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ABSTRACT 

 

Product quality and production costs are dependent on optimal control of the 

process. Product variability and oscillation of the process would indicate poor control. 

Such is the consequence of nonlinearity in the response of the control valves towards 

controller instructions. The most common cause of nonlinearities is static friction 

(stiction) in the mechanical assembly of the valve. The ability of a hybrid model 

predictive control (MPC) formulation to compensate for stiction was to be tested. 

The formulation was previously shown to be able to compensate for backlash by 

solving a mixed integer quadratic programming (MIQP) problem. 

Simulation studies were conducted using a model of a paper machine headbox model 

in Simulink. The hybrid MPC formulation was updated to run on current software 

versions and the Choudhury stiction model was integrated into the system. Due to 

errors in the simulation, the ability of hybrid MPC to compensate for stiction finally 

could not be determined. The errors encountered are documented as well as 

recommendations to overcome the shortcomings of the simulation.  
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CHAPTER 1  

INTRODUCTION 

 

This section provides an overview of the area of study as well as the research gap 

addressed and the objectives of the study.  

 

1.1 BACKGROUND 

 

1.1.1 Model Predictive Control 

 

Model Predictive Control (MPC) is a process control method that takes into account 

the future state of the process, over a finite time horizon, to compute an optimal 

control strategy. 

The future controller input (i.e. independent variables) and state of the process (i.e. 

the dependent variables) are modelled using an explicit dynamic model which is fed 

with the current measurements from the process and process variable targets. The 

term explicit dynamic model implies that model represents the process over a period 

of time and can be used to calculate the future state of the process at the current 

time. 

At each time interval, the controller computes a number of control steps across the 

prediction horizon that would shift the process towards the control target but only 

implements the first step. In contrast, a proportional-integral-derivative (PID) 

controller is not aware of the effect of subsequent control steps on the process as 

the response of the PID controller is based on present and past errors (i.e. deviation 

from the control target). 
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1.1.2 Hybrid MPC 

 

In order to calculate optimal control moves, MPC controllers conventionally utilise a 

plant model which does not account for process nonlinearities. This is a cause for sub-

optimal control performance. A hybrid MPC design framework developed by Zabiri 

and Samyudia is able to compensate for control valve backlash thus improving control 

performance. 

 

1.2 PROBLEM STATEMENT 

 

Control valve nonlinearities such as backlash and static friction (stiction) will result in 

control performance degradation and process variability due to oscillation of the 

control valve. This can have significant impact on product quality and on energy 

consumption. Oscillation also inherently induces wear of the internal components of 

the valve thus decreasing the lifespan of the valves and increasing maintenance costs. 

The possibility exists for the hybrid MPC design developed by Zabiri and Samyudia 

which is able to compensate for backlash to be further optimized and used to 

compensate for stiction. 

Stiction in part exhibits characteristics similar to backlash. Backlash results when the 

controller output changes but the valves position does not change. When stiction 

occurs, there is initially a change in controller output and no change in control valve 

position before an abrupt change in the control valve position. It is hoped that by 

compensating for this so-called, deadband, the zone where the control valve position 

does not change, stiction can be eliminated.  

 

1.3 SCOPE AND OBJECTIVES OF STUDY 

 

This ultimate goal of this study is to extend a pre-existent MPC design to not only 

compensate for backlash but for stiction as well.   
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Therefore, in brief, the objectives of this study are as follows: 

 Update hybrid MPC solver instructions to enable it to run on current numerical 

simulation software 

 Simulate control valve stiction and integrate it into a plant model  

 Investigate the ability of hybrid MPC to compensate for stiction 

No modifications will be made to the core algorithms used to compute optimal 

control moves in the hybrid MPC framework as the objective of the study is the 

determine if the current formulation is able to compensate for stiction. 

 

1.3.1 Update hybrid MPC solver instructions to enable it to run on current numerical 

simulation software. 

