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ABSTRACT 

 

Proportional Integral Derivative (PID) controller is the most common controller that 

acts as standard tool in a process control industry. However, when interacting with 

Multiple Input and Multiple Output (MIMO) process, the interaction is difficult to be 

controlled by PID controller. Therefore, this project will focus on Model Predictive 

Control (MPC) that is one of optimization strategy that can control MIMO interaction 

by predicting the effect of potential control action. In this project, a mathematical 

model of Orthonormal Basis Filter (OBF) will be developed on the distillation column 

based on Wood-Berry model with a feedback control (a closed loop system). A 

simulation of MPC is done by using MATLAB coding while PID is simulated using 

SIMULINK. Based on the simulation, the performance of MPC and PID controller are 

evaluated by using the Integral Error Criteria: Integral Absolute Error (IAE), Integral 

of the Squared Error (ISE) and Integral of the time-weighted absolute error (ITAE) 

and also with total input variation. Lower integral error criteria and total input variation 

value indicate a better model accuracy and efficiency of controller for MIMO system. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Development of control design initially starts with identification for control where 

consideration of the best possible approximate model set with characterization in term 

of bias error and variance error on the estimated transfer functions. The identification 

of model is significant to justify whether the control can be the main influence in model 

building and achieve high performance control even with basic dynamical features of 

a system. [1] Performance of control  system is dependent on the quality of the models 

that reflects back the wide application in  applied advance process control technology 

in chemical process. Once the model is identified, model validation need to be done as 

“quality control” that detects changes of the model parameters. The effectiveness and 

reliability, address the importance in application for monitoring critical process such 

as nuclear power, plants, gas turbines, catalytic converter, distillation column, etc. [2]  

 

In this case, the approach is taken with Model Predictive Control (MPC), one of 

optimization strategy that predicts the effect of potential control action based on plant 

model. Generally, MPC is designed to compute a trajectory that optimizes the future 

behavior of the plant output y based on the future manipulated variable u. This 

optimization is performed with the plant information at the start of time window under 

a limited time constraint. In each time step, MPC is applied in an open-loop optimal 

control problem with the input profile injected into the plant until a new measurement 

becomes available in order to formulate and solve new open-loop optimal control 

problem.  
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There are three key elements that are required to design MPC that involves predicting 

the future (model), assessing the current activities (measurement) and implementing 

the planned activities (realization of control). [3-5] In a system, MPC is used to control 

Multiple Input Multiple Output (MIMO) process with inequality constraints on the 

input and output variables. The input variables play important roles in coordinating the 

input-output relationship that is represented by the process model. For MPC 

application, the input variables are referred as manipulated variables (MVs), the output 

variables are called control variables (CVs) and the feed forward variables is the 

measured disturbance variables (DVs).  Theoretically, the MPC controller can prevent 

violations of input and output constraints by driving some output variables to their 

optimal set points while maintaining other outputs within specified ranges. In 

conjunction to that, the controller prevents excessive movement of the input variables 

and controls most of the variables when a sensor or actuation is not available. [3, 4] 

Thus, MPC shows several advantages over classical control methodologies like PID 

control where its ability covers from guiding the process in an optimal way by taking 

desired future behavior into account, tackle multiple inputs and outputs simultaneously 

and are able to incorporate with constraints.[6] 

 

 
Figure 1: Block Diagram for Model Predictive Control 

 

 

The block diagram of Model Predictive Control above shows the process model used 

to predict the current values of the output variables.  
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Two different types of MPC calculations used for prediction which are set-point 

calculations and control calculation at each sampling. The type of calculation also 

includes the inequality of constraints on the input and output variables of upper and 

lower limits. Constraints are varying based on the process conditions, equipment, 

instrumentation and economic data. [3] The set points of the control calculated from 

an economic optimization is based on steady-state model such as linear model. This 

optimization minimized the cost function and maximized production as well as profit 

function. In control calculation, the currents measurement and prediction is made by 

using a dynamic model. The dynamic model uses a multivariable of the step response 

or difference equation models. Objectively, MPC control calculation determines the 

sequence of control moved for the predicted response moves to optimum set point. 

Lastly, the feedback signals of residuals to the prediction block come from the 

differences between the actual and predicted outputs calculated. [3] 

 

In performance of advanced, model accuracy plays important role in model predictive 

control algorithm. Basically, model fidelity affects the routine operating condition that 

requires re-identification that usually done under closed-loop condition. In this case, a 

direct approach for closed-loop identification is more suitable for MPC. This approach 

can achieve yield unbiased and consistent parameter estimation with parameterized 

noise model. On top of that, MPC system has several advantages whereby the process 

model captures the dynamic and static interaction between inputs, outputs and 

disturbance variables while constraints on inputs and outputs are being considered in 

a systematic manner. It also controls the calculation that will be coordinated with the 

calculation of optimum set points and give the accurate model predictions that can 

provide early warnings of potential problems. This shows that the accuracy of the 

process model is a vital aspect in MPC and become the method of choice for difficult 

multivariable control in industry. [3, 7] 
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Models for MPC are developed from physical and chemical principles in a system that 

are called first principle (white-box models) while the derivation using mathematical 

and statistical principle from experimental data is called empirical (black-box models). 

The white-box models are related to system properties whereby the value in principle 

can be measured directly from the real system or estimated. However, it is difficult to 

apply in process industries because of lack of knowledge of complex industrial 

processes. Thus, black-box models are commonly used in process industries. [8] 

 

System identification is a process whereby developing models from experimental data. 

The model that is used related to control-system design or implementation known as 

control-relevant system identification. The major steps in system identification are 

design of the experiment, selection the class of models, selection of the model structure 

and model validation. These models can be categorized as linear or non-linear models. 

In linear models, the structures are divided into Auto Regressive with Exogenous Input 

(ARX), Auto Regressive Moving Average with Exogenous Input (ARMAX), Box-

Jenkins (BJ), Finite Impulse Response (FIR) and Output Error (OE) model. [8, 9] 

 

The structures of the various models are given below: 

Auto Regressive with Exogenous Input (ARX):  

                                                 𝑦(𝑘) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑘) +

1

𝐴(𝑞)
𝑒(𝑞)                                 (1.1) 

Auto Regressive Moving Average with Exogenous Input (ARMAX): 

                                                 𝑦(𝑘) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑘) +

𝐶(𝑞)

𝐴(𝑞)
𝑒(𝑞)                                 (1.2) 

Box-Jenkins (BJ): 

                                                 𝑦(𝑘) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑘) +

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑞)                                 (1.3) 

Finite Impulse Response (FIR): 

                                                𝑦(𝑘) = 𝐵(𝑞)𝑢(𝑘) + 𝑒(𝑞)                                       (1.4) 
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Output Error (OE): 

                                                𝑦(𝑘) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑘) + 𝑒(𝑞)                                        (1.5) 

Where A(q), B(q), C(q), D(q) and F(q) are polynomials in the shift operator q and u(k), 

y(k) and e(k) are the input, output and white noise sequences, respectively. 

 

There are a few factors need to be considered in selecting model structures which are 

the computational load in estimating model parameters, the consistency of the model 

parameters and the number of parameters required to describe the model with 

acceptable accuracy. Normally, ARX and FIR models are the most common because 

of the computational simplicity with the model parameters estimated. For OE and BJ 

models are rarely used for complex problems like MIMO because of the heavy 

computational load to the parameter estimations that involves nonlinear optimization. 

