
DRIVE SIGNAL SIMULATION

THROUGH VEHICLE SUSPENSION MODELING

MOHAMMAD ARIF NURHADIYANTO

MECHANICAL ENGINEERING DEPARTMENT

UNIVERSITI TEKNOLOGI PETRONAS

MAY 2005



Title of thesis Drive Signal Simulation through Vehicle Suspension Modeling

I, MOHAMMAD ARIF NURHADIYANTO

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property ofUTP.

2. The IRC ofUTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

Confidential

Non-confidential

Mohanimad Arif Nurhadiyanto

Sidoarum I, Flamboyan 3

Godean, Sleman

Yogyakarta 55564

Indonesia

Date: 19 July 2005

Endorsed by

•O.

Rashid Abdul Aziz

Mechanical Engineering Department

Umversiti Teknologi Petronas

31750 Tronoh, Perak Darul Ridzuan

Malaysia

Date: 19 July 2005



UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor

The undersigned certify that they have read, and recommend to The Postgraduate

Studies Programme for acceptance, a thesis entitled "Drive Signal Simulation

through Vehicle Suspension Modeling" submitted by Mohammad Arif

Nurhadiyanto for the fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

Date: 19 July 2005

Lashid Abdul Aziz

W7 /W

11



UNIVERSITI TEKNOLOGI PETRONAS

Drive Signal Simulation through Vehicle Suspension Modeling

By

Mohammad Arif Nurhadiyanto

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

IN MECHANICAL ENGINEERING

BANDAR SERIISKANDAR,

PERAK

JULY 2005

in



I hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature

Name Mohammad Arif Nurhadiyanto

Date 19 July 2005

IV



DEDICATION

To my mother and father

who waited so long for this



ACKNOWLEDGEMENT

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Abdul Rashid

Abdul Aziz during this work. I thank Pn Haslina and Rosle Yaakub for opening a golden

opportunity to me. Staffs of the Proton Berhad are thanked for numerous stimulating

discussions, help with experimental setup, and general advice; in particular I would like

to acknowledge the help of Azmihan Arifin, Syammim, Wahab Lung, Zuliana

Kamaruzaman, and Jayakanthan for their support. Dr. Ing. Yul Y. Nazaruddin, is thanked

for his assistance with all types of technical problems.

I am grateful to all my friends from Umversiti Teknologi Petronas, for being the

surrogate family during the many years I stayed there and for their continued moral

support there after. From the staff, Pn. Norma, Ir. Idris, En. Azhar, En. Sani, Hazlin,

Suhaily, Ustaz Cahyono, are especially thanked for their care and attention.

Finally, I am forever indebted to my parents and my family for their understanding,

endless patience, and encouragement when it was most required. I am also grateful to

Fadli and Arief for their support.

Arif

July 2005

VI



ABSTRACT

Road simulation testing of vehicles is often performed using a four posters road

simulator. Four hydraulic actuators are used to replicate motions recorded during a

previous test-drive using a drive signal. Typically, recordings are made of the vehicle

sprung and unsprung accelerations at each of the four corners of the vehicle during an

actual field-test. The hydraulic actuators are then driven and iterative tuning is performed

such that the vehicle sprung and unsprung accelerations track those measured in the field.

Thus realistic suspension movements can be reproduced with the drive signal obtained

from the iterative approach.

The overall goal of this research is to replace this iterative tuning which is specific

for certain model of a car with a suspension system model. Acceleration data obtained

from driving two test vehicles over selected well-defined sections of a test-track at

constant speed were used for conducting this research. In modeling of the car suspension,

the model of the system is assumed to be a quarter vehicle model and a rigid body

system. Inputs to the system are the sprung and unsprung mass vertical accelerations. The

output of the model is the drive signal estimation.

Two approaches of modeling have been applied for characterizing the dynamics

of vehicle suspension. In the first approach, a linear model is derived from the equation

of motion of vehicle suspension and a transfer function model is produced. In the second

approach, a nonlinear modeling is used which treats the suspension as a black box model

and considers only on the input and output of the suspension system.

Comparison of the results obtained from the two modeling approaches was then

made and the errors were quantified. RMS error produced from the nonlinear modeling is

found to be 2.4 % as compared to the linear modeling which produced a 14.5 % RMS

error. This modeling result agreed with prior prediction that the simulated drive signal

produced from the nonlinear modeling could better track the iterated drive signal rather

than the linear modeling.
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ABSTRAK

Ujian simulasi jalan raya untuk kenderaan dilakukan dengan menggunakan "four

posters road simulator". Empat pendorong hidrauhk digunakan untuk mengimbas

pergerakan yang direkod semasa pandu uji dengan menggunakan signal pengendalian.

Kebiasaannya pecutan jisim terpegas dan jisim tak-terpegas pada empat penjuru

kenderaan akan direkodkan semasa ujian praktikal dijalankan. Pendorong hidraulik akan

digerakkan dan penalaan iteratif dijalankan sebagaimana pecutan jisim terpegas dan jisim

tak-terpegas dianalisis semasa ujian praktikal. Oleh itu, pergerakan sebenar suspensi

boleh dihasilkan daripada signal pengendali melalui penalaan iteratif yang telah dibuat.

Objektif kesuluruhan projek ini adalah untuk menggantikan penalaan iteratif yang

yang khas untuk sebuah model kereta dengan model sistem suspensi. Analisis data

pecutan yang diperolehi daripada ujian keatas kedua-dua jenis kereta pada halaju malar

telah digunakan di dalam kajian ini. Kereta tersebut diuji pada jarak yang sama di atas

sebuah litar. Suspensi ini hanya dimodelkan daripada suku bahagian kenderaan dan

adalah sistem yang tegar. Nilai yang bertindak pada sistem adalah pecutan menegak

daripada jisim terpegas dan jisim tak-terpegas. Hasil daripada model ini adalah anggaran

signal pengendali.

Untuk memodelkan suspensi kendaraan, dua pendekatan telah digunakan untuk

mengklasifikasikan pergerakan suspensi. Pendekatan pertama, persamaan pergerakan

suspensi kenderaan melalui model linear dibuat dan perubahan fungsi model diperolehi.

Sementara itu, untuk pendekatan kedua, model tidak-linear dibina berdasarkan suspensi

yang berfungsi sebagai model "kotak hitam". Hanya data yang dimasukkan dan

dikeluarkan diambilkira untuk pendekatan kedua.

Kedua-dua keputusan daripada pendekatan diatas diperolehi dan dibandingkan.

Daripada keputusan tersebut, peratus ketidak tepatan telah dikira. Ketidak tepatan untuk

RMS hasil daripada model tidak-linear adalah 2.4% dibandingkan dengan 14.5% apabila

model linear digunakan. Keputusan daripada simulasi ini telah membuktikan bahawa

model tidak-linear memberi keputusan yang lebih baik jika di bandingkan dengan model

linear.
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CHAPTER 1

INTRODUCTION

This chapter describes a general overview of this research. Background information

related to the topic of vehicle suspension system and the objective of the research are

introduced. The scope of the research and the research methodology are also presented

here. Finally an outline of the thesis and a brief description on the contents of each

chapter are also presented.

1.1 Research Background

Research in vehicle suspension system has been an on-going study for decades, ever

since the invention of automobiles. Engineers and researchers have been trying to fully

understand the dynamic behavior of vehicle suspension as it is subjected to different road

conditions and different driving conditions, such as moderate daily driving and extreme

emergency maneuvers. They want to apply this finding to improve issues such as ride

comfort and safety factor, and develop innovative design that will improve vehicle

operations. With the aid of fast computers to perform complicated design simulations and

high speed electronics that can be used as controllers, new and innovative concepts have

been tested and implemented into vehicles. This type of research is mainly conducted by

automotive companies and academic institutions.

Automotive companies, together with academic institutions, are constantly

improving on the chassis design and development by re-engineering the suspension

systems with new technology. For example, the recent developments of vehicle

suspension system show that a marriage of vehicle suspension dynamics and electronics

can improve both ride comfort and safety factor. Examples of such systems are semi-

active and fully-active suspension. It enables damping characteristics of the suspension

system to be set by a feedback controller in real time, thus improving the ride quality of

the vehicle on different types of road conditions.



The interaction between vehicles and road has been studied for several decades.

An example of such research is indirect testing of whole vehicles. The concept is to

perform a simple laboratory test on each axle of the vehicle, to measure its dynamic

characteristics. This information is then used to generate a numerical model of the

response of the whole vehicle to a typical road type input. More detail information about

this technique will be explained in the following section.

1.2 Research Objective

Fatigue and vibration testing of vehicles are often performed using a four posters road

simulator, where the test vehicle sits on four hydraulic actuators which are used to

replicate motions recorded during a previous road test. Typically, recordings are made of

the body and chassis accelerations at each of the four corners of the vehicle. The

hydraulic actuators are then driven with appropriate input signals so-called drive signal

such that the body and chassis accelerations follow those measured in the field. Thus

realistic suspension movements can be reproduced and the drive signal is obtained.

The cunent solution to this 'mission reproduction' involves an iterative, off-line

procedure (Westwick et al., 1999). First, an identification experiment is performed by

exciting the system with a relatively broad-band noise input. A linear Frequency

Response Function (FRF) is estimated from the test data. The target outputs are then

filtered using the inverse of the FRF, producing an initial input sequence. If, as is often

the case, the initial input sequence does not cause the system to track the target outputs

adequately, the inputs are refined. The inverse FRF is applied to track the error, and the

result is added to the test input. This off-line refinement process iterates until sufficient

tracking accuracy is obtained.

The overall goal of this research is to replace this iterative tuning which is specific

for certain model of car with a deterministic method. Transfer function and state space

model will be derived from vehicle suspension system to recreate the movement of

suspension. It is then compared with nonlinear modeling results using Artificial Neural

Network. It should be pointed out that the result of the modeling is not the road profile.

This research is trying to find the drive signal that accurately reproduces response the

same as road simulator excitation using unsprung and sprung acceleration data.



1.3 Research Scope

Two models of Proton passengercars with conventional suspension system were used for

this research. Two kinds of input (random and deterministic) were excited on each of the

vehicle wheel. The acceleration sensors were mounted on the sprung and unsprung mass

of the vehicle to measure its vertical acceleration. The lateral and longitudinal forces to

the vehicle are assumed to be negligible. Two modeling approaches, i.e. mathematical

and artificial neural network modeling, were used to model the system to get the drive

signal. This simulated drive signal was then compared with the iterated drive signal

which was reproduced from the road simulator.

Some assumptions are made in modeling the vehicle suspension system. The major

assumptions for this research are:

1. The vehicle body is considered as a rigid body. Therefore in deriving the vehicle

equation ofmotion, the vehicle body is treated as a rigid body system.

2. The system is viewed as a quarter car system.

3. The car parameters used in modeling the system are obtained from a certain car

model. The car model used in this work cannot be revealed due to confidentially

agreement with Proton

1.4 Research Methodology

This research attempted to compare transfer function (linear) model against neural

network (nonlinear) model. The following steps describe the above two approaches:

1. Transfer function model.

Figure 1.1 shows the transfer function model approach using Proton X car model with

random signal input (China public road). Acceleration data was measured at sprung and

unsprungmass of the car at front left, front right, rear left, and rear right position. Iterated

drive signal was determined by 'mission reproduction' using road measured data

(acceleration data) and road simulator.
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Figure 1.1 Chinaroad modelingsteps.

Figure 1.2 uses two car models, i.e. Proton X and Proton Y, using Proton test-

track as determimstic signal input. Acceleration data was measured at sprung and

unsprung mass of the car at front left and rear left positions. Drive signal was not

provided.
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2. Artificial Neural Network (ANN) model.

