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ABSTRACT

Ethyl acetate is a widely used organic compound in manufacturing of printing inks,
paints, coatings, perfume, film, food additives, pharmaceutical and others due to its low
boiling point. There were numerous research carried out in different areas related with
ethyl acetate production. In recent years, due to the increasing trend in ethyl acetate
demand, reactive distillation that combined reaction process and distillation process
technique has been used for ethyl acetate production studies. However, most of the
researchers focus on column configuration and control of the column. There are limited
studies being carried out on starting up a reactive distillation column in dynamic

simulation.

The present research looked into using the replicated reactive distillation model for ethyl
acetate production to study the reactive distillation column behaviors and suitability of
conventional method for start-up operations. The model replicated is used to determine

the best controller pairing and tuning is carried out for the controller determined.

The steady state reactive distillation Column is modeled using commercial simulator,
ASPEN PLUS™, and validated against results published by researchers. The validated
model is used in studying the start-up operations using conventional method. The
dynamic state study is carried out using ASPEN DYNAMIC™. Two best controllers are
determined by RGA method. Tuning of the controllers is carried out using Ziegler
Nichols (ZN) method.

The reactive distillation model for ethyl acetate production has been successfully
replicated and validated in the present research. Starting up the reactive distillation
column involving reaction with conventional method is very challenging. At such, three
different start-up strategies were studied. The best strategy was selected and optimized in

order to achieve the shortest start-up time and stable operations.
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ABSTRAK

Etil asetat adalah komponen organik yang luas kegunaannya dalam pembuatan dakwat,
cat, penyalutan, pewangi, filem, mangkin makanan, industri ubat-ubatan dan lain-lain
disebabkan oleh takat didihnya yang rendah. Beberapa kajian telah diterbitkan dalam
pelbagai aspek berkenaan dengan pembuatan etil asetat. Kebelakangan ini,
memandangkan kepada permintaan etil asetat yang telah meningkat, kajian telah
digunakan keatas penyulingan bertindak balas yang mengabungkan teknik-tenik proses
tindak-balas dan proses penyulingan bagi penghasilan etil asetat. Walaubagaimanapun,
kebanyakan kajian hanya menumpukan kepada susuncara turus dan kawalan turus. Kajian

berkenanan dengan operasi permulaan turus dalam keadaan dinamik adalah terhad.

Penyelidikan ini tertumpu kepada penggunaan model penyulingan bertindak balas
direkabentuk untuk kajian operasi permulaan turus dan kesesuaian kaedah lazim untuk
permulaan turus. Model itu telah digunakan untuk menentukan pasangan kawalan turus
yang terbaik dan penalaan ke atas sistem kawalan telah dilaksanakan bagi pasangan

kawalan turus yang ditentukan.

Model keadaan stabil itu direkabentuk dengan menggunakan perisian simulasi komersil,
ASPEN PLUS™ dan dibandingkan dengan keputusan-keputusan yang telah diterbitkan
oleh kajian-kajian lepas. Model yang sama digunakan untuk mengkaji operasi permulaan
turus dengan cara lazim. Pengajian keadaan dinamik adalah dijalankan dengan
menggunakan ASPEN DYNAMIC™. Dua pasangan kawalan yang terbaik ditentukan
dengan menggunakan kaedah RGA. Kawalan-kawalan telah ditala-haluskan dengan
menggunakan kaedah Ziegler Nichols (ZN).

Model penyulingan bertindak balas bagi pembuatan etil asetat telah berjaya direkabentuk
and dibandingkan dalam penyelidikan ini. Operasi permulaan penyulingan bertindak
balas yang melibatkan tindak balas adalah amat mencabar. Oleh itu, tiga jenis operasi
permulaan yang berlainan telah dikaji. Operasi permulaan yang terbaik dipilih dan

diperbaiki untuk mencapai masa permulaan yang tersingkat and operasi yang agak stabil.
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1.0 INTRODUCTION

The production of ethyl acetate is typically done through esterification process and this
has presented an opportunity for the application of reactive distillation. Reactive
distillation involved combining the reaction and distillation process in a single equipment
or unit operation and thus able to lower the capital and operating costs significantly in
comparison to the conventional technology of having a reactor and a separate distillation

column.

1.1 Ethyl Acetate

Esters, the organic compound that contains two parts, namely first the ‘alcohol part’ and
secondly the ‘acid part’. It is formed by esterification process typically esterification of
alcohol, carboxylic acid, dicarboxylic acid and even glucose. Carboxylic acid esters are
the most pleasant-smelling organic compounds. It is used as the flavors and fragrances of
fruits, flowers and others. It is an excellent solvent and reaction interm%c}lliates. Typically,
esters are prepared by the reaction of an alcohol (R-OH) or phenol ( @ ) with acid or
acid derivatives (Morrison & Boyd, 1992).

Ethyl acetate is one of the carboxylic acid esters. Appendix A gives the typical ethyl
acetate properties. Other names for ethyl acetate are Acetic acid ethyl ester, Acetic ether,
Acetoxyethane, Ethyl acetic ester and Ethyl ethanoate. It is used in manufacturing of
printing inks, paints, coatings, artificial fruits, perfume, film, food additives, laminates,
pharmaceuticals and others. Ethyl acetate is also used in formulation of adhesives and
lacquers and as favorable solvent for vitamin E production. Due to its low boiling point, it

is suitable for the production of high-grade defatting detergent.

Ethyl acetate, used as solvent in paints, has contributed to at least 10% of the total ethyl
acetate usage demand. In pharmaceuticals, it usage constitutes some 35% of the total
ethyl acetate usage demand. It is mainly used to manufacture amoxyicillin and sulpha
drugs. The expected demand for ethyl acetate in the pharmaceutical industry presently is

estimated at 35,000 ton per annum. World wide, its demand is expected to grow at 8-
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10% per annum, due to the high demand in packaging sector and pharmaceuticals sector.

The current global capacity for ethyl acetate is 1.2 Million Tonnes (India Infoline, 2002).

There are several ethyl acetate manufacturing plants around the world, and it is produced
through different components and methods such as esterification of acetic acid with
ethanol, liquid-phase oxidation reaction of n-butane with ethyl acetate produced as a
byproduct and condensation of acetaldehyde. The world largest ethyl acetate plant is
located at Saltend, Hull, United Kingdom (UK), which belongs to BP. It was
commissioned in June 2001 and is designed for 220,000 tonnes/yr. Others producers
include Celanese in Pampa, Eastman in Kingsport, and Eastman in Longview with the
capacities of 130 million 1b/yr, 59 million Ib/yr and 51 million 1b/yr respectively. The
demand is expected to reach 180 million pounds in the year 2006 with a forecast of 3.4

percent growth for period through the year 2006. (The Innovation group, 2003)

Ethyl Acetate Demand

Million Pounds

2002 2003 Projection 2006 Projection

Figure 1: Ethyl Acetate Demand (The innovation Group, 9-Sept-03)
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1.2 Reactive Distillation

Reactive or catalytic distillation (RD) technique is the combination of reaction process
and distillation process within the same unit operations. The concept is to distill away the
reacted products soon after its formation in order to shift the chemical equilibrium
towards higher conversion. Patents of reactive distillation dated back to the 1920’s. Due
to the complexity of the distillation column, a lot of studies have been carried out and has

taken a long time prior to its application by industry.

Apart from the benefit of pushing the reaction equilibrium close to the product side,
reactive distillation is also able to save the equipment cost since it managed to combine
the reactor and the separate column in one device. It has been reported in a methyl
acetate production in Kingsport, Tennessee, only one fifth of the conventional capital
investment cost and energy usage is expended as a result of adopting this technology
(Doherty and Malone, 2001). The improvement was attributed, among others, to the fact
that it is also able to eliminate the complicated product recovery processes as the reactants
are almost fully converted in the columﬁ. The unconverted reactants are recycled back to
the column through the reflux flow and the boilup flow. This helps to further reduce

recycle cost and catalyst usage.

In some cases, the formation of azeotropes could be avoided using reactive distillation
technology. This is because of the conditions in the reactive distillation column allowing
for the reactants and products to be “reacted away” from the azeotropic state. Another
benefit is from the heat integration, where heat generated from the exothermic reaction

can be used directly as heat of vaporization thus able to reduce the reboiler duty.

Another interesting point is reactive distillation column could potentially avoid hot spots
and reaction runaways using liquid vaporization as the thermal flywheel. Runaway
reaction may occur during intentional chemical conversion process, self-heating and
thermal instability or incompatibility of materials during storage, transport or unit

operations
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MTBE(methyl-tert-butyl-ether) was the first well known commercial examples of
reactive distillation being applied in the industrial scale. There were other productions
where the reactive distillation technology were reported to be used such as ETBE (ethyl-
tert-butyl-ether), methyl acetate and TAME (tert-amyl methyl ether). Appendix B

provides some of the typical reactive distillation processes (Okur and Bayramoglu, 2001).

In addition, reactive distillation technology could be potentially utilized for the hydration
processes for producing Ethylene Glycol, Propylene Glycol, aromatic alkylation (Cumene

and Akly Benzenes), nitritation (Nylon) and oligomerization (1-Butene) reactions.
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1.3 Problem Statement

Due to the increasing trend in the demand of ethyl acetate, there is a need to improve its
production by expanding the capacity of existing plant or new plant through the used of

new technology.

Although reactive distillation has been identified as the promising new technology to help
achieve the above, there were still insufficient understanding developed in the past
especially in its design and operations, which tend to be more complex as a result of the
integration between reaction and separation in a single unit operations. Often studies were
made based on specific system rather than looking at overall perspective in view of the
variation reported for different systems especially when dealing with the operational

aspects.

On the operations of the reactive distillation involving ethyl acetate production, previous
researchers have been focusing more on the steady state condition using mainly
simulation. Studies covering the dynamic state are very limited and often focused only on
control. There were limited researches carried out on the start-up behavior of the reactive

distillation column available in the literature.

The combination of reaction and separation in one column increases the complexity of the
process. Therefore, starting up a reactive distillation column is very different from
starting up a conventional distillation column, in which only separation process takes
place. In view. of the criticality in developing better understanding on the behaviors of
the reactive distillation column applied to the ethyl acetate production, especially during
start-up and control operations, the study was commissioned to cover these aspects. The
outcome is aimed at developing better control strategies using conventional controllers

and better understanding of the start-up behaviors of the column.
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1.4  Research Objectives

Overall, this research focused on studying the operational aspects of a reactive distillation

column for the production of ethyl acetate. Simulation model i.e., steady state and

dynamic state, for the reactive distillation process is replicated using commercial

simulators namely ASPEN PLUS ™ and ASPEN DYNAMIC™. The study involves

looking at the operational behavior of the simulated system, followed with determination

of the best controller pairings based on the available controlled and manipulated

parameters using Ziegler Nichols method, and lastly, the start-up behaviors for the system

using conventional method.

The research endeavors to address the following objectives:

1.

ii.

iil.

iv.

To model a reactive distillation column steady state and dynamic state model
using commercial simulator namely ASPEN PLUS™ and ASPEN
DYNAMIC™ for the production of ethyl acetate for the purpose of
undertaking the study.

To determine the best possible control strategies for the column operations
using ASPEN DYNAMIC™.

To study and understand the start-up dynamic of the reactive distillation
column behaviors from cold start-up and suitability of conventional method
for start-up operations. The work is limited to the use of conventional
controllers in view of its wide scale application across industry.

To propose an optimized strategy in starting up a reactive distillation column

based on the understanding of start-up operations.
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1.5  Research Scope

In addressing the research objectives, the following scopes have been defined for the

purpose of executing the research.

The esterification of acetic acid and ethanol using sulphuric acid as the catalyst to

produce ethyl acetate is chosen for the research work.

There are two reaction rate equations used in the ethyl acetate production whereby one of
the reaction rate equations is not in power law expression as required by ASPEN
PLUS™. At such, the reaction rate equation is converted into power law expression and

validated against the original equation using t-test and correlation coefficient methods.

A simulation model of the reactive distillation producing ethyl acetate is replicated using
a commercial simulator namely the ASPEN PLUS ™. The model is validated with
experimental data and simulated data under steady state condition obtained from literature
and then converted to a dynamic simulation for the purpose of studying the operations

and control of the system.

The best controller strategies for the system are determined using Relative Gain Array
(RGA) method. Reflux rate, condenser duty, reboiler duty and bottom rate are used as the
manipulated variables while the top stream composition of ethyl acetate and the bottom
stream composition of water are used as the controlled variables. Ziegler Nichols method

is used to tune the controller in order to achieve satisfactory operations.

In considering the complexity of the reactive distillation operations, a start-up study is
also conducted using dynamic simulator namely ASPEN DYANMIC™ with the aim of
understanding the behaviors of the column during start-up and to propose a better

operations sequence for starting up.
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1.6

Research Contribution

Upon understanding the reactive distillation column behaviors during start-up
using commercial simulators, i.e. ASPEN PLUS™ and ASPEN DYNAMIC™, it
could be utilized in ethyl acetate production plant, which would be able to
minimize the loss of material and time involved to stabilize the column at the
initial stage. The proposed optimized reactive distillation column start-up stratégy
is able to reduce the start-up timing and dampen the fluctuation of pressure and
temperature. Furthermore, the best control strategy determined would allow the
column to handle any disturbances without upsetting the plant and producing off

specification product.
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2.0 LITERATURE REVIEW

Conventionally, ethyl acetate can be produced through batch or continuous esterification
process using different equipment configurations and catalysts. In order to minimize the
capital cost and operating cost, reactive distillation of ethyl acetate production is
considered as an excellent alternative to the conventional design. The number of
literature involving ethyl acetate has grown in recent years due to more researches
focusing in getting higher purity products. Operations and control of reactive distillation
studies are looked into in order to have a better understanding on reactive distillation in
steady state and dynamic state. The limitations of these literatures are described and will

be addressed in this research.

2.1 Ethyl Acetate Production
There are three main conventional processes in the production of ethyl acetate namely the
Tishchenko Reaction, the Continuous Esterification process and the Batch Esterification

Process.

i. The Tishchenko Reaction (Mcketta & Cunningham, 1984).
The process is able to deliver a 61% yield with the presence of aluminum
ethoxide as catalyst. The manufacturing plants were mostly developed in

Europe.

Reaction Equation:

2CH3;CHO — CH3;COOCH,CH3; Equation 1

The catalyst, aluminum ethoxide is mixed with acetaldehyde and the reaction
takes place at 0°C for about lhour. After the reaction stage, the mixture is
separated to produce the final product, ethyl acetate and non-converted

acetaldehyde. The process is summarized in Figure 2.
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Ethyl Acetate _

l Light ends
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Catalyst Comp.
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L
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Tishchenko process for ethyl acetate. Hoechst A.G

Figure 2: The Tishchenko Reaction (Mcketta & Cunningham, 1984)
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ii. The Continuous Esterification Process (Kroschwitz & Grant, 1996)
Esterification of ethanol and acetic acid is another alternative to produce ethyl
acetate. Acetic acid, excess ethyl alcohol and concentrated sulfuric acid are
mixed in a reactor. The mixture is pumped through a reaction column, a
separator and two recovery columns in order to obtain high purity ethyl
acetate. Ethyl acetate is sent to the reaction column operating at 80°C; the top
product étream is transferred to the first recovery column to produce 83%
ester, 9% alcohol and 8% water at 70°C.  After passing through a separator
and another recovery column, the overhead column contains 95-100% ethyl

acetate. Figure 3 shows the continuous esterification process.
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Figure 3: The Esterification Process (Continuous process) (Kroschwitz & Grant, 1996)
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iii. The Batch Esterification Process (Kroschwitz & Grant, 1996)
In the batch esterification process, acetic acid, ethanol and concentrated
sulfuric acid are added in a reactor. The reactor is heated using a closed coil
steam pipe. A fractionating column is used and maintained at 70°C in order to
give a ternary azeotropic mixture of 83% ethyl acetate, 9% alcohol and 8%
water. Low boiling point of overhead product relative to water is vaporized to
fractionating column from the reactor. The vapor from the fractionating
column is condensed, part of it is returned to the top of the column as reflux,
and the remaining to the storage. The reactants in the storage are recovered

through a recovery column. Figure 4 shows the esterification batch process.
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Figure 4: The Esterification Process (Batch process)

(Kroschwitz & Grant, 1996)
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2.2 Reactive Distillation for Ethyl Acetate Production

According to Taylor & Krishna (2000), the first reactive distillation patent dated back to
the 1920s. They listed some of the early journal articles published by Keyes (1932),
Leyers and Othmer (1945a,b), Schniep et al. (1945), Berman et al. (1948b) and Merman
et al. (1948a). Most of these early publications mainly deal with the use of homogeneous

self-catalyzed reactions.