 

Certain function calls and referencing methods in the original hybrid MPC program 

have been phased out over the years and are now obsolete. In order to use the 

formulation, it is essential that the program be made to run with current software 

versions without altering the core formulations.  

 

1.3.2 Simulate control valve stiction and integrate it into a plant model 

 

Several methods of defining control valve stiction are in existence. A suitable method 

of simulating stiction accurately while preserving compatibility with the MPC 

program must be found. Once the stiction model is complete, it has to be integrated 

into a plant model to simulate effect stiction on the process. 
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1.3.3 Investigate the ability of hybrid MPC to compensate for stiction 

 

The ability of the hybrid MPC to compensate for stiction can be investigated once the 

plant model is functioning as expected. It is hoped that by compensating for the 

backlash component of stiction, the amount of stiction present can be reduced. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 DEVELOPMENT OF MODEL PREDICTIVE CONTROL 

 

The advent of model predictive control was in the mid-70s when more powerful 

processors made computer based control a reality [2].  A landmark paper by Richalet 

and co-workers in 1978 reported numerous successful MPC implementations in 

large-scale industries. [3] The technology continued to mature matured in the 1990s 

as computers became cheaper and processors became more powerful. Today, it is 

part of a broad range of technologies that fall under the umbrella of Advanced 

Process Control (APC). 

The precursor to MPC was the linear quadratic Gaussian (LQG) controller [4] which 

employed an infinite prediction horizon. This allowed the optimization to be solved 

explicitly while guaranteeing closed loop stability. Model Predictive Heuristic Control 

(MPHC), Dynamic Matrix Control (DMC) and Generalised Predictive Control (GPC) 

appeared about the same time around the mid-70s to the mid-80s. MPHC employed 

a finite impulse response (FIR) model and a reference trajectory along with 

coincidence points whereas DMC employed a truncated step response (TSR) model 

and least squares minimization of error with respect to a constant setpoint. GPC on 

the other hand, employed a transfer function model and made use of stochastic 

effects. 

In the late-80s, MPC practitioners began to shift to a state space model and quadratic 

programming was used to solve the open-loop optimization problem. The 90s saw 

MPC gaining a reputation as one of the best optimal control techniques. In the late-

90s, Bemoporad and Morari introduced Hybrid MPC for systems with continuous 

dynamics and logical rules. In the more recent years, improvements have been made 

to computation techniques leading to fast optimization. This allowed MPC technology 
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to gain traction outside the process industry and find its way into the regulation of 

mechanical and electronic systems. 

2.2 OPERATING PRINCIPLES OF MPC 

 

MPC takes into account the future state of the process, over a finite time horizon, to 

compute an optimal control strategy. The future controller input (i.e. independent 

variables) and state of the process (i.e. the dependent variables) are modelled using 

an explicit dynamic model which is fed with the current measurements from the 

process and process variable targets. [5, 6] The term explicit dynamic model implies 

that model represents the process over a period of time and can be used to calculate 

the future state of the process at the current time. 

 

 

Figure 1 : MPC input – output graph adapted from CCForum.com 

 

At each time interval, the controller computes a number of control steps across the 

prediction horizon that would shift the process towards the control target but only 

implements the first step.  

In contrast, a proportional-integral-derivative (PID) controller is not aware of the 

effect of subsequent control steps on the process as the response of the PID 

controller is based on present and past errors (i.e. deviation from the control target). 

Also, if a change in the operating conditions of the process alter the dynamics of the 
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system, a PID controller would have to be retuned to achieve optimal performance. 

An MPC controller however would be already aware of the changes as the dynamics 

would already be incorporated into the model. [7] 

That said, feedback control often complements MPC. It is used to counter model 

inaccuracies. However, this practice is not favourable as feedback control action may 

come in too late. [8]  

Further advantages are possessed by MPC. The first is that disturbances can be 

anticipated and compensated for allowing the process to be driven closer to the 

optimal operating conditions. Secondly, with the availability of the process model, 

the controller has the capability to deal with process dynamics. Also, because the 

controller is now able to predict future control steps, it can take the necessary 

measures to minimise the likelihood of constraint violations that exist to due to 

equipment characteristics and safety concerns. [9] 

Although a seemingly powerful technology, the inherent flaw of MPC is that it is 

inefficient in handling model uncertainties thus making its robustness questionable. 