[8, 9] 

 

Lastly, the Orthonormal Basis Filter (OBF) models are considered under a 

generalization of FIR models. OBF models are very promising for control relevant 

system identification compared to most of the conventional linear models. The 

parameters are estimated based on the linear least square method that is the most 

practical for open-loop identification problems. The parsimonious OBF models can be 

developed when the dominant poles of the system are known and time delays are 

estimated by incorporating into the model. [8-10] 
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1.2 Problem Statement 

 

PID controller is the most common form of feedback that has become a standard tool 

in a process control industry. The controller is combined with logic, sequential 

function, selectors and simple blocks to build the automation system. However, when 

interacting with Multiple Input and Multiple Output (MIMO) process, the control loop 

interact with another control loop that results a big interaction between one another. 

Practically, this interaction is difficult to be controlled by PID controller. Therefore, 

the solution to overcome this problem is by using Model Predictive Control that 

coordinate input-output relationship and delay the optimization of the process model. 

 

1.3 Objectives  

 

The objectives of Model Predictive Control using Orthonormal Basis Filter are 

i. To develop a Distillation Column Model by using SIMULINK 

ii. To develop and implement Model Predictive Control by using Orthonormal 

Basis Filter (Laguerre Model). 

iii. To compare the performance of the Model Predictive Control and 

Proportional Integral Derivative in distillation column. 
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1.4 Scope of Study 

 

The scope of study for this project is: 

i. Closed loop system 

Open loop system will not be examined in this project 

ii. Linear system 

Non-linear system is excluded in this Project 

iii. Model Predictive Control (MPC) 

The performance of MPC Controller will be evaluated for distillation 

column. 

iv. Multiple-Input and Multiple Output (MIMO) system 

Single-Input and Single-Output will not be considered in this project.  

v. Orthonormal Basis Filter (OBF) Model 

OBF model will be used to develop the mathematical model 

vi. Wood & Berry Distillation Column 

This type of distillation column will be used as a standard 

vii. Proportional-Integral-Derivative (PID) Control  

The performance of MPC Controller will be compared with PID Controller 
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CHAPTER 2 

LITERATURE REVIEW 

 

Figueria et al identify that Model Predictive Control (MPC) is a technique that refers 

to a system of computer control algorithm that regulates the future behavior of plant 

through the use of an explicit process model. At each control interval MPC algorithm 

computes an open loop-sequence of manipulated variable adjustment to optimize 

future plant behavior. [11] MPC is also a form of control that is obtained by solving 

on-line, at each sampling instant. It is a finite horizon open-loop optimal control 

problem that used the current state of the plant as the initial state. The optimization 

yields an optimal control sequence and hence, the sequence is then applied to the plant. 

Type of MPC varies from robust, feedback, pre-computed and decentralized MPC. 

Robust MPC is guaranteed for its feasibility and stability as in [11] while feedback 

MPC mitigates shrinkage of feasible region. In addition to that, pre-computed MPC is 

a piecewise-linear solution that is stored in database or solves off-line using parametric 

of linear or quadratic programming and lastly, decentralized MPC used in autonomous 

air vehicle-speed up computation. 

 

 Generally, MPC is a moving horizon implementation and performance oriented time 

domain formulation. It is also the one that can incorporate with constraint and explicit 

system model that can predict future plan dynamics.[12] Chan et. al stated that the 

MPC designation is based on the intuitive simplicity approach and partly from 

flexibility offered that define a dynamic model of the system which therefore match 

the state and parameters of the system model to real time data. Besides, it also 

calculates control to satisfy constraints based on given performance objective and 

finally, implements controls according to the receding horizon principle.[13] 
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Camponogara et al mentions MPC also called as receding horizontal control whereby 

the control input is obtained by solving a discrete-time optimal control problem over 

a given horizon, producing an optimal open-loop control input sequence. For starter, 

the application of control in the sequence in MPC, sampling instant of a new optimal 

control problem is formulated and solved based on the new measurements. When the 

system is completely modeled, all the control inputs are computed in one optimization 

problem. In a large scale applications like power systems, water distribution system, 

traffic systems, manufacturing systems and economic systems, the distributed or 

decentralized control schemes are sometime necessary in order the local control inputs 

to be computed using local measurement and reduced-order models of local dynamics. 

In some application, multiple low level controllers are simply implemented using MPC 

to close local feedback loops. [14] 

 

MPC is mainly basis of the development of controller synthesis schemes based on 

stochastic state space models that control sequence in moving horizon. However, the 

stochastic model with known state and measurement noise characteristics are seldom 

available. Therefore, stochastic models are developed for unmeasured disturbances 

directly from the input-output data. In developing stochastic model, the time series 

models with the assumption time delay between each input-output. The time delay 

generally known in a ratio of two transfer functions. Based on Wang [15], transfer 

function model gives a parsimonious description of process dynamics that are 

applicable to both stable and unstable plants.  Apart from that, extra parameter of time 

delays makes estimation problem highly nonlinear and difficult to solve. 

Fundamentally, the time delay is estimated using other techniques before being 

developed into time series model. Time delay estimation methods are based on the 

analysis of open loop step response behavior that can be applied to system with 

reasonably fast dynamics. The measured and unmeasured disturbances can be 

maintained at their nominal levels during the step test. A major drawbacks is most of 

the available approach are applicable to time delay for Single Input Single Output 

(SISO) case but not applicable to multivariable case, MIMO. If one manipulated input 

is perturbed at a time, the identification test on the plant is inconsistent in achieving 

measured and unmeasured constant. [9, 16, 17]  
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Darby and Nikoloau [18] stated that MPC typically involve in pretest and preliminary 

MPC design, plant testing, model and controller development; commissioning and 

training in industries. A typical MPC contain a few components that play as target 

selection, controller and estimator. A target selection determine the feasibility of 

steady-state operating point for controlled outputs and manipulated inputs based on 

steady-state gain model. It is implemented to minimize deviations from desired steady-

state as a result of economic-based steady-state optimization that include either liner 

program (LP) or quadratic program (QP). In controller, MPC determines optimal, 

feasible future inputs over a moving horizon to minimize the predicted future 

controlled errors of controlled outputs from targets determined. For estimator, it 

updates the model prediction for unmeasured disturbances and model errors that may 

include a deterministic part of model controller-manipulated variables.  

 

In MPC, control decision u(k) are made at discrete instants k=0,1,2,.., which usually 

represent equally spaced time intervals. At decision instant k, the controller samples 

the state of the system x(k) and then solves an  problem of the following form to find 

the control action: 

 

                                                 min
𝑋(𝑘),𝑈(𝑅)

𝐽(𝑋(𝑘), 𝑈(𝑘))                                    (2.1) 

Where 

                                         𝑋(𝑘) = {𝑥(𝑘 + 1|𝑘), … , 𝑥(𝑘 + 𝑁|𝑘)}                        (2.1.1) 

                                        𝑈(𝑘) = {𝑢(𝑘|𝑘), … , 𝑢(𝑘 + 𝑁 − 1|𝑘)}                        (2.1.2) 

s.t 

   𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝐹(𝑥(𝑘 + 𝑖|𝑘), 𝑢𝑥(𝑘 + 𝑖|𝑘) )           (𝑖 = 0, … , 𝑁 − 1)        (2.1.3) 

                                                      𝐺(𝑋(𝑘), 𝑈(𝑘)) ≤ 0                                        (2.1.4) 

                                                        𝑥(𝑘|𝑘) = 𝑥(𝑘)                                             (2.1.5) 
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In the preceding formulation, the performance index represents the difference 

measured between the predicted behavior and the desired future behavior: the lower 

the value, the better the performance. The variables 𝑥(𝑘 + 𝑖|𝑘) and 𝑢(𝑘 + 𝑖|𝑘) are 

respectively, the predicted state and the predicted control at time 𝑘 + 𝑖 based on the 

system model, 𝑥(𝑘 + 1) = 𝐹(𝑥(𝑘), 𝑢(𝑘)). The constraints may represent physical 

limits to the system and can also to ensure the stability or robustness of the system. 