In 1988, a robust numerical procedure for simulating reactive distillation using
homotopy-continuation method was developed by Chang and Seader, (1988). Acetic acid
(1), ethanol (2), water (3) and ethyl acetate (4) were the four components used in their
work. These authors highlighted that due to the non-ideal nature of the liquid phase
mixture caused by the presence of polar molecules, it is important to select the correct
thermodynamic property for computing the vapor-liquid equilibrium because acetic acid
tends to form a dimmer and a trimer in the vapor phase. For mixtures of ethyl acetate-
water, acetic acid-water, and ethyl acetate—_acetic acid-water, the presence of azeotropes
were detected. They concluded that- the application of reactive distillation for the
esterification of ethanol with acetic acid is technically unfavorable using a single two-
product distillation column for the conditions imposed in the study. Reason being is the
K-value (\;apor—liq'uid equilibrium ratio) of ethyl acetate was too close to ethanol and
* water, making the separation of ethyl acetate from ethanol and water in these stages very

difficult.

A study on the effect of liquid-phase activity model on the simulation of reactive
distillation for production of ethyl acetate was conducted by Okur and Bayramoglu

(2001). The catalyzed reaction equations are as following:

CH;COOH (1) + C,HsOH (2) = H,0 (3) + CH;COOGC,Hs (4) Equation 2
n=kCGC, —;—'C3C4 (mol /s m®) Equation 3

1

k) = (4.195C + 0.08815) exp (-6500.1/T) (m3/mol s) Equation 4

K] =7.558 - 0.012T Equation 5
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Cy is the percent volume fraction of acid catalyst = 0.4

Matlab (ver 5.0)TM was used by them to set up and solve the simulation model. The
simultaneous convergence (SC) method based on the multivariable Newton-Raphson
algorithm was used. Different physical properties were tested using various reflux ratio
and the results were compared. Among the physical properties used consist of UNIQUAC
(universal quasi-chemical activity coefficient), Modified UNIFAC (universal functional
activity coefficient) by Dortmund (Okur and Bayramoglu, 2001), Modified UNIFAC
model by Lynbgy (Okur and Bayramoglu, 2001) and Empirical model by Suzuki (Okur
and Bayramoglu, 2001). The results indicate that highest conversion was obtained using

UNIQUAC but with higher reflux ratio.

A study conducted later to investigate ethyl acetate reactive distillation process was
carried out by bKenig et al. (2001), to determine the feasibility of a proposed reactive
distillation for a limiting case of simultaneous phase equilibrium and chemical
equilibrium. The same four components studied by Chang and Seader, (1988) were used.
A rate-based simulator involving a variety of FORTRAN™ subroutine was used by
Kenig et al. (2001) to predict the column concentrations, temperatures and other
important variables for their study. In addition, reactive distillation experiments for
homogeneously catalyzed esterification of acetic acid and ethanol to produce ethyl acetate
and water were performed for validation. Sulphuric acid (H,SO,) was chosen as the
catalyst. In the simulation, NRTL (non-random-two-liquids activity coefficient) model
was selected for the thermodynamic property. Both set of results were compared and
found to be in good agreement. Appendix C provides the information on the normal
boiling points of the pure components and the azeotropes compositions. From the study, it
was suggested that in order to obtain high conversion of ethyl acetate in the distillate and
water in the bottom, it is preferably to use two separate feed points. The higher boiling
temnperature acetic acid is to be fed above the ethanol feed location. If reaction took place
in all stages in the column, acetic acid would be found in distillate stream. In order to
eliminate the above, it was recommended to limit the reaction zone within the center

section of the column, leaving the section above and below it to be non-reactive.
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Chang and Seader, (1988), Okur and Bayramoglu (2001) and Kenig et al. (2001) studied
ethyl acetate production using esterification of acetic acid and ethanol. They were using

robust numerical - procedure, Matlab (ver 500™ and process simulators.
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2.3 Operations and Control of Reactive Distillation Column

The first dynamic simulation study on reactive distillation was performed by Alejski and
Duprat (1996). A 20-stage reactive distillation column was chosen to simulate the
esterification process of ethanol and acetic acid. Comparison was made between
published experimental data and the results obtained from their simulation. Their findings
indicated that there was strong influence of various parameters on the process resulting
from complex interactions between vapor-liquid equilibrium, reaction kinetics and
hydraulics of the column, leading to complicated dynamic behaviors. The following three

models were used in their study:

Table 1: Three Models used by Alejski and Duprat (1996)

Parameters Model 1 Model 11 Model 111

Plates Holdup Determined by Constant Constant

Francis Weir

Pressure Drop Calculated on each Constant Constant
plate
Flows of Phase Determined by Determined by mass | Constant
energy balance and energy balance

Model I took into account of both hydraulic and thermodynamics phenomena that
considered the plate holdup in the column. While model II and IIT only account for the
thermodynamics, thus leaving the hydraulic aside. Based on the comparison made
between the published experimental results and the simulation models, Model I was
found to be the best to match the experimental data though with some deviations still
observed. According to Alejski and Duprat (1996), the differences could be due to the
simplifications made on the mathematical model. The conclusion from their study was
that hydraulics should be considered for any dynamic simulation of the reactive

distillation system.

Another study done by Vora and Daoutidis (2001) focused on dynamics and control of an
ethyl acetate reactive distillation column. A column configuration producing higher

conversion and purity at steady state was proposed. Analysis of the dynamic simulation
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and control study was carried out for different control configurations. The column was
simulated in steady state to find the best configuration. It was observed that higher ethyl
acetate conversion could be obtained when feeding the reactants into two different trays
compared with single feeding. This finding was in agreement with Kenig et al. (2001)
observation. Earlier research on reactive distillation for ethyl acetate production showed
the attainable conversion for ethyl acetate was only at 30% with 50% purity for single
feed column configuration. It was lower than equilibrium conversion (66%) and
azeotropic composition (54% for binary ethanol-ethyl acetate azeotrope). With the
multiple-feed configuration, the ethyl acetate conversion could achieve 76.8% with 65%
purity. The multiple-feed configuration was used by Vora and Daoutidis (2001) for
conducting control study. In the control configuration the following manipulated

variables and controlled variables were used:

Table 2: Controller Cohﬁguration in Vora and Daoutidis (2001) study

Controller Manipulated Variable Controlled Variable
1 Distillate flow rate Condenser holdup
2 Reflux flow rate Distillate stream product purity
3 Condenser heat duty Condenser Pressure .
4 Bottom flow rate Reboiler holdup

The controllers were tested for different incremental changes in the set point for the
product purity. The performances of the controllers were observed. The model based on
linear and nonlinear feedback controllers, along with conventional SISO PI controllers,
were designed. The nonlinear controller is based on the nonlinear dynamic model that
comprised of a standard nonlinear input-output linearizing (IOL) state feedback controller
together with -a linear error feedback with integral action. From the observations, the
nonlinear controller was able to enforce the desired response in a smooth fashion. The
linear controller also achieved the desired set-point but with a slight degradation in the
output responses and some oscillations in the input responses. They concluded that
nonlinear controller was able to eliminate the disturbance whereas the PI controllers

demonstrated larger settling times and substantial overshoot.
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Loperena et al. (2000) conducted a study on PI control for a high-purity ethylene glycol
reactive distillation column. The controlled variable is ethylene glycol purity and the
manipulated variable is boilup ratio, which is directly related with reboiler heat input.
They have proposed new idea in the contrdl study. New idea was proposed based on the
analysis of the underlying input/output bifurcation diagram and modeling error
compensation techniques. The result is found to be satisfactory as it was shown to be

equivalent to a standard PI controller with antireset windup structure.

Al-Arfaj and'Luyben (2002) conducted a design and control study on olefin metathesis
production. Three different design cases were considered i.e. low conversion/low
pressure, low conversion/high pressure and high conversion/high pressure. Effects of the
selected design parameters, such as number of trays, operating pressure, holdup per tray
and reflux ratio, were investigated to obtain a better understanding of the process on the
steady state design. The findings are high conversion could be achieved using higher
number of trays, higher hold up per tray, lower operating pressure and higher reflux ratio.
Higher reflux ratio and number of trays would probably make the case uneconomical.
Therefore, optimization on number of trays and reflux ratio was performed. The
outcomes of the optimization study are low conversion/high pressure design is more
economical but recovery system may be needed to increase the product purity, which may
incur more overall cost. The high conversion/high pressure is not economical but no
further processing is required to increase the product purity. Different control structures
were also studied for the low conversion/low pressure design. From the finding, they
have examined the composition temperature cascade control structure and found out that

it is able to provide the most effective control.

In the same year, Al-Arfaj and Luyben (2002) studied the control of methyl acetate (MA)
reactive distillation for high-conversion design and low-conversion design with different
operating conditions. Three control structures were proposed and studied for both column

designs. They found that it was easier to control the column with low-conversion design.

Engell and Fernholz (2003) studied the control of semibatch reactive separation process

using methyl acetate as example. In their study, single input-single output control (SISO),
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multiple inputs-multiple outputs control (MIMO) and nonlinear predictive control were
studied using pilot plant and neural net plant model. They concluded that there is strong
interactions and process nonlinearity that make the control problem difficult and the
deviation from the optimal operations resulted losses in efficiency. From their

comparison, better results can be obtained by nonlinear predictive control.

Tian et al. (2003) studied the control of ethyl tert-butyl ether (ETBE) reactive distillation
process by developing a pattern-based predictive control (PPC) scheme incorporating
conventional proportional-integral (PI) controller. Pattern-based predictive control is a
method that does not reply on exact process models while providing improved control
performance. Cases studies were carried out with a pilot-scale reactive distillation
column at laboratory for ETBE. They concluded that PPC could provide improved

control performance for set-point tracking and disturbance rejection cases.

Alejski and Duprat (1996) and Vora and Daoutidis (2001) have conducted the studies on
dynamic control for ethyl acetate production with different configurations. Loperena et al.
(2000), Al-Arfaj and Luyben (2002), Engell and Fernholz (2003) and Tian et al. (2003)
studied the different column control methods with different productions. Kenig et al.
(2001) have conducted their studies using 82 stages reactive distillation column while
Vora and Daoutidis (2001) used a 13 stages reactive distillation column. Kenig et al.
(2001) could have piloted the reactive distillation column based on the real plant
information obtained from their sponsor. Vora and Daoutidis (2001) mainly focused on
dynamics and control of a reactive distillation column, thus, a 13 stages reactive
distillation column model was used in their studies. The research done was focus on the
outcome of the controllers. The outcomes were compared with mathematical model and
pilot plant modeling. However, proper tuning of the controller has not been performed
appropriately for this integrated reaction and separation column for the paring

determined.
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2.4 Reactive Distillation Start-up

Starting up of a reactive distillation column is expected to be complex due to the
additional features in comparison to the conventional distillation column. There are many
factors that can impact the performance of start-up operations in a distillation column.
Different start-up strategies can produce different outcomes. Sequence in starting up a
column is one of the main factors that could determine its performance. There are
several known start-up strategies for conventional distillation. The most recommended

strategy is the total reflux operations.

Reepmeyer et al. (2004) proposed four different strategies for starting up distillation
column namely;
i. Conventional: Set all control variables to steady-state values and wait.
ii. Total Reflux: Column is run in loop operations, no distillate removal.
iii. Total Distillate Removal: Exact opposite of total reflux strategy, column is run
without reflux.
iv. Time Optimized (developed for heat-integrated columns): heating duty and

reflux are set to 1.3 their steady-state values.

Schneider et al. (2001) carried out a dynamic study on methyl acetate process. For model
validation, several experiments have been carried out using pilot plant column. A
comparison on the simulation results, experimental data and numerical investigation for
the determination of the most sensitive parameters were presented. They concluded that
the simulation results generally are in agreement with the experimental data. It has been
shown that in the numerical investigation, the reaction kinetics and the model of the
column periphery has the most significant influence on the simulation results especially in

the case of dynamic processes like reactive batch distillation.

A rigorous process model was developed by Reepmeyer et al. (2004) to simulate the start-
up of a cold and empty reactive distillation (RD) column and validated with a
transesterification process. Strategies for time optimal start-up of an RD column were

presented. They concluded that the mostly used strategy for conventional distillation i.e.
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total reflux, is only recommendable with limitations when applied to RD column. They
have tried two alternatives to improve the start-up time, i.e. a) recycle of bottom product
and b) initial charge of product. The following table shows the 3 different schemes for
recycle of bottom product and 4 different schemes for initial charge of product chosen by

them.

Table 3: Strategies chosen by Reepmeyer et al. (2004)

Recycle of Bottom Product Session:

1 | No recycle is the base case.

2 | Split factor = recycle stream/bottom stream = 1
(for duration 5000s and 10000s)

3 | Split factor = 10

Initial Charge of Product:

1 | Initial charge with feed.

Initial charge with high boiling liquid feed component in excess

Initial charge with low boiling liquid d feed component in excess.

Initial charge with liquid resembling the steady state bottom product

wn A~ W N

Initial charge with liquid resembling the steady state top product

They have also conducted the study on two examples, i.e. a) transesterification of a fatty
methylester and b) esterification of ethyl acetate. The simulation matched with the
experimental results for transesterfication of a fatty methylester. The new strategies did
not provide significant improvement on the start-up period for transesterification of a
fatty methylester process. In the study, there was no experimental data available for
esterification of ethyl acetate with single feed operations. However, based on the
simulation, the start-up time was reduced from 6.24 hours to 1.07 hours for initial charge
of the top product to the column strategy. Therefore, it is useful to keep the top product

from the last charge to prefeed the column before the next start-up.

Two mathematical models were proposed by Elgue et al. (2004) for the simulation of the
dynamic behaviors during start-up operations from an empty cold state. The models were

validated through experiments carried out on a batch distillation pilot plan, with
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perforated trays, supplied by a water methanol mixture. Two critical points to consider
were the column behavior and the thermosiphon (heating equipment for the column)
performance. At the beginning of the start-up conducted on the experiment, an
oscillatory behavior was observed. This behavior is directly related to the thermosiphon
technology. The liquid heated by the thermosiphon only flows to the vessel when its
temperature is high enough. Therefore, the heat internal reflux inside the vessel shows an
oscillatory behavior, decreasing until the vessel mixture reached bubble point. Bottom
plates appear to heat up from the beginning of the start-up. In fact, even before
temperature reaches bubble point, a slight vapor flow, due to the thermosiphon heat,

escapes from the vessel and begins to heat bottom plates.

As a summary of this section, some works have been carried out on column start-up and
dynamic behaviors lately. Schneider et al. (2001) conducted a start-up operations on
methyl acetate production. Elgue et al. (2004) carried out a study on water methanol
mixture. Reepmeyer et al. (2004) carried out a study on reactive distillation column start-
up on ethyl acetate production. Nevertheless, those studies were using proprietary process
simulator and mathematical models for comparison with laboratory results and literature
data. There may be lack of thermodynamic and hydraulic consideration in the integrated

reaction and separation column as compared to the commercial simulator.
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2.5 Limitations of the Previous Research Works

There were numerous research carried out related to ethyl acetate production. Apart from
RD column steady state studies, the researchers also looked into column control as well.
Based on the outcomes of the studies, multiple feeds column configuration was
recommended for obtaining the highest product purities possible. Several control models
were suggested by researchers for column control. However, there were limited studies
being carried out on reaction distillation column start-up using dynamic state simulation.

At present, there have been no research carried out using commercial simulator.

As commented by Chang and Seader (1988), the application of reactive distillation to the
esterification of ethanol with acetic acid is not technically favorable in a two-product
distillation column because of very close K-value for the components. Numerical method
may not be sufficient in handling this comple){ reactive distillation column for acetic acid
and ethanol esterification process. It is believed that commercial simulation software, like
ASPEN PLUS™ should be able to present better results as compared to proprietary
programming. ASPEN PLUS™ program considers the thermodynamic package and

suitable for strong liquid phase non-ideality system.

Alejski and Duprat (1996) concluded that hydraulics should be considered in dynamic
simulation. They did mention that hydraulic is characterized by a relatively small time
constant while thermodynamic processes are associated with a large time constants.
Nevertheless, using commercial simulator, it is able to incorporate more details hydraulic

model and provide a more accurate and precise results.

Vora and Daoutidis (2001) studied the controllers’ performance for linear and non-linear
control and other researchers studied for different controls. Conversely, tuning of the
controller has not been appropriately performed for this integrated reaction and separation
column for the paring determined. Widely used tuning method, Ziegler Nichols method
in close-loop, is able to fine tune the controller to ensure fast response to disturbance

during steady state operations.
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Reepmeyer et al. (2004) mainly looked at optimizing the start-up for ethyl acetate
simulation, without details study on the dynamic.. More details studies may be required
for reactive distillation for better understanding. It is very critical to understand the

behaviors of the column before field installation.

This research aims to address the shortcoming from the previous research works as

mentioned above.
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3.0 THEORY

Reactive distillation reacts following the Le Chatlier's Principle, where a reversible
reaction will react toward the equilibrium for any external stress introduced. Reactive
distillation can be categories into hybrid column and non-hybrid column based on the
different reaction zone. There are two types of mathematic modeling for reactive

distillation, i.e. Equilibrium stage model and Non-equilibrium stage model.

Relative gain array method is one of the methods in determining the best controller pair.
Tuning of controller is required to achieve satisfactory desired control outcome. Among
the popular tuning methods are Trial and Error method, Cohen-Coon method and Ziegler
Nichols method.

