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ABSTRACT 

Consequence study of carbon dioxide release in seawater is becoming the one of the 

prevailing environmental concerns in this recent decade, mainly due to its potential harm to 

the ecosystem as well as the livelihood of the people whom depends upon it. Normally, 

carbon dioxide release is likely to take place in naturally occurring seabed fracture or man-

made structure such as underwater carbon sequestering region or pipeline rupture. According 

to past simulation done by preceding experts, the majority of the results describes that the 

carbon dioxide plume tend not to escape to the surface of the seawater and is usually 

localized or confined in within certain boundary if the tidal mixing effect is minimal. Most of 

the modeling of carbon dioxide behavior done is based on the respective mathematical 

correlation or formulation designed to increase accuracy and reliability. However, for the 

sake of simplicity and compatibility with the scope of this project, the behavior of carbon 

dioxide toxicity release in seawater will be modeled using ANSYS Fluent Simulation 

Software using pertinent data acquired from other peer-reviewed research paper done by 

Fadzil (2012) and Dissanayake (2012). The location of the scenario chosen for this simulation 

is within the vicinity of South China Sea, as it is currently the target area for carbon capture 

storage system by the Malaysian authority. From the simulation of sub-seabed leakage, it is 

found that the simulation result is in great conformance with the physiochemical modeling of 

carbon dioxide release in seawater conducted by Dewar et al (2013). The maximum 

concentration of carbon dioxide and dispersed plume height rise acquired are 8.50E+09 ppm 

and 75.12 m respectively, yielding percentage errors of less than 10% for both of the 

parameters. However, pipeline leakage scenario is not taken into account to the due lack of 

experimental and simulation data for model verification and validation. The result obtained 

from this simulation is hoped to be utilized by any party involved in Carbon Sequestration 

and Storage System Project in Malaysia as value-added data. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

This project is related to the consequence study on toxicity of carbon dioxide release 

in seawater focusing on modeling the behavior of carbon dioxide dispersion via pipeline 

leakage. There have been various formulation or models proposed by previous proponents of 

this subject in their endeavor accurately simulate the behaviour of carbon dioxide dispersion 

with seawater as its medium such as Finite Volume Coastal Ocean Model (FVCOM) 

(Blackford et al. 2013), MEGA_DEEP (Yap et al. 2010), OCEAN_CO2(Dissanayake et al. 

2012), and so on. However, these models were programmed to suit the given carbon dioxide 

leakage prone regions such as North Sea (Dewar et al, 2013), Shane Seep (Leifer et al, 2006), 

North West European Shelf (Blackford et al, 2013) and Kagoshima Bay (Dissanayake et al, 

2012). However, it hardly covers the issue of pipeline leakage as the main focus of those 

studies revolves on underwater leakage from natural or artificial carbon dioxide storage 

system. For that reason, the central thesis of this research is to develop the most reliable 

model for carbon dispersion simulation that is compatible to local condition, especially for 

pipeline leakage. This study will mainly centers upon the assumptions as well as the 

correlation involves in building the model so that it can account for most scenarios possible 

in ensuring that the reliable prediction can be made based on the model. 

1.2 PROBLEM STATEMENT 

Underwater carbon dioxide leakage, in this era, has been gaining momentums of 

attention over the years due to its potential hazard it will bring upon the equilibrium of the 

environment. One of the causes which have been known to lead to such as incident is the 

underwater seabed leakage and offshore pipeline rupture. This will only add to ever 

worsening acidification of the ocean which is already contributed by absorption of the 

terrestrial discharge of carbon dioxide to the atmosphere. As a matter of fact, the world is 

beginning to witness the largest recorded value of acidity of the sea in the global history that 

is well over 380 ppmv (Petit et al. 1999) and this alone was contributed by the terrestrial 

discharge of carbon dioxide. As for underwater carbon dioxide discharge, recent estimate of 

release rate made by Harata et al. (2010) is around 48,500 tonnes per year. In addition, a 
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study conducted by Kano et al. (2009) show that the leakage rate can achieve up to 94,600 

tonnes per year in extreme cases and 3800 tonnes per year in moderate cases. This is indeed 

worrying considering the fact that this will create a surplus of carbon dioxide content in 

seawater and in turn, expose the marine life various ecological and biological threats such 

coral bleaching and narcosis. Long term exposure will result in the increase in mortality rate 

among aquatic organisms due to lower metabolic rate as well as having damaging effects 

towards the activity, growth and reproduction. 

1.3 OBJECTIVE 

The objectives of this project are: 

1. To develop Computational fluid dynamics that can aptly describes behavior of carbon 

dioxide release in seawater 

2. To validate the developed model in order to make accurate predictions based on 

available published data. 

1.4 SCOPE OF STUDY 

The simulation will make use of ANSYS FLUENT for modeling and simulation. The 

following parameters will be taken into consideration for modeling process: 

1. Development of Fluid Domain 

2. Computational Fluid Dynamics 

3. Simulation Setting and Conditions 

4. Verification and validation of results 
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CHAPTER 2 

LITERATURE REVIEW 

2. 1  THREATS OF HIGH CARBON DIOXIDE CONCENTRATION TO AQUATIC 

LIFE  

High concentration of carbon dioxide poses a major disadvantage on the quality of 

nature. Apart from being a greenhouse gas emission, high concentration of carbon dioxide in 

the sea can give rise to the likelihood of upsetting the equilibrium of the aquatic life (Doney 

et al., 2009). To international and national concern, the one of the sources for which drives 

the concentration in seawater ominously uphill, besides mass onshore carbon dioxide release 

into the atmosphere, is the offshore natural gas extraction for which the issue of leakage 

arises. However, it is pertinent to point out that the major contributor of carbon dioxide 

emission originates from onshore anthropogenic activities dating back to pre-industrial 

revolution (Lüthi et al., 2008). Hence, it is best to study the effect of high carbon dioxide 

concentration on the aquatic due to greenhouse gas emission in order to paint a better picture 

of the prolonged effect of high carbon dioxide level in seawater.  