[10] This takes effect when the mathematical model programmed into the controller 

is unable to reproduce the process behaviour accurately. Among the factors that 

contribute to model uncertainties are parametric uncertainties, nonlinearities and 

dynamics. [11] In the first case, certain parameters that affect the process may be 

unknown or not modelled. In the case of nonlinearities, certain aspects of the process 

that are actually nonlinear may have been assumed to be linear in the model. And in 

the case of dynamics, the dynamics of the process may not have been properly 

understood and modelled. All the contributing factors mentioned above may arise 

from the actuator, the sensor or the plant and will have an impact on the 

performance of the controller. 
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2.3 ACTUATOR NONLINEARITIES 

 

 

 

 

 

 

 

 

Figure 2: A closed control loop adapted from Zabiri & Samyudia [11] 

 

In most cases, the actuator is a control valve. It is the final control element by which 

a process is brought under control. Control performance degradation can result from 

control valves not being able to execute control measures as directed by the 

controller. Such performance degradation can be said to be a result of nonlinearity in 

the response of the control valve. Desborough and Miller found that 20 – 30 % of all 

control loops perform poorly due to control valve problems. [12] Poor control 

performance will result in oscillations which lead to poor product quality and energy 

wastage. Furthermore, oscillations from one control loop may propagate to different 

plant units. [13] The most common cause for control valve nonlinearity is static 

friction (stiction). [1] A valve is said to be experiencing stiction when the valve cannot 

overcome the static friction in the mechanical assembly of the valve. 

Since a process model and not merely the process state is used as a basis for control, 

MPC can be used to compensate for nonlinearities that result from control valves. 

Taking into account process and valve nonlinearities would allow better control 

performance for processes that undergo frequent changes of setpoints i.e. servo 

problems. Both linear and nonlinear MPC exist as do linear and nonlinear process 

models and are distinct from one another. The advantages of using nonlinear process 

models and thus nonlinear MPC for processes that require maintaining the setpoint, 

i.e. regulator problems, are lesser than for servo problems which involve changing in 

the setpoint. [8] Furthermore, the additional computational complexity of non-linear 
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MPC models, which produce better representations of the process than linear models 

do, limits the widespread use of non-linear MPC.  [2] 

Bemporad and Morari [14] proposed a framework for modelling mixed logical 

dynamical systems which brought together logical rules and continuous dynamics to 

beget mixed integer quadratic programming (MIQP). Fast, on-line optimization of the 

MIQP problem was a challenge that led to the development of table lookup based 

methods. Jones and Morari introduced a method to compute approximate explicit 

control laws that is less complex but has a tolerable error. [2, 15]  

 

2.4 CONTROL VALVE STICTION SIMULATION 

 

According to Choudhury, Thornhill and Shah [16], the most common cause for control 

valve nonlinearity is stiction. A valve is said to be experiencing stiction when the valve 

cannot overcome the static friction in the mechanical assembly of the valve. Even 

though the controller output changes, the valve position will not change until a 

certain pressure is applied to the actuator. [17] This friction is a result of the tight 

packing surrounds the valve stem to prevent process fluid losses. Besides this, friction 

is also caused by the corrosion of the valve stem and deposits on the valve seat which 

cause the valve plug to stick. The best solution to overcome stiction is removing the 

valve for maintenance but this is not always possible. [18] 

Figure 3 : Cross-sectional view of a pneumatic control valve. [19] 
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A formal definition provided by Choudhury, Thornhill and Shah [1] describes stiction 

to have four components: deadband, stickband, slip-jump and moving phase.  