3.1 Reversible Reaction

Reversible reaction is a chemical reaction where the products have the tendency to
convert back to reactants. For example, consider the following chemical reaction, where

A and B are reactants and C and D are products.

A+B=C+D Equation 6

For most of the reaction, the equilibrium point is found to lie towards the left hand side
and therefore producing little products (C and D) as shown below.
A+B = C+D
—

If one or more reaction products are removed from the reaction system, it is expected that
more products will be formed. Thus, adding more reactants will cause the product
conversion to increase and vice versa due to the Le Chatlier's Principle. According to the
principle, if external stress is introduced to the system at equilibrium, the system will
adjust itself to minimize the stress and move towards establishing a new equilibrium. As
shown in the equation below, if one of the products, say D is removed continuously, more
products are formed when the chemical reaction moved towards to a new equilibrium.

A+B = C+
—_—
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3.2 Reactive Distillation

Reactive distillation is typically used with reversible reaction. The conventional process
consists of a reactor followed by a distillation column. Conversions of reactants only
occur in reactor and are limited by the equilibrium conditions. On the other hand, the
application of reactive distillation column clearly enables the separation of product during
the reaction stage and thus capable of pushing the reaction equilibrium close to the
product side. According to Institute Fur Automatic (2002), there are fundamentally two
types of reactive distillation column, i.e. Non-hybrid column and Hybrid column. For a
Non-hybrid column, reaction takes place in all trays including condenser and reboiler.
For a Hybnid column, the reaction zone is limited to certain section in the column
(rectifying and/or stripping sections) as shown in Figure 5. Normally, non-hybrid column
is used for homogeneous (liquid) catalyst design while hybrid column is used for

heterogeneous (solids) catalyst.

Hybrid Reactive

: Non-hybrid sone

Non-reactive
L] zone

Figure 5: Type of Reactive Distillation Column (Institute Fur Automatic, 2002)
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3.3 Model of Reactive Distillation Column

a) Steady State Model

There are two types of mathematic modelings used for reactive distillation
namely, the equilibrium stage model and the rate based stage model or also known
as the Non-equilibrium stage model. Most of the researchers preferred the

equilibrium stage model due to the reactive distillation column complexity.

i.  Equilibrium (EQ) Stage Models (Taylor & Krishna, 2000)
It is a simplified model based on vapor-liquid physical equilibrium. Following

is the schematic diagram of equilibrium stage.

L v. 4
T'—jl : f/ | —» Vapor draw-off
3 ™.
)
Xij-
I‘,j_l Yij
Liquid feed to stage H-., i~
LF uilibrium
1y, HYF, Eq
Stage
Liquid Vapor
LF VF
b . Q j

7 —>

Reaction
v VF

Vapor feed to stage

Liquid draw-off €——— L v
i j+l
TLj ij+l
v Xij Yije1
HY HY...

Figure 6: Equilibrium Stage Schematic Diagram

Vapor from the stage below and liquid from the stage below is in contact. The
vapor and liquid streams leaving the stage are assumed to be in equilibrium
with each other. The equations that model equilibrium stages are MESH
(material balance, vapor liquid equilibrium equations, mole fraction

summations and heat balance) equations. The reaction equation(s) is
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incorporated into the equilibrium stage model to represent the reaction(s)
taking place at each stage.

The M equations represented the material balance equation.

U, v L AN Equation 7
dtf =V, +L +F,—(1+r] )V, = (147} )L, + Z}Z}:vamjej.

Uj is the hold up on stage j and can be considered to be only liquid phase hold-
up in very few exceptions. It is important to include the hold-up of the vapor

phase at higher pressures. Rp, is the rate of reaction m on stage j.

The equation taking consideration of the vapor hold-up is

dUx; C Equation 8
dt’:‘/lﬂym + Lxa + By - WOV, - Dy + ’;"nm

where, 1; is the ratio of sidestream flow to interstage flow:

V= S8V;/V; Equation 9

rIﬁ = SL) / Lﬂ Equation 10
Vi.m 18 the stoichiometric coefficient of component i in reaction m and g; is the

reaction volume.

The E equations are. the phase equilibrium relation. In many early papers,
chemical reaction equilibrium is not considered because it is more difficult to
model.

¥ig = Kigxi; Equation 11

The S equations are the summation equations

[4 [

— _ Equation 12
qu =1 Zyw"l d
i=1 i=1 -

The enthalpy balance equation is

dU H. .
—L2L=V, H], + L H}, + FH - (1+r/ )ViH] - (1+r[)LjH} - @, Equation 13

T
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1.

The superscripted H’s are the enthalpies of the appropriate phase. Normally,
this is referring to liquid phase enthalpy.

Under steady-state conditions, the deviation of all the above equations are

equal to zero.

Rate-based Stage Model/ Non-equilibrium stage model (Kenig et. al., 2001)

This model considered the actual rates of multicomponent mass transport, heat
transport and chemical reactions directly. Mass transfer rate at vapor-liquid
interface is described based on the two-film model. The model requires
thermodynamic properties, not only for calculating the phase equilibrium but
also for calculating the driving force for mass transfer and in reactive
distillation the thermodynamics properties is useful for taking into account the
effect of non-ideal component behaviour in the calculation of reaction rates

and chemical equilibrium constants. (Taylor and Krishna, 2000).

Gas bulk phase Liquid bulk phase
i NGi—— | —
Ny
)/il xil
> <>
gas (2 & liquid

Figure 7: Rate-based Stage Model Schematic Diagram

Maxwell-Stefan equations are used for multicomponent diffusion in the films.
In order to descript the real case for gases and liquids, Maxwell-Stefan
equations have been modified for the usage.
nx;N —x;N,

x, du,
RT dz =2 cD,

Equation 14

i=l
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Therefore, to model vapor-liquid mass transfer, the film model and the
Maxwell-Stefan diffusion model have to be combined. In the rate-based stage
model, the equilibrium state only appears at the interface.

The mass balance equations for rate-based models are written separately for
each phase. As in the reactive distillation chemical reactions take place in the

liquid phase only.

0=—%(fo)+(NZ.a' +R2g,)A, i=1...,n Equation 15

0 =%(Gyf)—Ng,.a’AC i=1..,n Equation 16

where, ¢L is the volumetric liquid holdup. It depends on the.vapor and liquid

flows and is calculated from empirical correlations.

The bulk phase balances is given by the summation of the equations for the

liquid and vapor bulk mole.

Z x.'B =1, Z y f =1 Equation 17
i=l i=l

The vapor-phase film mass transport is described as following

VNC{‘. =0 i=1,...,n Equation 18

The liquid phase is considered as an additional region where reaction and mass

transfer occur simultaneously.

VNLf,.—RLfi=0 i=1,...,n Equation 19

At the vapor-liquid interface, the thermodynamic equilibrium between the two

phases is assumed:

1
—
B

}’i’ =K i'xi’ i Equation 20

The reboiler and condenser of the column are modeled as equilibrium stages.
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b)

iii. Model to be used in ASPEN PLUS™

1v.

In this study, equilibrium model is used in view of the complexity of the
reactive distillation and most commonly used by the researchers. Radfrac
column in ASPEN PLUS™ 12.1 Model Library is an equilibrium state model
for simulating all types of multistage vapor-liquid fractionation operations.
Therefore, Radfrac column is selected for this study. Depending on the
thermodynamic package selected, this model is suitable for systems exhibiting
strong liquid phase non-ideality. In addition, the column can model chemical

reactions. (Aspen Tech, 2003)

Assumption in the simulation
The following assumptions are made to outline the scope of work for the
research.

1) Vapor and liquid phase are in thermodynamic equilibrium, when both
phases exist.

2) Ideal vapor phase since the vapor phase non-ideality is known to be
less significant in esterification process as the column pressure is
moderate.

3) The reaction only in the liquid phase.

4) The molar vapor holdup is negligible compared to the molar liquid
holdup.

5) Adiabatic operations and no heat losses to surrounding.

6) Heat of mixing at each stage considered negligible.

Kinetic Power Law Expression

All chemical reactions can be expressed in some form of reaction equations,

which have functions for rates of reactions. These constants depend on the type of

reactions e.g. equilibrium, reversible or irreversible.  The rate of reaction is

expressed in kinetic power law expression as shown in Equation 21 below.
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_E _l._i) N
R T, I IC o Equation 21

o i=1

r =Rate of reaction
k =Pre-exponential factor

T =Absolute temperature

T, =Reference temperature

n =Temperature exponent

E =Activation energy

R =Gas law constant

IT =Product operator

N =Number of components

C; =Concentration of the i™ component
o; =Exponent of i™ component

The rate equations with H,SO4 catalyst that were used by most of the researchers
for catalyzed ethyl acetate production are shown below (Equation 22 and Equation
23). (Okur and Bayramoglu, 2001) The same rate equations are used in this
research.

ki = 1.76615 exp (-6500.1/T) (m*/mol s) Equation 22

176615
> (7.558-0.012T)

exp(—6500.1/T) (m*/mol s) Equation 23

In view of the different format obtained for Equation 23, the equation is converted
to power law expression format, Equation 24. This is to ensure the same rate
equations to be used in replicating the model in ASPEN PLUS™ without
additional software required. The details are elaborated in Chapter 4 and Chapter

5.

6500.1 5 o 24
k (0 0002459Tl 3066059)6( J(m3/mol S) quation
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c)

Dynamic State Model

There are additional information and equations required for dynamic state model

simulation. The proper dimensions for the reactive distillation column are required

which includes hydraulic model, condenser and reboiler. The information is

important to simulate the hydraulic holdup for the column.

1. Dynamic State Model Equations

Under dynamic state conditions, the time derivations in the steady state

equilibrium stage model equations are not equal to zero. The equilibrium

stage model equations have been discussed

(a) secﬁon (1). In summary, the following equations are used.

The material balance equation as shown by Equation 7.

dt m=l =l

The equation taking into account of the vapor hold-up is,

dU.& r
_‘;fl: fhig + Din + By - V)V, - Th )Ly, + ;"m&ﬂ

The equation for the vapor liquid equilibrium,

Yij = Kigxij

The summation equations as shown by Equation 12.

wa':l Z)’,-,,-=1
i=1 i=]

The enthalpy balance equation as shown below,

dU H, - |
dlt J :VjﬂH;'H + Lj-lHIl‘:l + Fl.Hf - (1+I‘IY)1/JH;' - (1+riL)LJH,l'- )

dU r c
\'s L
L=V, L A F (140 )V, —(1+rF )L+ 3 v, R €.

part

Equation 25

Equation 26

Equation 27

Equation 28

Equation 29
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il.

Distillation Column Hydraulic

Besides the dynamic state equations, the information for the column hydraulic
is required. There are several column hydraulic models that can be used for
dynamic simulation, i.e. a) simple tray, b) rigorous tray, ¢) simple packing and

d) rigorous packing.

The information required for the simulation included height equivalent to a
theoretical plate (HETP), diameter of packed/tray section, weir height, spacing
between trays, tray/packing rating and tray/packing sizing pending on the
model selected for the simulation. For simple tray hydraulic equation, Francis

weir is used for single pass tray.

0,=kK WeirLWeirhérsesI Equation 30
Where:
QL = Volumetric liquid flow rate from the stage
Kweir = Weir constant
Lweir = Total weir length
Nerest = Height of the liquid crest over the weir

The rigorous tray modeling is based on the Francis weir equation with
downcomer holdup (hg) taken into consideration and the equation used for

accounting liquid head loss in the downcomer, hy, is:

2 .
h, =K, & Equation 31
Ada
Where:
Kac= A constant
QL = Volumetric flow rate of liquid from the tray for that pass

Aga= Minimum area under the downcomer apron
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For the simple packing hydraulic equation, the model involved the liquid flow
rate from a packed section and the amount of the liquid. It can be expressed in

the following equation.

lﬂ, =K,.U, Equation 32
Where:
lpy = Liquid volume fraction in the packed section
UL = Liquid velocity in the packed section
Kpack = Packing constant

In rigorous packing calculation, the fractional volumetric holdup in a packed

section is considered. The following equation expressed the rigorous packing

calculation.
1
“//—L =K, [ glj:zs j3 l:l + 20[ Zilzg j:| Equation 33
Where:
KsL = A dimensionless constant, equal to 0.555
uL = Supertficial liquid velocity
a = Specific surface area of the packing
g = Acceleration due to gravity
= Packing voidage
AP = Pressure drop across the section
V4 = Height of packing in the section

pL = Liquid density
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The tray pressure drop (AP) is calculated based on the following formula.

AP=9.81x10"(h, +(h, +h,)+h,)p,

Where:
2
hy = Dry tray pressure drop, 5 l[u—"} Py
‘ G P
Co = Onifice coefficient
up = Velocity through the holes, m/s
pv = Vapor density
oL - = Liquid density

hy + hy, =Head of clear liquid on the tray

12.5x10°
P

h, = Residual head,

Equation 34



CHAPTER 3: THEORY 37

34 Development of Control Strategy

The process controller’s job-is to maintain the process variable at set point, regardless of
whether the set point is constant or has just been changed. For a distillation column,
obviously, it is desirable to maximize the purity of the top and bottom products.
Controller(s) is used in distillation column to automatic control manipulated parameter to
meet the set products purities. Choosing the control strategy is very important to maintain
stable operations. There are several methods that can be used in pairing the input
variable(s) and output variables(s) for column controller(s). Relative Gain Array (RGA)
is one of the methods that used in this research. Controller tuning is carried out using
Ziegler Nichols method which the controller parameters can be calculated according to a

formula.

a) Steady State Gain

Relative gain analysis is a widely used technique in the design of control systems
for multivariable plants. The analysis is based on a “relative gain array” (RGA),
which is a matrix of interaction measures for all possible single-input single-
output (SISO) pairings of the variables considered. The RGA thus indicates the
preferable variable pairing in decentralized (multiloop SISO) control systems
based on interaction considerations. The RGA was originally proposed for steady

state only, based on the interpretation as a ratio between two gains. (Kurt, 1995)

In order to use RGA method, the steady state gain for each input and output
selected are determined. Steady state gain is the ratio of the change in the steady
state value of the output divided by the magnitude of the step change made in the
input. In a nut shell, it is the ratio of steady state change in the output variable

(Ay)to the s'teady state step change in the input variable ( Ai) .

K= (—y;fj = A_{ Equation 35
U—U ). AU
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b)

Relative Gain Array (RGA)

The relative gain array was developed by Bristol (1966). The Relative Gain Array
(RGA) is used to match up variables that have the biggest effect on another,
without having undesirable effects on the others. Inaccurate pairing could result in
poor control performance and reduced stability margins. RGA is a matrix of
number, the ij™ element in the array is called relative gain, A;;. Itis the ratio of the
open loop gain divided by the close loop gain. The open loop gain is the steady
state gain between the i controlled variable (output) and the j manipulated
variable (input) when all other manipulated variable (input) are constant. The
closed. loop gain is the steady state gain between the same two variables when all

other controlled variables (output) are constant.

Open loop gain between y;, & u; 6,16, . Equation 36 -

i

" Closed loop gain between y; & u; B 6,10,

y

Equation 37 is the RGA matrix with the relative gains.

1'Ll )‘{2 z'ln
Mt Rz o den

RGA, A = Equation 37
A-nl 7‘11’2 Rlml

The rule of the loop pairing is to select the control loop by paring the controlled
output with the manipulated variable in such a way that the relative gain, A are

positive and as close as possible to unity. The relative gain A is interpreted using

Table 4.
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Table 4: RGA Interpretation Table (The University of Edinburgh, 2004)

If Ais Pairing Effect
The best pairing because both gains have the same
! effect.
Require higher controller gain in closed loop. If other
>1 loops are open, the system could easily become
| unstable. This pairing should not be used.
<0 Closed loop has an opposite affect. This can cause the

system to be unstable if operated in open loop.

0<i<1 The pairing should only be used if between 0.5 and 1.0.

The RGA can be used for multiple inputs and multiple outputs (MIMO) system.
However, for a 2x2 RGA system, there is an alternative way to calculate by using
the formula given below (Equation 38):
21 — 1 Equation 38
g 1— K, Ky,
K 11K 22
The equation is derived from a linearized steady state model
y1 =Ky + Kjpue
y2 = Kyjuy + Kpoup

Open loop gain for u, is constant is:

L

For closed loop gain solve model for y; = 0:
y1 = Kiuy - (Ki2Koi/Kao)u;

Therefore, closed loop gain:

: Equation 39
[%’—L:| - K“ _(KIZKZI/K22) quation
115,

Dividing the open loop gain by closed loop gai_n generated Equation 38.
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In the 2X2 case, this is the only element that has to be calculated because the sum

for row and column is 1.