It has been calculated that carbon dioxide level in seawater has witnessed a sharp 

increment as compared to those days when industrial based activities was still in its infancy. 

In the present, the carbon dioxide concentration in seawater is recorded within the range of 

172e300 ppmv (Lüthi et al., 2008) in which the pH value underwent a decrease of 0.1 unit in 

consequence of the 30% upsurge in the hydrogen ions (Caldeira and Wickett, 2003; Raven et 

al., 2005). In a simulated study conducted by Caldeira and Wickett (2003), unconstrained 

carbon dioxide release is projected to exceed 1900 ppm by the year 2300 with the maximum 

pH value reduction up to 0.77 units. In addition, an analysis of air trapped ice cores indicates 

that the global carbon dioxide level in seawater from 420,000 years back to pre-industrial era, 

fluctuated between 180 ppmv and 300 ppmv until later in industrial revolution age, the level 

spiked up to 380 ppmv (Petit et al. 1999). This is certain to pose a disturbing impact of the 

aquatic life and fisheries which in turn, can jeopardize the source of livelihood of the local 

fishermen. 

Based on a study conducted by Fivelstadet. al (2003), elevated level of carbon dioxide 

has been discovered to be damaging towards a particular type of salmon, Salmosalar L. which 

is to be found in abundance in northern Atlantic Ocean (Shearer, 1992).  Apparently, “high 
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levels of carbon dioxide in the water will reduce pH and increase the toxicity of aluminum 

causing hypertrophy and hyperplasia of the gill epithelium.” Consequently, it reduces the 

feed conversion ratio and growth as well. Due to this finding, another study implemented by 

Martens et al (2006) to observe the effect on high carbon dioxide water on the same species 

of fish. The result implies that, under the range of 10mg/L to 35 mg/L of carbon dioxide 

concentration, the fish weight was recorded to be 20.9% lower than that of under normal 

condition. 

Another investigative venture carried out by Bressanet. al (2014) manage to prove 

that “… ocean acidification may negatively affect the ability of marine organisms to produce 

calcareous structures while also influencing their physiological responses and growth”. The 

central proposition of the study is that the production of marine calcifiers is retarded from 

producing calcareous skeletal structure as the result from changing carbonate chemistry 

(Fabry et al. 2008). This is a direct consequence of the upsurge concentration of carbon 

dioxide in atmosphere which is significantly higher than in normal condition throughout the 

rest of the history. An experiment was devised to put the hypotheses to the test, in which one 

of the two species of mussels were chosen because of the lucrative income resource for 

Italian aquaculture industry (FAO, 2012) and they are widely bred in Northern Adriatic 

regions. Henceforth, it was found that two out of the three proposed hypotheses, reduced 

survival and occurrence of shell injuries were positively confirmed from the obtained result.  

Reef building corals and coralline algae are also predicted to undergo significant 

growth setback in response to the changing condition of seawater, especially the sudden 

increase of carbon dioxide level. Evidently, carbon dioxide, being an acidic component of the 

seawater is very much likely to alter the carbonate equilibrium of seawater, leading to 

reduced pH value and carbonate ion concentration (Kleypass and Langdon). Prior to testing, 

two postulations were made by Klaypess and Langdon, those are “an increase in total carbon 

dioxide in seawater results in a reduction in carbonate ion concentration” and “many 

independent experiments show a strong positive relationship between carbonate ion 

concentration and calcification rate in numerous species of calcifying algae, scleractinian 

corals, and coccolithophores.”. The findings of the study show that reduction in calcification 

rates is highly probable in light of the changing chemistry of the seawater. Even though the 

biochemical mechanism for calcification is yet to be comprehended with assured confidence, 

it was safe to conclude that “dissolution of high magnesium calcite can potentially buffer the 

carbonate system in coral reef environments, particularly once seawater becomes under-
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saturated with respect to that mineral” in which it can potentially be the driving force towards 

the extinction of coral reefs. 

With that, it is substantially established that, high content of carbon dioxide in 

seawater is certain to be of threat to the flourishing inhabitants of the ocean. Therefore, this 

paper is dedicated for modelling consequence study of carbon dioxide dispersion in seawater 

which in fact, is the central thesis of the paper. Deep-water carbon dioxide dispersion can be 

as the result of natural marine causes or anthropogenic activities (Dissanayake et. al, 2012) 

such carbon sequestration and natural gas pipeline leakage.  As for natural underwater storage 

of carbon dioxide, the accidental releases can be in direct effect of opening fault on the crust 

such as carbon dioxide release in Lake Nyos, Cameroon which has raised the concern among 

environmentalist to study the impact of drastic increase carbon dioxide concentration and the 

ways and means to curtail such phenomenon in the future (Dissanayake et. al, 2012).  

The mechanism by which carbon dioxide leaks from any man made carbon dioxide 

storage system is either via point-source or localised releases, or through a fault or fracture 

system present in the carbon dioxide bearing geological stratum (Jensen. N. B. et al, 2013). 

Due to the relatively low density of carbon dioxide in comparison with seawater; carbon 

dioxide that leaks from any opening will upsurge in the form of plume (QICS, 2012). 

Nevertheless, carbon dioxide is likely to dissolve in the seawater to dissociate into hydrogen 

and bicarbonate ions, before the plume can emerge on the surface. It, henceforth follows that 

myriad of marine life forms that rely on the bicarbonate or carbonate ions or impacted by pH, 

is susceptible to drastic change of the seawater chemistry (Blackford, 2013).  As the result, 

the carbon dioxide rich region of the seawater has the tendency to sink as it has slightly 

higher density than normal seawater.  Dispersion and dissipation of the plume will be carried 

away and throughout the ocean by the tidal mixing and natural current of the sea, while the 

sea floor depression and thermal stratification can act against the dispersion to slow it down. 

