

FINAL YEAR PROJECT II: DISSERTATION

Study on Minimum Ignition Energy of Dust Fire/Explosion

PREPARED BY: HAZWAN FARID BIN MUHAMMAD PUZI 14382

SUPERVISOR: DR. AZIZUL BIN BUANG

Preliminary report submitted in partial fulfilment of the requirement for the Bachelor of Engineering (Honors) Chemical SEPTEMBER 2014

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh, Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Study on Minimum Ignition Energy of Dust Fire/ Explosion

by

Hazwan Farid Bin Muhammad Puzi 14382

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL)

Approved by,

(Dr. Azizul Bin Buang)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

SEPTEMBER 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(HAZWAN FARID BIN MUHMMAD PUZI)

Abstract

Dust explosion is one of the most massive disasters in the process industries. When the company process plant involve with dust it is difficult to handle as the dust is very fine particle and hard to contain. In this project, it refer to incident happened in Imperial Sugar Refineries, where dust explosion had happened in 2008. In conjunction with dust explosion incident, this project will study on the minimum ignition energy for dust fire and explosion. Mainly, the study will be focusing on the food dust samlples. The study will be done by conducting several experiments on the factors which can initiate the dust fire and explosion. The factors will be studies in this project are the size of the dust and type of the dust. The dusts used in this study are from the food processing industries which is flour and sugar. At the end of study, the minimum ignition energy from each type of dust sample will be determined.

Acknowledgement

I would like to take this opportunity to express my sincere thanks and appreciation to the following persons and organizations who have directly or indirectly given generous contributions towards the success of this project.

First and foremost, I would like to praise Allah the Almighty for His Guidance and blessing for helping me to finish the Final Year Project (FYP) successfully. I would like to express the deepest gratitude to my supervisor, Dr. Azizul Bin Buang for his full commitment and dedication in giving me guidance and support. This design project would not be able to be completed in time without his constant encouragement and guidance.

Secondly, I would like to thank our Plant Design Project (PDP) I coordinators, Dr. Maziyar Sabet and also Plant Design Project (PDP) II, Dr. Asna Binti Mohd Zain for their guidance in completing the project. My gratitude also goes to all lecturers, GAs, staffs and colleagues that have directly and indirectly involved in making this project a success.

Abstracti
Acknowledgementii
List of figuresiv
List of tablev
Chapter 1: Introduction
1.1 Background1
1.2 Problem Statement
1.3 Objectives
1.4 Scope of Study
Chapter 2 : Literature Review and Theory
2.1 General concept
2.2 Possible hazards
2.3 Ignition sources
2.4 Method to study the minimum ignition energy
Chapter 3: Methodology
3.1 Project flowchart
3.2 Gantt Chart and Key Milestone
3.3 Experiment Methodology16
Chapter 4: Result
Experiment set-up
Discussion
Chapter 5: Conclusion
References
Appendix A

Table of Contents

List of figures

Figure 1: Explosion Pentagon diagram
Figure 2: A hidden dust deposit inside a duct can bring to ignition by heat supplied to the duct
wall from the outside7
Figure 3: A steel bolt falls into a tall silo for corn and collides with the concrete silo wall at
high velocity
Figure 4: A practical situation that could lead to a dust explosion initiated by an electrostatic
spark discharge9
Figure 5: Ignition of a fine niobium layer during the determination of its minimum ignition
temperature
Figure 6 : Schematic layout of the new spark discharge circuit and integrated spark energy
measurement system11
Figure 7: The spark generator, the spark energy measurement system and dust explosion
chamber12
Figure 8: Schematic diagram of the Hartmann apparatus13
Figure 9: Apparatus set-up for Hot-Plate test16
Figure 10 : Experiment apparatus set-up19
Figure 11 : Particle size distribution graph20
Figure 12: Comparison of caster sugar dust before (left) and after (right) the experiment22
Figure 13: Comparison of brown sugar dust before (left) and after (right) the experiment22
Figure 14: Comparison of wheat flour dust before (left) and after (right) the experiment23
Figure 15: Comparison of corn starch dust before (left) and after (right) the experiment23
Figure 16: Comparison of custard powder dust before (left) and after (right) the experiment24
Figure 17: Comparison of potato starch dust before (left) and after (right) the experiment24
Figure 18: Comparison of sago starch dust before (left) and after (right) the experiment24
Figure 19: Comparison of tapioca starch dust before (left) and after (right) the experiment25