The best pairing controllers can be fine tuned using different methods in order to

satisfy the desired outcomes within the shortest possible time.
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Proportional, Integral and Derivative (PID) Controller Tuning

Tuning is the adjustment made on the controller parameters to achieve satisfactory
desired control outcome. Controller tuning is critical to ensure that the
measurable process parameters reach the set point in the shortest possible time
with less transient. The time consumed and the effort to stabilize the unit
operations can be minimized. There are three types of controllers depending on
the model of the process to be controlled, i.e. Propoxﬁonal (P) controller,
Proportional-Integral (PI) controller, Proportional-Integral-Derivative (PID)

controller. The commonly used control algorithm is PID control.

The PID controller can be modeled by the function, where proportional gain (K,),
integral time (7)) and derivative time (Tp) are the parameters to be tuned in the

controller. Equation 40 shows the relation among the PID controller parameters.

1! de(t)} Equation 40
10

p(t)=p+ K{e(t) + - 'fe(t)dt oo

Among the popular methods for PID tuning are Trial and Error method, Cohen-

Coon method, Ziegler Nichols method and others.

i. The Trial and Error Method (Shaw, 2004)
This method is also called “ by-guess-and by-golly” method or on-line trial
tuning. Referred to Appendix D for the details of the tuning method. The main
disadvantage of using the trial and error method is that it is time consumed
because of the large number of trials required. This is made worse when the
process dynamics are slow. Furthermore, the testing can be expensive due to

the loss productivity or poor product quality. (Seborg et al. 1989)

iii. Cohen-Coon Method
This is an open-loop method proposed by Cohen and Coon in 1953 and it was
used as the alternative to the Ziegler Nichols method. (Coughanowr, 1991).

Referred to Appendix E for the details of the tuning method.
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v.

Although Cohen Coon method is the alternative to Ziegler Nichols method,
there are advantages and disadvantages of the method. This method requires
only a single experiment and doe's not require operating at stability limits
hence, it is more favorable compared to Ziegler Nichols. However, the

disadvantages are more.

Cohen Coon method is an open-loop controller, where the controller is
controlled in manual mode. In view of the manual control, there is no
automatic corrective action that will be taken by the controller when a
significant set point changes occurred. The results obtained may be easily
distorted in the test. Therefore, it may be difficult to determine the slope at the
inflection point accurately, especially if the measurement is noisy and a small
recorder chart is used. (Seborg et al. 1989). The method is not recommended
for processes that have oscillatory open-loop responses since the process

model will be inaccurate.

Ziegler Nichols method

Ziegler Nichols method is considered as closed-loop method because the
controller remains in the loop as an active controller in automatic mode. This
method was first proposed by Ziegler and Nichols (1942), who were engineers
for a major control hardware company in the United States (Taylor Instrument
Companies of Rochester, NY.). The big advantage of this method is the
controller parameters can be calculated according to a formula. (ATCGMB,
2004)

The current work uses the Ziegler Nichols method to tune the PID controller
of the reactive distillation column in dynamic state, modeled above. The major

steps involved are shown in Figure 8.
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4 )

Set controller to Adjust gain value
automatic mode witha (smaller if increasing

low gain.

oscillation and vice versa)
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YES Obtain P, I, D values
from formula

Figure 8: Ziegler Nichols Tuning Steps

The controller I and D parameters are turned off and set the controller gain
with a low gain. The controller gain, P is increased slowly until oscillation
" trend is observed. The P parameter is adjusted on the smaller step to obtain a
sustainable oscillation. The sustainable controller gain, P is the ultimate gain,
K. The ultimate period is measured from the period of oscillation, P,. Using
the K. and P, values, the control parameters for the controllers can be

calculated based on formulas in Table 5 below.

Table 5: Ziegler Nichols Design Relations

Controller Parameters

Controller K. T Tp

Proportional, P 0.5 K, - --

Proportional and Integral, PI 045Ke | Pu/1.2 -
Proportional, Integral and Derivative, PID | 0.6 K., P./2 P./8
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d)

Evaluation of Controller Performance

The selected controllers are evaluated. There are several methods to evaluate the
controller performance, one of the evaluation methods is introducing feed
disturbance by changing the feed flow rate and observed the controller response to
the disturbance. The controllers’ performances are evaluated based on the time
taken for control parameters to reach set point and steady state when one of the
feeds disturbances is introduced. A good controller is able to adjust the
manipulated parameter in order to direct the controlled parameter to reach steady

state.
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3.5 Evaluation of Reactive Distillation Column Start-up

An important area for control of chemical processes is to have an adequate control system
for start-up operations of reactive distillation column. During start-up from cold column,
the chemical process is far from its normal operating conditions, and may display very

different behavior.

It is crucial to study and understand reactive distillation column start-up behavior in order
to minimize the start-up time required, wastage of products and energy consumption. The
impact is very significant if the start-up operations is very frequent for some chemical

processes.

There are four main start-up strategies, i.e. conventional, total reflux, total distillate and
time optimized. Total reflux start-up strategy is used in this work. Three different initial
component(s) at reboiler stage in reactive distillation column are studied for ethyl acetate

production.
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40 METHODOLOGY

In this chapter, the steps of converting the reaction rate equation and replicating the
model is discussed in detail. The converted reaction rate equation and replicated
model are validated against laboratory results and simulation results, provided by
previous researchers, as earlier described in Chapter 2. Figure 9 is the summarized

methodology adopted inthis research work.

Derive Kinetics
Expression

v

e ™
Develop Reactive Distillation
Steady State Model

Published Reports L - - NO

4 ¥

Develop Reactive Distillation
[ Conducted RGA Study J ( Dy:amic State Model j

v

PID Controller
[ Parameter Tuning } [ Column Start Up Study J

Figure 9: Methodology adopted in this research work

The reactive distillation steady state model is replicated using the derived kinetics
expression. The model is validated with experimental data published in literatures.
Upon validation, the model is used to conduct RGA study in order to determine the
best pairing. Fine tuning is carried out for the best controller pair determined. The

same model is used for reactive distillation column start-up study as well.
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4.1  Modeling of Reactive Distillation Model in Steady State

a) Steady State Model

Figure 10 shows the configuration of the reactive distillation model in ASPEN
PLUS™.

Figure 10: ASPEN PLUS™ Model

The material streams for feeds and products are connected and labeled as FEED,
FEEDI1, TOP, BOTTOM and VAP. FEED and FEED 1 are the feed streams, TOP
is the distillate stream, BOTTOM is the bottom stream and VAP is the vapor
stream.  The operating conditions and distillation column specifications are
specified in the Blocks Column Setup worksheet in ASPEN PLUS™ simulator.
There are four different ways of introducing the feed into the column namely
above stage, on stage, vapor and liquid in ASPEN PLUS™. Above stage means
the feed is introduced between stages, on stage means the feed is introduced on
the designated stage, vapor means the vapor phase feed is introduced on the
designated stage and liquid means the liquid phase feed is introduced on the

designated stage.
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The components are specified under Component worksheet and each feed
operating conditions are input to the Streams worksheet in the program. The

property model is selected from the Properties Specification worksheet.

The reaction information is filled in the Reaction worksheet while the reaction

zone and hold up are specified under the Block Column Reaction worksheet.

The major steps to create an ASPEN PLUS™ steady state model are illustrated in
Figure 11. All the print screens in the ASPEN PLUS™ simulation are available
in Appendix G.

N
Select Unit Operations and

Connect Process Streams
J

~
[ Specify Components

]
\ 4
) s =
N Enter Reaction Information
\ J
Select Property Package
Y
= e r ™
Define Reaction Zones and
) ’ Conditions '
Input Strear_n_s Process )
Condition
~ A
! . e N
OR v .
Specify Columin | ] Run Simulation
Configuration . J
J

Model Converge?

| YES

A 4

Process Converting to
Dynamic State Model

Figure 11: Major Steps To Replicate Steady State Model in ASPEN PLUS™

The equilibrium stage model, Radfrac column is selected from the ASPEN
PLUS™ model library. Components involved in the reaction are specified and

selected from the components list. The components are acetic acid, ethanol, ethyl
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acetate and water. All the properties for the reactants and products are pre-set for
the simulation. UNIQUAC property package is chosen for the model based on
Okur and Bayramoglu (2001) recommendation. In this work, both Kenig et al.
(2001) 82 stages reactive distillation column and Vora and Daoutidis (2001) 13
stages reactive distillation co]umn are modeled based on the information available

in the papers published by Kenig et al. (2001) and Vora and Daoutidis (2001).

The rates of equations are entered following Power Law form dictated by the
simulator. Print screens from ASPEN PLUS™ showing the details of this step are

attached in Appendix G.

The model is then completed and ready to be executed. The converged results are
compared with experimental data and simulated data from journals to validate the

model.

1. T-Test Validation
T-test is a statistical method to assess whether the means of two groups are
statistically different from each other. Both sample groups must have the same
number of data points. Rejection criteria used is p>2.807 at confidence level
of 95%. This means that for 95% of the time, the data sets do not deviate
from each other. (Montgomery, et al. (1998)) The to for data set is calculated

using built-in function in Excel.

it. Correlation Coefficient
The correlation coefficient is a measure of how well the trends in the predicted
values follow the trends in the actual values provided. Correlation coefficients
can range from 0 to 1. For a good fit, the correlation coefficient will be close
to 1. Correlation coefficients are also determined by built-in function in

Excel.



CHAPTER 4: METHODOLOGY 50

b)

Kinetic Power Law Expression
In view of the presence of H,SO, catalyst in the reaction, the rate of reactions for
reverse chemical reaction is different from the forward chemical reaction. The

new rate of reaction, k, (Equation 42) is being introduced.

1= KiCeihanolCrac — k2CwaterCEna ' Equation 41
=
k, =—L ion 42
2 K, Equation 4
K, =7.558 - 0.012T Equation §
k; = 1.76615 exp (-6500.1/T) (m*/mol s) Equation 22
1.76615
exp(—65001/T) Equaﬁon 23

2 —
(7.558—0.012T) (m*/mol s)

As shown in Equation 22, k; is already in Power Law expression. The objective is
to convert k; into similar form in order to simulate the reaction in ASPEN
PLUS™ without additional software required. The k, values for temperature
ranging from 100K to 450K is generated using Equation 23. Curve Expert 1.3™
software was used to derive the power law expression by correlations functions.

The new correlation is shown in Equation 24.

k, = (0.0002459T"3°66°59)e[ T

_6500.1
Equation 24
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)

Reactive Distillation in Dynamic State

Using the converged steady state model replicated in Sections 4.1, the simulation

is transferred to dynamic mode following the steps summarized in Figure 12.

'd Y
Use the Steady State Model
Developed (Ref. Fig 11)

\. ¢ J
N
Change Mode to Dynamic
\ | J
A 4

p
Specify Dimensions of
Sump and Condenser

- |
h 4
N
Specify Heat Transfer
. .
Options v
\ | J
OR, h J N [ Run Simulation ]
Specify Type of Column
™ |
Internals
. J

Model Converge?
NO

YES

[ Export to Dynamic Filej

Figure 12 : Major Steps In Dynamic Simulation

In order to export the steady state model into dynamic model; the simulation mode
is converted to Dynamic mode in Setup worksheet. The condenser and reboiler
(sump) specifications are captured under Blocks Column Dynamic worksheet.

After that, reflux drum dimension and type are specified. The vessel type selected

'is horizontal and head type is elliptical with length of 10cm and diameter of 10cm.

Total liquid volume fraction is 0.5. Sump dimension and type are specified. The
head type selected is elliptical with height of 8cm and diameter 10cm. The
equipment dimensions are referred to paper published by Kenig et al. (2001) in
order to replicate the same model for validation. Heat transfer for condenser and

reboiler can be calculated by ASPEN based on constant duty, constant temperature
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or the Log Mean Temperature Difference (LMTD). For this research, LMTD is
selected for condenser and constant temperature for reboiler in order to study the
start-up condition. Under hydraulic section, simple packing is selected with 5cm
diameter for stage 2 to stage 81. The same information is used in modeling 13
stages reactive distillation column for current research since equipment

dimensions are not available in paper published by Vora and Daoutidis (2001).

When the dynamic simulation converges with the appropriate values for the
parameters described above, the file can be exported to dynamic simulation file by

changing to “Flow Driven Dynamic Simulation”.
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4.2

a)

b)

Development of Control Strategy

Steady State Gain

The following manipulated variables and controlled variables are selected by
referring to Vora and Daoutidis (2001) research in order to determine the best

pairing. The component composition is controlled using mass flow rate.

Table 6: Manipulated variables and Controller Variable for RGA calculation

Manipulated Variable | Controlled Variable

Set 1 | Bottom rate (M1) Top Stream ethyl acetate composition (C1)
Reboiler Duty (M2) Bottom Stream water composition (C2)
Set 2 | Bottom rate (M1) Top Stream ethyl acetate composition (C1)
Reflux rate (M3) Bottom Stream water composition (C2)
Set 3 | Bottom rate (M1) Top ethyl acetate composition (C1)

Condenser Duty (M4) | Bottom Stream water composition (C2)

Set4 | Bottom rate (M1) Top ethyl acetate composition (C1)

Reflux ratio (MS5) Bottom Stream water composition (C2)

Using the model validated, the steady state gain ié calculated for each input and
output selected to determine the open loop gain and close loop gain in establishing
the relative gain array (RGA). The step change is varied by several increments of
0.1%, 0.5% and 1% to the initial value. Similar method is repeated for the rest of

the configuration.

Relative Gain Array (RGA) Calculation
Based on the relative gain calculated using Equation 38, an RGA matrix is
developed and interpreted using Table 4 in Chapter 3.

1
A= i
_ K12K21 Equation 38

1
K, Ky
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The best pairing is when relative gain calculated equal to 1, where both open loop
and close loop gains have the same effect. However, relative gain between 0.5 to 1

is considerably good to be used. (Willis, 1999)
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c)

d)

Ziegler Nichols Close Loop Fine Tuning

Two set of controllers are determined through RGA method, fine tuning is carried
out using Ziegler Nichols method. Each controller is tuned separately in the
dynamic simulation. The Integral (I) and Derivative (D) modes are turned off and

only turned on the Proportional (P) mode for the controller.

The proportional gain is increased in small steps until response first exhibits a
sustained oscillation. The proportional gain is adjusted accordingly to obtain the
sustainable oscillation. The ultimate gain (Kc¢) and ultimate period (Pu) is
determined from the oscillation trend obtained. The controller parameters for PID

controller are calculated based on Table 5.

Evaluation of Controllers Performance

The two set of tuned controllers are used in the model replicated to simulate in the
column’s dynamic state. The controllers’ performances are evaluated based on the
time taken for control parameters to reach set point and steady state when one of

the feeds disturbances is introduced. The feed is increased by 10% respectively.
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4.3 Evé]uation of Reactive Distillation Column Start-up

The replicated model in steady state is used to simulate the different start-up conditions
for two different models, i.e. Kenig et al. (2001) 82 stages reactive distillation column
model and Vora and Daoutidis (2001) 13 stages reactive distillation column model. The
start-up conditions proposed are i) fill up reboiler with ethanol and acetic acid at the same

ratio, ii) fill up reboiler with ethanol only and iii) fill up reboiler with acetic acid only.

The steps involved in each strategy are discussed in Table 7. Each strategy is applied into

different models.

Table 7: Reactive Distillation Column Start-up Strategies

Strategy Description
Strategy 1 e Step 1 : Fill up the reboiler with equal mole of ethanol and acetic
acid.

e Step 2 : Heat up the reboiler to reach 79°C in 0.05hrs, maintain for
1 hrs before feed in ethanol and acetic acid.

e Step 3 : Extract the top product when condenser pot level reaches
0.7m. :

Strategy 2 e Step 1 : Fill up the reboiler with ethanol at the same reboiler level

as strategy 1.

| Step 2 : Heat up the reboiler to reach 79°C in 0.05hrs, maintain for
1 hrs before feed in acetic acid. '

e Step 3 : After 0.5hrs, feed in ethanol.

¢ Step 4 : Extract the top product when condenser pot level reaches
0.7m.

Strategy 3 s Step 1 : Fill up the reboiler with acetic acid at the same reboiler
level as strategy 1.

e Step 2 : Heat up the reboiler to reach 79°C in 0.05hrs, maintain for
1 hrs before feed in ethanol.

e Step 3 : After 0.5hrs, feed in acetic acid.

e Step 4 : Extract the top product when condenser pot level reaches
0.7m.

The pressure, temperature and liquid components mole fraction for top stream, top tray,
condenser, reboiler, acetic acid feed tray, ethanol feed tray, feed tray between acetic acid

feed and ethanol feed are evaluated.
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5.0 RESULTS AND DISCUSSIONS

In this chapter, analyses of best controller pair tuning and reactive distillation column
start-up are discussed in addition to presenting the validation of the reaction rate equation,
k, and reactive distillation column. The reaction rate equation, k; is validated with the
original equation and used in the reactive distillation column modeling. To ensure the
reactive distillation column is accurately replicated, the model is validated with

experimental data from Vora and Daoutidis (2001) and Kenig et al. (2001) researches.

The validated reactive distillation column is then used to determine the best controller
pair using RGA method, whilst fine tuning is carried out using Ziegler Nichols close loop

method. The performance of the tuned best controller pair is deliberated in this chapter.

