery of oil and the pore volume injected. 

 

 

 

 

 

 

 

 

 
Figure 4.34: Percentage Recovery vs Pore Volume Chart for X=0.5 
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4.1.4.4 Sample X=0.75 

The table 4.9 show the data for the experiments that carried out using the sample 

X=0.75, Ni0.25 Zn0.75 Fe2 O4. 

Brine Injection 

Flow rate (mL/min) 1.0 

Dry weight of the core sample (g) 784 

Wet weight of the core sample (g) 818 

Δ weight (g) 29 

Density of the brine (g/cm³) 1.005 

pressure (psi) 0.27 

Pore Volume (mL) 28.9 

2PV (mL) 57.8 

Oil injection 

Flow rate (mL/min) 0.8 

pressure (psi) 0.78 

Original Oil in Place, OOIP (mL) 25 

Water Flooding (Secondary Recovery) 

Flow rate (mL/min) 1.0 

Pressure (psi) 0.52 

Volume of Oil Recovered (mL) 10 

Nanofluid Injection (EOR) 

Concentration (wt. %) 0.1 

Flow rate (mL/min) 1.0 

Average Pressure during injection (psi)  0.34 

 

 

 

Table 4.9: The injection sequence for X=0.75 
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Table 4.10: The Nanofluid Injection Data for X=0.75 

The table 4.10 show the data recorded when injecting the nanofluid as Tertiary 

Recovery.  

Pore 

Volume  

Δ Pressure 

(psi) 

Volume of Oil 

Recovered 

(mL) 

Cumulative 

Recovery (mL) 

Percentage 

Recovery (%) 

0.2 0.32 0.1 0.1 0.67 

0.4 0.29 0.15 0.25 1.67 

0.6 0.35 0.15 0.4 2.67 

0.8 0.36 0.2 0.6 4.00 

1.0 0.42 0.2 0.8 5.33 

1.2 0.4 0.2 1 6.67 

1.4 0.36 0.2 1.2 8.00 

1.6 0.32 0.2 1.4 9.33 

1.8 0.32 0.1 1.5 10.00 

2.0 0.3 0.05 1.55 10.33 

 

From the data in table 4.10, it is observed that the sample X=0.75 is recover almost 

10.3% of oil from the Residual Oil in Place (ROIP) which is about 1.55 mL. The 

figure 4.35 show the trending of the recovery of oil and the pore volume injected. 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: Percentage Recovery vs Pore Volume Chart for X=0.75 



49 
 

4.1.4.5 Sample X=0.1 

The table 4.11 show the data for the experiments that carried out using the sample 

X=1, Zn Fe2 O4.  

Brine Injection 

Flow rate (mL/min) 1.0 

Dry weight of the core sample (g) 788 

Wet weight of the core sample (g) 816 

Δ weight (g) 28 

Density of the brine (g/cm³) 1.005 

pressure (psi) 0.26 

Pore Volume (mL) 27.9 

2PV (mL) 55.8 

Oil injection 

Flow rate (mL/min) 0.8 

pressure (psi) 0.79 

Original Oil in Place, OOIP (mL) 25 

Water Flooding (Secondary Recovery) 

Flow rate (mL/min) 1.0 

Pressure (psi) 0.53 

Volume of Oil Recovered (mL) 10 

Nanofluid Injection (EOR) 

Concentration (wt. %) 0.1 

Flow rate (mL/min) 1.0 

Average Pressure during injection (psi) 0.35  

 

Table 4.11: The injection sequence for X=1 
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Table 4.11: The Nanofluid Injection Data for X=1 

The table 4.12 show the data recorded when injecting the nanofluid as Tertiary 

Recovery.  

Pore 

Volume 

Δ Pressure 

(psi) 

Volume of Oil 

Recovered (mL) 

Cumulative 

Recovery (mL) 

Percentage 

Recovery (%) 

0.2 0.29 0.1 0.1 0.67 

0.4 0.32 0.15 0.25 1.67 

0.6 0.36 0.15 0.4 2.67 

0.8 0.36 0.25 0.65 4.33 

1.0 0.38 0.3 0.95 6.33 

1.2 0.4 0.3 1.25 8.33 

1.4 0.32 0.25 1.5 10.00 

1.6 0.37 0.2 1.7 11.33 

1.8 0.36 0.1 1.8 12.00 

2.0 0.31 0.1 1.9 12.67 

 

From the data in table 4.11, it is observed that the sample X=1 is recover almost 

12.7% of oil from the Residual Oil in Place (ROIP) which is about 1.9 mL. The 

figure 4.36 show the trending of the recovery of oil and the pore volume injected. 