Myriad studies have been made available to public for which attest to such description of 

carbon dioxide dispersion behavior.  
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2.2 ASSESSMENT OF PRESENT CFD TECHNIQUES IN MODELING CARBON 

DIOXIDE TOXICITY RELEASE IN SEAWATER 

Due to the scarcity of researches conducted on modeling the carbon dioxide 

dispersion from underwater pipeline leakage, the scope of the review is extended to 

accommodate studies of carbon dioxide dispersion from artificial or natural underwater 

carbon storage leakage. As matter of fact, numerous studies have been conducted pertaining 

to that problem as there has been rising concern over the fate of the life marine as well as the 

dangers of greenhouse gas emission into the atmosphere as the result of such phenomenon. 

Nevertheless, the pressing point that has the most bearing to the central thesis, such as single 

point source or dispersion model will be adequately emphasized throughout the review. 

Leiferet. al (2006) has conducted a study on behavior of natural marine gas, methane 

seepage blowout in contributing towards atmospheric methane. An observation is made on 

Shane Seep as a result of volcanic activity, solely for the purpose of measuring the bubble 

plume‟s upward rush along water column by introducing a test dye to the opening of the 

leakage. It was discovered that as “bubbles plumes lift deeper, cooler, water that forms a 

divergent outward flow of water at the sea surface”. The bubbles expand up to several meters 

in diameter as they reached 5 meters above the seafloor. Eventually, after several minutes, the 

flux dissipated slowly to approximately normal emissions.  It was suspected, from this 

observation that, “chain burial likely occurred from multiple gas blowout”. Based on the data 

obtained from this observation, numerical modeling is constructed for simulating the 

behavior of methane gas dispersion underwater in predicting the subsequent atmospheric 

condition. 

The result of the numerical study underlines the importance of the rate of methane 

discharge as the determining factor whether the gas plume will escape into the atmosphere or 

not. The study also made it possible to show that, due to flowing wind of the atmosphere, the 

source of emissions can be detected by air pollution measurement station given huge enough 

bubbles were produced from the fault line. This should be deemed alarming as it can 

potentially give rise to drastic climate change due to massive release of methane into the 

atmosphere. 

The study conducted by Dissanayake et. al (2012) revolves on the idea to construct a 

model (OCEAN_CO2) for simulating carbon dioxide release from moderate ocean depth, 

either for single point or releases spread over an area (non-point source). The physio-
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chemical processes accounted for in the dispersion model are the expansion of gas bubbles 

during the upward travel due to pressure changes, gas dissolution and its impact on bubble 

volume and density changes, and tracking the transport dispersion of dissolved and gaseous 

carbon dioxide. This model is utilised to simulate the natural carbon dioxide release as 

observed in Kagoshima Bay, Japan. OCEAN_CO2 is the modified version of MEGADEEP 

model (Chen et. al, 2009) for which it was used to calculate the behaviour of methane and 

natural gases from single point of release. Using MEGADEEP its basis, adjustments were 

made upon it to be applied for dissolved carbon dioxide simulation and the resulting pH 

value.    

The simulation period of the model was executed within two 168 hours (7-days) 

during fall and winter season at the selected location. The release rate is approximated to be 

438 000 tonnes/year from an area of 0.8 km
2
, which is in accordance to the most recent 

approximation by Harata et al (2010). The initial diameter of the bubbles used is 15 mm and 

its bubble size is categorized in spherical cap type as indicated by the formulation of the 

model. The plan view and the release area spanned over 900m x 900m with each grid cell of 

900m x 900m x 10m in x, y and z direction respectively. This is in agreement with the 

observation made by Horibel et al. (1980). The velocity profile was taken from the data 

provided by Japan NUS Co., Ltd which was based on their hydrodynamic model and 

coincidentally bears similarity with COSMOS (Nakata et al. 1983 and Taguchi 1989). With 

regards to the input for temperature, salinity, and alkalinity profile, the data are taken from 

the measurement from Kagoshima Bay in times of winter and fall. 

The result implied that, due to dissolution rate and transport being mainly dependent 

on bubble size, “the highest level affected does not change with moderate increases in 

discharges unless the increase is several orders of magnitude creating a jet condition”. 

Therefore, pH values are certain to drop at any given discharge rates and the density of 

carbon dioxide enriched seawater can be considered as negligible. The bottom line is the 

result from the simulation indicates excellent compliance with actual scenario observed in 

Kagoshima Bay. This is evident from the bubble dissolution and bubble velocity which 

compare reasonably well to the laboratory data. Even the pH calculation was verified with the 

measure field data. In a nutshell, the simulation of OCEAN_CO2 model shows convincing 

match with the measure field data, which renders it reliable for simulating the given 

scenarios. Nevertheless, the drawback of this study is that it only accounts for carbon dioxide 

release of days to weeks, thus unsuitable for longer period of simulation. This owes to the 
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fact that the computational times escalates rather exponentially as the simulation time is 

conducted longer than one week. Apart from that, improvements on data required so that it 

observes TCO2 concentration and pH profiles because the boundary interaction of dissolved 

carbon dioxide is to be improved with more comprehensive investigation for real life field 

application.   