The optimization produces an open-loop optimal control sequence in which the first 

control value is applied to the system: that is, 𝑢(𝑘) = 𝑢(𝑘|𝑘). Then, the controller 

waits until the next control instant and repeats this process to find the next control 

action. [14] 

 

Sun et al [19] reported MPC performance monitoring face a few challenges that the 

performance can come from many sources that include control horizon lengths, 

weights in the objective functions, poor model quality in either input-output plant 

channel or the disturbance channel, inappropriate constraint setup and inconsistency 

between upper level optimization and the dynamic MPC. Among these challenges, 

input-output plant model and the disturbance model is the main key that affect the 

control performance. Prediction from a poor model can result in computed inputs to 

be far from optimal control move. Therefore, models are being used for the design and 

development of new process besides for analyzing and improving existing process as 

stated by Lemma and Shuhaimi [20]. Models are extensively used in advanced process 

control design and implementation as a controller design, optimization, fault detection 

and diagnosis in process industries. Basically, the process of developing system 

models involves a general linear dynamic model. The general linear model shown 

below in equation (2.1): 

                                             𝑦(𝑘) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑘) +

1

𝐴(𝑞)
𝑒(𝑞)                                    (2.2) 
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From the general model equation, it is then developed according to the parameter 

needed into ARX, ARMAX, BJ, FIR and OE as in equation (1.1) to (1.5). The ARX 

and FIR models are the most popular models in process industries. The parameters are 

easily estimated using linear least square method.  ARX model facilitates estimation 

of the noise model simultaneously with the deterministic model rather than FIR model. 

Nevertheless, both models have flaw in the system as ARX model have inconsistent 

parameters and FIR model requires large number of parameter (non-parsimonious) to 

accurately capture system dynamics. When model parameters are non-parsimonious, 

large input-output data set is required in order to minimize variance error in model 

parameters. As a result, inconsistency in parameters and systematic error (bias) may 

occur in the estimated model parameters that cannot be easily removed by increasing 

the number of data points. [20, 21] 

 

Then, the ARMAX is the next commonly used model structure that is estimated by 

using nonlinear optimization or extended least square method. However, the common 

denominator dynamics, A(q) in equation (1.2) may not determine whether the noise is 

not correlated with the input. Amongst all, BJ model is the most flexible of all linear 

models but it is very limited due to its difficulty in estimating the model parameters 

that involves non-linear optimization. BJ model is rarely applied in MIMO system due 

to its large number of parameter. The common problem that the entire linear problem 

share is that time delay is required to accurately estimate the model parameter. 

However, if we compare ARX with ARMAX and BJ model, relatively it is easier for 

ARX to identify high order models and can be used for identification of both unstable 

and stable model.  [20, 21] 

 

Further research has been done that results system identification based on 

Orthornormal Basis Filter (OBF). OBF are more preferable in modeling of system as 

having first- or second-order dominant dynamics respectively. OBF models allow 

incorporation of system dynamics into the model with a simple and elegant method of 

representing open loop stable systems that can be looked upon as a compact 

parsimonious in parameters.  
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 Lemma et al [22] mentions that parsimonious OBF models only acceptable accuracy 

if there is the availability of appropriate  type of filter and good estimates of dominant 

poles of the system.  Alex da Rosa et. al [23] also said that the poles of OBF are free-

design parameters that act as optimal selection in model identification problem. Hence, 

OBF can be used to solve parameter estimation problem analytically by using linear 

regression. This shows the contradiction with ARX models that have inconsistency 

parameter problem. OBF models are parsimonious in parameters compared to FIR and 

step response models. The parameters of OBF models can be easily determined using 

linear least square method. Time delays also can be easily estimated and incorporated 

into the models. Moreover, OBF models have output error structure that can determine 

component of model and estimate consistently the noise that is uncorrelated with the 

inputs. Orthornormal functions also represent signals that exhibit long time delays 

because of their similarity to Padé approximation. Thus, developments of OBF based 

models do not need any prior knowledge about system time delays. [16, 20-22, 24] 

  

Basically, OBF can be considered as a generalization of FIR models where the filters 

𝑞−1𝑞−2, …, are replaced with more orthonormal basis filters that allow incorporation 

of prior knowledge of the system.  Two filters, 𝑓𝑚 and 𝑓𝑛 are said to be orthonormal if 

they satisfy the property. 

 

                                              〈𝑓𝑚(𝑞), 𝑓𝑛(𝑞)〉 = {
1 (𝑚 = 𝑛)
0 (𝑚 ≠ 𝑛)

                                   (2.3) 

Where <,> represents the inner product defined on the set of all stable transfer 

functions. Thus, a stable system, G(q),can be approximately represented by a finite-

length generalized Fourier series expansion as: 

                                                     𝐺(𝑞) = ∑ 𝐿𝑖𝐹𝑖(𝑞)𝑛
𝑖=1                                           (2.4) 

Where, 𝑞: forward shift operator; 𝐿𝑖: model parameters and 𝐹𝑖(𝑞): orthonormal basis 

filters for the system 𝐺(𝑞). 
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In time domain, the response y(k), for an input u(k), can be described as  

                                         𝑦(𝑘) =  𝐺(𝑞)𝑢(𝑘) + 𝐻(𝑞)𝑒(𝑘)                                    (2.5) 

Where, 𝑒(𝑘) is white noise sequence with mean zero and variance σ2. 

 

Alex da Rosa et al [25], stated that a growing interest in using Orthonormal Basis Filter 

that involve in identification and control of dynamic process. This is because OBF 

have simpler solution to modeling and control as the orthonormality of these functions 

yield simpler general models. The development of OBF model includes the selection 

of an appropriate type of Orhonormal Basis Filters. The types of OBF available are 

Laguerre filter, Kautz filter, and Markov-OBF as below: 

 

Laguerre Filter, 

                                       𝑓𝑖 = √(1 − 𝑃2)
(1−𝑝𝑞)𝑖−1

(𝑞−𝑝)𝑖 ,        |𝑝| < 1                             (2.6) 

Where, p is pole (estimated). 

Laguerre filters are first-order lag filters with one real pole and more appropriate for 

well damped processes. 

 

Kautz Filter, 

                                          𝑓2𝑖−1 =   
√(1−𝑎2)(1−𝑏2)

𝑞2+𝑎(𝑏−1)𝑞−𝑏
𝑔(𝑎, 𝑏, 𝑞, 𝑖)                                (2.7) 

                                             𝑓2𝑖 =   
√(1−𝑏2)(𝑞−𝑎)

𝑞2+𝑎(𝑏−1)𝑞−𝑏
𝑔(𝑎, 𝑏, 𝑞, 𝑖)                                 (2.8) 

 

Where,  

                                          𝑔(𝑎, 𝑏, 𝑞, 𝑖) = (
−𝑏𝑞3+𝑎(𝑏−1)𝑞+1

𝑞2+𝑎(𝑏−1)−𝑏
)

𝑖−1

                              (2.9)    

                                                 −1 <  𝛼 < 1 𝑎𝑛𝑑 − 1 < 𝑏 < 1, 𝑛 = 1,2, … 
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The Kautz filters allow incorporation of a pair of conjugate complex poles that are 

effective for modeling weakly damped processes. 