In the ANN modeling, the Proton test-track data was used for training process, whilst the

China road data was used for simulation. Figure 1.3 shows the steps of the ANN

modeling using Proton X car model.

select model structure

find the polynomial coefficients of the
system using discretization of the system equation of

motion and backward formulation

identification

(model iteration and estimation)
come out with appropriate network parameters and weight

validate model

simulate model

compare the drive signal between
iterative results (road simulator) and modeling results

for front left and rear left position
(come out with RMS error)

Figure 1.3 Artificial neural network modelingsteps.

Comparison was then made between the transfer function model and neural network

model.



1.5 Thesis Outline

Chapter 1 describes general overview of this research. Background information

related to the topic of vehicle suspension system and objective of this research are

introduced. The scope of the research and the research methodology are also presented

here.

Chapter 2 briefly describes the published papers, journals, proceedings, that were

found most relevant and complimentary to this research.

Chapter 3 explains the dynamic modeling of vehicle suspension system. The

concept of vehicle suspension system and the derivation of linear and nonlinear modeling

of vehicle suspension are presented in this chapter.

Test procedure and data analysis methodology for obtaining the best data are

provided in chapter 4. There are two kinds of data that were obtained, i.e. road data from

China and track data from Proton test-track.

Chapter 5 describes the modeling results of vehicle suspension systems. In the

first section of this chapter, the results of mathematical modeling for both China road and

Proton test-track will be presented. It is then followed by nonlinear modeling results

using artificial neural network.

Chapter 6 briefly discusses the main issue in this research. The results of vehicle

suspension modeling for both linear and nonlinear modeling are the main topics briefed

in this chapter.

Finally, the conclusion of the research is provided in chapter 7.



CHAPTER 2

LITERATURE REVIEW

This chapter provides information on past research on vehicle suspension modeling to

recreate the drive signal using analytic and nonlinear algorithms. An extensive literature

search was conducted with the most relevant results presented in this chapter. Although

the nonlinear modeling of vehicle suspension has been addressed in a number of articles,

none of the previous studies tried to compare the modeling results between linear and

nonlinear modeling with the same input-output. This research has also succeeded on

producing the drive signal for both random and determimstic road profile input.

2.1 Vehicle Suspension Modeling

Modeling of vehicle suspension and its components have been studied for several

decades. Vast assortments of models have been proposed and are used for many different

circumstances. A study by Tao (2000), addressed a modeling suspension damper modules

using LS-Dyna. It describes a finite element model of a suspension damper and

accurately represents component interactions and force distributions within the module.

The study conducted by Ruihong and Runhua (1999), has successfully reduced the

variation of velocity characteristic of the shock absorber in a car using modern robust

optimal design method, applied to its structural parameter design. They tried to analyze

the influences of the parameters on velocity characteristics and the robust values which

can improve velocity characteristic. The study by Rao and Gruenberg (1997) described a

new testing and analysis methodology for obtaining equivalent linear stiffness and

damping of automotive shock absorbers for use in system-level chassis and vehicle

computer aided engineering models for noise and vibration prediction.

A study by Lacombe (2000) addressed the tire model for simulations of vehicle

motion on high and low friction road surfaces. He developed an on-road analytical tire

model to predict tire forces and moments at the tire/road interface. Takahashi et al. (2000)

presented a new tire model of the overturning moment (OTM) characteristics and the



influence of OTM on the vehicle behavior based on the magic formula by adding the new

term of the residual pneumatic scrub. The concept of the new model is to identify the

difference between the simple model and the measurements to the newly defined

functions. They investigated the influence of tire OTM on the vehicle rollover. The study

conducted by Hankook Tire Co., Ltd. (2001) describes the role of tire modeling on the

design process of a tire and vehicle system.

Renner (2000) proposed an Empirical Dynamic Models (EDM) for nonlinear

suspension components. The models addressed in this study are faster to be created rather

than analytical models, more accurate than other black box methods, and faster model

execution. Automotive testing company, MTS, has proposed EDM to accelerate new

suspension development. ElBeheiry and Kamopp (1996) investigated five types of

suspensions: fully active, the limited active, the optimal passive, the actively damped, and

the variable damper systems. Comparisons were made among these systems in terms of

RMS response, frequency domain predictions, and eigen-frequency behavior as functions

of disturbance intensity. They tried to optimize the variable parameter suspension to use

the available suspension deflection to provide maximum isolation.

2.2 Road Profiling

The measurement method of road profile have been studied and conducted a great deal by

many researchers and companies. Sayers and Karamihas (1998) released the Little Book

of Profiling, the most popular reference related with this area of research. It gives a basic

information about measuring and interpreting road profiles. The study conducted by

Katech (2000) describes the construction of Dynamic Road Profiling Devices (DRPD)

and the signal processing for advanced double integration and road profiling for AEIPR

(an Accelerometer Established Inertial Profiling Reference) method.

Some studies related with the process of simulation 'from the field to the

laboratory' have also been conducted by many researchers. Westwick et al. (1999)

models the dynamic of a car attached to a vibration test rig and presented a realistic

simulation of a nonlinear automobile suspension. The overall goal of their research is to

replace the mission reproduction which is involves an iterative, off-line procedure with

an online controller. Storer et al. (1998) characterized the transfer of road surface excited
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vibrations through vehicle suspension system. They applied a technique called Transfer

Path Analysis, originally developed to study the aspect of powertrain-induced vibrations

of the vehicle body, to the suspensions of the complete vehicle being tested on the road or

in the laboratory on a road simulator.

2.3 Nonlinear Modeling of Vehicle Suspension

The nonlinear modeling of vehicle suspension has been such an important issue in the

automotive research activities that many studies have addressed different aspects and

method of these modeling. Felicia and loan (2000) applied neural networks to vehicle

suspension system. They focused on exploring the possibility of deriving the (semi)active

suspension system controllers based on the artificial intelligence strategy, and verifying

the proposed procedure of derivation by simulation results. Lin and Kanellakopoulos

(1995) proposed a nonlinear backstepping design for active suspension system which

aims to improve the trade-off between ride quality and suspension travel. They showed

that the intentional introduction of nonlinearity through the controller into an otherwise

linear system can be beneficial in cases where the desired closed-loop response is

different operating regions. Yul and Yamakita (1999) presented an alternative approach

to identify suspension system model using neuro-fuzzy technique. By using this

approach, the nonlinear characteristics of the suspension system have accommodated.

Westwick et al. (1999) addressed a nonlinear identification of automobile vibration

dynamic. They developed a technique for identifying a restricted class of nonlinear state

space systems, a structure which can be used to model a wide variety of systems.

2.4 Conclusion

The nonlinear modeling of vehicle suspension to recreate the drive signal is of great

importance to the automotive industry and has therefore been the subject of many studies.

Previous studies have addressed many aspects and methods of the modeling and have

attempted to develop models based on the actual measurement from a running test

vehicle. Modeling of suspension component, such as shock absorber, and tire modeling,

especially in dynamic condition, has also been studied a great deal by many researchers.

With the aim of improving the ride comfort behavior of vehicles for road-surface
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excitation, a great deal of researchers and companies have been trying to understand in

detail the dynamic characteristics of the suspension systems and the transfer of vibration

through the vehicle suspension.

Most of the previous studies have been limited in the modeling technique and

experimental data for verification. The previous research applied only one type of

modeling and one type of input. This research tried to compare the modeling results

between linear and nonlinear modeling with the same input-output. This research has also

attempted to reproduce the vehicle suspension movement by determining the drive signal

for both random and deterministic road profile input.
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CHAPTER 3

MODELING OF VEHICLE SUSPENSION SYSTEM

This chapter briefly describes the dynamic modeling of vehicle suspension system. The

concept of vehicle suspension system, includes a quarter-car system is first presented in

this chapter. It then describes the derivation of linear and nonlinear modeling approaches

for identifying the characteristic of vehicle suspension.

3.1 Vehicle Suspension System

The excitation source (i.e. vertical forces exerted by the road on a tire) is transmitted to

the vehicle body through the vehicle suspension system. This system allows its

components to absorb the energy of the road roughness so passengers can have a smooth

ride. In other words, it provides vertical compliance so the wheels can follow the uneven

road, isolating the body from roughness in the road. The others primary functions of a

suspension system are to (Gillespie, 1992):

• Maintain the wheels in the proper steer and camber attitudes to the road surface.

• Resist roll of the chassis.

• React to the control forces produced by the tires - longitudinal (acceleration and

braking) forces, lateral (cornering) forces, braking and driving torques.

• Keep the tires in contact with the road with minimal load variation.

To study the fundamental behavior and characteristics of vehicle suspension

system, it is necessary to understand the basic concepts of vehicle dynamics, ride, and

quarter car model. This section presents the necessary information on those subjects. The

vibration-absorber-components of vehicle are also described in this section.

Vehicle Dynamics

The subject of 'vehicle dynamics' is concerned with the movements of vehicles

on a road surface. The forces imposed on the vehicle from the tires, gravity, and

aerodynamics determine dynamic behavior of the vehicle. The vehicle and its
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components are studied to determine what forces will be produced by each of these

sources at a particular maneuver and trim condition, and how the vehicle will respond to

these forces. Understanding vehicle dynamics can be accomplished at two levels-the

empirical and the analytical. The empirical understanding derives from trial and ereor

from which one learns about the factors that influence the vehicle performance. The

empirical method, however, can often lead to failure. Without a mechanistic

understanding of how changes in vehicle design or properties affect performance,

extrapolating past experience to new conditions may involve unknown factors which may

produce a new result, defying the prevailing rules of thumb. For this reason, engineers

favor the analytical approach. The analytical approach attempts to describe the mechanics

of interest based on the known laws of physics so that an analytical model can be

established and represented by differential equations that relate forces or motions of

interest to control inputs and vehicle or tire properties.

Ride

Vehicles travel at high speed, and as a consequence experience a broad spectrum of

vibrations. These are transmitted to the passengers either by tactile, visual, or aural paths.

The term 'ride' is commonly used in reference to tactile and visual vibrations, while the

aural vibrations are categorized as noise. Alternatively, the spectrum of vibrations may be

divided up according to frequency and classified as ride i.e. 0-25 Hz, and noise i.e. 25-

20000 Hz (Gillespie, 1992). The lower-frequency ride vibrations are manifestations of

dynamic behavior common to all rubber-tired motor vehicles. Thus, the study of these

modes is an important area of vehicle dynamics. As an aid in developing a systematic

picture of ride behavior, it is helpful to think of the overall dynamic system as shown in

Figure 3.2.

Excitation Sources

Road Roughness
Tire/wheel

Driveline

Engine

y Vehicle Dynamic
Response

Vibration

^>

Ride

Perception

Figure 3.2 Ride dynamic system.

(adoptedfrom: Gillespie, Fundamentals of Vehicle Dynamics, 1992/



14

Quarter-car Model

At the most basic level, all vehicles share the 'ride isolation' properties common to a

sprung mass supported by primary suspension systems at each wheel. The dynamic

behavior of this system is the first level of isolation from the roughness of the road. The

essential dynamics of the vehicle suspension system can be simplified and represented by

a quarter-car model as shown in Figure 3.3.

1 xb

ix,

J,

Figure 3.3 Quarter-car model.

It consists of a sprung mass (nib) supported on a primary suspension, which in

turn is connected to the unsprung mass (mt). The suspension has stiffness (ks, kp) and

damping (cs) properties. Tire, which interacts between the road and the car, has a spring

rate (kt) to cushion the car against road inegularities.