 

Deadband and stickband occur when the valve does not move although the input of 

the valve changes. Deadband may be caused by backlash which is a result of loose 

mechanical parts. Stickband occurs due to static friction. Slip-jump occurs when there 

is a sudden release of the potential energy accumulated due to the static friction. 

The figure above illustrates stiction. S represents the amplitude of the input signal 

when the valve is sticking and J represents the amplitude of the slip-jump. When a 

valve comes to rest at Position A, it sticks. The controller output causes the valve to 

overcome the deadband (AB) and subsequently the stickband (BC). The valve jumps 

to Position D then continues to move. Although uncommon, the valve may stick again 

in between Positions D and E due to low or zero velocity. This pattern may continue 

as the valve returns back to its original position. 

Stiction is measured as a percentage of the valve travel or span of the control signal. 

[20] For example, if the control signal spans from 4 to 20 mA, one percent stiction 

Figure 4 : Typical input-output behaviour of a sticky valve adapted from Choudhury 
et al [1] 
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would imply that the valve would only start to move if the control signal is greater 

than or equal to 4.16 mA. 

 

2.4.1 Stiction Models 

 

Both physics based and data driven (empirical) models exist for stiction. Physical 

model stem from Newton’s Second Law, which states that the net force acting on an 

object is the product of its mass and acceleration. Friction can be modelled as a static 

function of velocity or by using time-varying parameters. 

Using the classical model, Newton’s Second Law rewritten for a sliding stem valve is, 

𝑀
𝑑2𝑥

𝑑𝑡2 = Σ Forces= 𝐹𝑎 + 𝐹𝑟 + 𝐹𝑓 + 𝐹𝑝 + 𝐹𝑖 [Eqn. 1] 

Where, Fa is the force applied by the pneumatic actuator, Fr is the spring force, Ff is 

the friction force, Fp is the force due to the fluid pressure drop and Fi is the additional 

force required to force the valve into the seat. For the stiction model, Fp and Fi can be 

assumed to be zero. 

As studied by Olsson and colleagues, [21] the classical friction model can be used to 

model deadband and stick-slip effects. 

𝐹𝑓 = {

− 𝐹𝑐𝑠𝑔𝑛(𝑣) − 𝑣𝐹𝑣                                   𝑖𝑓 𝑣 ≠ 0 

−(𝐹𝑎 + 𝐹𝑟)                 𝑖𝑓 𝑣 = 0 𝑎𝑛𝑑 |𝐹𝑎 + 𝐹𝑟| ≤ 

−𝐹𝑠𝑠𝑔𝑛(𝐹𝑎 + 𝐹𝑟)  𝑖𝑓 𝑣 = 0 𝑎𝑛𝑑 |𝐹𝑎 + 𝐹𝑟| > 𝐹𝑠

𝐹𝑠  [Eqn. 2] 

The first line represents the moving friction. The second line is the case when the 

valve is stuck and the third line represents the friction at the instant of breakaway. 

Karnopp [22] devised an improved static classical model to overcome the limitations 

of the classical model at null speed and to avoid switching between model equations. 

Armstrong-Helouvery et al. [23] proposed a devised a dynamic model in which allow 

the static friction coefficient to vary at the time the body is stuck. This dynamic model 

known as the Seven Parameter model was used inside the Karnopp model. It was 
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subsequently upgraded to model friction more accurately at low velocities and during 

velocity reversal. [21]   

In circumstances where the parameters needed to model friction accurately cannot 

be found, empirical models come into play. Such models are data-driven and 

therefore do not require parameters such as static, coulomb and viscous friction to 

be estimated and valve mass, spring constant, etc. to be known. Although requiring 

lesser parameters to predict stiction, results are not always consistent. [19]  

The goal of data-driven stiction models is to simulate the jump i.e. the conversion of 

potential energy to kinetic energy, which occurs when stiction is overcome. 