 

Markov-OBF, 

Markov-OBF is used in a system that involves time delay and estimation of time delay. 

The time delay is included with placing some of the poles at the origin. [16, 20, 26, 

27] 

 

In OBF, Laguerre and Kautz bases are most commonly used in approximation control 

problems.  However, Laguerre basis is more preferable in representing well damped 

dynamic system. The analytical developments lead to closed optimization solution that 

can be used in both linear and non-linear domains. Laguerre also involves in rational 

transfer functions from a simple recursive form and completely parameterized by a 

single real-valued pole. [28, 29] Several recent studies are focusing on Laguerre filters 

whereby discrete Laguerre filters are a method for the identification and approximation 

of signals or system, adaptive filtering or filter design as stated by Telescu et. al [30]. 

The Laguerre functions and filters depend only in a free parameter of a multiple-order 

single pole that predefines the denominator of the resulting rational model.  

 

It also can reduce the number of parameters for optimization on-line by 

parameterization the future trajectory of the filtered control signals.  The future control 

trajectory acts as a core technique in the design of MPC either the control signal [u(k)] 

itself or the difference of the control signal [Δ𝑢(𝑘)] by forward shift operators. This 

Laguerre functions acts as a scaling factors that is used to reflect the time scale of 

predictive control system. For instance, there are cases of rapid sampling of 

complicated process dynamics and high demands on closed loop performance. Hence, 

satisfactory approximation of the future control signal may require a large number of 

forward shift operators.  
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Similarly, it applies to infinite impulse response model that is used in system 

identification. Other than that, lack of structural constraint on the future control signal 

could lead to fast and steep changes that may result optimal control signal. For both 

cases, the approach can be taken by parameterization of the control signal using 

orthonormal polynomial function. [30-33] The parameterization presents a 

parsimonious description of the future control signal that reduces the number of 

parameters required in modeling the control trajectory. This shows the difference of 

future control signal within the moving horizon window using a Laguerre impulse 

respond structure with appropriate dimensionality. The scaling factor in the Laguerre 

polynomials becomes a constraint on the decay rate of the incremental control signal 

that infers the control horizon and directly affects the closed-loop response speed. [31] 

 

Wang [31] stated there are two mainstreams in order to achieve stability of model 

predictive control system. The first method is by using the terminal constraints in the 

state variable which forces the terminal state variables to be zero.  The second is to use 

an infinite horizon in the cost function.  However, the use of infinite horizon in the 

cost function may become unrealistic  to solve the difference of the control signal  as 

in [34] unless a pre-stabilizing strategy is used. Therefore, a distinct feature in 

designing is used through scaling factor chosen to be zero in the Laguerre polynomials.  
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CHAPTER 3 

METHODOLOGY 

 

Objective (i) 

MATLAB is the main software used in this project. Distillation column will be 

developed based on Wood-Berry Model. The model is set-up as in Figure 2 below.  

 
Figure 2: Distillation Column Model 

 

To accomplish the first objective, the MPC design parameters for a MIMO problem is 

introduced into the distillation column by using Wood-Berry Model as in equation 

(3.1).  

                                         [
𝑋𝐷(𝑠)
𝑋𝐵(𝑠)

] = [

12.8𝑒−𝑠

16.7𝑠+1

−18.9𝑒−3𝑠

21𝑠+1

6.6𝑒−7𝑠

10.9𝑠+1

−19.4𝑒−3𝑠

14.4𝑠+1

] [
𝑅(𝑠)
𝑆(𝑠)

]                          (3.1) 

 

The controlled variables are the distillate and bottom compositions (𝑋𝐷 and 𝑋𝐵); the 

manipulated variables are the flux flow rate and the steam flow rate to the reboiler (R 

and S). [3, 35] 
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The following steps are taken to accomplish the objectives: 

1. Introduce step change in the distillation column 

2. Collect the input-output data 

3. Develop models 

4. Evaluate the controller by using Integral Error Criteria and Total Input 

Variation. 

5. Select the best performance between MPC and PID controller 

 

Objective (ii) 

A simulation is performed by using MATLAB Model Predictive Control Toolbox. The 

MPC Controller of Orthonormal Basis Filter (OBF) and Laguerre function is applied 

into the distillation column model. For each simulation, sampling period ∆𝑡=1min and 

set point of 0.2 are imposed on each input. After completed a simulation for MPC 

Controller, a PID Controller simulation also will be designed for distillation column 

model. The SIMULINK is designed as in Figure 3, Figure 4 and Figure 5. 

 

Figure 3: Subsystem of SIMULINK 
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Figure 4: SIMULINK: MPC Controller 

 

 

Figure 5: SIMULINK: PID Controller 

 

Objective (iii) 

The performance of MPC is evaluated based on Integral Error Criteria: Integral 

Absolute Error (IAE), Integral of the Squared Error (ISE) and Integral of the time-

weighted absolute error (ITAE). The Integral Error Criteria indicates the cumulative 

error of how far the response is with respect to the applied reference (set point).  

Besides that, total input variation also will be evaluated as performance parameter.  
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In a current working distillation column, a step change is introduced for a period of 

time, t. Then, the difference between set point and the measurement is calculate as 

error signal e(t) whereby e(t)=SP(t)-𝑋𝐷,𝑚 as illustrated in Graph 1 below.  

  

Graph 1: Graphical Interpretation of IAE 

 

Integral Error Criteria are as follows: 

1. Integral of the absolute value of the error (IAE). 

                                                    IAE = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0
                                              (3.2) 

2. Integral of the squared error (ISE) 

                                                                   ISE = ∫ 𝑒(𝑡)2𝑑𝑡
∞

0
                                 (3.3) 

3. Integral of the time-weighted absolute error (ITAE) 

                                                                   ITAE = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0
                           (3.4) 

The MPC Performance is evaluated for a period of time. i.e, t=0,1,…,n=40. Then, 

Table 1 is tabulated based on the calculation above 

Table 1: Data Collection 

 MPC PID 

IAE   

ISE   

ITAE   

From the data collected in Table 1, MPC Controller and PID Controller is evaluated. 

The best performance is selected for application in distillation column. 

𝑋𝐷,𝑚 

SP 

SP - Set point value 

𝑋𝐷,𝑚 - Measured value 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Designation of the Controller 

4.1.1 MPC Controller 

MPC Controller System is used for system identification in system modelling whereby 

the system is represented by discrete-time impulse response of dynamic system by a 

Laguerre Model.  Discrete-time Laguerre functions are orthonormal functions with 

orthonormal properties. The Laguerre functions is the time domain for this model. The 

parameters used in this designation is the Laguerre pole location, a and number of 

OBF terms, N. Basically, a is used for stability of the Laguerre Network and act as a 

scaling factor which needs to be selected by the user.  

 

In MATLAB, the system modelling is designed into a discrete-time state space model 

based on equation (3.1) in Wood-Berry Distillation Column Model.  The initial 

conditions of Laguerre function is first generated with discrete-time impulse response. 

The model is specified into Multiple-Input Multiple-Output (MIMO) with two inputs 

and two outputs system.  The minimum realization is obtained in order to calculate the 

minimum possibilities for augmented state-space model. In this design, the data is 

generated with the cost function based on the minimization of the error between set-

point signal and output signals. Then, the integral error criteria is calculated to 

determine the performance of the controller. In addition, the total input variation also 

will be determined based on the input signals. 
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4.1.2 PID Controller 

PID Controller is the combination of the proportional, integral and derivatives control 

modes. Typically, the proportional control speeds up the process thus reducing offset 

of the response. Meanwhile, integral control eliminates the offset however it may result 

an oscillatory response.  