A quarter-car model is the simplest model that includes a proper representation of

the problem of controlling wheel load variation. It contains no representation of

geometric effects of having four wheels or the use of front suspension state information

to improve the performance at the rear. However, it does appear to contain the most basic

features of the real problem and gives rise to design thinking. Thus, to demonstrate the

application of identification algorithm on a manageable, nonetheless realistic, this

research uses a continuous-time simulation of a quarter-car model.

The Tire

Motion of the vehicle is controlled almost entirely through the forces exerted on the tire

by the road. The tire characteristics therefore have a major effect on handling problems.
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The tire serves essentially three basic functions (Gillespie, 1992):

• It supports the vertical load, while cushioning against road ^regularity

• It develops longitudinal forces for acceleration and braking

• It develops lateral forces for cornering

The tire can be simply represented as a simple spring (kt), although a damper is

often included to represent the small amount of damping inherent to the visco-elastic

nature of the tire. The tire spring rate can be illustrated as Figure 3.4.

Figure 3.4 Tire spring rate.

Spring

Spring can be defined as a component that is designed to have a relatively low

stiffness compared with normal rigid members, thus making it possible to exert a force

that varies in a controlled way with the length of the member. Springs are generally

classified according to the material used and the way that the forces and corresponding

stresses occur. In a quarter-car model, spring is represented as ks.

Damper

It is one of the most important parts on vehicle suspension. The damper is commonly

known as the shock absorber, although the implication that shocks are absorbed is

misleading. Contrary to their name, they do not absorb the shock from road bumps.

Rather the suspension absorbs the shock and the shock absorber's function then is to

dissipate the energy put into the system by the bump (Dixon, 1996). The primary

purposes of a damper are (Dixon, 1996):

• To dissipate any energy in the vertical motion ofbody or wheels.

• To optimize vehicle control behavior by preventing response overshoots.

• To minimize the influence of unavoidable resonance.

In a quarter-car model, damper is represented as cs.
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Parasitic Coefficient

Apart from the deliberately introduced suspension spring and tire spring rate, there are

other sources of springing material inherent in the system. One is rubber bushes. In a

quarter-car model, parasitic coefficient is represented as kp.

Mass

The total mass of the vehicle may be considered to be divided into sprung mass (nib) and

unsprung mass (mt). These terms refer to the component motion relative to the road.

Basically the sprung mass is the body and the unsprung mass is mass of the wheels and

axles. The term "wheel" may be used in a wide sense to include the whole of the rotating

element including the tire, or in a narrow sense to mean the part that connects the tire to

the hub.

3.2 Mathematical Modeling of Vehicle Suspension System

3.2.1 Description of the System

As previously mentioned, the essential dynamics of vehicles can be expressed by a two-

mass model as shown in Figure 3.3. It contains two vertical degrees of freedom: the

displacement of the unsprung mass, xt , and displacement of the sprung mass, Xb. The

road displacement input is denoted by xr. Ks, kp, and kt are the spring coefficient of

suspension, parasitic, and tyre, respectively, and cs is the damper coefficient.

By applying Newton's second law of motion to the quarter-car system as showed

in Figure 3.3, the equation ofmotion of the system can be written as

.. cs . cs . , (kp+ks+kt) (kp+ks) kt
x,+—xt—-**+ — xt p- *6=—*r (3.1)

mt m, mt mt mt

c. . c. . (*„+*,) & +k,)
— Xt H —xb-^xt+^xb-^ s-x,+^ s-xb=0 (3.2)



3.2.2 State Space Model and Transfer Function Model

• State Space Model

Following Ihsan (2002), by using the state variables:

x\ xi

x2 — xb

x3 — xt

xA —xb

Eq. (3.1) and (3.2) can be rewritten as

0 0 1 0

*1

x2

0
(kp+ks+kt)

0 0 1

2*_
x3

-X4.

m,

(kp+ks)
m,

(kp+ks)
mt

£s_

m,

c

mk mu m,. mk

— — 0
xx

0
x2

+ K
x3

m,
Xa

0

Equation (3.3) is the state space model representation of vehicle suspension system.

Transfer Function Model
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(3.3)

Another way of representing the mathematical model of vehicle suspension system is the

transfer function model of its system. The model can be obtained by applying Laplace

transform and Cramer law to Eq. (3.1) and (3.2).

First, Eq. (3.1) and (3.2) can be written in a matrix form,

~mt 0" x\
+

0 mb\lxb\ c.
+

The Laplace transform of Eq. (3.4) is

nls2+css +kp+ks+kl -(css+ks+kp)
-(css+k5+kp) mbs2+css +kp+ks

Xt(s)

LXb(s\

k,Xr(sj
0

ktxr

0
(3.4)



Next, using Cramer law,

mts2 + css + k + ks + kt ktXr(s)

Xh(s) =
-(css + ks +kp) 0

m.s + cs + kn + k, + k, - (c,s + k + kn)

Xb{s) =

TF(s) =

(css + ks +kp)

(c,s + k,+k)ktXr(s)

mhs + c,s + kn + k,
o s p s

(mts2 + css +k +k,+ kt)(mbs2 + c,s +k + ks) - (css + k + ks)2

Xr (s) (m,52 +css +k +k,+k, ){mbs2 +css +k +ks)- (css +k + ks f
(css + ks+kp)k,

k,Xr(s) -(css + ks+kp)

Xb{s) = -
0 mhs2 + c,s + kn+k,

o s p s

m.s2+c,s+ kn+k+k. -(c,s + k+k„)t s p s t vs spy

~{css +ks+kp) mbs2+css +-kn+k,
p '

Xt(s) =
(mbs2 +css +ks+kp)klXr(s)

(m.s2 +css+kp+ks +kl)(mbs2 +css+kp +ks)-(css + kp +ks)2

TF(s) =
Xr(s) (m,s2 +css+kp +ks +kt)(mbs2 +css+kp +ks)-(css +kp +ksf

(mbs2 +css +ks+k )k,
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(3.5)

(3.6)

Eq. (3.5) is the sprung mass-road transfer function model, while Eq. (3.6) is the unsprung

mass-road transfer function model.

3.3 Artificial Neural Network

Artificial Neural Network (ANN) is one of nonlinear modeling method of dynamics

systems. It has capability to control a system with uncertainty relationships between input

and output. It works as biological neural networks therefore ANN has an ability to imitate

the function and characteristics of human neural networks. In other words, the main

strength of ANN is its ability for learning and training, as human characteristics.
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It is obvious that vehicle suspension components, such as damper, bushing, even

spring has a nonlinear characteristic. Due to this nonlinearity, ANN with its nonlinear

characteristic capability, was applied to model the vehicle suspension system.

Architectures/Structures ofNeural Network

Artificial neural networks have been developed as generalizations of mathematical

models of human cognition or neural biology, based on the assumptions that (Fausett,

1994):

• Information processing occurs at many simple elements called neurons.

• Signals are passed between neurons over connection links.

• Each connection link has an associated weight, which, in a typical neural net,

multiplies the signal transmitted.

• Each neuron applies an activation function (usually nonlinear) to its net input (sum of

weighted input signals) to determine its output signal.

A neural network is characterized by (1) its pattern of connection between the neutrons

(called its architecture), (2) its method of determining the weights on the connections

(called its training, or learning, algorithm), and (3) its activation function.

Figure 3.5 shows a simple processing element called neuron, unit, cell, or node. A

neuron can send only one signal at a time, although that signal is broadcast to several

other neurons. It is illustrated in Figure 3.5 that the neuron has input vector x = (xi, ... ,

Xj, ... ,xn).

y_inj ! i yj

Figure 3.5 Characteristics ofneuron.

Each neuron is connected to other neurons by means of directed communication

links, each with an associated weight. The weights represent information being used by



20

the net to solve the problem. A bias can be included by adding a component x0 = 1 to the

vector x, i.e., x = (1, xi, ... , Xj,... , xn). The bias is treated exactly like any other weight,

i.e., woj = bj .

Each neuron has an internal state, called its activation or activity level, which is a

function of the inputs it has received. Typically, a neuron sends its activation as a signal

to several other neurons. As we can see from Fig 3.5, the output of the neuron is yj.

it

y_inj = Yuxiwa
i=0

n

=woj+£x,.w..
1=1

:vZ*.-w*
1=1

yJ = f(y_inj)

As mentioned before, the basic operation of an artificial neuron involves summing

its weighted input signal and applying an output, or activation function. There are several

functions that can be used for activation function as illustrated in Figure 3.6.

f(x)

Identity Function Binary Step Function Hyperbolic Tangent Function

Figure 3.6 Common activationfunctions.

(adoptedfrom: Hines, Fuzzy and Neural Approaches in Engineering, 1994).

From those three functions, hyperbolic tangent function is the most widely used in

application from these following reasons:

• Nonlinear characteristics

• Continuous function
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• Simple relationship between the value of the function at a point and the value of the

derivative at that point (reduces the computational burden during training).

The hyperbolic tangent is

= exp(x) - exp(-x)
exp(^) + exp(-x)

The derivative of the hyperbolic tangent is

h'(x) = \l +h(x)ll-h(xj\

The arrangement of neurons into layers and the connection patterns within and

between layers is called the net architecture. The net illustrated in Figure 3.7 consist of

input units and output units.

CX>

CE>

CED

Fig 3.7 A single layer neural net.

Neural nets are often classified as single layer or multilayer. In determining the

number of layers, the input units are not counted as a layer, because they perform no

computation. The net illustrated in Figure 3.7 is single layer net, while the net shown in

Figure 3.8 has two layers, consist of input units, output units, and one hidden unit.

w2

Fig 3.8 A multilayer neural net.
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Backpropagation Neural Net

A multilayer neural network with one layer of hidden units (the Z units) is shown in

Figure 3.9. The output units (the Y units) and the hidden units also may have biases. The

bias on a typical output unit Yk is denoted by w0k ; the bias on a typical output unit Zj is

denoted by v0j. Only the direction of information flow for the feedforward phase of

operation is shown. During the backpropagation phase of learning, signals are sent in the

reverse direction.

Fig 3.9 Backpropagation neural network with one hidden layer.

(adoptedfrom: Fausett, Fundamentals ofNeural Networks, 1994).

The training of a network by backpropagation involves three stages: the

feedforward of the input training pattern, the calculation and backpropagation of the

associated ercor, and the adjustment of the weights. The algorithm of backpropagation

neural net is illustrated in Figure 3.10



initialize weight
(set to small random values)

X

feedforward

each input unit (Xit i = 1, ... , n) receives input signal xt and
broadcasts this signal to all units in the hidden units

T

each hidden unit (ZjJ = 1,... , p) sums its weighted input signals,

n

X

applies its activation function to compute its output signal,

ĵ =/(z_'";)

X

sends the signal to all units in the output units

:::x::::::::::::::::::;:::::__

each output unit (Yhk = 1, ... , m) sums its weighted input signals,

•Jv
y-i

X

applies its activation function to compute its output signal,

yt=fiyjnk)

X

backpropagation of error

each output unit (Yk,k= 1, ... , m) receives a target pattern corresponding to the
input training pattern, computes its error information term,

St=(.tk-yk)fXy_ink)

where, t is the output target vector, / = ('/,•••,'*,•••,'«)

X

calculates its weight correction term (used to update wJk later),

Awjk =a5kZj, where a is the learning rate

T

calculates its bias correction term (used to update wok later),

Aw0k = aSk

X

sends Sk to units in the layer below

Fig 3.10 Algorithm ofbackpropagation neural net (continued to nextpage)
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A

each hidden unit (Zj,j = 1,..., p) sums its delta inputs (from units in the layerabove),

m

5J"j =ZJ*wy*

X
multiplies by the derivative of its activation function to calculate its error information term,

SJ =S_inJf'{z_inJ)

X

calculatesits weightcorrection term (used to update Vy later),

Av,j = aSjX,

X

calculatesits bias correction term (used to update v0y- later),

Av0J = aSj

update weights and biases

each output unit (Yk, k = l,...,m) updates its bias and weights (j = 0,...,p):

wJk {new) = wJk (old)+ AwJk

I

each hidden unit (Zj,j = 1,...,p) updates its bias and weights (/ = 0,.. .,n):

v..(new) = wff(oW) + Avj/.