 

 

 

 

 

 

 

 

 

 
Figure 4.36: Percentage Recovery vs Pore Volume Chart for X=1 
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The figure 4.37 show the oil percentage recovery from all the five samples. From the 

graph, the highest oil percentage recovery recorded by sample x=0.5 which is equal to 

16% of oil in the core sample. This show the better ratio in Nickel to Zinc give better 

magnetisation which result in better oil recovery. 

 

 

 

 

 

Figure 4.37: The Summary of the Percentage Recovery vs Pore Volume Chart for all 

samples 
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4.2 Discussion 

The Sol-Gel method is the simplest method to synthesis the Nickel-Zinc-Ferrites 

nanoparticles. This method only involved a simple procedures that are easy to 

understand and follow. The tools used in this method includes the hot plate for heating, 

magnetic stirrer, fume hood and also the heating oven. This experiment is conducted 

carefully in a lab and all heating process is done in the fume hood. All the safety 

measures are already taken into account.  

All the 10 samples are being fully synthesized using this method; Sol-Gel method. The 

samples consist of different ratio of nickel to zinc which are x=0 (nickel 0: zinc 1), 

x=0.25 (nickel 3: zinc 1), x=0.5 (nickel 1: zinc 1), x =0.75 (nickel 1: zinc 3) and 

x=1(nickel 1: zinc 0). All the samples have been annealed at two different temperature 

which are at 700˚C and 900˚C for each composition. At the end of the day, there are 10 

samples have been synthesized. All the samples were characterized using XRD, VSM 

and FESEM. The XRD results shows the indication of purely nickel zinc ferrites when 

matching to it standard card at different ratio. While, the VSM result will show the 

magnetic saturation of each samples. The highest magnetic saturation for each variant 

of composition has been recorded with the samples annealed at 900˚C. These samples 

are prepared to be nanofluid to be injected in the core sample (sand beads) in the core-

flooding experiment. This experiment will evaluate the oil recovery efficiency based 

on the effect of different magnetization of each nickel to zinc ratio. 

The figure 12 to figure 22 above show the result of XRD Characterization. The sample 

X=0.25, 0.5 and 0.75 shows the required peak that are matching with the standard card 

according to its ratio of Nickel to Zinc. This shows that the sample prepared are pure 

Nickel Zinc Ferrite.On the other hand, the sample X=0 and X=1 shows additional peak 

which mean different from the standard card indicates the samples are not purely 

Nickel Zinc Ferrite. This is because in sample X=0 there are no Nickel element so it 

cannot follow the standard card of Nickel Zinc Ferrite while in sample X=1 there are 

no Zinc element thus it also cannot follow the standard card of Nickel Zinc Ferrite. 

 



53 
 

For VSM results, the hysteresis graph are obtained for almost samples annealed at 

700˚C and 900˚C. Based on the result in the figure 23 until figure 32 above, the samples 

X=0.5 which contain 1:1 Nickel to Zinc ratio shows the highest magnetization which 

are 59.9 emu/g at 700˚C and 61.9 emu/g at 900˚C compare to the other sample. Other 

than that, from the result also, the magnetic saturation of samples annealed at 700˚C is 

lower than the samples annealed at 900˚C. Thus, the higher the annealing temperature 

the higher the magnetic saturation. 

From the FESEM results, the size particles of the nanoparticles ranging from 96.77-

163.9 nm. The sample X=0 achieved the smallest size of particles which is about 

96.77-98.64nm. Besides, the size of the particle sample that give the highest oil 

recovery is ranging from 119.1-130.3nm. Although the size is slightly bigger than 

sample X=0, it is still give better recovery of oil. Thus, the magnetisation effect is play 

an important effect to the recovery of oil compared to the size of the particle of the 

nanoparticles. In all samples shows irregular shape and the image is captured at100K 

magnification. 