 

As for derivative control, it reduces both the degree of oscillation and the response 

time. Besides, the control signal is affected by the controller gain, 𝐾𝑐 and times delay, 

𝜏 as in equation (4.1). 

                                              𝐺 = 𝐾𝑐(1 +
1

𝜏𝐼𝑆
+ 𝜏𝑁𝑠)                                             (4.1) 

For distillation column design, the PID controller is simulated using 𝑋𝐷 − 𝑅/𝑋𝐵 − 𝑆 

Control configuration. 

 

In SIMULINK, the subsystem is designed based on the Wood-Berry Distillation 

Column as previously in MPC Controller. The difference is the PID Controller is added 

with PID Block which contain controller gain and time delay that is inserted before 

entering the subsystem of controller model. The PID controller will monitor the output 

and compare it with reference set point.  The error signal between actual and desired 

output will be applied as feedback to the input of controller to achieve the desired set 

point. The integral error criteria will compute the error signal to evaluate the 

performance of the controller. 
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4.1.3 Integral Error Criteria 

The integral error criteria can be calculated based on the equation (3.2) to (3.4). The 

criteria is used to minimize the overshoot, settling time, steady state error and reference 

trajectory error of controller systems. In a system, IAE criterion utilize the magnitude 

of error by using integral expression either for positive or negative error. For ISE, it 

focusses on the square of the error function which penalize both the positive and 

negative value. Lastly, ITAE criterion penalize long duration transient that is the 

integral of time multiplied by the absolute value of the error. Hence, ITAE is the most 

preferred in the industry as it result in most conservative settings comparing to ISE 

that tends to produce aggressive setting.  
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4.2 MPC Controller 

 

In order to illustrate the performance of MPC Controller, Wood-Berry Distillation 

Column Model is used for system modelling.  The manipulated variables are the reflux 

flow rate, R and steam flow rate, S whereas the controlled variables are the Distillate, 

xD and Bottom Composition, xB. For each simulation the set point is 0.2 with 

sampling period of ∆t=1min for period of time, t=40 min. This section will determine 

the best Laguerre pole location, a and number of OBF terms, N for MPC Controller. 

 

4.2.1 Tuning of Laguerre Pole Location, a   

In this section, the effective Laguerre pole location will be determined by observing 

the integral error criteria and total input variation from 0.2, 0.4 and 0.8. Number of 

OBF term, N used is 40. 

MPC Performance for a = 0.2 

i. Distillate Composition 

 

Graph 2: Closed-loop response for set point tracking in xD with a=0.2 
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Graph 2 indicates the response of the MPC Controller for distillate composition, xD 

over time, t. The distillate composition, xD increases steadily to the set point, sp. From 

this graph, it can be observed that xD requires shorter time (6 minutes) to achieve 

desired set point and achieve steady state. 

 

ii. Bottom Composition 

 

Graph 3: Closed-loop response for set point tracking in xB for a=0.2 

Graph 3 indicates the response of the MPC Controller for bottom composition, xB over 

time, t. The bottom composition, xB increases to the set point, sp with a slight 

overshoot at 2 minutes. From this graph, it can be observed that xB requires shorter 

time (6 minutes) to achieve desired set point and achieve steady state than xD. 

 

 

 

 

 



   

26 

  

iii. Integral Error Criteria 

Based on Graph 2 and 3, the integral error criteria is being determined as in Table 2. 

Table 2: Integral Error for set point tracking at a = 0.2 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.1321 0.1155 

ISE 0.0207 0.0201 

ITAE 0.0466 0.0356 

 

Bottom Composition, xB shows slightly lower error in the integral error criteria than 

Distillate Composition, xD. Even though xB has a slight overshoot, it takes a shorter 

time to achieve the desired set point and steady state than xD. Thus, low error 

represents high efficiency of control action at the bottom valve which prolongs 

durability and lifespan of valve.  

 

iv. Input Variation 

 

Graph 4: Input Variation for set point tracking at a=0.2 

Graph 4 shows the input controller for Reflux, R and Steam, S over time, t.  Reflux, R 

decreased steadily with time while the Steam, S increase with slight overshoot at 2 

minutes before decreasing to the set point and achieve steady state.  
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From this graph, R and S need approximately 8 minutes to achieve steady state in the 

distillation column.  

 

v. Total Input Variation 

Table 3: Total Input Variation for set point tracking at a = 0.2 

Input Total Input Variation 

Reflux, R 0.2321 

Steam, S 0.2168 

 

Based on Graph 4, the input variation is determined as in Table 3. Steam, S shows a 

lower variation compare to Reflux, R. The variation value indicates the interval of 

input within the time period. This shows that S has taken corrective action based on 

the measured output to reduce the error to the desired set point. Therefore, lower 

variation represents lower disturbance in the input controller which result in higher 

efficiency of the controller. 

 

MPC Performance for a = 0.4 

i. Distillate Composition 

 

Graph 5: Closed-loop response for set point tracking in xD 
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Graph 5 indicates the response of the MPC Controller for distillate composition, xD 

over time, t. The distillate composition, xD increase steadily to the set point, sp. From 

this graph, it can be observed that xD at a =0.4 requires longer time (7 minutes) to 

achieve desired set point and achieve steady state with xD at a =0.2. Hence, the 

increment of Laguerre pole location results lower efficiency of controller to achieve 

desired set point and steady state.  

  

ii. Bottom Composition 

 

Graph 6: Closed-loop response for set point tracking in xB 

Graph 6 indicates the response of the MPC Controller for bottom composition, xB over 

time, t. The bottom composition, xB increases to the set point, sp with a slight 

overshoot at 3 minutes slower than a=0.2 even though xB requires similar time (6 

minutes) to achieve desired set point and achieve steady state with a=0.2. Thus, the 

increment of Laguerre pole location shows a distortion of the signal in xB. 
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iii. Integral Error Criteria 

Based on Graph 5 and 6, the integral error criteria is being determined as in Table 4. 

Table 4: Integral Error Criteria for set point tracking at a = 0.4 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.1321 0.1155 

ISE 0.0207 0.0201 

ITAE 0.0464 0.0361 

 

Bottom Composition, xB shows slightly lower error in the integral error criteria than 

Distillate Composition, xD. Even though xB has a slight overshoot, it takes a shorter 

time to achieve the desired set point and steady state than xD. At a =0.4, the IAE and 

ISE have similar error to a =0.2. Meanwhile the ITAE value results slightly higher 

error in xD and lower in xB than a=0.2. Thus, the integral error criteria is affected by 

the Laguerre pole location.  

 

iv. Input Variation 

 

Graph 7: Input variation for set point tracking at a = 0.4 
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Graph 7 shows the input controller for Reflux, R and Steam, S over time, t.  Reflux, R 

decreased steadily with time while the Steam, S increase with slight overshoot at 2 

minutes before decreasing to the set point and achieve steady state. From this graph, 

R and S need approximately 8 minutes to achieve steady state in the distillation column 

which is a bit similar to a =0.2.  

 

v. Total Input Variation 

Table 5: Total Input Variation for set point tracking at a = 0.4 

Input Total Input Variation 

Reflux, R 0.2321 

Steam, S 0.2168 

 

Based on Graph 7, the input variation is determined as in Table 5. Steam, S shows a 

lower variation compare to Reflux, R. This shows that S has taken corrective action 

based on the measured output to reduce the error to the desired set point. However, the 

input variation at a=0.4 is similar to a=0.2. The increment of Laguerre pole location 

does not affect the input controllers.  