Fig 3.10 Algorithm ofbackpropagation neural net.

3.4 Neural Network Modeling of Vehicle Suspension System
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Determination ofModel Structure

The structure of ANN model is constructed by its composed parameters. Those

parameters are number of layers, number of nodes in input, hidden, and output layer,

activation function for each node in hidden layer and output layer, and the weights. The

weakness of this modeling is no definite method to establish the network parameters.

Therefore, the only way to define the variables for getting the best model structure is

iteration. Iteration can be performed by varying the network parameters.
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One of the network variables, that is the number of layers, can be first determined.

Santosa (1998) stated that performance of network with one hidden layer compared with

two hidden layers is not different for simple model such as quarter-car system. Therefore,

two network layers were applied for constructing the model, consist of input layer, output

layer, and one hidden layer.

The number of nodes in input layer can be determined by deriving the sprung and

unsprung transfer function model to find its polynomial coefficient. Structure of ANN

input layer can be written as

[ y(t-l) ... y(t-na) u(t-nk) ... u(t-nb-nk+l)]T (3.7)

where,

u = input signal

y = output signal

na = number of past outputs used for determining the prediction

nb = number of past inputs used for determining the prediction

nk = time delay (usually 1)

then, by using coefficients na, nb, and nk, the number of input layer nodes can be

determined.

Firstly, the vehicle suspension transfer function is rewritten,

TF(s) =
Xb(s) _ (css +k5+kp)kt

TF(s) =

Xr (s) (mts2 +css +kp+ks+k, )(mbs2 +css +kp+ks)- (css +kp+ks )2

Xt(s) = (mbs2+bss +ks+kp)k,
Xr (s) (m,s2 +css +kp+ks+kt )(mbs2 +css +kp+ks)-(css +kp+ks f

By defining constants

<h-*- a2 —

*,+*,

mb mt

mt
aA =

K+kP
m,

k
a>l = — (co0 is the natural frequency of theunsprung subsystem)

mt



then from Eq. (3.5) and (3.6) the following equation is obtained

TF(~\-Xb(s) - a?02(a,j +a2; , „
lt \s) ~ „ , x - —r—,—:—ns—: :—jtt- r- t (3.8)

Xb{s) = a>20(a,s +a2)
Xr(s) s4 +(a, +a3)s3 +(a2 +a4 +col)s2 +a^s +a2(o\
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Xt(s) _ a>l(s2 +ais +a2)
Xr(s) s4 +(a, +a3)s3 +(a2 +a4 +a>l)s2 +a^s + a2co\ms) =^-= 4., , 3 T . ' T'',. — r (3-9)

By letting Xb,Xt as input and Xr as output variable, Eq. (3.8) and (3.9) can be rewritten

Xb+{ax + a3)Xb +(a2 +a4 +co2)Xb+alo)2Xb +a2co2Xb =co2(aiXr+a2Xr) (3.10)

Xt+ (al + a3)Xt +{a2 + a4 +co2)Xl +alco2Xl +a2a>lXt =a>l(Xr +axXr +a2Xr) (3.11)

n n n

By defining Xb =y(t-n), X, =z(t-n), an&Xr =u(t-ri), Eq. (3.10) and (3.11) can

be written in discrete time equation,

y(t-4) + (al+a3)y(t-3) +(a2+a4+Q)2)y(t-2) +aico2y(t-l) +a2co20y(t)
.2../.. 1\ , _ ,.2= axcoQu(t -1) + a2co0u(t)

z(r-4) + (<3, +a3)z(t-3) + (a2 + a4 +a>l)z(t -2) + axa>\z{f -1) + a2a>2Qz(t)

= co20u(t - 2) + axcolu{t -1) +a2colu(t)

By defining constants

_ a.col _(a2+a4+a>20) _(a,+a3) 1
A\~ 2 ' A1 ~ 2 ' 3 _ 2 ' ^4 - 2

Ct2G)Q ^2^0 fl2<y0 a2<2,0

D fl1^0 n ®0
B\ = V > #2 =1 2 ' 2 2

a2a>0 a2<uo

(3.12)

(3.13)

then Eq. (3.12) and (3.13) can be written in basic equation as follows

y(t) + A,y(t -1) + A2y(t - 2) + A3y(t - 3) + ^4 v(f - 4) = «(r) + 5lM(f-1)

v(0 + 4j/(* -1) + A2y(t- 2) + ^3v(/ - 3) + A4y(t - 4) = m(0 + 5,u(f -1) + B2u(t - 2)
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Consider y(t- na) =q'"ay(t) and u(t-nb) = q~nbu(t), then constants A and B can be

expressed in time delay operator q~l with

A(q) - 1+axq~l +a2q~2 +a3q'3 +a4q~*

B(q) = blq-1

for sprung mass, and

A(q) =1+ axq'x + a2q 2+a3q 3+a4q~

-2B(q) = bxq~l +b2q

for unsprung mass

Therefore, the polynomial coefficients of the models canbe determined.

For unsprung mass:

na = 4

nb = 3

nk=l

For sprung mass:

na = 4

nb = 2

nk=l

Using Eq. (3.7), the structure of input layer is

[ y(t-1) ... y(t-4) u(t-1)... u(t-3)]T for unsprung mass
[ y(t-1) ... y(t-4) u(t-1)... u(t-2)]T for sprung mass

The number of node in hiddenlayer along with its activation function can only be

determined by iteration since there is no certain method for it. Whilst, for determining the

output layernodes, it is complied with the problem faced.

Iteration was performed using Matlab™ Neural Network Toolbox. The network

structurewhich produces the best model is illustrated in Figure 3.11.
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input layer hidden layer output layer

Figure 3.11 ANN model structurefor vehicle suspension.

It is shown in Figure 3.11 that iteration was performed using input and output data

at (t-2) and (t-1). (t-2) means that two past values were used for determining the renewed

value. Each data was then forward-propagated to each hidden layer nodes which has

activation function [ L L L L H H ]. L stands for linear activation function, while H

stands for hyperbolic tangent activation function. Output from hidden layer was forward-

propagated again to output layer with activation function [ L ]. Output from output layer

node was then back-propagated to renew the weights. The weight is always corrected

until satisfactory modeling is obtained.
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CHAPTER 4

TESTING AND DATA ANALYSIS

The roughness in a road is the deviation in elevation seen by a vehicle as it moves along

the road. The roughness acts as a vertical displacement input to the wheels, thus exciting

ride vibrations. Yet the most common and meaningful measure of ride vibration is the

acceleration produced. Therefore, for the purpose of understanding the dynamics of ride,

the roughness should be viewed as acceleration input at the wheels.

This chapter explains the testing of Proton's suspension system to measure its ride

dynamic characteristic for further modeling analysis. The test procedure encompasses

general test design, test preparation, instrumented ride vibration measurement, and test

rig description. This chapter also describes the 'initial treatment' to the acceleration data

obtained, i.e. filtering and numerical integration for mathematical modeling purpose.

4.1 Test Procedure

4.1.1 General Test Design

A typical ride test consists of running vehicle over selected well-defined sections of road

at constant speed and certain type of road was performed. Accelerometers were mounted

on the vehicle sprung and unsprung mass to measure its vertical acceleration. The field

measured data was then brought to the laboratory for 'mission reproduction' using

Remote Parameter Control (RPC) technique which is a built-in iteration software in the

road simulator. Using the same car model, the actuators of the servo hydraulic four

posters road simulator were then driven and iterative tuning were performed such that the

sprung and unsprung acceleration match those measured in the field. This iteration

process involves estimationof a linearFRF (Frequency Response Function) from the test

data and refinement of the input sequence by using inverse of the FRF. Thus, realistic

body motion and drive signal from the road simulator can be reproduced under controlled

environment. A more detail explanation about this iteration technique will be described in

the next section.
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As previously mentioned, the overall goal of this research is to replace this

iterative tuning which is specific for certain model of car with a car suspension system

model. Once the model of the suspension has been determined, the drive signal can be

recreated using acceleration data from the accelerometers and the car physical data. The

comparison between industrial practice procedure and modeling approach is illustrated in

Figure 4.1.

Record road or service data

transfer, analyze, edit data

}-
f > Ethernet •

Measure system FRF

System FRF

Estimate drive signal

Desireddata x [FRF]"' x Gain = Initial DriveEstimate

0 < Gain < 1

Calculate error and iterate

Corrected

drive estimate

(iterated drive
signal)

record road data

(sprung ft unsprung acceleration)

•
transfer, analyze, and edit data 1

••jjjj^^^H ^^^^•H^^^^l ••••MM •
modeling ^B

^•1 ••HIMBIi HB ^^H

transfer function of

vehicle suspension 1
••I^^^K ••••••

simulated drive signal II
• ^^^•••^H W•

Figure 4.1 Comparison between industrialpractice and current modeling approach,

(adoptedfrom: Arifin et al, Using Model Parameter toMonitor Vehicle

Changesduringa Durability Test, 2000)



31

Remote Parameter Control

Remote Parameter Control (RPC) is an advanced simulation technique that is used to

replicate and analyze 'in service' vibrations and motions of a specimen using a dynamic

mechanical system in a controlled laboratory environment. RPC was developed by MTS

Systems Corporation which is then applied to their product, i.e. road simulator.

Refer to Figure 4.1, the RPC process can be explained as follows (Arifin et al.,

2000):

1. Vehicle instrumentation and data collection.

• The test vehicle is instrumented with accelerometers and data recorder.

2. Edit and reduce data.

• The measured data is converted to RPC file format and analyzed using the

RPC III TEDIT program.

• Data is reduced to the required data length.

• The acceleration data is run through the RPC HI 'remove_trend' program.

This program removes the slope in the data. The slope of the data is removed

to remove any drift in the accelerometers during data collection.

• A filter is constructed with a band-pass frequency of 0.6-50 Hz (typical for a

servo-hydraulic four posters). The filter is applied to each of the time

histories.

3. Measure system FRF (FrequencyResponse Function).

• The purpose of measuring the FRF is to linearly approximate the laboratory

system. The laboratory system consists of any mechanical and electrical

components between thedrive signal to each actuator and the response of each

signal accelerometer. This includes the servo-controller, actuators, servo-

valves, hydraulic power supply, hydraulic accumulators, test vehicle,

transducer conditioner, and filters. The FRF is measured by creating random,

white noise, playing this signal out to the test system, and then collecting the

response from each accelerometer. Figure 4.2 illustrates the calculation of

FRF.
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where Gxy is the Cross Spectral Density and Gxx is the

Auto Spectral Density.

Figure 4.2 FRFcalculation.
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(6.1)

As shown in Figure 4.2, the FRF is calculated by taking the Cross Spectral

Density (CSD) between the drive signal and the acceleration response. The

CSD is then divided by the Auto Spectral Density (ASD) of the drive signal.

The output is a 4x4 matrix (4-wheels acceleration responses, 4-wheels drive

signals) which provides the linear relationship between drive and response

signal at all frequencies.

Estimate drive signal and iteration

• The estimationprocess is an iterative process as shown in Figure 4.3.

response

drive

Figure 4.3 Iterative process
add to drive

desired road

response

Hg)- error

correction = [H]"'*error

At this point, theFRF needs to be inverted priorto performing the estimation.