Stenman et al. introduced a one parameter model to simulate the stickband. [24]  

Choudhury and co-workers described an algorithm for a two-parameter data driven 

model which consists of the size of the deadband plus stickband (specified in the 

input axis) and slip-jump (specified in the output axis). [1] The illustration of this 

model is given above in the definition of stiction. Kano and colleagues [25] as well as 

He and colleagues [26] have proposed improvements to the Choudhury model which 

allow the model to deal with both deterministic and stochastic signals. 

 

2.4.2 The Chowdhury Model 

 

The academic community has commended the Choudhry model for its ability to 

reproduce stiction accurately and without complexity. The model is even capable of 

replicating the results of physical models. [27] Much of the definition of stiction 

provided earlier in this section originates from the Chowdury model.  

Stiction is said to occur in four conditions which are in reality not mutually exclusive.  

 Pure Deadband (J=0) 

 Undershoot (J < S) 

The valve output can never reach the valve output since there is always some 

offset present. 

 Pure Slipstick (J = S) 
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Once stiction is overcome, the output matches the input accordingly. 

 Overshoot (J > S) 

The output exceeds the setpoint. 

 

2.5 CONTROL VALVE STICTION COMPENSATION 

 

The pre-existing non-MPC based stiction compensation methods which have been 

studied have their limitations. The first is dithering and impulsive control proposed 

by Armstrong-H`elouvry and colleagues. [23] The control valve input is to be applied 

in a series of pulses instead of a steady signal. The problem with this technique is that 

90% of control valves are pneumatically operated and therefore filter high frequency 

dither. The effectiveness of the input-output linearization technique developed by 

Kayihan and Doyle [28] is  limited since certain valve properties and parameters such 

as stem mass, stem velocity, etc. may not be known. Detuning the integral effect in 

the controller as proposed by Gerry and Ruel [20] can cause steady state offset.  The 

knocker signal approach proposed by Hägglund [29] requires additional parameters 

that characterize the knocker signal to be tuned. This method and the two-move 

method proposed by Srinivasan and Rengaswamy [30] result in aggressive movement 

of the valve stem which may wear the valve quickly. 

There is currently no literature on MPC based stiction compensation methods. Zabiri 

and colleagues suggest that there is an absence of effective stiction quantification 

methods although detection methods do exist. [31] Daneshwar and Noh recommend 

that research be directed towards stiction compensation as much study on stiction 

detection has been done. [13]  

 

2.6 MIQP MPC 

 

With the introduction of binary variables to classical MPC quadratic programming 

formulation, an MPC design by Zabiri and Samyudia [11] utilises the so called mixed 
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integer quadratic programming (MIQP) approach to translate an approximation of a 

nonlinear inverse backlash strategy to a set of linear inequalities as the system 

approaches steady-state. The MPC framework involves a quadratic objective function 

and mixed linear inequalities in the form of binary variables denoting the presence 

or absence of backlash. Using this approach, the nonlinearity itself is modelled then 

the inverse of the nonlinearity is applied in series with the controller. This approach 

has been shown to be able to effectively eliminate backlash by supressing input 

movement to avoid the backlash zone without needing to retune the controller. The 

activation time and suppression time are also determined automatically. However, 

by design this approach is only effective if the inputs have not been saturated. 

 

Figure 5: Inverse backlash strategy implemented by Zabiri and Samyudia [9] 
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CHAPTER 3  

METHODOLOGY 

 

Simulation and analysis is conducted using the Simulink component of MATLAB. In 

order to solve the mixed quadratic programming (MIQP) problem, the General 

Algebraic Modelling System (GAMS) which is a high-level modelling system for 

mathematical programming and optimization is used.  

In the first phase of this project, the MPC design and interface between MATLAB and 

GAMS was upgraded to enable the program to run with the latest simulation software 

versions. This was followed by search for the most suitable stiction model. The model 

was then integrated into the existing MPC design. Simulation studies were then 

conducted using this new model. 

