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ABSTRACT 

 

Power quality (PQ) issues have raised the attention of all parties especially 

the power electronic community as the disturbances occurred during the power 

transmission and distribution downgrades the service quality of the power delivered 

and causes damage to the connected load. In this paper, three types of PQ 

disturbances: voltage sag, voltage swell and voltage notch are discussed and a novel 

approach to distinguish various PQ signal using wavelet multi-resolution 

decomposition technique is proposed. Today, wavelet transform is increasingly being 

employed in signal processing in place of Fourier-based technique. The main reason 

for advocating wavelet transform is that it not only traces signal change across time 

plane but it also decompose the signal across the frequency plane. In this paper, Haar 

wavelet and 4-levels of signal decomposition are adequate to detect and distinguish 

the disturbances from their background. All the modelling and classification 

processes are performed in MATLAB where wavelet-1D toolbox and MATLAB 

algorithm are developed and employed. Based on the wavelet decomposition 

technique, voltage sag and voltage swell disturbances are identified at low frequency 

bands such as detail coefficients d4 and approximation coefficients a4. Conversely, 

voltage notch disturbances are clearly captured at high frequency bands particularly 

in the detail coefficients d1 and d2. 3 types of PQ disturbances are well detected and 

distinguished by employing this method. This approach is effective in tracking 

various PQ disturbances as compared to the conventional point-to-point comparison 

method which is principally based on visual inspection.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

Power Quality (PQ) is becoming prevalent especially in the power industry lately. 

PQ defines the fitness of the electrical power delivered form the production from the 

power plant to the electronic devices used by consumers. It is also known as the 

compatibility of the equipment connected to the grid system. However, the 

complexity of the power system to deliver the electrical power from the point of 

production to the point of consumption provides many opportunities for the quality 

of the power to be compromised. 

 

There are several PQ events that are commonly occurred during the distribution 

of electrical power including: voltage sags, voltage swell, outages, harmonics, 

notches, oscillatory transient, and spikes. These PQ disturbances phenomena have 

raised the attentions of all due to the high usage of electronically controlled 

equipment such as programmable logic controller (PLC) and microprocessor. Most 

of these devices are quite susceptible to disturbances of the incoming power signal 

and the cost due to these disturbances can be substantial. Based on the figure 

presented by Electrical Power Research Institute (EPRI), PQ phenomena have 

contributed $15 billion to $24 billion losses in the US economy [1]. Therefore, to 

ensure the efficiency and life expectancy of the sensitive load equipment, a clean 

voltage waveform is very desirable.  
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In fact, PQ disturbances can be divided into two main categories namely: 

variations and events. Variation disturbance is happened during steady state 

phenomena where the signal shows small deviations from its nominal value. These 

disturbances include harmonics, voltage sags and voltage swells. On the other hands, 

events disturbance is occurred randomly during the operating process and it is 

normally large deviations from its normal conditions; such as interrupts and rapid 

transients.  

 

In the past research, the detection and recognition of the signal disturbances is 

primarily based on visual inspection of the waveform by comparing point-to-point 

with the adjacent cycle. This approach has shown its limitation in detecting periodic 

disturbances, thus a more powerful method shall be proposed to improve the 

classification process. In this paper, three major PQ disturbances: voltage sags, 

voltage swells and voltage notches are distinguished by applying wavelet multi-

resolution decomposition technique. Wavelet-based decomposition method has been 

widely used to model some short duration events or interrupts due to its flexibility in 

window size and its capability to present the data in time-frequency domain [3]. For 

this reason, wavelet transform (WT) is considered as a better tool than Fourier 

Transform (FT) and other methods with its additional desirable features that could 

pinpoint the occurrence of the PQ disturbances and the ability to process signal data 

across several frequency bands. Thus, in this paper, wavelet-based multi-resolution 

decomposition technique has been implemented to analyse and distinguish PQ 

disturbances. 

 

 

 

 

 



5 
 

 

1.2 PROBLEM STATEMENT 

 

The damage caused by PQ disturbances is clearly visible in both public and 

industrial facilities as the PQ disturbances cause malfunction in the power supply and 

the equipment used. Voltage sag is pretty common to occur at the industrial facilities 

when large loads are connected to the power supply. Due to the high capacity of the 

connected load, the amplitude of the power supply has dropped dramatically which 

in return contaminating the quality of power supply. To ensure the power distribution 

is performed at its best condition, techniques to classify and detect the PQ 

disturbances are necessary and crucial. 