In addition, Kano et al. (2009) has implemented a research on developing a numerical 

simulation for the prediction of CO2 concentration change in the sea as the result of leakage 

from the underground aquifer, artificial carbon storage. Even though, it is not a study 

pertaining to single point release, it is does bear relevance to the central thesis in sense that 

the modelling process of carbon dioxide dispersion can be emulated and thus, is worth taken 

into consideration. The model was developed to simulate underwater carbon dioxide 

dispersion of two leakage rates, of which the extreme one is 94, 600 t/y under the assumption 

that a large fault line accidentally connected the carbon dioxide reservoir and the seafloor, 

and the moderate one is 3800 t/y, estimated from the seepage rate of an existing EOR site. It 

takes into account the behaviour of carbon dioxide bubbles, the dissolution, and advection-

different fusion of dissolved carbon dioxide in its numerical simulation. A multi scale ocean 

model was developed from this study with the MEC ocean model (JASNOE, 2003) as its 

base model. This is owing to the additional feature of the model is that it takes into account of 

both hydrostatic and full-3D models for tides and current simulation on two different spatial 

scales i.e. 0(1-100 km) and 0(1-100m), respectively. Henceforth, an Eulerian-Lagrangian 

two-phase model was adopted and incorporated to the original MEC full-3d model so as to 

analyse the motion of the dispersed phase by way of solving the motion equation of 

individual bubbles.  

 

Figure 1: Schematic view of computational domain (Kano et al, 2009) 

The simulated region for the computational conditions is the geological storage of 

carbon dioxide around Japanese coast (Lia et al, 2005) as it is known to have a fault line in 

the seafloor and a huge thermal power generator located at the seashore. The domain size of 
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the hydrostatic model was 132km x 50 km with 33 x 25 x 48 grid while the full-3d model 

size was 4000 m x 2000 m x 118 m and the grids were 160 x 80 in in the x and y direction 

respectively, which was also adopted for the hydrostatic domain for the vertical column. The 

climate conditions were used according to the annual average recorded by the local 

observatory of the JMA in the year 2000 in order to calculate the sea-surface fluxes T and S. 

The “extreme” leakage rate, 94 000 t/y was chosen based on the migration of carbon dioxide 

calculated by RITE (2004) under the seabed when a fault created, by chance, between the 

seabed and carbon dioxide storing aquifer. Contrariwise, the moderate case of leakage rate, 

38 000 t/y was adopted from the seepage rate recorded by EOR field in Rangley, USA. The 

initial diameter of the bubble was taken to be 2 cm as established by case studies performed 

by Kano et. al (2009). 

The outcome of the simulation maintained that carbon dioxide bubbles after 10 days 

dissolved within 120 m of the vertical distance for both cases. Even so, the non-zero  pCO2 

is detected at the surface which could be in consequence of the strong upsurge of the carbon 

dioxide bubble plume. Therefore, it was believed that, based on the model developed, the 

carbon dispersion release from seafloor fault line would not pose a significant threat on the 

marine life residing on the seabed. 

Furthermore, another relevant analysis was carried out by Dewar et al. (2013) which 

aimed at developing a model of two-fluid, small scale numerical ocean, which as proposed by 

Chen et al. (2003, 2005) with the purpose of simulating plume dynamics and increment of 

water acidity as the result of highly probable carbon dioxide leakage from sub-seabed 

reservoirs erupting, or pipeline rupturing into the North sea. In this study myriad scenarios 

are being modelled with the physio-chemical effects, by considering the movement and 

dissolution of the leaked carbon dioxide in accounting for the immense unpredictability of the 

location of the leak. The properties being studied for the simulation include the correlation of 

the drag coefficient of bubbles/droplets free rising in seawater and a sub-model in predicting 

the initial bubble/droplet size forming on the sea-floor. In regards to the geological setting of 

the study, local to the North Sea and the west coast of Scotland which is similar with that of 

Statoil‟s Sleipner Project.  
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Figure 2: The computational domain (Dewar et al, 2013) 

The domain area was set up in such as a way that “the mesh in the horizontal „x‟ 

direction is 100 grid points in length with non-uniform grid distributions; this is concentrated 

around the leakage area where a mesh distance of 0.5 m is computed” whereas “in the 

vertical „y‟ direction, a uniform grid is set with 75 equally spaced points where the total 

distance” so as to demonstrate “the full extent of the plume”. As for the „z‟ direction, a 

uniform 25 grid points is used along with the leakage area of 15 grids. One to four case 

studies were employed to model the North Sea shelf mapped at 100 m while the next five to 

six case studies were employed to model Norwegian Channel and Skagerrak at depth of 320 

m and 600 m. seven and eight case studies were reserved for comparing the conjecture of a 

shallow depth leakage with the experiment on the west coast of Scotland. The initial bubble 

or droplet plume was assumed to between 5.0 mm and 8.0 mm. For wave height and velocity 

at the open boundaries of hydrostatic model domain, the non-reflection boundary condition 

proposed by Hino and Nakaze (1989) was adopted. The tidal prediction model of Matsumoto 

et al. (2000) was utilised for the wave direction input.   

For most of the case scenarios, the carbon dioxide upsurges from the leakage will 

dissolve in seawater before reaching to the surface (first two and half minutes for all cases 

except Skagerrak, which took up 30 minutes full before reaching terminal velocity). Carbon 

dioxide leakage in the shallow water was shown to have been a tremendous peril towards the 

marine life in the west coast of Scotland due to the lack of large current homogenizing the 

gas concentration throughout the seawater as well as the fast dissolution rate.  Carbon dioxide 

release in the deep ocean such as Skagerrak case was recorded to have the largest 

bubble/droplet height as a percentage of leakage depth. This is because there is far less risk of 

release at the seawater surface and return back into the atmosphere, but it will give rise to the 

greater distribution within the ocean. Henceforward, it is safe to conclude that shallow, and 
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low current carbon dioxide leakage poses a major danger upon aquatic organisms seeking 

sanctuary there. It was predicted, though not considered in the study, that large bubble 

produced from the shallow, low current leakage has the highest probability of escaping the 

sea into the atmosphere. The effects of this study is restricted a very small scale as compared 

to the total volume of the waters in the medium to long term in the regional scale. In fact, it is 

almost an impossibility to pinpoint where or scales of the possible leakage, thus indicating 

that the result is merely a prediction alone. Due to high cost and difficulty of field 

experiments, the experiment is restricted in terms of pressure, thus requiring models that 

capable of filling in the gap. Nevertheless, the field data from the QICS experiments and the 

coming small-scale in situ experiment should come in handy for providing a prediction of the 

experimental results, as well as the essential data for calibration of the model and validation 

of usefulness of the model. 