Distillation column start-up study is conducted using the same reactive distillation
column model. There are three different strategies being considered and the best strategy

is further optimized in order to achieve the criteria identified in section 5.7(b).

5.1 Validation of reaction rate equation, k;

Reaction rate equation in ASPEN PLUS™ is in Power Law expression. One of the
reacﬁion rate equations, k» is in different term as shown in Equation 24. Additional
programming, i.e. FORTRAN™ ig required using Equation 24 in ASPEN PLUS™,
therefore, the reaction rate equation, ko, is derived into Power Law expression using
Curve Expert 1.3™ software. Two set of data are generated using the derived k and
original equation.

Equation 23
= LTS 6s00.uT) auation
(7.558-0.012T)

(_6500.1) ‘ Equation 24
k2 ~ (0_00024591-1.3066059)e T

The derived k; is compared with the original equation and validated using t- test and

correlation coefficient.
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The calculated ty is 8.24E-08; hence the data is well between acceptable ranges. The

correlation coefficient for these data series is 1.00.

Validation of Derived k2
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k value
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Figure 13: Validation of Derived k,



CHAPTER 5: RESULTS AND DISCUSSIONS 59

5.2 Validation of Reactive Distillation Column
The reactive distillation column modeled in Steady State using ASPEN PLUS™ is
validated against the results published by Vora and Daoutidis (2001), which is based on

simulation and experimental results by Kenig et al. (2001).

Based on .the reactive distillation configured by Vora and Daoutidis (2001) in their

simulation, the following set up and results are obtained.

Table 8: Distillation Column Configuration and Specifications For Double Feeds
Catalytic Ethyl Acetate Synthesis (Vora and Daoutidis (2001))

Items Units Specifications

Feed Details

Feed No. Feed 1 Feed 2
Flow rate mol min” - 414 411.9
Pressure Atm 1 1
Feed stage 4 o1
Composition “Acetic Acid Ethanol
Column Details

Number of Stages 13

Column Pressure Atm 1

Condenser Liquid Holdup mol 4.4108 x 10°
Re-boiler Liquid Holdup Mol ' » 1.4703 x 10°
Reflux Rate mol min’’ 810.6

Bottom Flow, B mol min” 425.1
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Table 9: Simulation Results (Vora and Daoutidis (2001))

Items | Units | Specifications
Composition

Mole Fraction Top Bottom
Acetic Acid (Ac) 0.003 0.21
Ethanol (Eth) 0.08 0.14
Ethyl Acetate (EA) 0.65 0.13
Water (H,0) 0.24 0.52
Product Flow mol min™ 400.8 425.1
Ethanol Conversion (Eth) Mole % 76.8
Ethyl Acetate Purity (EA) Mole % 65

The ASPEN PLUS™ 13 stages reactive distillation column model replicated based on

Vora and Daoutidis (2001) 13 stages model configuration is validated. The following

table is the comparison between the results obtained from Vora and Daoutidis (2001) and
ASPEN PLUS™ model.

Table 10: Comparison between Vora and Daoutidis (2001) and ASPEN PLUS™ model.

Items Units Specifications

Composition Vora and Daoutidis ASPEN PLUS™ Model
(2001) modeled in this research

Mole Fraction Top Bottom Top Bottom

Ac 0.00 0.21 0.00 0.25

Eth 0.08 0.14 0.16 0.10

EA 0.65 0.13 0.60 0.16

H,O 0.24 0.52 0.24 0.50

Product Flow mol min”' 400.8 425.1 400.8 425.1

Eth Conversion mole % 76.8 75

EA Purity mole % 65 60

The results from ASPEN PLUS™ model is in good agreement with Vora and Daoutidis

(2001) simulation results except for few parameters. This can be attributed to the fact that

different process simulators and thermodynamic property package were used by Vora and
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Daoutidis (2001) as compared to the current work. The thermodynamic property package

used by Vora and Daoutidis (2001) was not specified in their work.

In order to further validate the ASPEN PLUS™ model, experimental data from Kenig et
al. (2001) is used for comparison. A 82 stages reactive distillation column is modeled
based on Kenig et al. (2001) 82 stages reactive distillation column configuration. The
parameters validated against Kenig et al. (2001) 82 stages reactive distillation column

configuration are temperature and each component profiles.

The validation is done using the correlation coefficient method. The T- test method is not

suitable for validation as the number of data in the two sets are not equal.

a) Validation of Temperature Profile

The data is generated from ASPEN PLUS™ steady state. The experimental

temperature profile is almost matching with the simulation results with correlation

coefficient of 0.92.
Temperature Profile
81
71
g 61
Lo
£ 51
3
S a4
@
8 31
n 21
11
65 70 75 80 85 80 95 100 105 110 115 120
Temperature, degC
—e—Simulation = Experimental

Figure 14: Validation of Temperature Profile
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b) Validation of Concentration Profiles
The data is generated from ASPEN PLUS™ steady state. Each component liquid

phase profile is compared with the experimental data.

Ethyl Acetate Concentration Profile

4]
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Stage number
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-
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Mole Fraction
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Figure 15; Validation of Ethyl Acetate Concentration Profile

The calculated correlation coefficient is 0.85 for the matching between the

simulated and experimental data for ethyl acetate production.

Ethanol Concentration Profile

Stage number

0.2 0.3 0.4 0.5 0.6 0.7
Mole Fraction
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Figure 16: Validation of Ethanol Concentration Profile

The calculated correlation coefficient is 0.96 for the matching between the

simulated and experimental data for ethanol component.
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Acetic Acid Concentration Profile
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Figure 17: Validation of Acetic Acid Concentration Profile

For acetic acid component, the calculated correlation coefficient is 0.99 for the

matching between the simulated and experimental data.
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Figure 18: Validation of Water Concentration Profile

The -calculated correlation coefficient is 0.79 for the matching between the

simulated and experimental data for water production.

Through the validation discussed above, the simulated result is in reasonably good
agreement with the experimental data by Kenig et al. (2001). Therefore, it is
concluded that the modeled reactive distillation column can be used for further

study in this research.



CHAPTER 5: RESULTS AND DISCUSSIONS 64

5.3 Steady State Gain

Table 6 is the manipulated variables and controller variables determined in this study.

There are 4 sets of controller pairing. Relative gain is calculated based on the steady state

gain and the results are showed in

Set 4
K -0.00541 Ks 0.54069
< 0.00012 Kos 0.03511
RGA, A= 0.260

. Reader is referred to Appendix H for the individual set results obtained from the

simulation.

Table 6: Manipulated variables and Controller Variable for RGA calculation

Manipulated Variable

Controlled Variable

Set 1

Bottom rate (M1)
Reboiler Duty (M2)

Top Stream ethyl acetate composition (C1)

Bottom Stream water composition (C2)

Set 2

Bottom rate (M1)
Reflux rate (M3)

Top Stream ethyl acetate composition (C1)

Bottom Stream water composition (C2)

Set 3

Bottom rate (M1)
Condenser Duty (M4)

Top ethyl acetate composition (C1)

Bottom Stream water composition (C2)

Set 4

Bottom rate (M1)
Reflux ratio (M5)

Top ethyl acetate composition (C1)

Bottom Stream water composition (C2)

Table 11: Relative Gain for the 3 sets of Controller Pairing

Calculated Gain

Set 1
Ky, -0.32502 K 0.08308
Ki; 0.00225 K2 0.00015
RGA, A= 0.208

Set 2
Ki; -0.58272 Ki3 0.05847
K2 0.44972 Ko 0.02900
RGA, A= 0.391

Set 3
K -0.32943 Kia 0.07860
K, -0.00183 Ko -0.00013
RGA, A= 0.226
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Set 4
Ky -0.00541 Kis 0.54069
K> 0.00012 Kss 0.03511
RGA, A= 0.260

5.4 Relative Gain Array Results
The RGA for the selected manipulated variables and controlled variables are calculated

and tabulated. RGA is defined for all the configurations using Equation 38 and Equation
39.

1 Equation 38
A = 1— K, Ky,
K, Ky

Close loop gain = K|, = (K,K,,/K,) Equation 39

0.21 0.79

i. For Set 1, the RGA is, A, =
0.79 0.21

}, which meant that the pairing for

Set 1 should be bottom rate to control Bottom stream water composition and
reboiler duty to control Top stream ethyl acetate composition.

0.39 0.64

ii. For Set 2, the RGA is, A, = i:o 64 039

], which meant that the pairing for

Set 2 should be bottom rate to control Bottom stream water composition and
reflux rate to control Top stream ethyl acetate composition.

0.23 0.77

iii. For Set 3, the RGA is, A, :'[0 77 093

}, which meant that the pairing for

Set 3 should be bottom rate to control Bottom stream water composition and
condenser duty to control Top stream ethyl acetate composition.

0.26 0.74

iv. For Set 4, the RGA is, A, =
| 0.74 026

jl, which meant that the pairing for

Set 4 should be bottom rate to control Bottom stream water composition and

reflux ratio to control Top stream ethyl acetate composition.
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Based on the RGA calculated, the best configuration is Set 1 with RGA closer to unity, 1.

Therefore, the Set 1 configuration, which is opposite from the original pairing, would be

considered for controlling purpose.
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5.5 Controller Tuning Results

Tuning is carried out for the two controllers selected based on the RGA study which are
a) reboiler duty to control Top stream ethyl acetate composition (Controller 1) and b)
bottom rate to control Bottom stream water composition (Controller 2). To achieve the
best parameters, numerous trials are carried out. Refer to Appendix I for the tuning results

with different gain.

a) Controller 1 Tuning

For the Controller 1, the controller Gain is increased slowly starting from
1.00%/%. The oscillation trend is observed. Hence, the controller gain is
increased to 3.00%/% to observe the trending. For the 3.00%/% gain, there is
some minor oscillation trend at the initial stage but it is not sustainable. The

controller gain is increased to 5%/% to observe the trending.

Controller 1 - 5%/% Plot

0.178
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%, 0.177 —
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01765 - - = === = m o m e ] 10:26—6.62 - - - - - - - - - - - - - -
=3.64hrs
0.176 -
0 2 4 6 8 10 12 14
Hours

Figure 19: Oscillation Trend for Controller 1 with 5%/% Gain

From the results, it shows that controller gain of 5%/% produce a sustained
oscillation, which is the “Ultimate Gain”. The “Ultimate Period” measured is

3.64hrs based on the trending.
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b)

Controller 2 Tuning

For the Controller 2, the controller gain is increasled slowly starting from
1.00%/%. There is no sustainable oécillation observed with controller gain of
1.00%/%. Therefore, the gain is increased to 2%/%. The oscillation was found to
be out of the normal control range. The controller gain step change is reduced
from 1%/% to 0.2%/%. However, there is no sustainable oscillation observed for
controller gain of 1.2%/%. The controller gain step change is further reduced to
0.05%/% in order to determine the ultimate gain. Sustainable oscillation is noticed

for controller gain of 1.05%% after running for more than 10 hours.

Con;roller 2 - 1.05%/% Plot
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Figure 20: Oscillation Trend for Controller 2 with 1.05%/%. Gain

Thus, 1.05%/% is the “Ultimate Gain” for The “Ultimate Period” measured is

calculated, 0.66hrs based on the oscillation trend.
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c) Controller Parameters

As discussed in Chapter 3, the controller parameters are calculated based on

Ziegler Nichols design relations, which are shown in Table 5.

Table 5: Ziegler Nichols Design Relation

Controller

Controller Parameters

K. Ty To

Proportional, P 0.5 K. - --

Proportional and Integral, PI 045K, | P,/1.2 --
Proportional, Integral and Derivative, PID | 0.6 K, P./2 P, /8

For the Controller 1, the PID controller parameters calculated are 3%/%, 1.82hrs

and 0.455hrs respectively. The PID controller parameters for Controller 2 are

0.63%/%, 0.33hrs and 0.0825hrs respectively.

The calculated PID controller parameters are used in the best pairing controller

and the result is evaluated.
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5.6 Controllers Performance Evaluation

The best controller pair determined by RGA method, as shown in Figure 21, consists of
two controllers. In the Controller 1, the reboiler duty controls Top stream ethyl acetate
composition. In the Controller 2, the bottom rate controls Bottom stream water
composition. Both controllers are evaluated and the findings are shown in Figure 22 and
Figure 23. The disturbance introduced is increased the feed flow rates by 10%. The
Controller 1 tried to reach steady state after running for 7 hours. However, the Controller
2 is not able to control the bottom stream water composition and fluctuate after running

for 7 hours. The simulation is discontinued due to the erratic performance of Controller
2.

Controller 1
Reboiler Duty Controls

Top Stream Ethyl Acetate Composition

Controller 2

Bottom Rate Controls

Bottom Stream Water Composition

P

Figure 21: The Best Controller Pair Determined by RGA Method
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Reboiler Duty Controls Top Stream
Ethyl Acetate Composition
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Figure 22: Controller 1 Performance (Reboiler Duty Controls Top Stream Ethyl
Acetate Composition)
Bottom Rate Controls Bottom Stream
Water Composition
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Figure 23: Controller 2 Performance (Bottom Rate Controls Bottom Stream Water

Composition)

The results from the evaluation showed that the two controllers would not be able to

operate in steady state even though they are the best pair from RGA study. This could be

attributed to the following factors.

a) Best pairing is determined based on steady state

The control pair is determined in steady state model whilst the evaluation is done

in dynamic state model.
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b)

c)

Controller 1 is physically far apart

The Controller 1 whereby reboiler duty controls the top stream ethyl acetate
component is physically far apart. It could have affected the overall controller pair
performance. Based on the controller performances shown in Figure 22 and

Figure 23, only Controller 1 performance is acceptable.

Tuning of the controllers

Tuning of the controllers were carried out individually hence discounting the
effects of interactions. When tuning the specified controller, the other controller is
not able to put on close loop because it is not fine tuned and could affect the

tuning results.
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To support the factor of physical impact to controller pairing, a different pair of controller
was selected and both controllers are physically closer as shown in Figure 24. The new
controller pair selected is reflux ratio to control top stream ethyl acetate component and
bottom rate to control bottom stream water component, which is Set 4 controller pairing.
The tuning is carried out based on Ziegler Nichols method. The PID calculated for reflux
ratio controller is 0.036%/% (Proportional gain), 40.8mins (Integral time) and 10.2mins
(Derivative time). The PID calculated for bottom rate controller is 0.035%/%

(Proportional gain), 42mins (Integral time) and 2 1mins (Derivative time).

( \ ../ Controller 1

Reflux Ratio Controls

Top Stream Ethyl Acetate Component

Controller 2

Bottom Rate Controls

Bottom Stream Water Component

P

Figure 24: The New Controller Pair

Figure 25 and Figure 26 show the performances of the controliers selected and tuned. The
control parameters reached steady state at about 9.5hrs without fluctuation for the same

disturbance introduced, i.e. increased the feed flow rates by 10%.
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Figure 25: Performance for Reflux Ratio Controls Top Stream Ethyl Acetate
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Water Composition
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Figure 26: Performance for Bottom Rate Controls Bottom Stream Water

Composition
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5.7 Reactive Distillation Column Start-up Results

The most commonly used conventional distillation start-up procedure is total reflux. The
same procedure is adopted for starting up the reactive distillation column. The intention
of this study is to evaluate if the conventional method i.e. total reflux start-up, can be used
in ethyl acetate reactive distillation column startup. Three proposed total reflux start-up
strategies are compé.red and the best strategy is optimized to achieve the shortest time

taken in reaching steady state.

a) Start-up Strategy
The three reactive distillation column start-up strategies discussed in Chapter 4 are
studied in this research. The steps involved in each strategy are discussed in Table
7. Bach strategy is applied into different models, i.e. Kenig et al. (2001) 82 stages
reactive distillation column model and Vora and Daoutidis (2001) 13 stages

reactive distillation column model.

Table 7: Reactive Distillation Column Start-up Strategies

Strategy Description
Strategy 1 e Step 1 : Fill up the reboiler with equal mole of ethanol and acetic
acid.

e Step 2 : Heat up the reboiler to reach 79°C in 0.05hrs, maintain
for 1 hrs before feed in ethanol and acetic acid.

¢ Step 3 : Extract the top product when condenser pot level reaches
0.7m.

Strategy 2 e Step 1 : Fill up the reboiler with ethanol at the same reboiler level
as strategy 1. . '

¢ Step 2 : Heat up the reboiler to reach 79°C in 0.05hrs, maintain
for 1 hrs before feed in acetic acid.
Step 3 : After 0.5hrs, feed in ethanol.
Step 4 : Extract the top product when condenser pot level reaches
0.7m.

Strategy 3 ¢ Step 1 : Fill up the reboiler with acetic acid at the same reboiler
level as strategy 1.

e Step 2 : Heat up the reboiler to reach 79°C in 0.05hrs, maintain
for 1 hrs before feed in ethanol.

e Step 3 : After 0.5hrs, feed in acetic acid.

e Step 4 : Extract the top product when condenser pot level reaches
0.7m.
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b)

The reboiler heating up time taken is 0.05hrs and assu‘med to be the same for all
three strategies in this simulation. This is because the simulation work scope is
focused mainly on the start-up conditions after reactants are fed in. In view of the
boiling point for ethanol is 78°C, 79°C is chosen for reboiler heating temperature.
The reboiler is maintained at 79°C for 1 hour in order to ensure steady state of

reboiler heating is obtained prior to feeding in reactants.