An initial drive is calculated by convolving the response with the inverse FRF

([FRF]"1) and multiplying the result with a gain factor. The gain factor used
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for the estimation is 0.5 for each of drive channel. The result of this process

gives a four-channel initial drive file. This drive file is then played out to the

test system to get the acceleration responses.

• As shown in Figure 4.3, the acceleration signal as a response from the drive

signal excitation is then subtracted from the desired response (i.e. measured

acceleration signal). This file is called an error file. The enor file is then

convolved with the inverse of FRF and multiplied by a gain factor to get the

conection file. The conection is then added to the previous drive signal.

• The new drive signal is then played out to the test system. This process is

repeated until the RMS of the enor filebecomes quite small.

4.1.2 Test Preparation

The test vehicles are two models of Proton cars, mid-sized sedan, powered by a 1.6 liter

MPI engine. The front suspension is fitted with Mc Pherson struts and a coil with a

stabilizer bar; the rear suspension is a multi-link system that also uses a stabilizerbar.

Tires

The tire characteristics play a fundamental role in the transmission of longitudinal,

lateral, and vertical forces between the vehicle and road. The tire properties should be as

constant as possible and hence predictable by the driver. All tires are standardized to

guarantee interchangeability, i.e. to guarantee the possibility of using tires from different

manufacturers but with the same designation on one vehicle. Table 4.1 shows some

information contained in test-vehicle tire which are obtained from the manufacturer.

Table 4.1 Tireparametersoftestvehicles.

Car Model Proton X Proton Y

Tire Specification 195/55 R15 84V 185/60 R14 82V

Tire Spring Rate 208.5 N/mm 194 N/mm

Tire Pressure 2.9 kg/cm2 2.9 kg/cm2
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Suspension Specification

Suspension is a crucial functional element which determines vehicle quality. It comprises

linkage mechanisms which permit an appropriately vertical motion of the vehicle body,

controlled by the suspension spring and damper. For a normal road vehicle, the

suspension links include rubber bushes, which are called parasitic spring components.

The coefficients for these components together with the mass of the links are tabulated in

Table 4.2 and 4.3 for Proton X and Y, respectively.

Table 4.2 Suspension parameters ofProtonX.

No Unit

Proton X

item

Front Rear

1 tire spec 195 / 55 R 15 84 V

2 tire spring rate (kt) N/mm 208.5 208.5

3 suspension spring rate (ks) N/mm 23 18

4 parasitic spring rate (kp) N/mm 6 6

5 damping coefficient (cs) Ns/m 3959 2374

6 mass

curb weight kg 810.5 550.5

tire mass with rim kg 16.5 16.5

left side

1 unsprung mass (mt) kg 35.19 41.88

2 sprung mass (mb) kg 355.31 221.61

right side

1 unsprung mass (mt) kg 35.19 41.88

2 sprung mass (mb) kg 355.31 221.61
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Table 4.3 Suspension parameters ofProton Y.

No Unit
Proton Y

Front Rear

1 tire spec 185 / 60 R 14 82 V

2 tire spring rate (kt) N/mm 194 194

3 suspension spring rate (ks) N/mm 24 18

4 parasitic spring rate (kp) N/mm 6 6

5 damping coefficient (cs) Ns/m 1313 1527

6 mass

curb weight kg 691.5 491.5

tire mass with rim kg 14 14

left side

1 unsprung mass (mt) kg 33.76 39.3

2 sprung mass (mb) kg 323.74 209.7

right side

1 unsprung mass (mt) kg 33.76 39.3

2 sprung mass (mb) kg 323.74 209.7

• Test Site

Road input data was measured from two locations which represent two types of input:

- China public road (random profile input)

Proton simulation test-track (deterministic input), shown in Figure 4.4.
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Figure 4.4 Proton simulation test-track (dimensions in mm units).

4.1.3 Instrumented Ride Vibration Measurement

Ride vibration measurements are obtained by measuring accelerations on the unsprung

and sprung mass of the vehicle. The output of each acceleration transducer

(accelerometer) was analyzed and the results will be utilized to produce numerical

measures of ride vibration magnitude.

• Accelerometer and Signal Conditioning

To assure that engine and other high frequency vibrations will not be amplified,

accelerometers with sufficiently high natural frequency and appropriate internal damping

were used.
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• Accelerometer Location

Accelerometers were mounted on the spindle (front) and lower arm (rear) to detect the

vertical movement of the vehicle unsprung mass. While for measuring the sprung mass

vertical acceleration, accelerometers were installed on strut mount (body). The sensor

placement is illustrated in Figure 4.5.

Figure 4.5 Sensorplacements.

(adoptedfrom: Proton documentation)

4.1.4 Test Rig Description

Inputs to the vehicle were provided via four MTS Series 248 double-ended actuators,

each rated at 50 kN with 150 mm stroke. Each actuator has a built in Linear Variable

Displacement Transducer (LVDT) for measuring the actuator displacement. The actuator

was driven by a three-stage valve with a rated flow at 340 liters per minute.

The test vehicle was mounted on four 300 mm diameter wheel pans that were

fixed to the ends of the actuators. To prevent the car from falling off the 4-poster, a wheel

restraint was placed on the outer side of each wheel pan. The laboratory testing set up is

illustrated in Figure 4.6.
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Figure 4.6 Laboratory testing set up.
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4.2 Data Processing

Post processing analysis was performed on acceleration signals to get the other

parameters of vehicle suspension model, i.e. velocity and displacement signal. It

comprises several sequences of steps: filtering, integration, and checking the reliability of

integration by applying double differentiation to displacement signal as integration result.

These steps were applied for both China road data and Proton test-track data.

4.2.1 China Road Data

As one of their target market country, Proton sends car to China to get a specific public

road input, by driving and testing a certain model of car over it. The testing operating

conditions for China road testing are:

Acceleration measures: G

Data analysis parameters:

- Data duration: 5 sec (vehicle speed = 30 m/s , distance travel = 41.7 m)

- Sampling interval: 0.00488281 sec

Figures 4.7, 4.8, and 4.9 show the measured unsprung and sprung acceleration signal and

iterated drive signal, respectively, for Proton X at front-left wheel position. The unsprung

and sprung acceleration signal were obtained from the accelerometers mounted on the

vehicle, while iterated drive signal was obtained as a result of iteration process using road

simulator.



Acceleration Signal (Unsprung-Front Left-Proton X)

Figure 4.7 Acceleration signal (unsprung-front left-Proton X).
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Figure 4.8 Acceleration signal (sprung-front left-Proton X).
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Drive Signal (Front Left-Proton X)

Figure 4.9 Iterated drive signal (front left-Proton X).

To see the pureness of the measured acceleration signals, whether it is

contaminated with noise or not, Fast Fourier Transform (FFT) was applied to the signals.

The FFT results for unsprung and sprung acceleration signal, and iterated drive signal are

shown in Figure 4.10, 4.11, and 4.12, respectively.

FFT Acceleration Signal (Unsprung-Front Left-Proton X)

30

frequency (Hz)

Figure 4.10 FFT acceleration signal (unsprung-front left-Proton X).
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Figure 4.11 FFT acceleration signal (sprung-front left-Proton X).
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Figure 4.12 FFT iterated drive signal (front left-Proton X).
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It is illustrated in Figure 4.10, 4.11, and 4.12 that the high frequency noise (above

15 Hz) appeared in the signal. The frequency above 15 Hz is unwanted noise frequency

since the natural frequency for unsprung and sprung mass are below that frequency.

Therefore, a low-pass filter must be constructed to eliminate the noise.

4.2.1.1 Signal Filtering

The purpose of filtering the time histories was to limit the band-width of the simulation to

the filtered frequency range. It is used to eliminate unwanted component of signals.

A low-pass filter was constructed with a pass frequency of 15 Hz. This frequency

was selected since the 50 Hz cut-off frequency of the RPC simulation (using road

simulator) still produces a noisy signal. The sprung and unsprung mass natural frequency

which is lying between 1-15 Hz remains unchanged. The filter was applied to each of the

time histories (unsprung, sprung, and drive signal). The filtered raw data signals are

shown in Figure 4.13, 4.14, and 4.15 for filtered unsprung and sprung acceleration signal

and iterated drive signal, respectively. While, the FFT of the filtered signals are depicted

in Figure 4.16, 4.17, and 4.18 for filtered unsprung acceleration signal, sprung

acceleration signal, and iterated drive signal, respectively.

Filtered Acceleration Signal (Unsprung-Front Left-Proton X)

Figure 4.13 Filtered acceleration signal (unsprung-front left-ProtonX).
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Filtered Acceleration Signal (Sprung-Front Left-Proton X)

Figure 4.14Filtered acceleration signal(sprung-front left-Proton X).

Filtered Drive Signal (Front Left-Proton X)

6 6.5 9.5 10 10.5 11

Figure4.15Filtered iterated drive signal(front left-Proton X).
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Figure 4.16 FFT - Filtered acceleration signal (unsprung-front left-Proton X).
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Figure 4.17FFT- Filtered acceleration signal (sprung-front left-Proton X).

44



FFT - Filtered Iterated Drive Signal (Front Left-Proton X)

T"

30

frequency (Hz)

"T

45

Figure 4.18 FFT- Filtered iterated drive signal (front left-Proton X).

Comparing between the unfiltered signals as shown in Figure 4.7, 4.8, 4.9 and the

filtered signals as illustrated in Figure 4.13, 4.14, and 4.15 shows that the filtered signal is

obviously smoother than unfiltered signal since the high frequency noise have been

rejected. The filtered signal overall amplitude is also lower than the unfiltered one. It is

clearly explained by comparing the FFT between unfiltered and filtered signal which is

shown in Figure 4.10, 4.11, 4.12 for unfiltered signal and 4.16, 4.17, 4.18 for filtered

signal.

4.2.1.2 Signal Integration

The unsprung and sprung acceleration signals were then numerically integrated to obtain

velocity signal using cumulative trapezoidal numerical integration rule. The result of the

integration must be multiplied by the sampling time to properly scale the velocity data.

The velocity signal for "unsprung-front left-Proton X" is shown in Figure 4.19.
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Velocity Signal (Unsprung-Front Left-Proton X)

6 6.5

Figure 4.19 Velocitysignal (unsprung-front left-Proton X).

It is clearly seen in Figure 4.19 that there is a vertical shift in the velocity graph.

This is due to byproduct of DC offset in the acceleration data. The trend can be removed

by detrend the signal. It eliminates the trend by removing the best straight-line fit linear

trend from the data. Results of this treatment for unsprung and sprung velocity signal are

shown in Figure 4.20 and 4.21.

Detrend velocity data to remove DC offset in original data (Unsprung-Front Left-Proton X)

6 6.5

Figure 4.20 Detrend velocity signal to remove DC offset (unsprung-front left-Proton X).
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Detrend velocity data to remove DC offset In original data (Sprung-Front Left-Proton X))
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Figure 4.21 Detrend velocity signal to remove DC offset (sprung-front left-ProtonX).

Using the same procedure, the velocity signal can then be numerically integrated

to obtain displacement signal. Results of the integration process to unsprung and sprung

velocity signal are shown in Figure 4.22 and 4.23.

Displacement Signal (Unsprung-Front Left-Proton X)

time (s)

Figure 4.22 Displacement signal (unsprung-front left-Proton X).
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Figure 4.23 Displacement signal (sprung-front left-Proton X).

It is interesting to notice the match between Figure 4.15 and Figure 4.22. The

trends of the two curves are similar, only the amplitudes on certain peaks are different. It

can be concluded that the tire only gives a slight influence to the drive signal.