 

MPC Performance for a = 0.8 

Similar analysis has been done for a = 0.8 whereby the closed-loop response for set 

point tracking is plotted for distillate composition, xD and bottom composition, xB as 

in Appendix I. Then, the integral error criteria is determined and being compared with 

previous Laguerre pole location.  The table for integral error criteria for set point 

tracking a =0.8 is as follows: 

Table 6: Integral Error for set point tracking at a = 0.8 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.1666 0.1439 

ISE 0.0231 0.0568 

ITAE 0.0891 0.0215 
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Bottom Composition, xB shows slightly lower error in the integral error criteria than 

Distillate Composition, xD. At a =0.8, the integral error criteria results in increment 

of error especially drastically increase at ITAE of xD and ISE of xB. Thus, as a 

increases, the integral error criteria also increases. The controllers proved at a=0.8, it 

has lowest efficiency among all the set point. 

 

Apart from the integral error criteria, the total input variation also being determined as 

in Table 7. 

Table 7: Total Input Variation for set point tracking at a = 0.8 

Input Total Input Variation 

Reflux, R 0.2087 

Steam, S 0.1647 

Based on the table 7, steam, S shows a lower variation compare to Reflux, R. This 

shows that S has taken corrective action based on the measured output to reduce the 

error to the desired set point. However, at a =0.8 the input variation reduces than the 

both previous a. Therefore, this shows that at   a=0.8, the disturbance decreases with 

the variations that even though it takes a longer time to reach steady state. 

 

Effective Laguerre Pole Location 

The controllers have been tested with 3 different Laguerre pole location of 0.2, 0.4 and 

0.8. Based on the observation in the integral error criteria and total input variation. It 

can be concluded that the MPC controller works best at a=0.2 whereby it has the lowest 

integral error criteria, total input variation and settling time. When a =0.4, the total 

input variation is similar but the integral error criteria have a slight differences in ITAE 

whereby it has lower error in xD and higher in xB. Hence, the pole location is being 

compared with time taken to reach steady state that results a=0.2 takes shorter time 

than a=0.4. In addition, lower value parameters indicates the efficiency of the 

controller.  a =0.2 is the effective Laguerre pole location that minimizes the predicted 

deviations from the reference trajectory. 
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4.2.2 Tuning Number of OBF Terms, N 

The effective Laguerre pole location obtained in section 4.2.1, a =0.2 is being applied 

in MPC Controller. In this section, effective number of OBF term will be determined 

by observing the integral error criteria and total input variation from 10, 50 and 100. 

 

MPC Performance for N=10 

i. Distillate Composition 

 

Graph 8: Closed-loop response for set point tracking in xD at N=10 

Graph 8 indicates the response of the MPC Controller for distillate composition, xD 

over time, t. The distillate composition, xD increase steadily to the set point, sp. From 

this graph, it can be observed that xD requires short time (7 minutes) to achieve desired 

set point and achieve steady state. 
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ii. Bottom Composition 

 

Graph 9: Closed-loop response for set point tracking in Xb at N=10 

Graph 9 indicates the response of the MPC Controller for bottom composition, xB over 

time, t. The bottom composition, xB increases to the set point, sp with a slight 

overshoot at 2 minutes. From this graph, it can be observed that xB requires shorter 

time (6 minutes) to achieve desired set point and achieve steady state than xD. 

 

iii. Integral Error Criteria 

Based on Graph 8 and 9, the integral error criteria is being determined as in Table 8. 

Table 8: Integral Error Criteria for set point tracking at N = 10 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.1321 0.1155 

ISE 0.0207 0.0201 

ITAE 0.0460 0.0355 

 

Bottom Composition, xB shows slightly lower error in the integral error criteria than 

Distillate Composition, xD. Even though xB has a slight overshoot, it takes a shorter 

time to achieve the desired set point and steady state than xD.  
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Besides, the ITAE in N=10 is slightly lower than in the section 6.2.1 of N=40. Thus, 

lower N results in high efficiency of control action which results in high durability and 

lifespan of valve.  

 

iv. Input Variation 

 

Graph 10: Input variation for set point tracking at N=10 

Graph 10 shows the input controller for Reflux, R and Steam, S over time, t.  Reflux, 

R decreased steadily with time while the Steam, S increase with slight overshoot at 2 

minutes before decreasing to the set point and achieve steady state. From this graph, 

R and S need approximately 8 minutes to achieve steady state in the distillation 

column.  

 

v. Total Input Variation 

Table 9: Total Input Variation for set point tracking at N = 10 

Input Total Input Variation 

Reflux, R 0.2321 

Steam, S 0.2168 
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Based on Graph 10, the input variation is determined as in Table 9. Steam, S shows a 

lower variation compare to Reflux, R. Lower variation shows the accuracy of 

corrective action based on the measured output to reduce the error to the desired set 

point.  

 

MPC Performance for N=50 

i. Distillate Composition 

 

Graph 11: Closed-loop response for set point tracking in xD at N=50 

Graph 11 indicates the response of the MPC Controller for distillate composition, xD 

over time, t. The distillate composition, xD increase steadily to the set point, sp. From 

this graph, it can be observed that xD at N=50 requires similar time (7 minutes) to 

achieve desired set point and achieve steady state with xD at N=10. Hence, the 

increment of number of OBF term does not affect the efficiency of controller to 

achieve desired set point and steady state.  
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ii. Bottom Composition 

 

Graph 12: Closed loop response for set point tracking in xB at N=50 

Graph 12 indicates the response of the MPC Controller for bottom composition, xB 

over time, t. The bottom composition, xB increases to the set point, sp with a slight 

overshoot at 2 minutes slower similarly to N=10 even though xB requires similar time 

(6 minutes) to achieve desired set point and achieve steady state with N=10. Thus, the 

increment of number of OBF term does not affect the efficiency of controller to 

achieve desired set point and steady state.  

 

iii. Integral Error Criteria 

Based on Graph 11 and 12, the integral error criteria is being determined as in Table 

10. 

Table 10: Integral Error Criteria for set point tracking at N=50 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.1321 0.1155 

ISE 0.0207 0.0201 

ITAE 0.0476 0.0360 
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Bottom Composition, xB shows slightly lower error in the integral error criteria than 

Distillate Composition, xD. Even though xB has a slight overshoot, it takes a shorter 

time to achieve the desired set point and steady state than xD. At N=50, the IAE and 

ISE have similar error to N=10. Meanwhile the ITAE value results slightly higher error 

than N=10. This shows there is existence of sustained error for long period of time. 

 

iv. Input Variation 

 

Graph 13: Input variation for set point tracking at at N=50 

Graph 13 shows the input controller for Reflux, R and Steam, S over time, t.  Reflux, 

R decreased steadily with time while the Steam, S increase with slight overshoot at 2 

minutes before decreasing to the set point and achieve steady state. From this graph, 

R and S need approximately 8 minutes to achieve steady state in the distillation column 

which is a bit similar to N=10.  

 

v. Total Input Variation 

Table 11: Total Input Variation for set point tracking at N=50 

Input Total Input Variation 

Reflux, R 0.2322 

Steam, S 0.2168 
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Based on Graph 11, the input variation is determined as in Table 10. Steam, S shows 

a lower variation compare to Reflux, R. However, the R varies slightly higher than 

N=10. This shows that as number of OBF term increases, the variation in the input 

increases accordingly. This may result from the presence of disturbance in the input 

signal of R.  