 

3.1 PAPER MACHINE HEADBOX MODEL 

 

The above mentioned process control model is used in this project is based on the 

control study of the pulp fibres percentage in aqueous suspension, N2 and the liquid 

level, H2 in a paper machine headbox by Ying et. al. [32] The primary control 

objectives here are to hold  N2 and H2 at their respective setpoints. 

The schematic below illustrates the process. 

 

Figure 6: Schematic of the Paper Machine Headbox Elements. [32] 
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Manipulated Variables 

Gp flow rate of stock entering the feed tank 

Gw recycled white water flow rate 

Measured Output 

H2 liquid level in the headbox 

N1 feed tank consistency 

N2  headbox consistency 

Measured Disturbance 

Np consistency of stock entering the feed tank 

Unmeasured Disturbance 

Nw consistency of white water 

 

The process above can be linearized analytically to form the following state-space 

matrices. 

𝐴 = [

−1.930 0 0 0
0.394 −0.426 0 0

0 0 −0.630 0
0.820 −0.784 0.413 −0.426

] 

𝐵 = [

1.274 1.274 0
0 0 0

1.340 −0.650 0.203
0 0 0

] 

𝐶 = [
0 1 0 0
0 0 1 0
0 0 0 1

] 

𝐷 = [
0 0 0
0 0 0
0 0 0

]  [Eqns. 3] 
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3.2 MODEL PREDICTIVE CONTROLLER CONFIGURATION 

 

The MATLAB function for a constrained MPC, CMPC is used compute the controller 

output. The function makes use of the discretized linear model which has been saved 

in a MPC mod format. The configuration parameters specified below are consistent 

with the recommended parameters supplied by the publishers. [33] 

The prediction horizon is set to 20 period and the input horizon is set to 5 moves. 

An equal weightage of 2 is set for both manipulated variables, Gp and Gw. The output 

variables H2 and N2 are assigned weights of 1 and 5 respectively whereas no 

weightage is assigned to N1. 

The constraints on the manipulated variables, Gp and Gw are set at a minimum of -10 

and a maximum of 10. The maximum up and down rate are configured as 2 and -2 

respectively. No constraints are imposed on the output variables. 

All initial values for the input, output and disturbance are set to 0 while the setpoint 

i.e. the reference trajectory for H2, N1 and N2 is set to 1, 0 and 0 respectively. 

 

3.3 STICTION MODEL 

 

The model used in this study is the Chowdhury model as it has been shown to 

reproduce stiction behaviour accurately and without complexity. The model is based 

on a series of “if-else” statements as illustrated in the flowchart below. 

 

 

 

 

 



18 
 

 

Figure 7: Flowchart for the Chowdhury model algorithm [17] 

 

3.4 SIMULINK CONFIGURATION 

 

The block diagram interface used in the simulation study done by Zabiri and Samyudia 

is shown below. The Paper Machine Model accepts four inputs and returns three 

outputs. The three outputs in addition to the measured disturbance is fed to the MPC 

controller. Subsequently, the controller computes the optimal control moves and 

that information is fed the actuator which manipulates the two controlled variables. 
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Figure 8: The updated Simulink model which is used simulate the process. 

 

 

Figure 9: Simulink block for actuator stiction based on the Chowdhury model [34] contained within the ‘Actuator 
nonL’ subsystem block shown in Figure 8 

 

The algorithm behind the stiction block is illustrated in the section above. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

4.1 UPDATING HYBRID MPC SOLVER INSTRUCTIONS 

 

The optimization problem in the hybrid MPC formulation is a mixed integer quadratic 

programming (MIQP) problem which cannot be solved within MATLAB. After 

scanning through the code segment by segment, it was found that there were 

problems in the interface between MATLAB and GAMS. Certain function calls and 

referencing methods in the original hybrid MPC program were phased out over the 

years and are now obsolete. 

After looking at alternative solvers, it was decided to that the most effective means 

to solving the problem was to fix the interface. Using other solvers would have 

required additional costs for licences and also time as more recoding would have 

been needed.  