Another investigative venture was carried out by Blackford et al. (2013) to study the 

environmental impact of seepage from carbon capture and storage reservoir and the proper 

design procedure for the monitoring tools is dependent on the understanding of the dispersal 

carbon dioxide plume in seawater. Fine scale model of marine hydrodynamics was adapted to 

be inclusive of relevant carbon dioxide processes by combining the approaches proposed by 

Blackford et al. (2008)and Chen et al (2005) with Blackford et al. (2009).  Varying leak 

scenarios was taken into consideration for the simulation while testing the aftermath of tidal 

viability and model configuration. This study also purported that aquatic organisms with 

limited migration capability were likely to confront the worst jeopardy in consequence of the 

carbon dioxide dispersion since the carbon dioxide enriched seawater tends to be more 

localised and located at the bottom the water column.  

 

Figure 3: Bathymetry and grid design for the idealized domain. Depths are in meters. The 

leak point is marked in white (Blackford et al, 2013) 
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The modeling tools being used to simulate the behavior of carbon dioxide leak was 

Finite Volume Coastal Ocean Model (FVCOM) (Chen et al, 2011 and Torres et al, 2011), 

coupled with Carbonate system model to forecast chemical changes subjected by the influx of 

carbon dioxide. The North West European shelf was taken as the ideal domain for it makes 

up of “an irregular coastline inclusive of a large bay and coastal promontory”. The 

description of the domain was demonstrated as follows. The domain developed spanned over 

674km
2
 of area in which the coastline has a nominal resolution of 150m while the ocean 

boundary has a 1 km resolution. The leakage being tested had a side length of 500m, and 

resolution was fine-tuned by setting up a second mesh which sloped down to 2541m
2
 or 

0.0025km
2
 with a side length of 70m. For the sake of simplicity, the temperature and salinity 

were fixed at 13
o
C and 35 salinity units which were consistent with North West European 

Shelf. Other external forces such as wind, river or surface heating were neglected from the 

simulation. The simulation period was around one month to cover two spring cycles. The 

depth of leakage was taken at nominal 30 m which were located about 15 km away from the 

coastline. The scenarios of the simulation included dissolved point with low source, dissolved 

point with source high and pipeline rupture. The mean current velocities are taken at 0.10m/s, 

0.14m/s, and 0.17m/s to be tested these three scenarios.  

The result, which was presented as time evolution maps of leakage, showed that 

monitoring of carbon dioxide dispersion leakage is rather a cumbersome task given the fact 

that tidal mixing in North West European shelf is very strong. However, the general pattern is 

that bubble plume dissipated before reaching the sea surface as the result of dissolution. It 

was also discovered that any leak occurrence was likely to differ from one another when 

other factors such as the state of tide, wind driven mixing, geographical location, leak amount 

and duration of leak are taken into consideration, which makes it rather difficult to produce a 

reliable prediction of outcome. Nonetheless, the study provided here is only a humble attempt 

at modelling the carbon dioxide dispersion using limited data available for carbon capture in 

Malaysia region as the project is still in development stage, and thus requiring further 

tweaking as it was not designed to account for all possible scenarios. 
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2.3 SUMMARY 

Table 1: Summary of Parameters and setting used in published literatures 

Author Scenario Simulation 

setting 

Medium 

Condition 

Bubble and leakage 

characterization 

Findings 

Leifer et. al 

(2006) 

Seepage 

on volcano 

active area 

(Shane 

seep) 

 

   Rate of release as factor for gas 

escaping sea surface 

 

 

Dissanayake 

et al (2012) 

Kagoshim

a Bay, 

Japan 

 Duration: 

168 hours during 

fall and winter 

  

Area: 0.8 km2 

  

  

Initial diameter: 15 mm 

  

Bubble size: 

Spherical cap type 

 

Release rate: 438,000 t/y  

Bubble size is the main factor.  

 

The pH will drop at any given 

rate 

 

Density change of water is 

negligible. 

 

Consistent with data from 

Kagoshima Bay (pH depression 

localized within 120 m)   

Kano et. al 

(2009) 

Japanese 

coast 

geological 

storage 

Duration: 10 days Domain size: 132 km 

  50 km with 33    

25    48 grid, 4000m 

  2000m x 118m 

  

Initial diameter: 2 cm 

 

Release rate: 38000 t/y to 94600 t/y 

Dissolve within 120 m vertical 

distance. 

 

Non-zero concentration of CO
2
 

detected at the surface 

 

Threatens floating marine life, and 

nearby leak  
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Dewar et al 

(2013) 

Sub seabed 

reservoir in 

North Sea 

Place: 

1 - 4 case: North 

Sea Shelf 

  

5 – 6 case: 

Norwegian Channel 

(320 m) and 

Skagerrak (600m) 

  

7 – 8 case: 

West Scotland 

coast 

Wave height and 

velocity: Hino and 

Nakaze (1989) 

  

Wave direction: 

Matsumoto et al 

(2000) 

  

Initial diameter: 5 mm and 8 mm Dissolve within 31% total depth of 

sea 

 

Larger bubble produced has the 

highest probability of leaving sea 

surface. 