Since the samples annealed at 900˚C yield better magnetization, this sample will be 

immersed into deionised water to form nanofluid. The nanofluid will be ultrasonicated 

for one hours to make sure the nanoparticles is dispersed well in the deionised water. 

The procedure of conducting the experiment is already stated in methodology part. 

The core samples is filled with two different sizes of glass bead to achieve better 

sorting arrangement of particles. However, the core characteristics need to be defined 

as it is simulate the condition of the real reservoir. The parameters such as the porosity 

and permeability are the important parameters that need to be determined. The author 

did not measure the porosity and permeability of the core samples however to further 

study on this research, recommendation has been made to increase the efficiency of 

the core-flooding experiment. 
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From the experiment conducted, the sample X=0.5 shows better oil recovery 

percentage from Residual Oil in Place (ROIP) which is about 16%.  This sample also 

has shown highest magnetisation thus the relationship of magnetisation and oil 

recovery percentage can be made. The better the magnetisation, the higher oil recovery 

percentage. The magnetization of the nanoparticles will enhanced the viscosity of the 

nanofluid by interaction between the nanoparticles. Meanwhile, the lowest recovery 

percentage is 9.67% that was achieved using the sample X=0.  

The dispersion of nanoparticles inside the dispersing fluid is actually increase its 

viscosity. The nanoparticles suspension will make the fluid more viscous to be injected 

into the core sample. When the nanofluid in contact with the crude oil, it can prevent 

the early breakthrough or fingering effect thus make the nanofluid more efficient in 

pushing the oil to be produced. In order to get the piston-like displacement inside the 

pore space, the viscosity of the nanofluid has to be more viscous than the oil to ensure 

the oil can be push to the production zone. 

The recommendation part in this report state the recommendations to this study and 

experiment in order to have a better and efficient result. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

The nanoparticles study is very useful in EOR hence all the researcher in the world 

have been developed many techniques especially to encounter the problem to extract 

the oil. The unique characteristics is very useful in EOR to improve certain physical 

and chemical properties of fluids so that oil in the pores can easy move to the 

production zone.  

The five samples which contain different ratio of Nickel to Zinc were synthesized 

using the Sol-Gel method. The sample were annealed at two different annealing 

temperature, 700OC and 900OC. The selected temperature is chosen based on the result 

of TGA Analysis which showing the optimum annealing temperature of the samples. 

Then, the samples were tested using VSM Testing to measure the magnetization. The 

samples at each composition annealed at 900OC shows better magnetization then the 

samples will be chosen in the core-flooding experiment to test the oil recovery 

efficiency. 

The sample X=0.5 has shown the highest recovery efficiency which is about 16% from 

the ROIP. This show the better ratio of nickel to zinc is 1 to 1. This sample sizes is 

ranging from 119.1-130.3nm. The particle sizes is captured at 100K magnification and 

it shows irregular shape of nanoparticles. Apart from that, the lowest oil recovery 

efficiency which is about 9.67%, achieved by sample X=0. Thus, the author has 

concluded that the better the magnetisation will result in better oil recovery. 

This research and study are very useful for the EOR future and also for oil and gas 

business. The demand of oil is keep increasing each day and surely the best economical 

method to extract oil from reservoir will be applied by the engineer in order to meet 

the demand and also economic benefit. 
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5.2 Recommendation  

The recommendation and suggested expansion for future work for this research are to 

study different type of magnetic nanoparticles in EOR recovery efficiency so that we 

can know which type of magnetic nanoparticles can yield optimum oil recovery. This 

research is only focusing on Nickel Zinc Ferrite nanoparticles and the other magnetic 

nanoparticles also need to be tested to see the different of magnetization and type of 

magnetic nanoparticles.  

Besides, the relevancy of using the magnetic nanoparticles as EOR agents need to be 

tested in the real field whether surely it can helps in oil recovery. All the require data 

need to be present in order to test the real effectiveness of nanofluid injection a real 

reservoir. Other than that, the cost optimisation also need to achieve when optimising 

the production of the oil in order to maximise the profit.  