Problem arises when the existing methods such as point-to-point comparison of 

adjacent cycle failed to visualise the disturbances that appear periodically. Besides, 

minor disturbance that occur during power distribution are barely noticeable by using 

the existing visual inspection method. Apart from that, Fourier Transform (FT) 

which is commonly applied in the signal processing shows its limitation in extracting 

features that characterise PQ disturbances precisely [1]. Therefore, to overcome the 

inadequacy of the current techniques, wavelet-based decomposition approach is 

proposed to improve the detection and classification of the PQ disturbance signals. 

Wavelet-based method is able to exhibit both time and frequency component of the 

disturbances signals where the disturbances can be clearly identified from the 

wavelet coefficients obtained. In addition, due to the capability of analysing power 

signal in vary window sizes; wavelet decomposition technique is well-suited for PQ 

analysis. 
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1.3 OBJECTIVES 

 

The objectives of the project are: 

i. To study three types of PQ disturbances: voltage sags, voltage swells and 

voltage notches 

 

ii. Detection and classification of the PQ disturbances are based on wavelet 

multi-resolution decomposition technique 

 

 

1.4 SCOPE OF STUDY 

 

In this project, three types of PQ disturbances namely: voltage sags, voltage 

swells and voltage notches are expected to be distinguished by using wavelet multi-

resolution decomposition approach.  

In completing this project, few theories and concepts are introduced: 

a) Types of PQ disturbances 

 

According to the IEEE 1159 to1995, the definition of voltage 

sags and voltage swells based on the Recommended Practice on 

Monitoring Electric Power Quality are [2]:  

Sag is a reduction in amplitude by means of 0.1 to 0.9pu in Roots-

Mean-Square (RMS) of the power signal for duration from 0.5 cycles 

to 1 minute. System faults, energization of heavy loads and initiating 

of large motors are the major contributors for the voltage sags to occur.  

Whereas, swell is a raise in amplitude by means of 1.1 to 1.8pu in 

RMS of the power signal which last from 0.5 cycles to 1 minute. 
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Swells are usually caused by sudden load decreases and associates 

with single line-to-ground fault on the system. On the other hands, 

voltage notch is a type of waveform distortion where the signal is 

deviated from an ideal sinusoidal wave during the steady state. It is 

mainly due to the usage of power electronic devices such as rectifier 

that causes the current to fluctuate from one phase to another.  

 

b) Wavelets multi-resolution decomposition techniques 

 

Wavelets are defined as a function that behaves like a wave 

form fluctuating above and below the x-axis of the processing signal. 

The representation of wavelets is known as wavelets transform (WT),  

 

it can be divided into continuous wavelets transform (CWT) and 

discrete wavelets transform (DWT). In this project, DWT is 

considered over CWT as it is more efficient computationally and 

require less memory storage. By applying DWT decomposition 

technique, power signal can be represented in the form of wavelet 

coefficients based on the decomposition level used. Low scale signal 

decomposition provides high time localization while high scale signal 

decomposition yields poor time localization. Thus, three or four level 

of decomposition is sufficient to distinguish the PQ disturbances.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

High dependence of power electronic devices which are susceptible to signal 

disturbances challenges the PQ in term of performance and life expectancy [4]. Wide 

application of non-linear, time-variant loads in the power distribution network alters 

the behaviour of the power and downgrades the service quality of the power supply 

[1]. Therefore, in order to improve the service quality of the power signal, an 

effective real-time monitoring system that are able to identify and classify different 

types of disturbances events has to be considered before any further mitigation can 

be conducted. However, abundance data have to be analysed which is time 

consuming and not effective. Thus, more efficient approach is necessary in the PQ 

assessments to detect and distinguish the disturbances signal [4].  

 

In the paper [1] He et.al mentioned that WT approach is a powerful method to 

classify PQ disturbances because it provides both time and frequency information of 

the analysed signals. WT outshines FT in term of vary window sizes and its ability to 

representing the power signal in time-frequency domain. This additional feature of 

WT exhibits its effectiveness in tracking signal dynamics and recognising the time of 

occurrence of the PQ disturbances [4]. Narrower window is used at the high 

frequencies in order to get better time resolution; whereas at the low frequencies, 

wider window are preferred for better frequency resolution. For this reason, WT is 

further applied in the area of images and signals processing in order to extract the 

feature vectors based on the multi-resolution signal decomposition method proposed 

by Gauda et al. This method makes use of standard deviation and RMS value of the 

signal to distinguish the PQ disturbances [1]. WT is useful in localising and 

distinguishing various types of PQ events due to its sensitivity in tracking signal 

irregularities [8]. The decomposition level used in this approach reflects the  
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resolution of the time-frequency components [8]. In other words, a high 

decomposition level corresponds to lower frequency where coarser feature of the 

signal is detected. On the contrary, a low decomposition level corresponds to higher 

frequency where finer feature of the signal is observed. Thus, wavelet-based 

classification approach possesses the advantages in term of speed and precision 

discrimination during transient event and voltage variations over the conventional 

approach [5]. Figure 1 shows an example of 4-levels wavelet decomposition, where 

“a” is denoted as approximation coefficients and “d” is indicated as details 

coefficients. Approximation coefficients are low frequency component that passes 

through low pass filter; whereas, details coefficients are high frequency components 

that undergo high pass filter. With such decomposition, the detection and localisation 

of the PQ disturbances can be performed precisely and effectively. 