 

Low current leakage are the most 

dangerous to marine life 

 

 

Blackford et 

al (2013) 

The North 

West 

European 

Shelf 

No other external 

force present 

Duration: 1 month, 

covering 2 springs 

cycle 

Location: 15 km 

offshore 

Domain area: 

674km
2

 

Temperature: 13
o

C 

  

Salinity: 35 units 

3 tidally driven 

mixing regimes with 

mean velocities: 

0.10m/s 

0.14m/s 

0.17m/s 

  

Leakage area: 

Side length of 500 m 

Depth: 30m  

  

Leakage type: 

Point with high source 

Point with low source  

Pipeline rupture 

Bubble plume dissolve before 

reaching the surface 

 

Leakage behavior differs in terms 

of state of tide, wind driven mixing, 

geographical location, leak amount 

and duration of leak 

 

Leaks tend to be localized, 

threatens immobile marine life 

living nearby the leak 
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CHAPTER 3 

METHODOLOGY 

3.1 DEVELOPMENT OF FLUID DOMAIN 

The fluid domain is developed based on the research conducted by Dewar et al (2013) which 

aims at modeling the small scale physiochemical impacts of carbon dioxide leaked from sub-

seabed reservoirs or pipelines within the North Sea and surrounding waters. This is owing to 

the fact that the study is aiming towards simulating the effects that are confined to a very 

small scale in comparison to the total volume of the waters, making it practical to be 

implemented within the scope of the final year project. Such a domain is selected because 

each of the numerical calculations can be worked through use of discrete counterparts of the 

model at each grid location within the domain of the three dimensional mesh systems. The 

mesh sizing of the fluid domain is set up as follow: 

i. 100 uniform grids in horizontal x direction representing length of 200m, and mesh 

distance of 0.5m is concentrated around the leakage area of 15m
2

. 

ii. 75 uniform grid in y direction representing a depth of 150m 

iii. 25 uniform grids in z direction representing a width of 25m 

 

Figure 4: Selected computational fluid domain for ANSYS Fluent simulation 
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Figure 5: The resulting fluid domain developed in ANSYS Fluent. 

For boundary conditions setting, which is available in name selection option, the right and 

left sides are set to inlet and outlet respectively. This implies that that movement of seawater 

current will in x-direction only. The bottom boundary is set to wall condition to represent 

solid ground. The leakage area is also set to inlet to enable movement of CO2 plume. Finally, 

the front, back and top sides are set to symmetry. The number of elements achieved is 26,892 

units 

3.2 DEVELOPMENT OF COMPUTATIONAL FLUID DYNAMICS 

3.2.1  Governing equation for seawater 

Dewar et al (2013) makes use of the small turbulent ocean, modeled and reconstructed by 

means of large Eddy Simulation (LES) which is the continuity equation, with mass exchange 

rate.   

  ̅

  
 

  ̅  

   
                                                                                                                     (1) 

The LES Navier-Stokes equation with exchange rate of momentum and the sum of external 

forces from LES dissipation rate and buoyancy is incorporated into the above equation to 

compute the initial vertical density distribution and hydrostatic pressure through         

and             ⁄ .  

  ̅    

  
 

  ̅       

   
    ( ̅     )   ̇                                                                        (2) 
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The changes in scalar quantities, including temperatures, salinity and CO2 concentration of 

the carrier fluid are expressed by scalar transportation  equation, provided by the scalar 

gradient, LES turbulent diffusivity, and mass exchange term (for CO2 concentration): 

  ̅  

  
  

  ̆    

   
  

 

   
( ̅  

   

   
)   

  ̅  

   
                                                                    (3) 

 

3.2.2  Governing equations for leaked CO2 

The equation is developed with the assumption that the bubbles or droplets acts as quasi-

continuous fluid based on a two-phase Eulerian-eulerian model, the dynamics of the CO2 can 

be assumed to flow as a continuous fluid plume. Also, the interactions through fluid particles 

merging or breakup are ignored and convection model is utilized to model the change of CO2 

volume with time as the bubble rises to the surface. The CO2 momentum balance used to 

calculate the bubble or plume velocity is similar to that of seawater phase owing to the 

buoyancy force between CO2 bubbles or droplets and seawater and drag force, as in equation 

(2). 

3.2.3       Reaction 

 

As the dissolution of CO2 bubble plume into the seawater is predicted to take place, a 

chemical reaction by which CO2 and water mix to produce carbonic acid, and dissociates into 

bicarbonate ions HCO3
-
, carbonate ions CO3

2-
, hydroxide ions OH

-
 and hydrogen ions, H+ by 

the International Union of Pure and Applied Chemistry (IUPAC). 

                 

              
      

                                                                             (4)                             

Owing to this, it follow that the moles of hydrogen ions produced is dependent upon the 

moles of carbon dioxide dissolved, along with their dissociation constants, based on pressure 

and temperature: 

∑     (
    

        
)  (   

  

    
 
    

  
)  (      

  

    
)                                                    (5) 

With ∑    as the total carbon dioxide concentration (mol/l), Ki = 1,2 are the constants for the 

dissociation of carbonic acid and Kw is the ion content of the water. The generation of 

positive hydrogen ion decreases the pH, implying the acidity of the seawater increases 

accordingly, which is calculated through the logarithm of the ion content: 
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          ( 
 )                                                                                                           (6) 

 3.2.4  ANSYS Fluent Mathematical Model 

Based on this correlation, the model used for the simulation is mixture, large eddy simulation 

(LES) for multiphase and viscosity model respectively, because they are at best more 

consistent with the setting used in Dewar et al (2013). Large eddy simulation based 

governing equation is utilized to model seawater carrier phase and dispersed bubble phase. In 

fact, Dewar et al also makes use of this technique to model the turbulent transportation of and 

CO2 which entails the dissipation, diffusivities. Large eddy simulation is the most reliable 

technique for simulating turbulence for incompressible flows as it enables the large eddies of 

the flow to be dependent on the geometry.   