The experiment conducted need to take all the factors to make sure the successfully of 

this research. The synthesising of nanofluid need to be done carefully to have the 

expected result. The nanoparticles need to be tested by different test in order to make 

sure the content of the nanoparticles. 

For the core-flooding experiment, it is essential to measure the core sample properties 

such as porosity and permeability. Thus, in order to continue this research, the author 

recommend to measure the properties of the core samples and also the properties of 

the glass beads in order to have a better result of the oil recovery efficiency. 
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APPENDICES 

 

 

Nickel-Zinc-Ferrite Chemical Composition Calculation 
 

x = 0 
 

Ni 1-x Znx Fe2 O4     NiFe2O4 
 

Chemical equation: 

Ni (NO3)2.6H2O + 2Fe (NO3)3 .9H2O   NiFe2O4 + volatiles 

 
Sample targeted mass = 20g 
 

No. of moles NZFE = 
𝑚

𝑀𝑊
  =  

20𝑔

[58.6934]+2[55.845]+4[15.9999]
 

 

          = 0.0853 mol 

 

From the chemical equation, 1 mol of Ni (NO3)2.6H2O is needed to produce 1 mol of 

NiFe2O4 

 

n NiR = 
1 𝑚𝑜𝑙 𝑜𝑓 NiR 

1 𝑚𝑜𝑙 𝑁𝑖𝐹𝑒2𝑂4
   x  0.0853 mol of NiFe2O4 

 

          = 0.0853 mol 

 

m NiR = n NiR x MW NiR 

               = 0.0853 x 290.801 = 24.8053g 

 

From the chemical equation, 2 mol of Fe (NO3)3 .9H2O is needed to produce 1 mol of 

NiFe2O4  

 

= 
2 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑖𝐹𝑒2𝑂4
  x 0.0853 mol of NiFe2O4 

 

= 0.1706 mol  

  

m FeR = n FeR x MW FeR 

               = 0.1706 x 404.0388 = 68.929g 
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x = 0.25 
 

Ni 1-x Znx Fe2 O4     Ni0.75 Zn0.25 Fe2O4 
 

Chemical equation: 

0.75Ni (NO3)2.6H2O + 0.25Zn (NO3)2.6H2O+ 2Fe (NO3)3 

.9H2O   Ni0.75 Zn0.25 Fe2O4 + volatiles 

 
Sample targeted mass = 20g 
 

No. of moles NZFE = 
𝑚

𝑀𝑊
  =  

20𝑔

0.75[58.6934]+0.25[65.409]+2[55.845]+4[15.9999]
 

 

          = 0.0847 mol 

 

From the chemical equation, 0.75 mol of Ni (NO3)2.6H2O is needed to produce 1 mol 

of NZFE 

 

n NiR = 
0.75 𝑚𝑜𝑙 

1 𝑚𝑜𝑙 𝑁𝑍𝐹𝐸
   x  0.0847 mol of NZFE 

 

          = 0.0635 mol 

 

m NiR = n NiR x MW NiR 

               = 0.0635 x 290.801 = 18.4659g 

 

From the chemical equation, 0.25 mol of Zn (NO3)2.6H2O is needed to produce 1 mol 

of NZFE 

 

= 
0.25 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0847 mol of NZFE 

 

= 0.0212 mol  

  

m FeR = n FeR x MW FeR 

               = 0.0212 x 297.5166 = 6.3074g 

 

 

From the chemical equation, 2 mol of Fe (NO3)3 .9H2O is needed to produce 1 mol of 

NZFE  

 

= 
2 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0847 mol of NZFE 

 

= 0.1694 mol  

  

m FeR = n FeR x MW FeR 

               = 0.1694 x 404.0388 = 68.444 
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x = 0.5 
 

Ni 1-x Znx Fe2 O4     Ni05 Zn0.5 Fe2O4 
 

Chemical equation: 

0.5Ni (NO3)2.6H2O + 0.5Zn (NO3)2.6H2O+ 2Fe (NO3)3 .9H2O  
  

Ni05 Zn0.5 Fe2O4+ volatiles 

 
Sample targeted mass = 20g 
 

No. of moles NZFE = 
𝑚

𝑀𝑊
  =  

20𝑔

0.5[58.6934]+0.5[65.409]+2[55.845]+4[15.9999]
 