 

 

FIGURE 1: Wavelet multi-resolution 4-levels decomposition 

 

 

Moreover, a type of neural network called SOLAR (self-organizing learning 

array) based on the wavelet multi-resolution analysis was proposed by He. et.al has 

reported high accuracy of 94.93% [6]. However, neural network shows its 

inadequacy in term of flexibility and feasibility as it requires specific neural network 

architecture to detect a particular type of PQ disturbances. As a matter of fact, the  
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existing technique that is available in the commercial market is mainly based on a 

point-to-point comparison of adjacent cycles [8]. Each sample point of the present 

cycle is compared to the corresponding sample point of the previous cycle where the 

differences between the cycles are considered as the disturbances [8]. However, in 

this approach, periodically disturbance such as flat-top wave shape disturbance is 

failed to be identified. In addition, detection based on visual inspection of the power 

signal is limited in tracking minor disturbances and fail to indicate PQ events 

accurately. Another approach known as Fourier transform which is commonly used 

in signal processing is not suitable for disturbance detection. Fourier transform can 

only represent the signal in one particular frequency fails to identify the disturbances 

that occur at different frequencies.  

 

In general, wavelet decomposition technique is just a series of convolution 

and decimation process at each corresponding scale. Dilated (stretched) and 

translated (shifted in time) are introduced in the wavelet function where dilation is 

denoted as a, while time translation is denoted as b [8].  Thus, wavelet function is 

simply computed by circular convolution of the signal with the wavelet function 

 

 { (   )}             ∫  ( )
  

  
 
 

√ 
 (

   

 
)  .               (1) 

 

Where  ( ) is the original signal, a is a positive real number and b is a real number 

and the particular version of the mother wavelet,     ( ). However, the wavelet 

function only displays the high frequencies information when scale a < 1. In order to 

obtain the low frequency information for full representation of the original 

signal,  ( ), it is crucial to determine wavelet coefficients for scale a > 1. This can 

be achieved by introducing scaling function,  ( )   where the low frequency 

approximation of  ( ) can be computed by circular convolution [8] 
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 Wavelet technique is widely applied in signal processing as compared to 

Fourier Analysis is mainly due to its vast choice of wavelets as the basis function.  
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This enables wavelet analysis to be adapted accordingly to the expected 

characteristic of the signal.  In wavelet families, it consists of several types of 

wavelet such as Haar wavelets, Daubechies wavelets, Coidlets wavelets, Morlet 

wavelets and so on which possess their respective function and characteristic.  Haar 

wavelet is considered over other wavelet families are due to the particularly desirable 

characteristic of Haar wavelets that they are zero everywhere except on a small 

interval [7]. Besides, Haar wavelet is the simplest representation of signal which is 

constantly employed for teaching and illustration purposes. Figure 2 shows the 

representation of Haar wavelets where Haar function is an orthonormal rectangular 

pair. 

 

 

 

FIGURE 2: Haar Wavelet [7] 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

 

 

3.1 FLOW CHART OF THE PROJECT 

 

 

FIGURE 3: Flow chart of the Project 
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3.2 PROJECT ACTIVITIES 

 

For the first phase of the project, data sets of the power signal which contains 

the required disturbances are gathered and collected. 50 data sets for each of the PQ 

disturbances are collected and analysed to ensure the accuracy of the classification 

process. For this reason, voltage signal are generated from the 3-phase voltage source 

distribution system with circuit breaker in MATLAB Simulink as shown in Figure 

4.Figure 4 demonstrates the power transmission and distribution model to generate 

the necessary power signal for interpretation.  Voltage sag, voltage swell and voltage 

notch signals are generated by adjusting the parameters in the 3-phase circuit breaker. 

The frequency applied for the disturbance signal is 50Hz and the duration of the 

model stimulation is 0.35 seconds (350ms). Therefore, the period of one cycle of the 

signal is 0.02 seconds (20ms) and about 17 cycles of the signal are generated in 

every power signal. 