The strategies are ranked against several criteria in order to select a strategy that
will be used in optimization study of the start-up procedures. Optimized start-up is

able to reduce the capital, operations cost and improved reactant conversion.

Start-up Strategy Selection Criteria

The criteria for the selection are:

i. Duration taken to achieve steady state
Time taken to achieve steady state after start-up is an important factor as it
determines the duration of the start-up phase of the reactive distillation
column. The shorter duration taken to reach steady state operations, the faster
product will be produced and the faster the process will be placed on

automatic control. This will improve process efficiency and safety.

Duration to achieve steady state operations is defined as the time taken from
initialization to time when all key parameters stop behaving in transient

manner.

ii. Pressure fluctuation
Pressure fluctuation is defined as the difference between the highest and
lowest recorded pressure during the start-up phase. A start-up strategy that has

lower pressure fluctuation is desired.

The maximum pressure of the column will determine the material to be used
for fabrication, wall thickness of the distillation column and pressure safety

device sizing. If the pressure fluctuates, a thicker column with different type of
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material is required. The pressure safety device is required to protect the
distillation column from over pressure due to unforeseen situation such as

blocked outlet.

Changes in pressure also indicate the occurrence of weeping and flooding in
the trays of the reactive distillation column. These occurrences lower the

efficiency of the column.

iii. Temperature fluctuation
Similar to pressure indicaiion, temperature is another critical factor for
distillation column design. The temperature fluctuation range during start-up
should be considered in column sizing, column interlock selection and

temperature transmitter selection.

Both pressure and temperature are the main monitoring parameters for

distillation column.

iv. Time taken for top product stream to be available for withdrawer based on
condenser pot level
This factor is considered because it is related to the time taken to produce
product from the reactive distillation column. The top stream will start to draw
out based on condenser pot level. Time taken for condensate to reach the set
level is based on the amount of light components formed in the column and

condensed at condenser pot.

Based on the criteria above, the best strategy is determined by comparing the pressure,
temperature and time taken to reach steady state. Each criteria is ranked from 1-3, where

3 is the best.
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c) Kenig et al. (2001) 82 Stages Reactive Distillation Model

The three start-up strategies are applied to Kenig et al. (2001) 82 stages reactive
distillation model that has been validated. From the results obtained, the reactive
distillation column took a very long time (>80 hours) to reach steady state for all
the three strategies. This could be due to high number of stages for the distillation
column used by previous research for steady state laboratory study purpose and it

is not suitable for dynamic study.

i. Top Stream Result for Strategy 1

Top Stream Component Profile
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Figure 27: 82 Stages Model Top Stream Result for Strategy 1

Ethyl acetate product is obtained after 13 hours and it has not reach steady

state after running for 80 hours.

ii. Top Stream Result for Strategy 2

. The same observation noticed as compared with Strategy 1.



CHAPTER 5: RESULTS AND DISCUSSIONS

Top Stream Component Profile
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Figure 28: 82 Stages Model Top Stream Result for Strategy 2

iii. Top Stream for Strategy 3
The same observation noticed as compared with Strategy 1 and 2. The time

taken to product ethyl acetate product is longer as compared with Strategy 1
and Strategy 2.

Top Stream Component Profile

kmolkmot

0 20 40 60 80 100
Time (hrs)

—— Ethyl Acetate — Water —— Acetic Acid —— Ethanol

Figure 29: 82 Stages Model Top Streams Result for Strategy 3

In view of the long duration to reach steady state, this model is not used for

reactive distillation column start-up study.
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d)

Vora and Daoutidis (2001) 13 Stages Reactive Distillation Model

The three start-up strategies are applied to Vora and Daoutidis (2001) 13 stages
reactive distillation model that has been validated. From the results obtained, the
column took approximately 3-4 hours to reach steady state for all the three
strategies. At such, this model is used for comparing the three different start-up
strategies. The following stagesbare considered in comparison as they represeht the
whole reactive distillation column, i.e. condenser stage, tray 7 (tray between acetic

acid feed tray and ethanol feed tray), reboiler stage and top stream.

i. Condenser

Condenser Pressure Profile

-Q Y
5 s
e
0.5 . - :
0 1 2 3 4 5 6
Time,hrs
Strategy 1 ------- Strategy 2 Strategy 3

Figure 30: Condenser Pressure Profile for Three Strategies

Condenser Temperature Profile

Time, hrs
Strategy1 ------- Strategy 2 Strategy 3

Figure 31: Condenser Temperature Profile for Three Strategies
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ii.

Based on the temperature and pressure trends, Strategy 1 took the shortest

time to reach steady state followed by Strategy 3 and Strategy 2. However,

the range of pressure swing for Strategy 1 is greater than the other two

strategies. Strategy 1 has pressure fluctuation of 1.17 bar while Strategy 2 and

Strategy 3 are 0.73bar and 0.63bar respectively. The temperature difference

between maximum and minimum for Strategy 1 is 85.7°C, Strategy 2 is

93.82°C and Strategy 3 is 86.62°C.

The ranking for condenser based on the results is shown as below (Table 12).

Table 12: Ranking of condenser for Three Strategies

Criteria Strategy 1 | Strategy 2 | Strategy 3
Shortest time to reach steady state 3 1 2
Less pressure fluctuation 1 2 3
Less temperature fluctuation 3 1 2
Total 7 4 7
Tray 7
Tray 7 Pressure Profile
25

Strategy 1

Time,hrs

Strategy 2

Strategy 3

Figure 32: Tray 7 Pressure Profile for Three Strategies

For Tray 7, which is the tray located between acetic acid and ethanol feed

trays; Strategy 1 took the shortest time to reach steady state. The pressure

difference between maximum and minimum for Strategy 1 is 1.17bar, Strategy
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2 is 1.23bar and Strategy 3 is 0.63bar. As shown in Figure 33, the temperature
fluctuation is greater for Strategy 1 (151.5°C) as compared to Strategy 2
(143.9°C) and Strategy 3 (97.5°C).

Tray 7 Temperature Profile

200.0
150.0
£ 100.0 -
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%
0.0 ;
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Time, hrs
Strategy1 ------- Strategy 2 Strategy 3

Figure 33: Tray 7 Temperature Profile for Three Strategies

The ranking for Tray 7 based on the results is shown as in Table 13.

Table 13: Ranking of Tray 7 for Three Strategies

Criteria Strategy 1 | Strategy 2 | Strategy 3
Shortest time to reach steady state 3 1 2
Less pressure fluctuation 2 1 3
Less temperature fluctuation 1 2 3
Total 6 4 8
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i1i. Reboiler

Reboiler Pressure Profile
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Figure 34: Reboiler Pressﬁre Profile for Three Strategies

Reboiler Temperature Profile
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Figure 35: Reboiler Temperature Profile for Three Strategies

Similar to Condenser and Tray 7, Strategy 1 for reboiler took the shortest time
to reach steady state. The range of pressure swing for Strategy 1 is smaller
than the other two strategies. Strategy 1 has pressure fluctuation of 0.56bar
while Strategy 2 and Strategy 3 are 0.92bar and 0.97bar respectively. The
temperature fluctuation is greater for Strategy 2 (112.2°C) as compared to
Strategy 1 (88.3°C) and Strategy 3 (90.4°C).

The ranking for reboiler based on the results is shown as in Table 14.
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Table 14: Ranking of Reboiler for Three Strategies

Criteria Strategy 1 | Strategy 2 | Strategy 3
Shortest time to reach steady state 3 1 2
Less pressure fluctuation 3 2 1
Less temperature fluctuation 3 1 2
Total 9 4 5

iv. Top Stream

1400.0

Top Stream Ethyl Acetate Component Profile
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Figure 36: Top Stream Pressure Profile for Three Strategies

As shown in the trend above, Strategy 1 took the shortest time to produce

ethyl acetate at top stream. The time taken is 1.57hrs as compared to Strategy

2, 2.56hrs and Strategy 3, 2.12hrs.

The ranking for the 4™ criteria is shown as below (Table 15).

Table 15: Ranking of Top Stream for Three Strategies

Criteria

Strategy 1

Strategy 2

Strategy 3

Shortest time to produce product

3

1

2
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Based on the overall ranking, it is concluded that Strategy 1 is the best strategy to

be further optimized for start-up study with the highest scoring.

Table 16: Summary of Selection Matrix

Criteria Strategy 1 Strategy 2 Strategy 3
Shortest time to reach steady state 9 3 -6
Less pressure fluctuation 6 5 7
Léss temperature fluctuation 7 4 7
Shortest time to produce product 3 1 2
Total 25 13 22
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e)

Strategy 1 Start-up Evaluation Prior to Optimization

The start-up evaluation is conducted using 8 stages i.e. the condenser stage, top
tray, top stream, acetic acid feed tray (tray 4), tray between acetic acid feed and
ethanol feed (tray 7), ethanol feed tray (tray 11), tray between ethanol feed and
reboiler (tray 12) and reboiler stage. These stages are representative of the entire

reactive distillation column.

For Strategy 1, the reboiler stage is filled up with ethanol and acetic acid at equal-
mole prior to starting-up. The reactive distillation column configuration is shown
in Figure 37. Acetic acid and ethanol are introduced simultaneously into reactive

distillation column at hour 1.0.

Top Stream

Condenser Stage

v

Condenser

Top Tray >

Tray 4 (Acetic Acid feed tray)———————p

Tray 7 —>

Tray 11 (Ethanol feed tray) >
Tray 12— ™

Reboiler

»

D

Reboiler Stage
Filled with ethanol

and acetic acid

Figure 37: Strategy 1 Reactive Distillation Column Configuration

Pressure, temperature and components profiles are studied for each stage and

presented in the following sections.
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Pressure Profiles
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Figure 38: Pressure Profiles for Strategy 1

As shown in the graph Figure 38, the pressure profile is similar for all the trays

in the reactive distillation column except for reboiler stage. Lower pressure

fluctuation is observed in the reboiler as the reboiler is liquid filled. All the
trays pressure spiked to as high as 2.05 bars after I hour, when both ethanol
and acetic acid are introduced into the reactive distillation column. It is
believed to be a result of the exothermic reaction between acetic acid and
ethanol. The fluctuation in pressure profile is observed from hour 1 to 2 and
slowly stabilized by the third hour. Pressure fluctuation is due to dynamics on
the column trays during the initial phase of reaction more liquid is formed
between tray 4 and tray 11 as shown in Figure 39 where reaction is expected to

occur. The liquid level profile is retrieved from the ASPEN DYANMIC™
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simulator. This can be further explained through tray pressure drop formula as

shown below.
AP=9.81x10%th, +(h,+h,)+h,)p, . Equation 34

One of the factors is liquid level on the tray, where the tray pressure drop is
proportional to liquid level on the tray. Therefore, high pressure is observed

when more liquid is formed.

Liquid Levels for Tray 5 to Tray 10

0.01
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0.004 1
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Figure 39: Liquid Level for Tray 5 to Tray 10 for Strategy 1

From hour 3 onwards the pressure became stable as the reaction approaches

equilibrium condition.
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ii.

Temperature Profiles

Temperature Profiles
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Figure 40: Temperature Profiles for Strategy 1

Figure 40 shows that the temperature profile in the reactive distillation
column. As the reboiler is heated up at time 0, temperature of the lower trays
increases accordingly. The higher tray i.e. “top tray”, “condenser”, “Tray 7~
showed little effect as they are physically higher. This temperature profile
maintained constant until acetic acid and ethanol are introduced into the

reactive distillation column at hour 1.

The temperature fluctuation from hour 1 to 2 is mainly due to the initial phases
of the reaction. Exothermic reaction between acetic acid and ethanol takes
place, thereby increasing the temperature to about 170°C. Calculated heat of
formation of ethyl acetate and water is -18.08kJ/mol based on the reboiler
heating temperature at 79°C.  From observations in Figure 40, tray 7 and

acetic acid feed tray (tray 4) show highest temperature. It is likely that the
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reaction first occurs between these trays as ethanol vapor (from tray 11) comes

into contact with acetic acid.

Tray 7 temperature increases from hour 2 to 3 and then stabilized. This shows
that more products are being produced in Tray 7 as time goes by. This is in
congruence with increase of ethyl acetate (product) concentration in this tray

shown in Figure 41.

As the reaction reaches equilibrium by hour 3, the fluctuation dampens. Acetic
acid tray still has the highest temperature due to exothermic reaction. The top
most tray has slightly lower temperature as the reflux flow from condenser,

which is cooler, enters this stage.

The condenser stage has the lowest temperature as vapor product is being

condensed to liquid and thereby rejecting heat.
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iii. Ethyl Acetate Liquid Mole Fraction Profiles

Ethyl Acetate Liquid Mole Fraction Profiles
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Figure 41: Ethy! Acetate Liquid Mole Fraction Profiles for Strategy 1

Ethanol and acetic acid can react to form ethyl acetic and water under normal
conditions. In view of the presence of ethanol and acetic acid in reboiler stage
whilst reboiler is heating up, ethyl acetate is found in each lower column trays

at the beginning of the simulation run.

As shown in the graph, the concentration of ethyl acetate is lower at the higher
stages because ethyl acetate is initially formed at reboiler stage before acetic
acid and ethanol fed in. The ethyl acetate concentration maintained whilst
reboiler temperature maintained at 79°C. While acetic acid and ethanol are
fed into the column simultaneously, the reaction starts (concentration of ethyl
acetate increases) to occur at Tray 4 and Tray 7 while concentration of ethyl

acetate reduces in ethanol feed tray (Tray 11) signally reduction of reaction.
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This phenomenon can be explained by the fact that reboiler temperature of
79°C would have vaporized the ethanol fed into the column. Ethanol vapor
travels upwards until it gets in contact with acetic acid which flows downward
from its feed tray (Tray 4). This is confirmed by the increased of product
(ethyl acetate) concentration in Tray 7. Higher concentration of product is

expected in Tray 4 due to higher amount of acetic acid present there.

As the reaction proceeds pass hour 2.5, it is observed that higher concentration
of ethyl acetate is found at Tray 7 compared to Tray 4. This shows that the

reaction zone is more effectively located between the two reactants feed trays.

As this startup strategy adopts a total reflux approach, product (ethyl acetate
and water) is being channeled back into the column from the condenser. When
the liquid product flow reaches the lower trays by hour 3, some amount of
ethyl acetate can be observed in these trays. As the column reaches steady
state by hour 3, vapor and liquid flows in the column are stabilized hence
resulting in constant concentration of products in all the stages. This is further
supported by other observations i.e. pressure and temperature in this section of

the discussion.
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iv. Water Liquid Mole Fraction Profiles

Water Liquid Mole Fraction Profiles
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Figure 42: Water Liquid Mole Fraction Profiles for Strategy 1

Generally the trend of water concentration is similar to that of ethyl acetate as
water is a by-product of the reaction between acetic acid and ethanol. Since
water has comparatively higher boiling point, high concentration of water is

noted at the lower trays.

However, it is noticed that top tray has high water concentration as well. This
could be due to total reflux operations, where cooling effect may have cooled
down the water vapor component. Equilibrium is reached at about 3.0 hours,

where water concentration is constant at all trays.
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v. Acetic Acid Liquid Mole Fraction Profiles
Acetic Acid Liquid Mole Fraction Profiles
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Figure 43: Acetic Acid Liquid Mole Fraction Profiles for Strategy 1

Acetic acid is one of the two reactants in an equal-molar reaction with ethanol.

During start up, there is 0.5 mole fraction of acetic acid in reboiler stage;

therefore, acetic acid can be found in all column trays. The acetic acid could

be brought to tray above reboiler stage by means of entrainment in ethanol

vapor.

At hour 1, acetic acid is introduced into the reactive distillation column at Tray

4, hence almost 1mole fraction concentration. As the top tray and Tray 7 is

located close by acetic acid can also be found at high concentrations at the

tray. At the same time ethanol is being introduced at Tray 11 (bottom of the

column).
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Concentration of acetic acid reduces as reaction takes place. This trend is in
agreement with the ethyl acetate concentration illustrated in Figure 41. The

mole fraction of acetic acid is displaced by the ethyl acetate concentration.

As the reaction reaches equilibrium, there will be constant amount of
unreacted acetic acid. This is confirmed by presence of a constant amount of
this feed at Tray 4 and 7. Small amount of ‘acetic acid is observed to be present
in all stages of the column. Acetic acid flows to the bottom tray with the reflux
and liquid flow while some amount can be entrained to upper trays by rising

vapor of the distillation process.
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vi. Ethanol Liquid Mole Fraction Profiles
Ethanol Liquid Mole Fraction Profiles
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Figure 44: Ethanol Liquid Mole Fraction Profiles for Strategy 1

Ethanol can be found in all trays as the vapor fills the whole column from the

amount in reboiler prior to startup owing to its low boiling point. As ethanol is

introduced at hour 1, the ethanol composition dropped because of aggressive

forward reaction occurring. This is supported by ethyl acetate and water

components formation as shown in Figure 41 and Figure 42.