4.2.1.3 Signal Differentiation

To determine whether the integration process is valid or not, double differentiation was

applied to unsprung and sprung displacement signal. Figure 4.24 and 4.25 shows the

comparison between original acceleration signal and double-differentiated displacement

signal.
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Figure 4.24 Acceleration data comparison (unsprung-front left-ProtonX).
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Figure 4.25 Acceleration data comparison (sprung-front left-Proton X).
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4.2.2 Proton Test-Track Data

Proton test-track, which has deterministic trapezoid profile, was chosen as second

excitation input to the car. It was selected as comparison to China road profile which has

random characteristic profile. Two models of cars, that is Proton X and Y, were driven

over the same track, and the simulated drive signal as modeling result, would be

compared between the two. The testing operating conditions for test-track testing are:

Acceleration measures: G

Data analysis parameters:

Data duration: 4 sec ( vehicle speed = 30 m/s , distance travel = 33.3 m )

- Sampling interval: 0.00390625 sec

Figure 4.26 and 4.27 shows the measured unsprung and sprung acceleration signal for

Proton X at front-left wheel position.

Acceleration Signal (Unsprung-Front Left-Proton X)

Figure 4.26 Acceleration signal (unsprung-front left-Proton X).
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Acceleration Signal (Sprung-Front Left-Proton X)

Figure 4.27 Acceleration signal (sprung-front left-Proton X).

To see the pureness of the measured acceleration signals, whether it is

contaminated with noise or not, Fast Fourier Transform (FFT) was applied to the signals.

The FFT results for unsprung and sprung acceleration signal are shown in Figure 4.28

and 4.29, respectively.

x io'° FFT Acceleration Signal (Unsprung-Front Left-Proton X)
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Figure 4.28 FFT accelerationsignal (unsprung-front left-Proton X).
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Figure 4.29 FFT accelerationsignal (sprung-front left-Proton X).

It is illustrated in Figure 4.28 and 4.29 that the high frequency noise (above 15

Hz) appeared in the signal. The frequency above 15 Hz is unwanted noise frequency

since the natural frequency for unsprung and sprung mass are below that frequency.

Therefore, a low-pass filter must be constructed to eliminate the noise.

4.2.2.1 Signal Filtering

Using the same treatment as China road data, a low-pass filter was constructed

with a pass frequency of 15 Hz. The filter was applied to each of the time histories

(unsprung and sprung acceleration signal). The filtered raw data signals are shown in

Figure 4.30 and 4.31. While, the FFT of the filtered signals are depicted in Figure 4.32

and 4.33 for filtered unsprung acceleration signal and sprung acceleration signal,

respectively.
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Fettered Acceleration Signal (Unsprung-Front Left-Proton X)

Figure 4.30 Filtered acceleration signal (unsprung-front left-ProtonX).

Filtered Acceleration Signal (Sprung-Front Left-Proton X)

37.5

Figure 4.31 Filtered acceleration signal (sprung-front left-ProtonX).
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Figure 4.32 FFT - Filtered acceleration signal (unsprung-front left-ProtonX).
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Figure 4.33 FFT- Filtered acceleration signal (sprung-front left-Proton X).
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Comparing between the unfiltered signal as shown in Figure 4.26, 4.27 and the

filtered signal as illustrated in Figure 4.30, 4.31 shows that the filtered signal is obviously

smoother than unfiltered signal since the high frequency noise have been rejected. The

filtered signal overall amplitude is also lower than the unfiltered one. It is clearly

explained by comparing the FFT between unfiltered and filtered signal which is shown in

Figure 4.28, 4.29 for unfiltered signal and 4.32, 4.33 for filtered signal.

4.2.2.2 Signal Integration

By using the same steps, the unsprung and sprung acceleration signals were then

numerically integrated to obtain velocity signal using cumulative trapezoid rule. The

result of the integration must be multiplied by the sampling time to properly scale the

velocity data. Detrend was then applied to remove DC offset in the velocity data. The

unsprung and sprung mass velocity signals are shown in Figure 4.34 and 4.35.

Velocity Signal (Unsprung-Front Left-Proton X)

Figure 4.34 Velocity signal (unsprung-front left-Proton X).



56

Velocity Signal (Sprung-Front Left-Proton X)

Figure 4.35 Velocitysignal (sprung-front left-Proton X).

Using the same method, the velocity signal can then be numerically integrated to

obtain displacement signal. Results of the integration process to unsprung and sprung

velocity signal are shown in Figure 4.36 and 4.37.

S -20-

Displacement Signal (Unsprung-Front Left-Proton X)
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Figure 4.36 Displacement signal (unsprung-front left-Proton X).
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Figure 4.37Displacement signal (sprung-front left-Proton X).

4.2.2.3 Signal Differentiation
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The unsprung and sprung displacement signal where then double differentiated to

determine whether the integration process is valid or not. Figure 4.38 and 4.39 shows the

comparison between original acceleration signal and double-differentiated displacement

signal.

Acceleration Data Comparison (original-calculation) Unsprung-Front Left-Proton X

5 o

Figure 4.38 Acceleration data comparison (unsprung-front left-ProtonX).
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Acceleration Data Comparison (original-calculation) Sprung-Front Left-Proton X

Figure 4.39 Acceleration data comparison (sprung-front left-Proton X).

Figure 4.38 shows that the two signals coincide. It means that the velocity and

displacement signal which are integrated from acceleration signal are acceptable. Figure

4.39, on the other hand, shows that the sprung mass measured acceleration signal is not

the same with the sprung mass differentiated acceleration signal, which means that the

integration results is not acceptable. This unsatisfied integration results is also previously

indicated by the sine trend on velocity and displacement signal. To overcome this

unevenness, filtering should be applied again to the simulated drive signal to eliminate

unwanted component in the signal. The filtering process will be explained on the next

chapter.



59

CHAPTER 5

RESULTS

This chapter presents the modeling results of vehicle suspension system. Two modeling

approaches have been reviewed in chapter 3. While, the model parameters have been

derived in chapter 4. In the first section of this chapter, the results of mathematical

modeling for both China road and Proton test-track will be presented. It is then followed

by nonlinear modeling results using artificial neural network.

5.1 Mathematical Modeling Results

Mathematical (linear) modeling of vehicle suspension can be performed by deriving

equation of motion of the suspension system model as shown in Equation 3.1 which is

rewritten below

cs . cs . (k +ks+kt) (kp+ks) kt „ ,x
xt+-*-xt—s-xb+-* s- l-xt p- s-xb=-t-xr (3.1)

mt mt mt mt mt

The drive signal, i.e. xr, can be determined by rearrangement Equation 3.1 above,

mt .. cs . cs . (k +ks+kt) (k + ks)
xr =lTxr+txt-txb+-JL-J7 -*t V^"** (51>

It is shown in Equation 5.1 that to determine drive signal xr, it needs car parameters data,

measured acceleration signal, integrated velocity and displacement signals. The car

parameters, i.e. tire spring rate (kt), suspension spring rate (ks), parasitic spring rate (kp),

damping coefficient (cs), unsprung mass (mt), and sprung mass (mb) are provided in

Table 4.2 and 4.3 for Proton X and Proton Y, respectively. The measured and integrated

signals have been reviewed in sub chapter 4.2. By substituting car parameters, measured

acceleration signal, integrated velocity and displacement signal into Equation 5.1, the

simulated drive signal can be obtained.
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• Road Data from China

The public road data represents random profile input to the vehicle suspension model.

The drive signal can be simulated for each wheel of the vehicle. As mentioned earlier, the

simulated drive signal can be determined using Equation 5.1. It needs car parameters data

and measured and integrated signals. At front left wheel position for Proton X, the car

parameters data can bee seen in Table 4.2 which gives value:

- kt =208.5 N/mm

- ks =23 N/mm

- kp =6 N/mm

- cs =3959Ns/m

- m, =35.19 kg

By substituting car parameters data, measured unsprung acceleration signal xt (shown in

Figure 4.13), integrated unsprung velocity signal xt (shown in Figure 4.20), integrated

sprung velocity signal Xb (shown in Figure 4.21), integrated unsprung displacement

signal xt (shown in Figure 4.22), and integrated sprung displacement signal Xb (shown

in Figure 4.23), simulated drive signal Xr can be determined. This process was carried

out using matlab programming (see appendix N). Figure 5.1 shows drive signal

comparison between simulated drive signal Xr (obtained from mathematical modeling)

and iterated drive signal (shown in Figure 4.15, obtained from RPC process - road

simulator) at front left wheel position for Proton X. Using the same way, drive signal

comparison between simulated and iterated drive signal can be made at front right, rear

left, and rear right wheel position for proton X, as shown in Figure 5.2, 5.3, and 5.4.
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Figure 5.1 Comparison: simulated and iterated drive signal (front left-Proton X).

Simulation Result between Linear Model and Iteration (Front Right-Proton X)
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Figure 5.2 Comparison: simulatedand iterated drive signal (frontright-ProtonX).
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Simulation Result between Linear Model and Iteration (Rear Left-Proton X)
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Figure 5.3 Comparison: simulated and iterated drive signal (rear left-Proton X).

Simulation Result between Linear Model and Iteration (Rear Right-Proton X)
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Figure 5.4 Comparison: simulatedand iterated drivesignal (rear right-Proton X).
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• Proton Test-Track Data

Proton test-track data represents deterministic profile input to the vehicle suspension

model. As it was noted before, the simulated drive signal can be obtained by substituting

car parameters data, measured acceleration signal, and integrated velocity and

displacement signal into vehicle suspension model. Due to the poor quality of integrated

signal which is indicated by the sine trend on velocity and displacement signal, therefore

the simulated drive signal will have the same trend. Figure 5.5 shows the sine trend of

simulated drive signal at front left wheel position for Proton X. While, Figure 5.6

illustrates the FFT of this drive signal.

Unfiltered Drive Signal (Front Left-Proton X)
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Figure 5.5 Unfiltered simulated drive signal (front left-ProtonX).
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Figure 5.6 FFT- unfilteredsimulated drive signal (front left-Proton X).
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A high-pass filter was then constructed with a cut-off frequency of 5 Hz to reject

the low frequency noise below 5 Hz, while the desired portion of the signal, i.e. above 5

Hz was passed unaltered by the filter. This low frequency noise is indicated by the sine

trend on the simulated drive signal and the FFT of the signal, as shown in Figure 5.5 and

5.6. The result of the filtering, i.e. the filtered simulated drive signal at front left wheel

position for Proton X, is shown in Figure 5.7, while the FFT of this signal is illustrated in

Figure 5.8.



Drive Signal (Front Lett-Proton X)

Figure 5.7 Filtered simulated drive signal (front left-Proton X).
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Figure 5.8 FFT -filtered simulated drive signal (front left-ProtonX).
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By using the same procedure, simulated drive signal was obtained for Proton Y.

Since Proton Y was also driven over the same test-track and the same vehicle speed with
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Proton X, the simulated drive signal comparison can be made between the two.

Theoretically, since the test track is the same, the two simulated drive signals should

coincide with each other. Figure 5.9 and 5.10 shows the simulated drive signal

comparison between Proton X and Proton Y at front left and rear left wheel position,

respectively.

Simulation Result at Front-Lett Position : Proton X-Proton Y

time (a)

Figure 5.9 Simulated drive signal comparison atfront left (Proton X- Proton Y).

Simulation Result at Rear-Lelt Position : Proton X-Proton Y

Figure 5.10 Simulateddrive signal comparison at rear left (Proton X- Proton Y).
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5.2 Artificial Neural Network Modeling Results

Model Identification and Validation using Proton Test-Track Data

Model identification and validation was performed using Proton test track data. For

model identification, as an input to the model is the first half data of body acceleration

data, while the output is the first half data of simulated drive signal. Result from this

identification process is weight parameter for each connection link.