 

MPC Performance for N=100 

Similar analysis also has been done for N=100 whereby the set point tracking of 

closed-loop response for is plotted for distillate composition, xD and bottom 

composition, xB as in Appendix II. Then, the integral error criteria is determined and 

being compared with previous Laguerre pole location.  The table for integral error 

criteria for set point tracking N=100 is as follows: 

 

Table 12: Integral Error Criteria for set point tracking at N=100 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.1324 0.1158 

ISE 0.0207 0.0201 

ITAE 0.0526 0.0435 

 

Bottom Composition, xB shows slightly lower error in the integral error criteria than 

Distillate Composition, xD. At N=100, the integral error criteria results in increment 

of error only in ITAE. Thus, as N increases, the integral error criteria also increases 

accordingly. The controllers shows that at N=100, the error increases thus, reduces the 

efficiency of the controllers. 

 

After that, the total input variation also being determined as in Table 13. 

Table 13: Total Input Variation for set point tracking at N=100 

Input Total Input Variation 

Reflux, R 0.2322 

Steam, S 0.2168 
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Based on the total input variation determined, Steam, S shows a lower variation 

compare to Reflux, R. At N=100, the input variation is similar with N=50 but slightly 

higher than N=10. Therefore, this shows that as N increases, the variations of the input 

also increases with a slightly changes due to the disturbances. 

 

Effective Number of OBF Terms 

The controllers have been tested with 3 different Number of OBF Terms, N of 10, 50 

and 100. Based on the observation in the integral error criteria and total input variation, 

it can be concluded that the MPC controller works best at N=10 whereby it has the 

lowest integral error criteria and total input variation. In the case of IAE and ISE, the 

error is similar for the 3 different number of OBF terms. It shows that the increment 

of OBF term number only affected ITAE. This may occur because ITAE have an 

additional time multiplier of the error function, that emphasize on measuring long-

duration errors that results in accuracy measurement of integral error criteria. For total 

input variation, the differences only occur in R input that is caused by slight 

disturbance available from the controller. The R input is varies accordingly to the 

measured disturbances based on the output responses. 
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4.3 PID Controller 

 

In SIMULINK of PID Controller, the controller gain and time delay is used to 

manipulate the Wood Berry Distillation Column Model. The PID Controller is 

simulated by using the 𝑋𝐷 − 𝑅/𝑋𝐵 − 𝑆 control configuration. The set point for PID 

Controller is similar with MPC Controller at 0.2 for period of time, t=40min.  In this 

section different controller gain, 𝐾𝑐 and times delay, 𝜏 will be used to determine the 

best control configuration for PID Controller. 

 

4.3.1 Control Configuration 1, C1 

The PID controller is simulated using 𝑋𝐷 − 𝑅/𝑋𝐵 − 𝑆  by using Control Configuration 

1 as in the Table 14. 

Table 14: C1 Configuration 

Control Loop 𝑲𝒄 𝝉𝑰 

𝑋𝐷 − 𝑅 0.85 7.21 

𝑋𝐵 − 𝑆 -0.089 8.86 

i. Distillate Component, xD  

 

Graph 14: Closed-loop response for set point tracking in xD 
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Graph 14 indicates the response of the PID Controller for distillate composition, xD 

over time, t. The distillate composition, xD overshoot for the first 5 minutes before it 

decreases and produces oscillatory responses towards the set point, sp. From this 

graph, it can be observed that xD requires a long time (34 minutes) to achieve the 

steady state. This shows that there is high deviation and disturbance presence in the 

controller. 

 

ii. Bottom Composition, xB  

 

Graph 15: Closed-loop response for set point tracking in xB 

Graph 15 indicates the response of the PID Controller for bottom composition, xB over 

time, t. The bottom composition, xB results in overshoot at first 10 minutes with 

oscillatory response towards the desired set point, sp. From this graph, it can be 

observed that xB require longer settling time than 40 minutes to achieve desired set 

point. Hence, this shows that in PID controller will produce sluggish responses in the 

output signals of distillation column. 
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iii. Integral Error Criteria 

Based on Graph 14 and 15, the integral error criteria is being determined as in Table 

15. 

Table 15: Integral Error Criteria for set point tracking at C1. 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 0.8648 2.3399 

ISE 0.0830 0.3096 

ITAE 5.4451 21.2903 

 

Bottom Composition, xB shows higher error value in the integral error criteria than 

Distillate Composition, xD. At C1, the integral error criteria results in drastic 

increment of error especially in xB which is shown by sluggish response in Graph 20. 

Both the xD and xB have overshoot at the beginning of the response and take a long 

time to reach steady state. Therefore, this represents a low efficiency of control action 

which shorten the durability and lifespan of valve.  

 

iv. Input Variation 

 

Graph 16: Input variation for set point tracking at C1 
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Graph 16 shows the input of PID Controller for Reflux, R and Steam, S over time, t.  

Reflux, R overshoot at 1 minute before decreasing steeply and oscillates till the end of 

period time. Meanwhile the Steam, S shows oscillatory response throughout the period 

of time. From this graph, R and S need a longer time approximately 37 minutes to 

achieve steady state in the distillation column.  

  

v. Total Input Variation 

Table 16: Total Input Variation for set point tracking at C1 

Input Total Input Variation 

Reflux, R 0.5154 

Steam, S 0.0777 

 

Based on Graph 16, the input variation is determined as in Table 16. Steam, S shows 

a lower variation compare to Reflux, R. This shows that S has taken more corrective 

action based on the measured output to reduce the error to the desired set point. 

Therefore, lower variation represents lower disturbance in the input controller which 

result in higher efficiency of the controller. 

 

4.3.2 Control Configuration 2, C2 

The PID controller is simulated using 𝑋𝐷 − 𝑅/𝑋𝐵 − 𝑆  by using Control Configuration 

2 in the Table 17. 

Table 17: C2 Configuration 

Control Loop 𝑲𝒄 𝝉𝑰 

𝑋𝐷 − 𝑅 0.604 16.37 

𝑋𝐵 − 𝑆 -0.127 14.46 
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i. Distillate Component, xD  

 

Graph 17: Closed-loop response for set point tracking in xD 

Graph 17 indicates the response of the PID Controller for distillate composition, xD 

over time, t. The distillate composition, xD produces oscillatory responses towards the 

set point, sp without overshoot like C1. It can observed that xD requires a longer time 

to achieve the steady state more than 40 minutes. This shows that there is high 

disturbance presence in the controller. 
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ii. Bottom Composition, xB  

 

Graph 18: Closed-loop response for set point tracking in xB 

Graph 18 indicates the response of the PID Controller for bottom composition, xB over 

time, t. The bottom composition, xB results in overshoot between 10 and 11 minutes 

with oscillatory response towards the desired set point, sp. From this graph, it can be 

observed that xB require longer settling time than 40 minutes to achieve desired set 

point. Hence, this shows that in C2 the responses is more sluggish in the output signals 

than C1. 

 

iii. Integral Error Criteria 

Based on Graph 17 and 18, the integral error criteria is being determined as in Table 

18.  

Table 18: Integral Error Criteria for set point tracking at C2. 

Integral Error Criteria 

Integral Error Distillate Composition, xD Bottom Composition, xB 

IAE 1.0634 2.5133 

ISE 0.0918 0.3020 

ITAE 9.6239 27.4301 
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Bottom Composition, xB shows higher error value in the integral error criteria than 

Distillate Composition, xD. At C2, the integral error criteria also results in drastic 

increment of error especially in xB which is shown by sluggish response in Graph 18. 