This particular vicious model is only available with mixture multiphase model with two 

Eulerian phases to represent seawater and carbon dioxide, which is compatible with the 

intended setting. It can be utilized to model multiphase flows where the phases move at 

differing speeds, yet local equilibrium over short spatial length scales. This is important 

because the carbon dioxide bubble plume is expected to homogenize with the primary phase 

(seawater) over a certain vertical distance and thus reaches a steady state. The mixture model 

can model phases (fluid or particulate) by solving the momentum, continuity, and energy 

equations for the mixture, the volume fraction equations for the secondary phases, and 

algebraic expressions for the relative velocities. 

As for the reaction, species transport is incorporated with volumetric reaction type is selected 

for simulating the reaction between CO2 and seawater. Finite-rate/eddy dissipation is selected 

to simulate the turbulence presence during the mixing of the two species whereby Arrhenius, 

Eddy-dissipation, and reaction rate are computed. 

Arrhenius equation 

         
     

  

                                                                                                              (7) 

Where,  

   = pre-exponential factor 

   = Temperature exponent 

   = activation energy for reaction 

  = Universal gas constant 
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      Eddy dissipation model 

 

                 
        

 

 
    (

  

    
      

)                                                                             (8) 

 

                 
         

 

 
(

∑   

∑     
      

 
  

)                                                                                   (9) 

      Where, 

   = the mass fraction of any product species, P 

          = the mass fraction of a particular reactant,   

         = an empirical constant equal to 4.0 

         = an empirical constant equal to 0.5 

 

Reaction rate equation 

           (
 

     
)                                                                                                     (10) 

Relevant inputs are included in the reaction definition such as reaction rate exponent, and 

stoichiometry coefficient, pre-exponential factor and activation energy for the chemical 

equation (4). These values are also acquired from the IUPAC. 

3.2.5   ANSYS Fluent Simulation Setting 

The following is the data pertaining to the properties of seawater and CO2 to be input for the 

simulation. 

Table 2: Summary of parameters and setting used for CO2 toxicity modeling in ANSYS 

Fluent 

Properties Seawater Carbon Dioxide 

Density (kg/m
3
) 1027.72 (ITTC, 2011) 1.7878 

Viscosity (Pa.s) 0.001620 (ITTC, 2011) - 

Initial bubble size (m) - 0.008 (Dewar et al, 2013) 

Velocity Average current velocity: 

Southwest monsoon - 0.4 m/s 

(Fadzil, 2012) 

Release rate : 

Upward - 1.18 m/s  

(Dissanayake, 2012) 

Temperature 5  (Chern & Wang, 1998) - 

 

The modeling is made to apply the condition of South China Sea using certain other setting 

adopted from other studies. The current velocity of the seawater is taken to be at 0.4 m/s 

during Southwest monsoon (Fadzil, 2010). The temperature is taken to be at 5  which is in 

accordance with graph of depth versus temperature as produced by Chern & Wang (1998) at 
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a depth of 1212m, which is the average depth of South China Sea. The release rate of the CO2 

is taken to be 1.18 m/s, to emulate the worst case scenario of sub-seabed leakage 

(Dissanayake, 2012).The initial bubble size is taken as 8mm, to emulate the study conducted 

by Dewar et al. The model is used to simulate the condition of carbon dioxide leakage after 1 

hour. 

3.3 VERIFICATION AND VALIDATION 

The compatible case study from Dewar et al selected for comparison with ANSYS Fluent 

simulation result is the Skagerrak localized waters. In Table 3, it can be seen that the height 

of the dispersed plume rise is about half of the depth of the fluid domain and the maximum 

difference of pH value is recorded nearby the leakage area as per Figure 8. 

Table 3: The results of leaked bubble/droplets dispersed rising height and maximum pH and 

CO2 concentration. 

 Dispersed plume rise height (m) Maximum 

 pH 

Maximum CO2 

concentration (ppm) 

The Skagerrak 71.23 -1.09 9.27E+9 

 

 
Figure 6: The Skagerrak – summer at 600 m depth (droplets) against bubble diameter 

 

 

 



 
 

22 
 

 

Figure 7: Three dimensional of reduction in pH caused by the dispersed CO2 after 1 hour 

leak 

      Source: Dewar et al (2013) 

It is imperative to emphasize once again that currently there are no directly related studies 

made previously pertaining to this topic. Owing to that, any graphical result obtained from 

previous case studied should not be relied on in totality for it does not operate in the same 

parameters and scenarios used for this project. However, these previous case studies also help 

in providing the overall observation to be expected from the simulation of carbon toxicity 

release in ANSYS Fluent.  

Since it is impossible to predict the location and the scales of the leaks, thus the simulation 

result acquired is merely a projection on its own to fill in the gaps in the result of the 

experiments. However, it is pertinent to emphasized again that the correlation developed in 

Dewar et al (2013) is based on the observation from the experiments for estimation is made 

predict the best modeling of CO2 fluid dynamics. As for this, the simulation result by Dewar 

et al alone can be made as the reference for validation of the ANSYS Fluent simulation 

result. Overall, the simulation result by Dewar et al (2013) suggests the CO2 bubble plume 

dissolved within 31% of the total depth of the sea. Even so, it is predicted that large bubble 

produced from the leakage has the highest probability to leave the sea surface and emerge 

into the atmosphere albeit very rare. Consequently, low current leakage is the most dangerous 

to marine life, as the mixture of CO2 with seawater produces an acid carpet covering the 

seafloor due to higher density. This acid carpet will take time to dispersed through the sea as 

it tend to localized with certain area and depth of region which in turns pose a significant 

danger towards marine life. 
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Owing to the fact that ANSYS Fluent does not provide the result in terms of pH value and 

bubble diameter, certain formula modification is required to make the two results 

comparable. Bubble diameter is related to volume through the formula of spherical volume. 