 

          = 0.0841 mol 

 

From the chemical equation, 0.5 mol of Ni (NO3)2.6H2O is needed to produce 1 mol 

of NZFE 

 

n NiR = 
0.5 𝑚𝑜𝑙 

1 𝑚𝑜𝑙 𝑁𝑍𝐹𝐸
   x  0.0841 mol of NZFE 

 

          = 0.0421 mol 

 

m NiR = n NiR x MW NiR 

               = 0.0421 x 290.801 = 12.2427g 

 

From the chemical equation, 0.5 mol of Zn (NO3)2.6H2O is needed to produce 1 mol 

of NZFE 

 

= 
0.5 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0841 mol of NZFE 

 

= 0.0421 mol  

  

m FeR = n FeR x MW FeR 

               = 0.0421 x 297.5166 = 12.5254g 

 

From the chemical equation, 2 mol of Fe (NO3)3 .9H2O is needed to produce 1 mol of 

NZFE  

 

= 
2 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0847 mol of NZFE 

 

= 0.1682 mol  

  

m FeR = n FeR x MW FeR 

               = 0.1682 x 404.0388 = 67.9593g 
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x = 0.75 
 

Ni 1-x Znx Fe2 O4     Ni0.25 Zn0.75 Fe2O4 
 

Chemical equation: 

0.255Ni (NO3)2.6H2O + 0.75Zn (NO3)2.6H2O+ 2Fe (NO3)3 

.9H2O    

Ni05 Zn0.5 Fe2O4+ volatiles 

 
Sample targeted mass = 20g 
 

No. of moles NZFE = 
𝑚

𝑀𝑊
  =  

20𝑔

0.25[58.6934]+0.75[65.409]+2[55.845]+4[15.9999]
 

 

          = 0.0836 mol 

 

From the chemical equation, 0.25mol of Ni (NO3)2.6H2O is needed to produce 1 mol 

of NZFE 

 

n NiR = 
0.25 𝑚𝑜𝑙 

1 𝑚𝑜𝑙 𝑁𝑍𝐹𝐸
   x  0.0836 mol of NZFE 

 

          = 0.0209 mol 

 

m NiR = n NiR x MW NiR 

               = 0.0209 x 290.801 = 6.0777g 

 

From the chemical equation, 0.75 mol of Zn (NO3)2.6H2O is needed to produce 1 mol 

of NZFE 

 

= 
0.75 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0836 mol of NZFE 

 

= 0.0627 mol  

  

m FeR = n FeR x MW FeR 

               = 0.0627 x 297.5166 = 18.6543g 

 

From the chemical equation, 2mol of Fe (NO3)3 .9H2O is needed to produce 1 mol of 

NZFE  

 

= 
2 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0836 mol of NZFE 

 

= 0.1672 mol  

  

m FeR = n FeR x MW FeR 

               = 0.1672 x 404.0388 = 67.5553g 
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x = 1 
 

Ni 1-x Znx Fe2 O4     Zn Fe2O4 
 

Chemical equation: 

Zn (NO3)2.6H2O+ 2Fe (NO3)3 .9H2O   Zn Fe2O4+ volatiles 

 
Sample targeted mass = 20g 
 

No. of moles NZFE = 
𝑚

𝑀𝑊
  =  

20𝑔

[65.409]+2[55.845]+4[15.9999]
 

 

          = 0.0831 mol 

 

 

From the chemical equation, 1 mol of Zn (NO3)2.6H2O is needed to produce 1 mol of 

NZFE 

 

= 
1  𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0831 mol of NZFE 

 

= 0.0831 mol  

  

m FeR = n FeR x MW FeR 

               = 0.0831 x 297.5166 = 24.7236g 

 

 

From the chemical equation, 2Fe (NO3)3 .9H2O is needed to produce 1 mol of NZFE  

 

= 
2 𝑚𝑜𝑙

1 𝑚𝑜𝑙 𝑜𝑓 𝑁𝑍𝐹𝐸
  x 0.0831 mol of NZFE 

 

= 0.1662 mol  

  

m FeR = n FeR x MW FeR 

               = 0.1662 x 404.0388 = 67.1512g 

 

 

 

 

 

 