 

 

 

FIGURE 4: 3-phase voltage source distribution system with circuit breaker model  

 

 

The obtained signals generated from the Simulink are analysed in the wavelet 

1-D toolbox. Wavelet 1-D toolbox allows user to make adjustment on the  
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decomposition level and types of wavelet family depending on the behaviour of the 

signals. In this paper, decomposition level is set to level 4 and Haar wavelet is 

chosen. Decomposition and reconstruction of the voltage signal is presented in the 

form of wavelet coefficients across various frequency bands. Thus, any PQ 

disturbances that happened in the signal can be easily captured and identified. Due to 

its flexibility in term of vary window sizes, voltage signals is decomposed into lower 

resolutions where wider window size is applied in low frequency bands to capture 

slow changing events while narrow window size is used in high frequency bands to 

detect fast transients disturbance. 

 

Apart from that, decomposition and reconstruction of the voltage signals can 

be achieved by developing a MATLAB algorithm. The algorithm is able to perform 

multi-resolution decomposition and properly displays the desirable signal waveform. 

Besides, the wavelet coefficients obtained are smoothed to aid in visual identification 

of PQ disturbances. The MATLAB algorithm is saved in decomposition.m of 

MATLAB m-file (APPENDICES A). 

 

 

 

 

3.3 KEY MILESTONES 

 

 

 

 

FIGURE 5: Key Milestones of the Project  
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Basically, the project is divided into 3 main parts as shown in Figure 5. In 

order to analyse the PQ disturbances, data sets or case study of the PQ have to be 

collected. The data sets shall be focus on three types of PQ disturbances which are 

voltage sags, voltage swells and voltage notches. Those data sets are necessary for 

further classification process. By using wavelet multi-resolution decomposition 

technique, the coefficients of the wavelets are obtained where the disturbances that 

present in the signal will clearly be identified. In this project, the decomposition and 

classification process of the voltage signals are performed and analysed in MATLAB. 

By developing an appropriate MATLAB algorithm and modelling the voltage signal 

in the wavelet toolbox, the desired PQ disturbances can be detected and distinguished 

accordingly.
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3.4 GANTT CHART 

 

TABLE 1: Gantt chart of the project 

 WEEK 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Project Title 

Selection 

                            

Literature 

Reviews 

                            

Extended 

Proposal 

                            

Study on 

Wavelets 

Decomposition  

                            

Proposal 

Defence 

                            

Collection of 

PQ Data Sets 

                            

TASK 
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 Key milestones  

Interim Report 

Submission 

                            

MATLAB 

algorithm 

development 

                            

Progress Report 

Submission   

                            

Testing and 

Commissioning 

                            

Poster 

Presentation 

                            

Technical Paper 

Submission 

                            

Final viva 
                            

FYP 

Dissertation 

Submission 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

The proposed disturbance detection and classification approach that are 

introduced in chapter 3 is implemented in voltage sag, voltage swell and voltage 

notch disturbance signals. By applying 4 levels of decomposition, five frequency 

bands are generated where detail coefficient, d has the higher frequency as compared 

to approximation coefficients, a. During signal decomposition, the original signal, s 

is decomposed into lower resolutions where d1 has the highest frequency, followed 

by d2, d3, d4 and the lowest frequency band is a4. In the following, PQ disturbances 

that are occurring in the processed signal are pinpointed and highlighted. 

 

 

4.1 VOLTAGE SAG DISTURBANCE 

 

4.1.1 SEVERE SAG DISTURBANCE 

 

 Voltage sag disturbances can be identified when there is a sudden drop of 

voltage amplitude from its nominal value. Figure 6a shows a 47% voltage sag 

disturbance for 7 cycles, starting from the 6
th

 cycle to 12
th 

cycle as highlighted in the 

red box. The nominal value of the voltage signal is 232V but due to the fault applied 

at the circuit breaker, the voltage of the signal is dropped to 122V. The sag 

disturbance in Figure 6a is considered as severe since the reduction in voltage 

amplitude is exceeding 30%. Based on Figure 6a, the detection and localisation of 

the sag disturbance are visibly indicated in the lower frequency band which are 

wavelet approximation coefficients a4 and detail coefficients d4. Due to the 

characteristic of wavelets transform, wider window size is employed in the lower 

frequency band (a4 and d4) to trace the slow changing variations events. In other 

words, a low frequency band is more applicable in detecting the voltage sag 

disturbance. 
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FIGURE 6a: Voltage sag disturbance (sag39.mat) at 4-scale decomposition 

 

 

FIGURE 6b: Smoothed wavelet coefficients (sag39.mat) 
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To aid in signal analysis, the wavelet coefficients is smoothed in order to 

capture the important patterns of the disturbance signal while removing any 

unwanted noise or other fine-scale rapid phenomena. Figure 6b demonstrates the 

wavelet coefficients that have been smoothed. Small dip is noticed as highlighted by 

the red circle implies the occurrence of the sag disturbance. With this representation 

of the voltage signal, the present of sag disturbance can effortlessly be detected and 

noticed particularly in a4 and d4 coefficients.  