The increment of ethanol component is believed to be related to high products

components pushing the reaction to move in the reverse direction and

converting back to ethanol and acetic acid.

When the reaction reached equilibrium, it is noticed that most of the ethanol

component is found at the bottom trays, which is very close to the ethanol feed
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1.

Pressure Profiles
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Figure 46: Pressure Profiles for Strategy 2

As shown in the Figure 46, the pressure profile is similar for all the trays in the
reactive distillation column except for top tray and condenser stage. All the
trays pressure is at 1 bar prior to introduction of acetic acid into the reactive
distillation column. Acetic acid is introduced into reactive distillation column
at hour 1 for 0.5 hours. It is observed that pressure for all the trays dropped to
0.5 bars except for top tray and condenser stage dun'ng that period of time.
This could be due to the impact of acetic acid liquid on the already evaporated
ethanol in reactive distillation column. It is supported by Figure 47 where no
liquid level is observed prior to the introduction of acetic acid. The pressure
spiked to as high as 1.72 bars after 1.5 hours, when ethanol is introduced into
the reactive distillation column. It is believed to be a result of the exothermic

reaction between acetic acid and ethanol. The fluctuation in pressure profile is
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observed from hour 1.5 to 3.5 and slowly stabilized by the fourth hour as the
reaction approaches equilibrium condition. Pressure fluctuation is due to
dynamics on the column trays during the initial phase of reaction when more
liquid is formed between tray 4 and Lray 11 as shown in Figure 47 where
reaction is expected to occur. The liquid level profile is retrieved from the
ASPEN DYANMIC™ simulator. This can be further explained through tray

pressure drop formula as shown in .
AP=9.81x10%th, +(h,+h,)+h,)p, Equation 34

One of the factors is liquid level on the tray, where the tray pressure drop is
proportional to liquid level on the tray. Therefore, high pressure is observed

when more liquid is formed.
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Figure 47: Liquid Level for Tray 5 to Tray 10 for Strategy 2
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il.

Temperature Profiles
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Figure 48: Temperature Profiles for Strategy 2

Figure 48 shows that the temperature profile in the reactive distillation
column. As the reboiler is heated up at time 0, temperature of the lower trays
increases accordingly. The higher tray i.e. “top tray”, “condenser”, “Tray 7"
showed little effect as they are physically higher. This temperature profile
maintained constant until acetic acid is introduced into the reactive distillation

column at hour 1.

The temperature fluctuation from hour 1.5 to 2.5 is mainly due to the initial
phases of the reaction. Exothermic reaction between acetic acid and ethanol
takes place, thereby increasing the temperature to about 165°C. Calculated

heat of formation of ethyl acetate and water is -18.08kJ/mol based on the

‘reboiler heating temperature at 79°C.  From observations in Figure 48, tray 7
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and acetic acid feed tray (tray 4) show highest temperature. It is likely that the
reaction first occurs between these trays as ethanol vapor (from tray 11) comes

into contact with acetic acid.

Tray 7 temperature increases from hour 2.5 to 3.5 and then stabilized. This
shows that more products are being produced in Tray 7 as time goes by. This
is in congruence with increase of ethyl acetate (product) concentration in this

tray shown in Figure 49.

As the. reaction reaches equilibrium by hour 4.0, the fluctuation dampens.
Acetic acid tray still has the highest temperature due to exothermic reaction.
The top most tray has slightly lower temperature as the reflux flow from

condenser, which is cooler, enters this stage.

The condenser stage has the lowest temperature as vapor product is being

condensed to liquid and thereby rejecting heat.
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iii. Ethyl Acetate Liquid Mole Fraction Profiles
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Figure 49: Ethyl Acetate Liquid Mole Fraction Profiles for Strategy 2

Ethanol and acetic acid can react to form ethyl acetic and water under normal
conditions. In view of the presence of ethanol alone whilst reboiler is heating
up, there is no ethyl acetate found in reactive distillation column. Ethyl acetate
is only observed after acetic acid is introduced into the reactive distillation

column at hour 1.0.

While acetic acid is fed into the column, the reaction starts (concentration of
ethyl acetate increases) and the concentration is constant at condenser stage
and top tray. This could be due to the fact that ethanol vapor travels upward
and brings acetic acid liquid up to condenser stage and top tray for reaction.
Ethanol is introduced at hour 1.5, hence ethyl acetate is formed at all trays at

that period of time. Concentration of ethyl acetate reduces in most of the trays
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after hour 2.0. This phenomenon can be explained by the fact that reboiler
temperature of 79°C would have vaporized the ethanol fed into the column.
Ethanol vapor travels upwards until it gets in contact with acetic acid which
flows downward from its feed tray (Tray 4). This is confirmed by the

increased of product (ethyl acetate) concentration in Tray 7.

As the reaction proceeds pass hour 3.0, it is observed that higher concentration
of ethyl acetate is found at Tray 7 compared to Tray 4. This shows that the

reaction zone is more effectively located between the two reactants feed trays.

As this startup strategy adopts a total reflux approach, product (ethyl acetate
and water) is being channeled back into the column from the condenser. When
the liquid product flow reaches the lower trays by hour 3.5, some amounf of
ethyl acetate can be observed in these trays. As the column reaches steady
state by hour 3.5, vapor and liquid flows in the column are stabilized hence
resulting in constant concentration of products in all the stages. This is further
suppdrted by other observations i.e. pressure and temperature in this sectfon of

the discussion.
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iv. Water Liquid Mole Fraction Profiles

Water Liquid Mole Fraction Profiles
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Figure 50: Water Liquid Mole Fraction Profiles for Strategy 2

Similar to ethyl acetate trend, water concentration trending is almost the same
as water is a by-product of the reaction between acetic acid and ethanol. Since
water has comparatively higher boiling point, high concentration of water is

noted at the lower trays.

However, it is noticed that top tray has high water concentration as well. This
could be due to total reflux operations, where cooling effect may have cooled
down the water vapor component. Water concentration is constant at all trays

when equilibrium is reached at about 4.0 hours.
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v. Acetic Acid Liquid Mole Fraction Profiles
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Figure 51: Acetic Acid Liquid Mole Fraction Profiles for Strategy 2

For Strategy 2, ethanol is the only reactant presented at reboiler stage,
therefore, during startup, there is no acetic acid in reboiler stage. Acetic acid is
introduced at hour 1.0 after reactive distillation column start-up. High acetic
acid concentration is observed after feed in at all trays. It is believed that the
acetic acid could be brought to tray above reboiler stage by means of

entrainment in ethanol vapor.

Concentration of acetic acid reduces as reaction takes place when ethanol is
introduced in reactive distillation column at hour 1.5. This trend is in
agreement with the ethyl acetate concentration illustrated in Figure 49. The

mole fraction of acetic acid is displaced by the ethyl acetate concentration.
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As the reaction reaches equilibrium, there will be constant amount of
unreacted acetic acid. This is confirmed by presence of a constant amount of
this feed at Tray 4 and 7. Small amount of acetic acid is observed to be present
in all stages of the column. Acetic acid flows to the bottom tray with the reflux
and liquid flow while some amount can be entrained to upper trays by rising

vapor of the distillation process.
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vi. Ethanol Liquid Mole Fraction Profiles
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Figure 52: Ethanol Liquid Mole Fraction Profiles for Strategy 2

Only ethanol is found in all trays during start-up since ethanol is the single
reactant presented at reboiler stage. As acetic acid is introduced at hour 1, the
ethanol composition dropped due to aggressive forward reaction occurring.
This is supported by ethyl acetate and water components formation as shown

in Figure 49 and Figure 50.

Ethanol concentration increased at hour 1.5 when ethanol is introduced into
reactive distillation column. The increment of ethanol component at hour 2.0
to 2.5 is believed to be related to high products components pushing the
reaction to move in the reverse direction and converting back to ethanol and

acetic acid.
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When the reaction reached equilibrium, it is noticed that most of the ethanol
component is found at the bottom trays, which is very close to the ethanol feed
tray (Tray 11). It could be due to the reaction between acetic acid feed tray
and ethanol tray has restricted the ethanol from flowing upwards. The similar
phenomenon is noted for acetic acid component as most of the acetic acid

presented at top trays instead of bottoms trays.
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g)

Strategy 3 Start-up Evaluation Prior to Optimization

The start-up evaluation is conducted using the same 8 stages i.e. the condenser
stage, top tray, top stream, acetic acid feed tray (tray 4), tray betweenb acetic acid
feed and ethanol feed (tray 7), ethanol feed tray (tray 11), tray between ethanol
feed and reboiler (tray 12) and reboiler stage. These stages are representative: of

the entire reactive distillation column.

For Strategy 3, the reboiler stage is filled up with acetic acid prior to starting-up.
The reactive distillation column configuration is shown in Figure 53. Ethanol is
introduced into reactive distillation column at hour 1.0 followed by acetic acid at
hour 1.5.

Top Stream

v

Condenser Stage

Condenser

Top Tray >

Tray 4 (Acetic Acid feed tray)——————p|

Tray 7 >

Y

Tray 11 (Ethanol feed tray) >

Tray 12 ‘ Reboiler
Reboiler Stage —> .
Q Filled with acetic

acid only

Figure 53: Strategy 3 Reactive Distillation Column Configuration

Pressure, temperature and components profiles are studied for each stage and

presented in the following sections.
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1. Pressure Profiles
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Figure 54: Pressure Profiles for Strategy 3

As shown in the graph Figure 54, the pressure profile is similar for all the trays
in the reactive distillation column for trays located underneath ethanol feed
tray (Tray 11) and ethanol feed tray itself. All the trays pressure is at 1 bar
prior to introduction of ethanol. Ethanol is introduced into reactive distillation
column at hour 1.0 for 0.5 hours. Pressure for all the trays dropped to 0.5 bars
during that period of time except for top tray and condenser stage. This could
be due to the impact of ethanol liquid on the “empty” reactive distillation
column. It is supported Figure 55 where no liquid level is observed prior to
ethanol is introduced. The pressure spiked to as high as 1.61 bars after 1.5
hours, when acetic acid is introduced into the reactive distillation column. It is
believed to be a result of the exothermic reaction between acetic acid and

ethanol. The fluctuation in pressure profile is observed from hour 1.5 to 2.5
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and slowly stabilized by the third hour as the reaction approaches equilibrium

condition. Pressure fluctuation is due to dynamics on the column trays during

the initial phase of reaction more liquid is formed between tray 4 and tray 11

as shown in Figure 55 where reaction is expected to occur. The liquid level

profile is retrieved from the ASPEN DYANMIC™ simulator. This can be

further explained through tray pressure drop formula as shown below.
AP =981x10"(h, +(h,+h,)+h )p,

One of the factors is liquid level on the tray, where the tray pressure drop is

Equation 34

proportional to liquid level on the tray. Therefore, high pressure is observed

when more liquid is present.
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Figure 55: Liquid Level for Tray 5 to Tray 10 for Strategy 3
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ii. Temperature Profiles

Temperature Profiles
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Figure 56: Temperature Profiles for Strategy 3

Figure 56 shows that the temperature profile in the reactive distillation
column. As the reboiler is heated up at time O, temperature of the lower trays
increases accordingly. The higher tray i.e. “top tray”, “condenser”, “Tray 7”
showed little effect as they are physically higher. This temperature profile
maintained constant until acetic acid is introduced into the reactive distillation

column at hour 1.5.

The temperature fluctuation from hour 1.5 to 2.0 is mainly due to the initial
phases of the reaction. Exothermic reaction between acetic acid and ethanol
takes place, thereby increasing the temperature to about 134°C. Calculated
heat of formation of ethyl acetate and water is -18.08kJ/mol based on the

reboiler heating temperature at 79°C.
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Tray 7 temperature increases drastically at hour 2.1 and then stabilized. This
shows that more products are being produced in Tray 7 at that time. This is in
congruence with increase of ethyl acetate (product) concentration in this tray

shown in Figure 57.

As the reaction reaches equilibrium by hour 3.0, the fluctuation dampens.
Acetic acid tray still has the highest temperature due to exothermic reaction.
The top most tray has slightly lower temperature as the reflux flow from

condenser, which is cooler enters this stage.

The condenser stage has the lowest temperature as vapor product is being

condensed to liquid and thereby rejecting heat.



CHAPTER 5: RESULTS AND DISCUSSIONS 115

iii. Ethyl Acetate Liquid Mole Fraction Profiles

Ethy! Acetate Liquid Mole Fraction Profiles

094~ -+~~~ - e B - - - —— Condenser - -
~———Top Tray

0B+ - e ol oo — Acetic Acid Feed Tray (Tray 4) | _ _
—Tray 7
— Ethanol Feed Tray (Tray 11)

L -~ Tray 12 [
— Reboiler

[ R e I

mole fraction

Time (hrs)

Figure 57: Ethyl Acetate Liquid Mole Fraction Profiles for Strategy 3

Ethanol and acetic acid can react to form ethyl acetic and water under normal
conditions. In view of the presence of acetic acid alone whilst reboiler is
heating up, there is no ethyl acetate is found in reactive distillation column.

- Ethyl acetate is only observed after ethanol is introduced into the reactive

distillation column at hour 1.0.

While ethanol is fed into the column, the reaction starts (concentration of ethyl
acetate increases) and ethyl acetate is mainly found at reboiler stage where this
stage is filled up with acetic acid. Acetic acid is introduced at hour 1.5, hence
ethyl acetate is formed at all trays at that period of time. Ethanol vapor travels
upwards until it gets in contact with acetic acid which flows downward from

its feed tray (Tray 4).
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As the reaction proceeds pass hour 2.5, it is observed that higher concentration
of ethyl acetate is found at Tray 7 compared to Tray 4. This shows that the

reaction zone is more effectively located between the two reactants feed trays.

As this startup strategy adopts a total reflux approach, product (ethyl acetate
and water) is being channeled back into the column from the condenser. When
the liquid product flow reaches the lower trays by hour 2.5, some amount of
ethyl acetate can be observed in these trays. As the column reaches steady
state by hour 2.5, vapor and liquid flows in the column are stabilized hence
resulting in constant concentration of products in all the stages. This is further
supported by other observations i.e. pressure and temperature in this section of

the discussion.
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iv. Water Liquid Mole Fraction Profiles
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Figure 58: Water Liquid Mole Fraction Profiles for Strategy 3

Generally the trend of water concentration is similar to that of ethyl acetate as

water is a by-product of the reaction between acetic acid and ethanol. High

concentration of water is noted at lower trays because water has comparatively

higher boiling point.

However, it is noticed that top tray has high water concentration as well.

Cooling effect due to total reflux operations may have cooled down the water

vapor component. Equilibrium

is reached at about 2.5 hours, where water

concentration is constant at all trays.
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v. Acetic Acid Liquid Mole Fraction Profiles
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Figure 59: Acetic Acid Liquid Mole Fraction Profiles for Strategy 3

For Strategy 3, acetic acid is the only reactant presented at reboiler stage,

therefore, during startup, there is only acetic acid in reboiler stage. Ethanol is

introduced at hour 1.0 after reactive distillation column start-up. High acetic

acid concentration is observed after feed in at all trays. It is believed that the

acetic acid could be brought to tray above reboiler stage by means of

entrainment in ethanol vapor. This is supported by the reduction of acetic acid

at reboiler stage.

Concentration of acetic acid reduces significantly as reaction takes place when

acetic acid is introduced in reactive distillation column at hour 1.5. This trend

is in agreement with the ethy! acetate concentration illustrated in Figure 57.

The mole fraction of acetic acid is displaced by the ethyl acetate concentration.
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As the reaction reaches equilibrium, there will be constant amount of
unreacted acetic acid. This is confirmed by presence of a constant amount of
this feed at Tray 4 and 7. Small amount of acetic acid is observed to be present
in all stages of the column. Acetic acid flows to the bottom tray with the reflux
and liquid flow while some amount can be entrained to upper trays by rising

vapor of the distillation process.
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vi. Ethanol Liquid Mole Fraction Profiles
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Figure 60: Ethanol Liquid Mole Fraction Profiles for Strategy 3

Ethanol is introduced into the reactive distillation column .at hour 1.0,
therefore, ethanol is found in the distillation column after hour 1.0. Tray 11
and Tray 12 have the highest ethanol concentration at about hour 1.0 because
ethanol is fed in at Tray 11. As acetic acid is introduced at hour 1.5, the
ethanol composition dropped because of aggressive forward reaction

occurring.