By using the weights from identification process, validation to the model can be

performed afterwards. To validate the model, the second half data of body acceleration

data is treated as an input, while the output is the second half data of simulated drive

signal. Figure 5.11 shows validation results of the ANN model along with the ercor.

Validation Result (Front Lort-Proton X)

i i > > drive signal
III! validation result...A ...AU...JLjA....A....[A....ft k....yi....i
i i i i i

300

time (samples)

Drive Signal Error as Validation Result

300

time (samples)

Figure 5.11 Validation result ofANN model.

Model Simulation Using China Road Data

Finally, simulation to the model was performed using China road data which has

random profile characteristic. The simulated drive signal was obtained by using the

weight parameters from test-track identification process and setting the body acceleration

data as an input to the model. Figure 5.12 shows the simulation results of ANN model.



Simulation Result (Front Lett-Proton X)
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Figure 5.12 Simulation result ofANN model.
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CHAPTER 6

DISCUSSION

This chapter briefly discusses the main issue in this research. The results of vehicle

suspension system modeling for both linear and nonlinear modeling are the main topics

briefed in this chapter.

6.1 Linear Modeling

The linear modeling of vehicle suspension is performed using quarter-car transfer

function model. Since this model eliminates vehicle movements, such as yawing, rolling,

pitching, and bouncing, the modeling results are not accurate. Better results will be

obtained if the model is refined by including all factors which effect the vehicle

movement.

The simulated drive signal is obtained by substituting car parameters, measured

acceleration signal, integrated velocity and displacement signal into the model. For China

road modeling, the simulated drive signal from modeling processes is compared with the

iterated drive signal from the road simulator. While, for Proton test-track modeling, since

the iterated drive signal was not provided, two simulated drive signal obtained from two

models of cars which were driven over the same track are compared.

Modeling results on China road show that the simulated drive signal have similar

profile trend with iterated drive signal even the two profiles are not exactly the same.

This is due to nonlinearity of the suspension system, such as shock absorber parts, and

inexact car parameters variable. The RMS Enor for China road drive signal modeling for

Proton X at front-left (FL) and rear-left (RL) wheel is tabulated in Table 6.1.



Table 6.1 RMS errorfor China road drive signal modeling.

WHEEL POSITION

FL FR

RMS Error 19.58% 9.49%
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Different case occuned on Proton test-track modeling. Due to the poor quality of

integrated signals indicated by the sine trend on velocity and displacement signal,

filtering should be applied to the simulated drive signal to eliminate unwanted component

in the data, as explained in Chapter 5. A high-pass filter was constructed to reject the low

frequency noise below 5 Hz.

It is shown in Figure 5.6 and 5.8 that the filtered FFT amplitude is smaller than

the unfiltered one. It eliminates the sine trend on the simulated drive signal by rejecting

the low frequency sine wave which is contained in the signal.

Since two models of cars, i.e. Proton X and Proton Y, were driven over the same

test track and the same vehicle speed, the simulated drive signal comparison can be made

between the two. Modeling results, as shown in Figure 5.9 and 5.10, show that the two

simulated drive signals are almost the same each other. Even the simulated drive signal

cannot resemble the true profile, the profile trend is conect, indicated by a similar amount

of curve peaks in simulated drive signal and bumps in test-track profile for certain period

of time. The RMS Error for Proton test-track drive signal modeling at front-left and rear-

left wheel position for Proton X is tabulated in table 6.2.

Table 6.2 RMS errorfor Proton test-track drive signal modeling

WHEEL POSITION

FL FR

RMS Error 0.22% 0.65%

It should be noted, that since the iterated drive signal was not made available by Proton,

the validation process between simulated and iterated drive signal could not be

performed.
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6.2 Artificial Neural Network Model

On the second method, that is artificial neural network modeling (ANN), vehicle

suspension is treated as a black box model and only considers on the input and output of

suspension system. Therefore the car parameters and integration calculation are not

required. The nonlinearity of suspension is also accommodated by nonlinear

characteristic capability ofANN modeling.

The first step in ANN modeling is determination of model structure or

identification. It means that the network architectures, activation functions, and the

methods of setting the weights (training) must be first determined. Model identification

was performed using Proton test-track data. As an input to the model is the first half data

of sprung acceleration data, while the output is the first half data of simulated drive

signal.

By substituting input-output data into predetermined network structure model and

setting 500 times iteration, network parameters can be determined, as shown in Figure

3.11. Another result from this identification process is weight parameter for each

connection link.

By using the identification-result weights, validation to the model can be

performed afterwards. To validate the model, the second half data of body acceleration

data is treated as an input, while the output is the second half data of simulated drive

signal. Figure 5.9 shows that the validated drive signal almost coincides with the iterated

drive signal, which is indicated by the small enor difference (maximum enor 0.2 mm).

Finally, simulation to the model is performed using China road data which has

random profile characteristic. The simulated drive signal was obtained by using the

weight parameters from test-track identification process and setting the body acceleration

data as an input to the model. As shown in Figure 5.10, the simulated drive signal almost

coincides with the iterated drive signal, which is indicated by the small error difference

(maximum enor 0.5 mm). The RMS Enor for China road drive signal modeling for

Proton X at front-left and rear-left wheel position using ANN modeling is tabulated in

table 6.3.



Table 6.3 RMS errorfor China road drive signal modeling using ANN

WHEEL POSITION

FL FR

RMS Error 0.39% 4.34%
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CHAPTER 7

CONCLUSION

Remote Parameter Control (RPC) is a simulation technique that is used to reproduce the

vehicle motions recorded during previous test-drive using a four posters road simulator in

a controlled laboratory environment. This technique involves an iterative, off-line

procedure. By using a relatively broadband noise input and the inverse of system

Frequency Response Function (FRF), this off-line refinement process iterates until

sufficient tracking accuracy is obtained. The main weakness of this procedure is that the

drive signal output is specific for certain model of car. It means that if another model of

car is used, the drive signal will be different even if the cars are driven over the same

track. This problem can be solved by constructing a model that represents the dynamic

characteristic of vehicle. The objective is to find the vehicle suspension model and by

using the model and model parameters, the drive signal can be determined.

There are two modeling approaches conducted in this research: transfer function

modeling and neural network modeling. In the first approach, mathematical modeling

was introduced to model two types of road profile input. For the first road profile, i.e.

China road, modeling results show that the simulated drive signal which is derived from

vehicle suspension transfer function has similar trend with iterated drive signal from road

simulator even the two profiles are not exactly the same. For the second profile, i.e.

Proton test-track, two models of cars, i.e. Proton X and Proton Y, were driven over the

same test track and the same vehicle speed, therefore the simulated drive signal

comparison can be made between the two. The modeling results show that the two

simulated drive signals are nearly the same each other. Even the simulated drive signals

cannot exactly resemble the true profile, the profile trend is conect, indicated by a similar

amount of curve peaks in the simulated drive signals and bumps in the test-track profile

for certain of time. In the second approach, nonlinear modeling using artificial neural

network was applied to simulate the vehicle suspension system. Model identification and

validation was performed using Proton test-track data, while simulation to the model was
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carried out using China road data. Modeling result shows that the simulated drive signal

is tally with the iterated drive signal, which is indicated by the small difference (enor)

between the two. The comparison of drive signals between the systems (iterated drive

signal from road simulator) and modeling results (linear and nonlinear) at front left and

rear left wheel position for Proton X are illustrated in Figure 7.1 and 7.2.

Drive Signal Comparison (Front Left - Proton X)
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Figure 7.1 Drive signal comparison (front left-Proton X).

Drive Signal Comparison (Rear Left - Proton X)
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Figure 7.2 Drive signal comparison (rear left-ProtonX).
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Since the drive signal has been reproduced and simulated, the test drive for

service loads measurement which is time-consuming and expensive can be avoided. The

drive signal input is applied to the four hydraulic actuators of the road simulator with any

model of car that needs to be tested. This will in turn give a lot of cost saving, instead of

repeating data measurement on the same road surface or test-track using different model

of cars, especially for overseas operations.
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APPENDICES

RANDOM INPUT

Al PROTON X - FRONT LEFT - ACCELERATION SIGNAL

A2 PROTON X - FRONT LEFT - INTEGRATION SIGNAL

A3 PROTON X - FRONT LEFT - SIMULATION RESULT

B1 PROTON X - FRONT RIGHT - ACCELERATION SIGNAL

B2 PROTON X - FRONT RIGHT - INTEGRATION SIGNAL

B3 PROTON X-FRONT RIGHT-SIMULATION RESULT

C1 PROTON X - REAR LEFT - ACCELERATION SIGNAL

C2 PROTON X - REAR LEFT - INTEGRATION SIGNAL

C3 PROTON X - REAR LEFT - SIMULATION RESULT

D1 PROTON X - REAR RIGHT - ACCELERATION SIGNAL

D2 PROTON X - REAR RIGHT - INTEGRATION SIGNAL

D3 PROTON X-REAR RIGHT-SIMULATION RESULT

DETERMINISTIC INPUT

E1 PROTON Y - FRONT LEFT - ACCELERATION SIGNAL

E2 PROTON Y - FRONT LEFT - INTEGRATION SIGNAL

E3 PROTON Y-FRONT LEFT-SIMULATION RESULT

F1 PROTON X - FRONT LEFT - ACCELERATION SIGNAL

F2 PROTON X - FRONT LEFT - INTEGRATION SIGNAL

F3 PROTON X - FRONT LEFT - SIMULATION RESULT

G PROTON X-PROTON Y - FRONT LEFT - SIMULATION RESULT

H1 PROTON Y - REAR LEFT - ACCELERATION SIGNAL

H2 PROTON Y - REAR LEFT - INTEGRATION SIGNAL

H3 PROTON Y - REAR LEFT - SIMULATION RESULT



11 PROTON X - REAR LEFT - ACCELERATION SIGNAL

12 PROTON X-REAR LEFT-INTEGRATION SIGNAL

13 PROTON X-REAR LEFT-SIMULATION RESULT

J PROTON X-PROTON Y - REAR LEFT - SIMULATION RESULT

ARTIFICIAL NEURAL NETWORK

Kl PROTON X - FRONT LEFT - VALIDATION & SIMULATION RESULT

K2 PROTON X - REAR LEFT - VALIDATION & SIMULATION RESULT

MATLAB PROGRAMMING

L RAW DATA FILTERING (PROTON X - FRONT LEFT)

M INTEGRATION AND DIFFERENTIATION (PROTON X - FRONT LEFT)

N LINEAR SIMULATION
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APPENDIX Al

Acceleration Signal (Unsprung-Front Left-Proton )Q

Rttered Acceleration Signal (Unsprung-Front Left-Proton )Q
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APPENDIX A2

Velocity Signal (Unsprung-Front Left-Proton )Q

Displacement Signal (Unsprung-Front Left-Proton X)
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APPENDIX A3

Simulation Result between Linear Model and Iteration (Front Left-Proton X)
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APPENDIX Bl

Acceleration Signal (Unsprung-Front Right-Proton X}

Rltered Acceleration Signal (Unsprung-Front Right-Proton )Q
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APPENDIX B2

Velocity Signal (Unsprung-Front Right-Proton X)

9 9.5 10 10.5 11

Displacement Signal (Unsprung-Front Right-Proton X)
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APPENDIX CI

Acceleration Signal (Unsprung-Rear Left-Proton X)

Rltered Acceleration Signal (Unsprung-Rear Left-Proton X)
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APPENDIX C3

Simulation Result between Unear Model and Iteration (Rear Lett-Proton X)
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APPENDIX DI