 

 

4.1.2 MINOR SAG DISTURBANCE 

 

Minor sag disturbance in the power signal is difficult to be detected through 

conventional way of visual inspection. The fall of the voltage level is minimal but it 

cannot be negligible. Figure 7a illustrates a minor sag disturbances signal where the 

amplitude of the voltage has dropped 19.5% from its nominal value. The sag 

disturbance is last for 3 cycles, starting from 3
rd

 cycle to 5
th

 cycle as highlighted in 

the red box. From the result obtained, approximation coefficient a4 serves as the best 

frequency scale to observe and detect the sag disturbance. Higher frequency band 

such as detail coefficients d1 and d2 fail to capture the occurrence of the sag 

disturbance. This is because the sag disturbance in Figure 7a is pretty minor and 

hardly to be noticed.  In other words, high frequency band such as detail coefficients 

d1 and d2 are inappropriate to capture the effect of sag disturbance. Figure 7b 

presents the smoothed sag disturbance signal (sag50.mat) after applying 4-level of 

wavelet decomposition. A slight decline in the amplitude of the signal is spotted 

indicates the present of voltage sag disturbance. This sag characteristic is best 

described in approximation coefficient a4 which is the lowest frequency band as 

indicated in the red circle. Basically, wavelet coefficient a4 is the de-noised signal of 

the original voltage signal after applying the low pass filter. Therefore, unwanted 

noise is removed which enable us to clearly visualise and detect the occurrence of 

sag disturbance. 
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FIGURE 7a: Voltage sag disturbance (sag50.mat) at 4-scale decomposition 

 

 

FIGURE 7b: Smoothed wavelet coefficients (sag50.mat) 
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4.1.3 SAG DISTURBANCE AT DIFFERENT TIME OF OCCURRENCE  

 

Figure 8a and Figure 8b show a sag disturbance (sag21.mat) is detected at the 

early cycle of the voltage signal. The sag percentage is reported as 49% where the 

amplitude of the signal is reduced from 365V to 185V.The sag is occurring for 8 

cycles from the very beginning to the 8
th

 cycle of the voltage signal. Since the sag 

disturbance is quite severe thus; it is visible in all frequency bands. However, 

approximation coefficients a4 and detail coefficient d4 are preferred in tracking sag 

disturbance due to the wider window size is used during wavelet decomposition to 

trace slow changing sag disturbance. 

 

 

FIGURE 8a: Voltage sag disturbance (sag21.mat) at 4-scale decomposition 
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FIGURE 8b: Smoothed wavelet coefficients (sag21.mat) 

 

 

 On the other hand, Figure 9a and Figure 9b demonstrate the sag disturbance 

(sag19.mat) with time of occurrence is during the end of the voltage signal. The sag 

disturbance is last for 6 cycles, starting from 11
th

 cycle to the end of the voltage 

signal. 50.6% of sag disturbance is indicated in Figure 8a where the voltage is 

dropped from 375V to 185V. The effect of sag disturbance can be visualised in all 

frequency bands since the sag percentage is reasonably high. However, a4 and d4 

frequency bands provide the best frequency resolution in order to detect and localise 

the effect of sag disturbance. Therefore, in order to study the effect of sag 

disturbance precisely, approximation coefficients a4 is more favourable, followed by 

detail coefficients d4. 
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FIGURE 9a: Voltage sag disturbance (sag19.mat) at 4-scale decomposition 

 

 

FIGURE 9b: Smoothed wavelet coefficients (sag19.mat) 
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4.2 VOLTAGE SWELL DISTURBANCE 

 

4.2.1 SEVERE SWELL DISTURBANCE 

 

Due to the sudden load decreased or single line-to-ground faults, voltage 

swell disturbance is likely to occur. If the swell disturbance is greater than 30%, it is 

considered as critical swell event. Figure 10a shows a voltage signal with severe 

swell disturbance with 38.6% of swell variation. During the swell event, the voltage 

level is deviated from its nominal value where the signal is stepped up from 67.5 V 

to 110 V. The swell disturbances have resided for 7 cycles, found in 6
th

 to 12
th

 cycles 

of the voltage signal. Swell disturbance is normally captured in low frequency band 

such as approximation coefficient a4 and detail coefficient d4. Low frequency band 

allows sufficient time for the slow variation disturbances such as swell disturbance to 

transpire before analysis. In addition, the effect of swell disturbance can clearly be 

described in Figure 10b. By examining Figure 10b, a relatively large expansion 

which implies the emergence of swell disturbance is noticed particularly in the 

frequency bands a4, d4 and d3. However, in the high frequency bands such as detail 

coefficient d1 and d2, the impact of the swell disturbance is hardly to be detected. 