GAMS had developed the GAMS Data Exchange (GDX) protocol to allow quicker 

transfer of data between the GAMS software and MATLAB and also to hasten 

debugging. First, the variable definitions and syntax in MATLAB were modified in 

accordance with the GDX protocol. Once variables could successfully transferred to 

and read GAMS, the coding within GAMS pertaining to the handling of data had to be 

modified so that GAMS could send the solution to the optimization problem back to 

MATLAB. Finally, the segment of coding in MATLAB which was used to read values 

from GAMS was updated. 

Once MATLAB could run the coding without terminating prematurely, this objective 

was considered to be accomplished. 
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4.2 SIMULATING CONTROL VALVE STICTION 

 

As explained in the earlier section, several forms of physical and empirical stiction 

models exist. The advantages and limitations of the models were studied and are 

outlined in the previous section.  

The Choudhury Model was selected due to it being able to accurately represent 

stiction behaviour without requiring valve parameters to be known and also due to 

its ease of implementation. A SIMULINK function block had already been developed 

for the Choudhury Model and could be easily integrated into the SIMULINK model.  

This objective was considered completed once stiction behaviour could be observed 

in the control valve output.  

For simplicity, Gp and Gw will thenceforth be referred to by Input 1 and Input 2 

respectively whereas H2, N1 and N2 will be known as Output 1, Output 2 and Output 

3 respectively. 

 

Manipulated Variables 

Gp flow rate of stock entering the 

feed tank 

Gw recycled white water flow rate 

Measured Disturbance 

Np consistency of stock entering 

the feed tank 

Measured Output 

H2 liquid level in the headbox 

N1 feed tank consistency 

N2  headbox consistency 

Unmeasured Disturbance 

Nw consistency of white water 

 

Time is shown in seconds. 
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The following input and output charts demonstrate the response of the process to a 

setpoint change of H2 from 0 to 1. Standard MPC is being used in this test and no 

actuator nonlinearity is present.  

 

 

Figure 10: Baseline input-output response 

 

Mild oscillation is observed initially at the input. The output appears to settle quickly 

and not deviate far from steady-state conditions. The response produced here is 

similar to that published by the developers of the paper machine headbox model. 
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With stiction (S = 1, J = 0) is incorporated into Input 1 of the process, both the input 

and output begin to oscillate and do not settle completely. Input 1 saturates for a few 

seconds and Input 2 reaches its maximum briefly. The outputs take longer to settle 

and continue to oscillate about their setpoint.  

 

Figure 11: Response with mild stiction on Input 1 
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As shown below, the same pattern with larger oscillation is observed when S is set to 

5.  

 

 

Figure 12: Response with strong stiction on Input 1 

 

When stiction is applied on Input 2. MATLAB is no longer able to simulate stiction 

beyond the simulation time of 6.1 seconds probably because Outputs 2 and 3 rise to 

unreasonably high values such that MATLAB is unable to find a solution to the 

optimization problem. Furthermore, oscillation similar to that observed with stiction 
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on Input 1 is not observed. For these reasons, it was decided that simulation on Input 

2 was not to be conducted.  

The response up to 6.1 seconds is shown below.  

 

Figure 13: Response with stiction on Input 2 
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4.3 COMPENSATING FOR STICTION 

 

The final part of this study was to investigate the ability of Hybrid MPC to compensate 

for stiction as it could for backlash. This objective is not fulfilled as the simulation did 

not produce reasonable results.  

Two types of MPC algorithms were used throughout this study, standard MPC and 

hybrid MPC. The optimization problem in the standard MPC formulation could be 

solved within the MATLAB environment alone whereas Hybrid MPC required GAMS 

to solve the optimization. Hybrid MPC (optimized by GAMS) is expected to perform 

similar to standard MPC (optimized by MATLAB) if the compensation function is 

turned off.  