Ethanol concentration at reboiler stage is in the increasing trend from hour 1.0
to hour 2.0 and dropped to a constant level after 2.5 hours. It is believed that
ethanol liquid flows downwards to reboiler stage from ethanol feed tray (Tray
11) when ethanol is feeding in and started to form products after contacting

with acetic acid.
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When the reaction reached equilibrium, it is noticed that most of the ethanol
component is found at the bottom trays, which is very close to the ethanol feed
tray (Tray 11). It could be due to the reaction between acetic acid feed tray
and ethanol tray has restricted the ethanol from flowing upwards. The similar
phenomenon is noted for acetic acid component as most of the acetic acid

presented at top trays instead of bottoms trays.
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h)

Strategy 1 Start-up after Optimization

From previous section Strategy 1 is selected as the strategy to be optimized in the
study. Strategy 1 is optimized in order to reduce the start-up timing and dampen

the fluctuation of pressure and temperature.

There are several attempts carried out in order to achieve the optimization.
Pressure, temperature and each component profiles are looked into and compared.
The appropriate steps that resulted in the least pressure fluctuation and the fastest

in reaching steady state are adapted.

Based on the outcome of Strategy 1, it is noticed that maintaining reboiler
temperature at 79°C for lhour is not required in view of the constant profiles
obtained in all the parameters. Hence, it is proposed to reduce from lhour to
0.5hours. In order to speed up the reactants evaporation rate, the reboiler heating
temperature is increased from 79°C to 90°C. It is not advisable to go beyond

90°C because one of the products i.e. water has a boiling temperature of 100°C.

Based on the comparison carried out for the three different strategies in section c,
it is clearly shown that strategy 3 has the less pressure and temperature
fluctuation. Therefore, start up sequence for strategy 3 is adapted for strategy 1
improvement. The difference observed for strategy 3 is ethanol is fed into the
column followed by acetic acid. The same sequence is adapted for strategy 1
optimization, where acetic acid is fed 0.lhours after ethanol. Top product is
extracted when reboiler level reaches 0.3m instead of 0.7m in the initial start up

procedure. This is able to reduce the start up time required.

The best performance is observed using the following steps.

¢ Step 1: Fill up the reboiler with equal mole of ethanol and acetic acid.

e Step 2: Heat up the reboiler to reach 90°C in 0.05hrs, maintain for 0.5hrs
before feed in reactants.

* Step 3: Feed in ethanol and maintain for 0.1hours at 30kg/hr feed rate.
Step 4: Feed in acetic acid at 30kg/hr feed rate.

e Step 5: Extract the top product when condenser pot level reaches 0.3m.
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The column reaches steady state running for approximately 1 hour later after

extracting the top product.

i. Top Stream

Top Stream Pressure Profiles
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Figure 61: Top Stream Pressure Profiles Before and After Optimization

Top Stream Temperature Profiles
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Figure 62: Top Stream Temperature Profiles Before and After Optimization

In view of reduction of 0.5hours in maintaining reboiler temperature, both

pressure and temperature profiles are shifted 0.5hours to the front. Therefore,
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pressure spike is observed at 0.5hours. A more stable pressure and temperature
profile are obtained after optimization. Pressure spike due to reaction is
dampened from 2bar to 1.5bar with the optimized strategy. Both pressure and

temperature achieved stead state profiles at time 1.5 for optimized strategy.

Less pressure and temperature fluctuation could be due to more stable liquid
level available at trays as shown in Figure 63 during products formation as
cdmpared with initial Strategy 1. Reasons being are reboiler heating
temperature is increased to 90°C and most of ethanol component evaporated.
More liquid could have been extracted from the reactive distillation column,
where top stream is extracted 0.72 hours as compared to 1.60 hours for

Strategy 1.
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Figure 63: Liquid Level for Tray 5 to Tray 10 for Optimized Strategy
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Top Stream Componenet Profiles
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Figure 64: Top Stream Component Profiles Before and After Optimization

Ethyl acetate for top stream reached steady state within 1.0 hour for optimized

strategy as compared with original Strategy 1 that required 3.0 hours.

However, the total ethyl acetate produced for optimized strategy is slightly
lower (1164kg/hr vs. 1106kg/hr). This could be due to lower retention time

for reaction to take place when the reboiler level is reduced from 0.7m to 0.3m

before top stream is extracted.

Acetic acid is found at top stream for optimized strategy. This could be due to

the closer location to acetic acid feed tray and acetic acid is “brought up” by

high ethanol evaporation rate in view of higher initial reboiler heating

temperature.
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ii. Tray 7

Tray 7 Pressure Profiles
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Figure 65: Tray 7 Pressure Profiles Before and After Optimization
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Figure 66: Tray 7 Temperature Profiles Before and After Optimization

In view of all the trays in the column have the same profile for pressure and
temperature after optimization, Tray 7 that is located in between acetic acid
feed tray and ethanol feed tray is selected for this optimized strategy

discussion.
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As shown in the pressure and temperature profiles above, the pressure
fluctuation and temperature fluctuation have improved and the maximum
pressure amplitude has reduced from 2bar to 1.5bar. The pressure spike is
caused by the reaction between acetic acid and ethanol. Similar to top stream
explanation, pressure is dampened by less liquid level formed at each tray due
to higher reboiler heating temperature and more liquid have been removed

from top stream.

The temperature profile for optimized strategy is more stable as compared
with initial Strategy 1. This could be contributed by less pressure fluctuation.
Both temperature increased from reboiler heating temperature after reactants
are introduced, where reaction between ethanol and acetic acid take place.
Reduction of 0.5hours for reboiler heating period has brought both the
pressure and temperature profiles forward by O.5hours. This is part of
optimization effort to reduce the start-up time. Steady state is achieved for

both temperature and pressure at approximately hour 1.

Tray 7 Liquid Component Mole Fraction Profiles Tray 7 Liquid Component Mole Fraction Profiles

1 1
§O08 -y [ 5084 - e
‘g 064 ool e e g 064 - - - ~fF-~-- e
@ 044 - -] A O N L —— o 04 e
[=] o
E 02 {1 - N ST T Eoedf—k - oo o e oo oo o

o 0

0 1 2 3 4 5 0 1 2 3
Time (hrs) Time (hrs)
[——Ethyl Acetate — Water — Acatic Acid — Ethanol [ —Ethyl Acetate —— Water — Acetic Acid —— Ethanol
Before Optimization After Optimization

Figure 67: Tray 7 Liquid Component Profiles Before and After Optimization

In general, all the components concentration reached the same concentration
for both Strategy 1 and optimized strategy during steady state. The major
differences for both strategies are the time taken to reach steady state and

initial component profiles prior to steady state. It is noticed that optimized
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strategy has more stable component profiles during start-up and took shorter

time to achieve steady state.

For nitial Strategy 1, reaction is trying to reach equilibrium state from hour
1.0 to 2.0, while optimized strategy reaction fluctuation is less than 0.5 hours.
As shown in Figure 67, the reaction fluctuation for optimized strategy only
observed from hour 0.60 to 0.80. The time taken for optimized strategy to

reach steady state is 2 hours lesser than strategy 1 (1 hour vs. 3 hours).

In optimized strategy, ethanol is fed into the column prior to acetic acid, thus,
ethanol concentration is high when feeding into the column as compared with
initial Strategy 1 where acetic acid is fed prior to ethanol. Less water
fluctuation observed in -optimized strategy could be due to more stable
temperature profile, thereby, water component evaporated and condensed in
trays is more stable. Similar to top stream acetic acid observation, more
acetic acid is found at Tray 7 for optimized strategy. This can be attributed to
the fact that closer location of Tray 7 to acetic acid feed tray and acetic acid
liquid with high density will tend to flow downwards in the reactive

distillation column.
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6.0 CONCLUSION

The present work has successfully replicated the reactive distillation model in steady state
simulation, ASPEN PLUS™ and dynamic state simulation, ASPEN DYNAMIC™. The
model can be used to study the steady state process performance and operability issues in
parallel. The model is replicated for ethyl acetate production using acetic acid and

ethanol feeds.

Without requiring additional program such as FOTRAN™ in ASPEN PLUS™, the
second reaction rate is derived into Power Law Coefficient format. The derived reaction
rate 1s validated using t-test and correlation coefficient. The calculated ty is 8.24E-08
(between acceptable ranges) and correlation coefficient is 1.00. The model with the
derived second reaction rate is validated with laboratory results (82 stages reactive
distillation column) and simulated results (13 stages reactive distillation column) obtained
from journals and the results are found to be satisfactory. The parameters validated for 82
stages reactive distillation column are temperature and each component (ethyl acetate,
water, ethanol and acetic acid) profiles. The parameters validated for 13 stages reactive
distillation column are each component and product flow rate for top stream and bottom

stream as well as the ethanol conversion and top stream ethyl acetate purity.

The RGA method is used for choosing the best paring in selected manipulated variables
and controlled variables by using the model in ASPEN PLUS™. The bést pairing from
the selected configurations is reboiler duty to control top ethyl acetate composition and
bottom rate to control bottom water composition. The tuning of the controllers is carried
out in ASPEN DYNAMIC™ using Ziegler Nichols method. However, the best
controller pair determined by RGA performed erratically when they are put into dynamic
simulation. The situation is addressed by choosing a controller pair that is located

physically nearer as compared to the pair determined by RGA method.

Three different start-up strategies are studied using ASPEN DYNAMIC™ and the results
are compared. The best strategy obtained is Strategy 1 where reboiler is filled with acetic

acid and ethanol during start-up. This strategy is further optimized by adapting reactants

»
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introduction sequence from another strategy, i.e. Strategy 3. The outcome of the
optimized strategy showed that less pressure and temperature fluctuation and shorter time

taken to achieve steady state.
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70 RECOMMENDATIONS

This research focused on modeling a reactive distillation column in ASPEN PLU

STM

platform. The replicated model is exported to ASPEN DYNAMIC™. The best pairing

for selected manipulated variables and controlled variables is determined. Column start-

up condition is studied. The steady state performance and operability issues are analyzed.

The following are the recommendations for future development:

i.

ii.

iil.

iv. To conduct the similar study using other type of reactions if ASPEN PLU

To build a scaled up pilot plant using the results obtained from the model '

replicated in order to be one step closer to commercial plant development.

To further study the effect of catalyst, temperature and pH changes for ethyl

acetate reactive distillation column.

To develop a model predictive control (MPC), which is already widely used
in the process industries. MPC for the model is able to predict the constraints

for any input and provide an optimal solution for the controller on line.

g™
and ASPEN DYNAMIC™ simulators are available. One type of reactions is
Ethyl-Tert-Butyl-Ether (ETBE), which is a high-performance fuel additive. By

having the model, the performance of the distillation column can be observed

and predicted in order to study the yield of ETBE and further optimization.
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8.0 APPENDICES

Appendix A: Typical Ethyl Acetate Properties

Properties
Appearance Clear, Colorless
Odor Like pineapple
Melting Point -84°C
Boiling point 77°C
Solubility Freely soluble in alcohol and acetone.
Moderate soluble in water (9g/100mL)
Vapor Density 3.0 (air=1.0)
Vapor Pressure 76 mmHg at 20°C
100 mmHg at 27°C
Flash Point -4°C
Relative Density at 27°C 0.895 - 0.898
Auto ignition Temperature 427°C
Structure Formula C4H;30;
H
I  HH
H—c—cl | |
[ 0—C—-C—H
H |
H H
3-D Structure I O
~ /7
B “No_PH B
s N\ ~2H
H N
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Appendix B: Some Typical Reactive Distillation Processes (Okur and Bayramoglu,
2001).

' Reactants Products
. Adipic acid + hexamethylenediamine Salt

Butadiene + sulfur dioxide Butadiene sulfone .

Ethylene oxide + water Ethylene glycol

Isobutehe + methanol Methy! tert-butyl ether

Isobutylene + ethanol ETBE

Isobutylene + methanol : MTBE

Benzene + Xylene .Toluene

Acetic anhydride + water Acetic acid

Acetic acid + ethanol Ethyl acetate + water

Acetic acid + methanol Methyl acetate + water

Acrylic acid + ethanol Ethyl acrylate + water

Butanol + ethyl acetate Ethanol + butyl acetate

Formic acid + ethanol Ethyl formate + water

Metg—xylene + tert-butyl benzene Tert-butylmeta-xylene + benzene

Meta-xylene + di-tert-butyl benzene Ter-butyl benzene + ter-butyl meta-
xylene

Meta-xylene + sodium para-xylene Sodium meta-xylene + para-xylene

Ethylene oxide + water Ethylene glycol + diethylebe glycol

Dimethyl teraphthalate + ethylene glycol | Diglycol teraphthalate + methanol
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Appendix C: Normal Boiling Point of the Pure Component and Azeotropic

Compositions.

Mol % of Composition

EtOH H:0 | AcOH

Normal Boiling Point

70.1 587 | 159 25.4
70.6 69.0 , 31.0

718 554 440

771 100.0

782 908 92

784 1000

100.0 100.0

1179 100.0
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Appendix D: The Trial and Error Tuning Method

The steps involved are summarized below:

i

1.

iii.

iv.

Vi.

Eliminate the integral and derivative action by setting T p to O and T to as large a
value as possible.

Set K. at a low value and put the controller on automatic.

Increase the controller gain K. by small increments until continuous cycling occurs
after a small set point or load change. The term “continuous cycling” refers to a
sustained oscillation with constant amplitude.

Reduce K. by a factor of 2.

Decrease T 1 in small increments (this increases integral control) until continuous
cycling occurs again. Set T to 3 times this value.

Increase 7 p until continuous cycling occurs. Set T  equal to one third this value.
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Appendix E: Cohen and Coon Controller Tuning Method

The steps involved are:

i. After the process reaches steady state, switch the controller to manual mode.
Introduce a small step change in the controller output and record the transient,
which is the process reaction éurve,

ii. Figure 68.

iii. Draw a straight line tangent to the curve at the setpoint of inflection. The -
intersection of the tangent line with the time axis is the apparent transport lag (1),
the apparent first-order time constant (8). The steady state gain, Kp is the AT/AP.

iv. The values of Kp, T and 8 are used for the controller setting in Appendix F.

controller Ap
output (p) i

|

|

|

Lo

I

}
self { !
regulating it 6 -bilf T
system -
response

M

S = AT/t

unstable
system
response

M

Figure 68: Process Reaction Curve



CHAPTER 8: APPENDICES _ 137

Appendix F: Cohen and Coon Controller Design Relations (Quantum, 2004)

- Controller Settings ' Cohen-Coon

ﬁ : 8[30+3(6/7)]
9+ 20(6/1)
PID K. - 11 [161 + 30}
K6 12t
7 8[32 + 6(6/7)]
13+8(6/7)
D 48

11+2(6/7)
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Appendix G: Print Screens of ASPEN PLUSTM Simulation (Section 4.2)
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Appendix H: Simulation Data for RGA Calculation

Manipulated Variable (kg/hr) Controlled Variable (kg/hr)
C1 | C2
Initial Information
Ml 0.24 0.1771 0.03349
M2 78.27
M3 0.30634
M4 -102.98
Set 1
Constant M2 M1 +0.1% 0.1771 0.03351
M1 +0.5% 0.1767 0.03358
M1 + 1.0% 0.1762 0.03367
Constant M1 M2 +0.1% 0.1773 0.03350
M2 +0.5% 0.1780 0.03355
M2 + 1.0% 0.1787 0.03360
Set 2
Constant M3 M1 +0.1% 0.1770 0.03351
M1 +0.5% 0.1764 0.03356
Ml + 1.0% 0.1755 0.03362
Constant M1 M3 +0.1% 0.1773 0.03350
M3 +0.5% 0.1778 0.03353
M3 + 1.0% 0.1783 0.03357
Set 3
Constant M4 M1 +0.1% 0.1771 0.03351
M1 +0.5% 0.1766 0.03358
M1 + 1.0% 0.1761 0.03366
Constant M1 M4 +0.1% 0.1774 0.03350
M4 +0.5% 0.1780 0.03355
M4 + 1.0% 0.1789 0.03361
Set 4
Constant M1 M1 +0.1% 0.1773 0.03350
M1 +0.5% 0.1783 0.03357
M1 + 1.0% 0.1829 0.03386
Constant M5 M4 +0.1% 0.1769 0.03350
M4 +0.5% 0.1746 0.03355
M4 + 1.0% 0.1641 0.03379
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Appendix I: Tuning Results for Controllers
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Figure 84: Oscillation Trend for Controller 1 with 1.00%/% Gain
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Figure 85: Oscillation Trend for Controller 1 with 3.00%/% gain
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Controller 2 — 1%/% Plot
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Figure 87: Oscillation Trenﬂ for Controller 2 with 2.00%/% gain
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Appendix J: Fine Tuning of Dynamic Simulation Runs

Run No. Feeding time, Condensate Level, Steady State after Running
hrs m for
1 0.04 0.005 Error
2 0.05 0.005 3 hours
3 02 0.005 8 hours
4 0.5 0.005 9 hours
5 0.05 0.01 No stable after 6 hours
6 0.05 0.001 3 hours
1. Feeding time of 0.05hrs is selected because of the faster timing taken to reach
steady state.
il. Condensate level of 0.005m is selected based on the following reasons:
a. The same timing taken to reach steady state as compared to lower
condensate level (0.001m).
b. Middle point between 0.01m and 0.001m.

It is more practical from measurement point of view.
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