  
 

 
 (

 

 
)                                                                                                                       (11)  

From this formula, the relationship between volume and bubble diameter can be derived, 

whereby the two parameters are directly proportional to the other. 

                                                                                                                                  (12) 

Therefore it should follow that increment of bubble diameter results in the increment of 

volume fraction. As for pH value given in Dewar et al (2013), it can be converted into 

concentration of CO2 via equation (5) and (6) in terms of mol/L. With that, volume fraction 

from ANSYS Fluent and pH value of Dewar et al (2013) are to be computed using Microsoft 

Excel and converted into parts per million (ppm) for ease of comparison. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Figure 8: Graph of CO2 concentration against height 

 

Figure 9: ANSYS Fluent volume rendering of density gradient of CO2 in seawater  

Based on the acquired ANSYS Fluent model of CO2 toxicity release in seawater, it can be 

deduced that as the density of the solution increases as the depth progresses towards the 

leakage which result in the bubble plume falling back to the seafloor and localized within a 

certain depth instead of moving all the way upward to the surface as per Figure 9. This is in 

agreement with the findings of Dewar et al (2013) whereby the acid carpet is formed due to 

the difference the density between the acidic solution and that of the surrounding seawater 
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condition. The maximum concentration of carbon dioxide from ANSYS Fluent is about 

8.5E+09 ppm, which yields an error percentage of 8.2%. This indicates that the ANSYS 

simulation result is in conformance with Dewar et al (2013) model, which goes on to show 

that precious marine life inhabiting on or nearby the seafloor is exposed to the danger of high 

CO2 concentration. 

 

Figure 10: (a) ANSYS Fluent contour of CO2 volume fraction from leakage area (b) ANSYS 

Fluent volume rendering of CO2 volume fraction from leakage area 

Furthermore, the bubble distribution form the ANSYS Fluent simulation is somewhat similar 

with the CO2 release modeling by Dewar et al (2013) which indicates the size of bubble 

diameter decreases with height from the seafloor. In terms of volume fraction as per the 

simulation result from ANSYS Fluent, the value clearly display consistent also decrement 

with height, meaning that the CO2 bubble plume will not emerge from the surface of the 

seawater and will dispersed throughout the ocean by the current velocity. The minor 

difference to be pointed out is that the highest disperse plume rise in Dewar et al is put at 

71.23 m while that of the ANSYS Fluent is approximately 75.12 m, which yields a 

percentage error of 5.5% which is within acceptable range. 

However, the pressing issue to be highlighted is that the contour pattern is significantly 

different from that CO2 toxicity modeling of Dewar et al (2013). In addition, it can be seen 

that the bubble diameter over a distance of 120m after the point of leakage, is large at the top 

than that of the bottom, indicating that the volume fraction is larger in the upper layer of the 
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plume than that of the lower as per Figure 6. On contrary, ANSYS Fluent simulation result 

yield a different contour pattern whereby the, on average, the volume fraction in the lower 

part is higher than of the upper part of the CO2 bubble plume as per Figure 10. This is mainly 

due to the significant difference between the mathematical models available in ANSYS 

Fluent than the one user-defined by Dewar et al (2013). As mentioned earlier, the 

mathematical model adopted in Dewar et al (2013) is tailored in such a way to fill in the gaps 

of the details that is not discernible from the experiment. However, the model used in 

ANSYS Fluent is the selected as closely as possible with the Dewar et al (2013), therefore 

significant difference in the flow pattern should be expected. Apart from that, certain values 

of parameter applied in the ANSYS Fluent pattern is different from the one in Dewar et al 

(2013). For instance, the condition of the seawater in South China Sea is different from that 

of the North Sea Shelf condition in terms of temperature. Besides, the average current 

velocity used in Dewar et al (2013) is 0.01m/s whereas for ANSYS Fluent simulation, which 

is made to be in accordance with South China Sea condition, is 0.4 m/s. In addition, the 

leakage rate used in Dewar et al for Skagerrak case study is 0.0405 kg/s while for ANSYS 

Fluent simulation, in order to emulate the worst case scenario condition, leakage rate of 1.18 

m/s is used. Therefore, it should be justified as to why the contour pattern is slightly different 

from the prediction in Dewar et al (2013). 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

In conclusion, this project is imperative as it aims towards developing the most 

reliable simulation model for carbon toxicity release in seawater along with the correct 

setting and data input. The simulation result from the model available in ANSYS Fluent is 

consistent with the previous studies in terms of certain aspects, such as the highest dispersed 

bubble plume, the formation of acid carpet on the seafloor and the maximum concentration of 

carbon dioxide. However, slight but notable under-prediction in terms of contour patent is to 

be expected due to the limited mathematical correlation available in ANSYS Fluent. This is 

owing to the fact, the mathematical correlation utilized Dewar et al (2013) are manually 

developed based on the parameter obtained from the experimental observation so that the 

model acquired is matched more accurately with the result of the experiment. This is 

certainly one of the features lacking in ANSYS Fluent due to the fact that existing model 

available may not be able to be utilized for specific parameters but the user defined function 

should be developed instead. However, such option is not taken into consideration as it is out 

of the scope of the project. 

Apart from that, since there is not any reliable study conducted on pipeline leakage it 

is hoped that such as this research can be repeated to simulate the said condition when the 

experimental data is available for verification and validation. This is crucial so as to take into 

account all possible scenarios during CCS project execution so that proper measures and risk 

assessment can be put in place to contain the environmental hazard. User defined 

mathematical model should be developed in order to obtain the most accurate fluid contour 

pattern as per the experiment. Even so, it is also hope that this research can be of use for 

value-added data to those responsible in executing carbon capture storage system project. 
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