However, as shown in Figure 14, this was not observed here. The standard MPC 

produced expected results while the hybrid MPC produced vastly different results 

even without the presence of any nonlinearity. Severe chattering in the inputs is 

observed and the outputs oscillate about their setpoint and the oscillation continues 

to increase in amplitude as time passes.  

When stiction is introduced in Input 1, it violates its constraints and saturates. Input 

2 responds in a manner inconsistent with the stiction behaviour observed previously. 

The outputs also do not reach their setpoint. This can be seen in Figure 15. 

This problem was initially overlooked as much attention was being focused on 

reproducing stiction behaviour. As shown earlier, this was successfully done within 

the MATLAB environment. Preliminary tests on the formulation did not reveal this 

issue and even if it had shown up earlier, source of the inconsistency was not 

pinpointed. 

Once discovered, efforts were taken to search for possible solutions to the error 

online and well as to search for MPC parameters that could give acceptable results 

by trial and error. Varying weights, setpoints, constraints, number of input moves and 

length of prediction horizon were not successful. This could be an indication that the 
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objective function used in GAMS has not been specified correctly and that the 

optimization problem is weak. 

 

 

Figure 14: Response when optimization is solved using the GAMS with no stiction present 

  
 

 

 

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1
Input 1

Time

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
Input 2

Time

0 20 40 60 80 100
0

0.5

1

1.5
Output 1

Time

0 20 40 60 80 100
-3

-2

-1

0

1
Output 2

Time

0 20 40 60 80 100
-0.5

0

0.5

1
Output 3

Time



28 
 

 

Figure 15: Response when optimization is solved using the GAMS with stiction present   
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CHAPTER 5  

CONCLUSION 

 

The hybrid MPC formulation developed by Zabiri and Sumyudia [11] was updated to 

run on current software versions of MATLAB and GAMS. The software interfacing 

between MATLAB and GAMS was tested and was found to run without runtime errors.  

Several stiction models were studied and the Chowdhury Model was finally 

integrated into the system.  Stiction behaviour was reproduced within the MATLAB 

environment. 

The ability of hybrid MPC to compensate for stiction remains unknown. Problems 

were encountered with the simulation and the response produced was found to be 

unreasonable. When stiction was not present, excessive oscillation was observed and 

when it was present, little oscillation was observed and values reached high extremes. 

Efforts to find a solution to the simulation problem by varying MPC parameters did 

not succeed. Several recommendations for future work are provided.  
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CHAPTER 6  

RECOMMENDATIONS 

 

The source of the erroneous simulation results has not been ascertained. It is the 

recommendation of the author and Dr. Marappa Gounder Ramasamy that future 

researchers relook the GAMS algorithm and the solver configuration. Compare the 

current coding with the original then investigate if it could have caused a significant 

impact on the simulation. Also note that the GAMS algorithm used with the paper 

machine headbox model in this study was not exactly the same algorithm used by 

Zabiri in the original study. It was also developed by Zabiri but for another purpose 

and was expected to produce similar results.  

If at all possible, solving the MIQP optimization problem within the MATLAB 

environment could be simpler and make the validity of the simulation less 

questionable. This recommendation is supported by Dr. Asna Mohd Zain who 

evaluated this project during the qualification screening for entry to the Science, 

Engineering and Design Exhibition (SEDEX). 

Future researchers should also note that the latest paper machine headbox model 

specifies four outputs instead of the three shown in the study. The fourth output is 

the consistency of white water, Nw is an unmeasured disturbance. Several runtime 

errors which carried along to separate parts of the simulation as changes were made 

when trying to integrate the fourth output were encountered. Therefore, it was left 

out as it does not affect the dynamics of the system. 

As suggested by Dr. Timothy Ganesan Andrew during the viva voce for this project, 

future researchers could look at system characterization. With the introduction of 

stiction, the system may no longer be able to be represented by a linear quadratic 

model. Therefore, linear MPC would not be appropriate for this problem. However, 

this could open up a new dimension of study in the lesser researched area of 

nonlinear MPC.  
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