Acceleration Signal (Unsprung-Rear Right-Proton X)

§ o

Rltered Acceleration Signal (Unsprung-Rear Right-Proton X)
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APPENDIX D2

1500
Velocity Signal (Unsprung-Rear Right-Proton X)

500 -f- f-i-H-

6 6.5

Displacement Signal (Unsprung-Rear Right-Proton X)
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APPENDIX D3

Simulation Result between Linear Model and Iteration (Rear Right-Proton X)
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APPENDIX El

Acceleration Signal (Unsprung-Front Lefl-Proton Y)
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Filtered Acceleration Signal (Unsprung-Front Left-Proton Y)
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Acceleration Signal (Sprung-Front Left-Proton Y)
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APPENDIX E2

VelocitySignal (Unsprung-Front Lefl-ProtonY)
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APPENDIX E3

Unfiltered Drive Signal (Front Left-Proton Y)
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APPENDIX Fl

Acceleration Signal (Unsprung-Front Left-Proton X)

Filtered Acceleration Signal (Unsprung-Front Left-Proton X)
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Acceleration Signal (Sprung-Front Left-Proton X)

Rltered Acceleration Signal (Sprung-Front Left-Proton X)
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APPENDIX F2

Velocity Signal (Unsprung-Front Left-Proton X)

Displacement Signal (Unsprung-Front Left-Proton X)
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APPENDIX F3
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APPENDIX G

Simulation Result al Front-Left Position: Proton X-Proton Y
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Acceleration Signal (Unsprung-Rear Lefl-Proton Y)
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Acceleration Signal (Sprung-Rear Left-Proton Y)
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APPENDIX H2

Velocity Signal (Unsprung-Rear Left-Proton Y)
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APPENDIX H3
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APPENDIX II

Acceleration Signal (Unsprung-Rear Left-Proton X)
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Velocity Signal (Unsprung-Rear Left-Proton X)
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Simulation Result al Rear-Left Position : Proton X-Proton Y
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Validation Result (Front Left-Proton X)
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Validation Result (Rear Left-Proton X)

i i i i — system
— model

•JX l-\ -1—i\ || i-\ j-| JX -l-Y\ IX j-\\ -

i—Xj +-!•
ill!

300

time (samples)

Error between System and Model

Simulation Result (Rear Left-Proton X)

Enor between System and Model

400 500 600

time (samples)

127



128

APPENDIX L

clear all

cd c:\research\wajafl
load flx.txt

x=flx(:,l);
yl=flx(:,2);
y2=flx(:,3);
y3=flx(:,4);
nl=length(yl);
n2=length(y2);

%—— - — %

% unsprung mass

q=y1*9800; %convert unit from g to mm/s2

plot(x,q)
title('Acceleration Signal (Unsprung-Front Left-Proton X)')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
grid

Q=fft(q,512);
Pq=Q.*conj(Q)/512;
ff=204.8*(0:127)/512;
plot(ff,Pq(l:128))
title('FFT Acceleration Signal (Unsprung-Front Left-Proton X)*)
ylabel('amplitude (mm/s2)')
xlabel('frequency (Hz)')
grid

[b,a]=butter(8,15/102.4);
w=filter(b,a,q);
plot(x,w)
title('Filtered Acceleration Signal (Unsprung-Front Left-Proton X)')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
grid

W=fft(w,512);
Pw=W.*conj(W)/512;
ff=204.8*(0:127)/512;
plot(ff,Pw(l:128))
title('FFT - Filtered Acceleration Signal (Unsprung-Front Left-Proton X)')
ylabel('amplitude (mm/s2)')
xlabel('frequency (Hz)')
grid



plot(ff,Pq(l: 128),'m',ff,Pw(l: 128),V)
title('Filtered & Unfiltered FFT Signal (Unsprung-Front Left-Proton X)')
ylabel('amplitude (mm/s2)')
xlabel('frequency (Hz)')
legend('unfiltered',Tiltered')
grid

% sprung

z=y2*9800; %convert unit from g to mm/s2

plot(x,z)
title('Acceleration Signal (Sprung-Front Left-Proton X)')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
grid

Z=fft(z,512);
Pz=Z.*conj(Z)/512;
ff=204.8*(0:127)/512;
plot(ff,Pz(l:128))
title('FFT Acceleration Signal (Sprung-Front Left-Proton X)')
ylabel('amplitude (mm/s2)')
xlabel('frequency (Hz)')
grid

[b,a]=butter(8,15/102.4);
s=filter(b,a,z);
plot(x,s)
title('Filtered Acceleration Signal (Sprung-Front Left-Proton X)')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
grid

S=fft(s,512);
Ps=S.*conj(S)/512;
ff=204.8*(0:127)/512;
plot(ff,Ps(l:128))
title('FFT - Filtered Acceleration Signal (Sprung-Front Left-Proton X)')
ylabel('amplitude (mm/s2)')
xlabel('frequency (Hz)')
grid

plot(ff,Pz(l: 128),'m',ff,Ps(l: 128),V)
title('Filtered & Unfiltered FFT Signal (sprung-Front Left-Proton X)')
ylabel('amplitude')
xlabel('frequency (Hz)')
legend('unfiltered','filtered')
grid
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% input (road)

plot(x,y3)
title('Drive Signal (Front Left-Proton X)')
ylabel('drive signal (mm)')
xlabel('time (s)')
grid

Y3=fft(y3,512);
Py3=Y3.*conj(Y3)/512;
ff=204.8*(0:127)/512;
plot(ff,Py3(l:128))
title('FFT Iterated Drive Signal (Front Left-Proton X)')
ylabel('amplitude (mm)')
xlabel('frequency (Hz)')
grid

[b,a]=butter(8,15/102.4);
ml=filter(b,a,y3);
plot(x,ml)
title('Filtered Drive Signal (Front Left-Proton X)')
ylabel('drive signal (mm)')
xlabel('time (s)')
grid

M=fft(ml,512);
Pm=M.*conj(M)/512;
ff=204.8*(0:127)/512;
plot(ff,Pm(l:128))
title('FFT - Filtered Iterated Drive Signal (Front Left-Proton X)')
ylabel('amplirude (mm)')
xlabel('frequency (Hz)')
grid

plot(ff,Py3(l: 128),'m',ff,Pm(l: 128), V)
title('Filtered & Unfiltered FFT Signal (sprung-FL-Proton X)')
ylabel('amplitude')
xlabel('frequency (Hz)')
legend('unfiltered'.'filtered')
grid

% — %
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APPENDIX M

clear all

cd c:\research\wajafl
load flxf.txt

x=flxf(:,l); % time
yl=flxf(:,2); % acceleration,unsprung,front-left
y2=flxf(:,3); % acceleration,sprung,front-left
nl=length(yl);
n2=length(y2);

% —%

% unsprung mass

q=yl

plot(x,q)
title('Acceleration Signal')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
grid

w=cumtrapz(q)*0.00488281; %samplingtime=0.00488281 sec
detrend_w=detrend(w) %remove DC offset

plot(x,w)
title('Velocity Signal (Unsprung-Front Left-Proton X)')
ylabel('velocity (mm/s)')
xlabel('time (s)')
grid

plot(x.detrendw)
title('Detrend velocity data to remove DC offset in original data (Unsprung-Front Left-Proton
X))')
ylabel('velocity (mm/s)')
xlabel('time (s)')
grid

plot(x,detrend_w)
title('Velocity Signal (Unsprung-Front Left-Proton X)')
ylabel('velocity (mm/s)')
xlabel('time (s)')
grid



e=cumtrapz(detrend_w)*0.00488281; %samplingtime=0.00488281 sec
detrend_e=detrend(e) %remove DC offset

plot(x.detrende)
title('Displacement Signal (Unsprung-Front Left-Proton X)')
ylabel('displacement (mm)')
xlabel('time (s)')
grid

%check reliability of integration by double differentiation the final result
for i=l:nl

h=0.00488281;
ifi>2

a1(i)=(3 *detrend_e(i)-4*detrend_e(i-1 )+detrend_e(i-2))/(2*h)
end

end

for i=l:nl

h=0.00488281;
ifi>2

bl(i)=(3*al(i)-4*al(i-l)+al(i-2))/(2*h)
end

end

plot(x(6:1017),yl(6:1017),V,x(6:1017),bl(6:1017),'r')
title('Acceleration Data Comparison (original-calculation) Unsprung-Front Left-Proton X')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
legend('original data','after-calculation data')
grid

% sprung mass

a=y2

plot(x,a)
title('Acceleration Signal')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
grid

s=cumtrapz(a)*0.00488281; %samplingtime=0.00488281 sec
detrend_s=detrend(s) %remove DC offset

plot(x,s)
title('Velocity Signal (Sprung-Front Left-Proton X)')
ylabel('velocity (mm/s)')
xlabel('time (s)')
grid
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plot(x,detrend_s)
title('Detrend velocity data to remove DC offset in original data (Sprung-Front Left-Proton X))')
ylabel('velocity (mm/s)')
xlabel('time (s)')
grid

plot(x,detrend_s)
title('Velocity Signal (Sprung-Front Left-Proton X)')
ylabel('velocity (mm/s)')
xlabel('time (s)')
grid

d=cumtrapz(detrend_s)*0.00488281; %sampling time=0.00488281 sec
detrend_d=detrend(d) %remove DC offset

plot(x,detrend_d)
title('Displacement Signal (Sprung-Front Left-Proton X)')
ylabel('displacement (mm)')
xlabel('time (s)')
grid

%check reliability of integration by double differentiate the final result
for i=l:n2

h=0.00488281;
ifi>2

a2(i)=(3*detrend_d(i)-4*detrend_d(i-l)+detrend_d(i-2))/(2*h)
end

end

for i=l:n2

h=0.00488281;
ifi>2

b2(i)=(3*a2(i)-4*a2(i-l)+a2(i-2))/(2*h)
end

end

plot(x(6:1017),y2(6:1017),V,x(6:1017),b2(6:1017),'r')
title('Acceleration Data Comparison (original-calculation) Sprung-Front Left-Proton X')
ylabel('acceleration (mm/s2)')
xlabel('time (s)')
legend('original data','after-calculation data')
grid



APPENDIX N

clear all

cd c:\research\wajafl
load xusflxf.txt % displacement,unsprung,front-left
load vusflxf.txt % velocity,unsprung,front-left
load ausflxf.txt % acceleration,unsprung,front-left
load xsflxf.txt % displacement,sprung,front-left
load vsflxf.txt % velocity,sprung,front-left
load asflxf.txt % acceleration,sprung,front-left
load xdflxf.txt % displacement,drive,front-left
load flxf.txt % time

% define variables

k=flxf(:,l);
kl=k+0.015;
xl=xusflxf;
x2=xsflxf;
x3=vusflxf;
x4=vsflxf;
x5=ausflxf;
x6=asflxf;
x7=xdflxf;
n=length(x7);

% car parameters
mt=35.19;
mb=355.31;
ks=23000;
kp=6000;
bs=3959;
bsn=1751;
kt=322192.2;

%linear formula

g=(mt/kt)*x5+(bs/kt)*x3-(bs/kt)*x4+((kp+ks+kt)/lrt)*xl-((kp+ks)/kt)*x2;

plot(k,g,'b:',kl,x7,'r-')
title('Simulation Result between Linear Model and Iteration (Front Left-Proton X)')
ylabel('drive signal (mm)')
xlabel('time (s)')
legend('linear model','iteration')
grid
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% rms error

m=g(:,206:410)-x7(:,206:410);
ml=m.A2;
m2=sum(ml);
m3=m2/205;
m4=0.001.*m3.A0.5
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