This is because high frequency bands offer a finer time resolution which is more 

suitable to detect fast and transient events. 
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FIGURE 10a: Voltage swell disturbance (swell23.mat) at 4-scale decomposition 

 

 

FIGURE 10b: Smoothed wavelet coefficients (swell23.mat) 
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4.2.2 MINOR SWELL DISTURBANCE 

 

Figure 11a shows a 16.7%  swell disturbance for 4 cycles, between 5
th

  and 8
th

 

cycle of the voltage signal. The manitude of the signal is increased from 200 V to 

240 V during the occurrence of the swell disturbance. Minor swell disturbance is 

rather insignificant which make it difficult to be distinguished from its background. 

By using wavelet multi-resolution decomposition method, approximation coefficient 

a4 serve as the best frequency band in detecting and analysing swell disturbance. 

Figure 11b demonstrates the waveform pattern of the wavelet coefficients. A small 

rise in the amplitude of the signal is spotted especially in the frequency band a4 and 

d4 that describes the effect of the swell disturbance. 

 

 

FIGURE 11a: Voltage swell disturbance (swell32.mat) at 4-scale decomposition 
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FIGURE 11b: Smoothed wavelet coefficients (swell32.mat) 

 

 

4.2.3 SWELL DISTURBANCE AT DIFFERENT TIME OF OCCURRENCE  

 

 Figure 12a demonstrates the swell disturbance which occurs at the very 

beginning of the signal. The swell disturbance remains for 5 cycles, starting from the 

beginning to the 5
th

 cycle of the signal. The voltage signal is generated at 115 V, but 

due to the swell interrupt, the amplitude of the signal is increased to 182 V. Based on 

the Figure 12b, the characteristic of the swell disturbance is captured in all frequency 

bands except detail coefficient d1. Frequency band d1 is the highest frequency 

among other frequency bands, thus, it failed to capture the slow and long variation 

swell disturbance. In general, swell disturbance behave like sag disturbance which is 

best described and presented in lower frequency bands such as approximation a4 and 

detail coefficient d4. 
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FIGURE 12a: Voltage swell disturbance (swell19.mat) at 4-scale decomposition 

 

 

FIGURE 12b: Smoothed wavelet coefficients (swell19.mat) 



30 
 

  

On the other hand, swell disturbance (swell47.mat) is found during the last 

few cycles of the signal as shown in Figure 13a. Swell disturbance takes place during 

the last 3 cycles where the voltage is amplified for 14.4%, from 166 V to 194 V. 

Based on the Figure 13b, the effect of swell disturbance is clearly identified in all of 

the frequency bands. However, low frequency bands such as approximation 

coefficients a4 and detail coefficients d4 provides the finest frequency resolution to 

visualise and distinguish the desirable swell disturbance. 

 

 

FIGURE 13a: Voltage swell disturbance (swell47.mat) at 4-scale decomposition 
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FIGURE 13b: Smoothed wavelet coefficients (swell47.mat) 

 

 

4.3 VOLTAGE NOTCH DISTURBANCE 

 

Voltage notch is a fast and short transient event that normally occurs during 

the steady state of the signal. Figure 14a, 14b and 14c show several voltage notch 

disturbance signals by implementing the proposed technique. In Figure 14a, a small 

waveform distortion is evidently detected in the highest frequency band d1. A spike 

is observed during the 6
th

 cycle of the voltage signal which indicates the occurrence 

of voltage notch disturbance. Voltage notch disturbance is normally detected at the 

higher frequency band, particularly in detail coefficient d1. This is because higher 

frequency bands provide better time resolution in order to capture the fast transient 

signal such as notch disturbance. 
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FIGURE 14a: Voltage notch disturbance (notch14.mat) at 4-scale decomposition 

 

On the other hands, Figure 14b presents the significant of the voltage notch 

disturbance during the steady state of the voltage signal. Several notches have been 

identified as highlighted by the red circle when the signal is decomposed across 

different frequency bands. Based on the characteristic of notch disturbance, it is 

typically detected at the higher frequency band. From Figure 14b, notch disturbances 

are clearly identified during the 2
nd

, 6th and 12
th

 cycle of the voltage signal in the 

detail coefficients d1 and d2. Notch disturbance at the detail coefficients d1 shows 

higher deviation from its nominal voltage value as compared to detail coefficients d2. 