In this case, only xB have overshoot at the beginning of the response. As for settling 

time, both xD and xB take a long time to reach steady state. Therefore, this represents 

a low efficiency of controller system.  

 

iv. Input Variation 

 

Graph 19: Input variation for set point tracking at C2 

Graph 19 shows the input of PID Controller for Reflux, R and Steam, S over time, t.  

Reflux, R overshoot at 1 minute before decreasing steeply and oscillates till the end of 

period time. Meanwhile the Steam, S shows oscillatory response throughout the period 

of time. From this graph, R and S need a longer time for more than 40 minutes to 

achieve steady state in the distillation column.  
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v. Total Input Variation 

Table 19: Total Input Variation for set point tracking at C2 

Input Total Input Variation 

Reflux, R 0.3808 

Steam, S 0.1244 

 

Based on Graph 19, the input variation is determined as in Table 19. Steam, S shows 

a lower variation compare to Reflux, R. This shows that S has taken more corrective 

action based on the measured output to reduce the error to the desired set point. 

Therefore, lower variation represents lower disturbance in the input controller which 

result in higher efficiency of the controller.  

 

Effective Control Configuration  

The controllers have been tested with 2 different control configuration that have 

different controller gain, 𝐾𝑐 and times delay, 𝜏 of 𝑋𝐷 − 𝑅/𝑋𝐵 − 𝑆 control loop. Based 

on the observation in the integral error criteria and total input variation, it can be 

concluded that the PID controller works best at C1 whereby it has the lowest integral 

error criteria, total input variation and settling time. In integral error criteria, only the 

ISE in xB shows slightly higher error value than C2. For total input variation, both C1 

and C2 shows contradict variation in R and S flow rate whereby R has shown more 

corrective action in C2 while S shown more corrective action in C1. Therefore, settling 

time to reach steady state is being considered which C1 shows better stability than C2. 
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4.4 Comparison of MPC and PID Controller 

 

In Section 4.2 and 4.3, the effective parameters and configuration have been 

determined in both MPC and PID Controller. The comparison is made in order to 

determine the best performance for controller system. 

 

i. Distillate Component, xD  

 

Graph 20: Closed-loop response for set point tracking in xD 

Graph 20 indicates the distillate composition, xD comparison between MPC and PID 

Controller over time, t. The distillate composition, xD of MPC increase gradually to 

the desired set point while overshoot occur in PID Controller before it decreases and 

produces oscillatory response towards the set point, sp. Hence, it shows that MPC 

Controller is superior to the MIMO System because the distillate composition exhibit 

faster setting time to reach steady state without oscillatory response. 
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ii. Bottom Composition, xB  

 

Graph 21: Closed-loop response for set point tracking in xB 

Graph 21 indicates the bottom composition, xB comparison for MPC and PID 

Controller for over time, t. The bottom composition, xB of MPC increase with a slight 

overshoot but PID Controller results in oscillatory response towards the desired set 

point. Hence, it also shows that MPC Controller results in faster setting time to reach 

steady state even though there is presence of overshoot at the beginning of time period. 

So, MPC is suitable for MIMO System in term of performance of output responses.  

 

iii. Integral Error Criteria:  

Based on Graph 20 and 21, the integral error criteria is being determined as in Table 

20. 

Table 20: Integral Error Criteria for set point tracking in MPC and PID Controller 

 MPC PID 

Integral 

Error 

Distillate 

Composition, 

xD 

Bottom 

Composition, 

xB 

Distillate 

Composition, 

xD 

Bottom 

Composition, 

xB 

IAE 0.1321 0.1155 0.8648 2.3399 

ISE 0.0207 0.0201 0.0830 0.3096 

ITAE 0.0460 0.0355 5.4451 21.2903 
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Table 20 shows the Integral Error Criteria comparison between xD and xB. MPC 

Controller shows that the integral error criteria is higher in xD than xB. In contrast, the 

integral error criteria of xB is higher than xD in PID Controller. Based on the three 

criterion calculated, it shows that MPC Controller has a better performance than PID 

Controller as it has lowest overall error which means low deviation and disturbance 

presence in the controller. Therefore, MPC Controller has high efficiency in control 

system and may prolongs the durability and lifespan of valve.  

 

iv. Input Variation 

 

Graph 22: Input variation for set point tracking 

Graph 22 shows the input comparison of MPC and PID Controller for Reflux, R and 

Steam, S over time, t.  MPC Controller has a slight overshoot in S at the beginning of 

time period simultaneously S decreases gradually to the set point. As for PID 

Controller, both R and S produces oscillatory responses before achieve steady state 

with R overshoot at the beginning of time. This shows that MPC more stable than PID 

Controller. Besides that, the PID Controller is responded based on the feedback control 

of the output signals. The controller gain in PID Controller manipulates the input and 

tends to produce sluggish responses that results in longer time taken to reach steady 

state than MPC Controller.  
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v. Total Input Variation 

Table 21: Total Input Variation for set point tracking in MPC and PID Controller 

Total Input Variation 

Input MPC PID 

Reflux, R 0.2321 0.5154 

Steam, S 0.2168 0.0777 

 

Based on Graph 22, the input variation is determined as in Table 21. In both 

controllers, S shows a lower variation compare to R. Lower variation shows the 

accuracy of corrective action based on the measured output to reduce the error to the 

desired set point.  This variation occurs as a response from the predicted and measured 

output responses. From this table, MPC shows a higher efficiency of the controller 

than PID with lower total input variation. In essence, the changes in input are 

coordinated after considering the input-output relationship. So, MPC Controller has a 

better performance than PID Controller in MIMO system.  
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CHAPTER 5 

CONCLUSION & RECOMMENDATION 

 

This project was able to fulfill all the objectives and requirements needed. The 

distillation column model have been designed with Wood-Berry model and being 

implemented with MPC by using OBF and Laguerre model. Based on the comparison 

of distillation column control, MPC has higher efficiency compares to PID controller. 

This is proven whereby MPC having the lowest integral error criteria and total input 

variation. Generally, lower integral error criteria and total input variation value 

indicate a better controller with higher accuracy and efficiency for MIMO system. 

Thus, efficiency of MPC shows that OBF successfully minimized the error between 

the output signals and reference trajectory based on manipulated variables. OBF also 

has proved that it can coordinates the interaction of MIMO system especially for 

distillation column. Therefore, MPC Controller using OBF has a better performance 

for control industry. 

 

It is recommended that MPC Controller is being tested and applied in plant-wide 

control for further analysis. On top of that, MATLAB software learning should be 

included in the undergraduate studies as one of major subjects in order to develop 

better understanding on the functionality of MATLAB. 
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APPENDIX I 

MPC Performance for a = 0.8 

i. Distillate Component, xD  

 
Graph 23: Closed-loop response for set point tracking in xD with a=0.8 

 

ii. Bottom Composition, xB  

 

Graph 24: Closed-loop response for set point tracking in xB with a=0.8 
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iii. Input Variation 

 

Graph 25: Input variation for set point tracking at a=0.8 
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APPENDIX II 

MPC Performance for N=100 

i. Distillate Component, xD  

 

Graph 26: Closed-loop response for set point tracking in xD at N=100 

 

ii. Bottom Composition, xB  

 

Graph 27: Closed-loop response for set point tracking in xD at N=100 
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iii. Input Variation 

 

Graph 28: Input variation for set point tracking at N=100 

 