Thus, the critical notch disturbance is normally detected at the detail coefficients d1. 

Whereas the secondary notch disturbance is identified at the detail coefficients d2. 
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FIGURE 14b: Voltage notch disturbance (notch23.mat) at 4-scale decomposition 

 

In general, notch disturbance is captured at the high frequency band as notch 

happens for only a very short period of time. Notch disturbance causes the waveform 

to be distorted from its ideal sinusoidal signal. In Figure 14c, notch disturbance is 

quite severe and it is detected during the 14
th

 cycle of the signal. As compared to 

detail coefficient d2, d1 coefficient serves as the best time resolution in recognising 

and detecting the notch disturbances. This is because detail coefficients d1 is able to 

capture the high frequency components of the signal, therefore, fast transient event 

such as notch disturbance can be easily be noticed and distinguished. 
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FIGURE 14c: Voltage notch disturbance (notch48.mat) at 4-scale decomposition 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATIONS 

 

PQ issues have gain its popularity as the demand for “clean power” is 

increasing due to the high usage of microelectronic devices.  Loss of performance 

and signal interruptions during the power distribution systems affect the power 

efficiency and life expectancy. Therefore, the detection and classification of the PQ 

disturbance is the subject of this paper. In this paper, wavelets multi-resolution 

decomposition technique is proposed to distinguish 3 types of PQ phenomena: 

voltage sags, voltage swells and voltage notches. The characteristic of each of the 

disturbances are discussed and the concept of the wavelet transform is introduced. 

Decomposition and reconstruction of the voltage signals are conducted in the 

MATLAB wavelet 1-D toolbox and the decomposition technique used is translated 

into MATLAB algorithms. Based on the results obtained, voltage sag and voltage 

swell are detected at the lower frequency bands such as approximation coefficient a4 

and detail coefficients d4. Conversely, notch disturbance is captured and identified in 

high frequency bands such as detail coefficients d1 and d2. Therefore, wavelet multi-

resolution decomposition technique with Haar wavelet as the mother wavelets and 4 

level of wavelets decomposition is able to detect and distinguish the three types of 

PQ disturbance signal accordingly. 

 

However, the proposed approach can be further improved by selecting other 

types of wavelets in the wavelet families instead of Haar wavelets. Daubechies 

wavelet such as Daub3 and Daub4 are most commonly used in image and signal 

processing and it may ease in disturbances detection. Besides, the detection and 

classification of PQ disturbances is more precise and accurate when proper level of 

wavelet decomposition is employed. Future studies should focus on the relationship 

between wavelets characteristic and the types of PQ disturbances. A reliable 

disturbances classification system should be able to precisely identify the types of the 

PQ events in a short period of time. The PQ disturbances issues shall further be 

explored and studied to make the classification system automated and user-friendly. 
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APPENDICES 

 

A. MATLAB Code for wavelet 4-levels decomposition technique 

(decomposition.m) 

 

%wavelets multi-resolution decomposition 

  
load sag39.mat 

  
s=sag; %swell,sag or notch depending on signal types 

  

  
%voltage signal is decomposed at 4-scale with Haar wavelets  
[C,L]=wavedec(s,4,'haar'); 

  
%extract level 4 approximation coefficients 
cA4=appcoef(C,L,'haar',4); 
%extract level 1-4 detail coefficients 
cD4=detcoef(C,L,4); 
cD3=detcoef(C,L,3); 
cD2=detcoef(C,L,2); 
cD1=detcoef(C,L,1); 

  
%reconstruct original 
ori_sig=waverec(C,L,'haar'); 
%reconstruct level 4 approximation coeff 
A4=wrcoef('a',C,L,'haar',4); 
%reconstruct level 1-4 detail coefficients 
D1=wrcoef('d',C,L,'haar',1); 
D2=wrcoef('d',C,L,'haar',2); 
D3=wrcoef('d',C,L,'haar',3); 
D4=wrcoef('d',C,L,'haar',4); 

  
%determine the size of the signal 
[row,column]=size(ori_sig)  

  
%display decomposed wavelet coefficients 
figure('name','4-scale Wavelets multi-resolution decomposition'); 
x=1:row; 
subplot(6,1,1); plot(x,ori_sig(x)); title('original 

signal');ylabel('Voltage (V)') 
subplot(6,1,2); plot(x,A4(x)); title('Approximation 

A4') ;ylabel('Voltage (V)') 
subplot(6,1,3); plot(x,D4(x)); title('Detail D4');ylabel('Voltage 

(V)') 
subplot(6,1,4); plot(x,D3(x)); title('Detail D3');ylabel('Voltage 

(V)') 
subplot(6,1,5); plot(x,D2(x)); title('Detail D2');ylabel('Voltage 

(V)') 
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subplot(6,1,6); plot(x,D1(x)); title('Detail D1');ylabel('Voltage 

(V)') 

  
%Smooth the voltage signal  

  
%initialise the variable 
rms_ori=zeros(row,column); 
rms_A4=zeros(row,column); 
rms_D4=zeros(row,column); 
rms_D3=zeros(row,column); 
rms_D2=zeros(row,column); 
rms_D1=zeros(row,column); 

  
srms_ori=zeros(row,column); 
srms_A4=zeros(row,column); 
srms_D4=zeros(row,column); 
srms_D3=zeros(row,column); 
srms_D2=zeros(row,column); 
srms_D1=zeros(row,column); 

  
y=zeros(row,column); 
y1=zeros(row,column); 
y2=zeros(row,column); 
y3=zeros(row,column); 
y4=zeros(row,column); 
y5=zeros(row,column); 

  
xy=zeros(row,column); 
xy1=zeros(row,column); 
xy2=zeros(row,column); 
xy3=zeros(row,column); 
xy4=zeros(row,column); 
xy5=zeros(row,column); 

  
%smoothing the wavelets coefficients for the 1st time 
c=1; a=1;b=160; 
d=row-b+1; 
for c=1:d 
for i=a:b 
    y(c)=y(c)+(ori_sig(i).^2); 
    y1(c)=y1(c)+(A4(i).^2); 
    y2(c)=y2(c)+(D4(i).^2); 
    y3(c)=y3(c)+(D3(i).^2); 
    y4(c)=y4(c)+(D2(i).^2); 
    y5(c)=y5(c)+(D1(i).^2); 
end 
    rms_ori(c)=sqrt(y(c)/((b-a)+1)); 
    rms_A4(c)=sqrt(y1(c)/((b-a)+1)); 
    rms_D4(c)=sqrt(y2(c)/((b-a)+1)); 
    rms_D3(c)=sqrt(y3(c)/((b-a)+1)); 
    rms_D2(c)=sqrt(y4(c)/((b-a)+1)); 
    rms_D1(c)=sqrt(y5(c)/((b-a)+1)); 

  
a=a+1; 
b=b+1; 
end 

  
%smoothing the wavelets coefficients for the 2nd time 
[row1,column1]=size(rms_ori) 
w=1; a1=1;b1=100; 
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v=row1-b1+1; 
for w=1:v 
for i=a1:b1 
    xy(w)=xy(w)+(rms_ori(i).^2); 
    xy1(w)=xy1(w)+(rms_A4(i).^2); 
    xy2(w)=xy2(w)+(rms_D4(i).^2); 
    xy3(w)=xy3(w)+(rms_D3(i).^2); 
    xy4(w)=xy4(w)+(rms_D2(i).^2); 
    xy5(w)=xy5(w)+(rms_D1(i).^2); 
end 
    srms_ori(w)=sqrt(xy(w)/((b1-a1)+1)); 
    srms_A4(w)=sqrt(xy1(w)/((b1-a1)+1)); 
    srms_D4(w)=sqrt(xy2(w)/((b1-a1)+1)); 
    srms_D3(w)=sqrt(xy3(w)/((b1-a1)+1)); 
    srms_D2(w)=sqrt(xy4(w)/((b1-a1)+1)); 
    srms_D1(w)=sqrt(xy5(w)/((b1-a1)+1)); 

  
a1=a1+1; 
b1=b1+1; 
end 

  
%display the smoothed wavelet coefficients 
x=1:row; 
figure('name','Smoothed Wavelet coefficients'); 
subplot(6,1,1); plot(x,srms_ori(x)); title('Original 

signal');ylabel('Voltage (V)') 
subplot(6,1,2); plot(x,srms_A4(x)); title('Approximation 

A4');ylabel('Voltage (V)') 
subplot(6,1,3); plot(x,srms_D4(x)); title('Detail 

D4');ylabel('Voltage (V)') 
subplot(6,1,4); plot(x,srms_D3(x)); title('Detail 

D3');ylabel('Voltage (V)') 
subplot(6,1,5); plot(x,srms_D2(x)); title('Detail 

D2');ylabel('Voltage (V)') 
subplot(6,1,6); plot(x,srms_D1(x)); title('Detail 

D1');ylabel('Voltage (V)') 

  

  

  

 

 