List of table

Table 1 : Characteristic of tested metal powder	10
Table 2 : Minimum ignition energy of nanoscale and micrometer scale metal powder	13
Table 3 : Sample of data collection table for ignition temperature	17
Table 4 : Sample of data collection table for sample size	18
Table 5 : Sample of data collection table for determining ignition energy	18
Table 6: Data for minimum ignition temperature	19
Table 7: Data for size of samples	21
Table 8 : Data for Minimum ignition energy of samples	21

Chapter 1: Introduction

1.1 Background

The hazard of dust explosion is difficult to avoid in processes, especially when that company handles with the combustible powders. Many fines materials such as, coal, wood, flour, starch, sugar, pharmaceuticals, plastics and some metal can easily get burned. According to U.S. National Fire Protection Association there are differences between dust and combustible dust. Dust is any finely divided solid 420µm or 0.017in. or less in its diameter. While combustible dust is defined as combustible particulate solid that present a fire or deflagration hazard when suspended in air or some other oxidizing medium over a range of concentrations, regardless of particle size or shape. So essentially, 420µm boundary should not be view as a sharp delineation between explosible dusts and non-explosible dusts. What will determine whether that certain particulate material represents dust explosion hazards are its actual chemical composition in addition to physical parameters such as particle shape and particle size. Dust explosion may occur in many industries, not just to the chemical process industries. It occurred in the petrochemical plant that produce chemical as the desired product and it also occurred in powder metallurgy manufacturing facilities product. In the other hand, it occurred in a coal mine where the coal dust was not viewed as the hazardous chemical.

According to Eckhoff dust explosion generally arise from the reaction of a fuel with oxygen to generate oxides and heat. So material such as silicates and carbonates will not experience dust explosion as they are already stable oxides. This explains why limestone finds use as explosion inertant in coal mines. When subjected to high temperatures, limestone will act as a heat sink and may decompose into calcium oxides and carbon dioxides. In this project, it will discuss on the minimum requirement of ignition energy for dust fire/explosion.

1.2 Problem Statement

Since the beginning of this century, there are many incident happened caused by dust explosion. The impact of this dust explosion almost destroyed the entire plant facility once it occurred. According to incident of dust explosion at Imperial Sugar Refinery on February 7, 2008 at 7:15 p.m. had resulted in 14 workers fatalities and thirty six workers were treated for serious injuries and burns. The impact of the explosion, it has destroyed the sugar packaging building, palletizer room and silos, and severely damaged the bulk train car loading area and parts of sugar refining process areas.

According to The U.S. Chemical Safety and Hazard Investigation Board (CSB), they had conducted an investigation on the incident. From the investigation they have identified the causes of the explosion. There were 6 possible causes of the incident which are sugar and cornstarch conveying equipment was not designed or maintained to minimize the release of sugar and sugar dust into the work area. The company did not have adequate housekeeping practices resulted in significant accumulations of combustible granulated and powdered sugar and combustible sugar dust on the floors and elevated surfaces throughout the packing buildings. Then, the explosion occurred because airborne combustible sugar dusts accumulate above the minimum explosible concentration inside the newly enclosed steel belt assembly under silos 1 and 2. CSB also had identified an overheated bearing in the steel belt conveyor most likely ignited a primary dust explosion. The primary dust explosion inside the enclosed steel conveyor belt under silos 1 and 2 triggered massive secondary dust explosions and fires throughout the packing buildings. Lastly, accumulated sugar dust and spilled sugar fueled the secondary explosions and fires. All the 14 fatalities were the result of this secondary explosion.

From this incident, we can notice dust which is the finest things that almost neglected can lead to a massive explosion. So, in this project will be further discussed on the minimum ignition energy for dust fire/explosion.

1.3 Objectives

The aim of this project is to investigate and identify the minimum ignition energy of food samples to initiate the dust fire and explosion. The parameters will be changed to find the minimum ignition energy throughout laboratory experiment.

1.4 Scope of Study

The study will involve researching and experimenting the possible factors that can initiate the dust fire and dust explosion. There will be several parameters will be tested and changed which are:

- 1. Size of the dust
- 2. Type of dust

Chapter 2 : Literature Review and Theory

2.1 General concept

From the explosion pentagon we may know many aspects on a fundamental level about dust explosion causation. The dust explosion may happen if explosion pentagon is satisfied. Within the explosion pentagon requirements are fuel, an oxidant, an ignition source, augment by mixing of the fuel and oxidant as well as confinement of the resulting mixture. In dust and air mixture, dust particle are strongly influenced by gravity. An essential prerequisite of dust explosion is the forming of a dust/oxidant suspension. When the suspension combustion occur, confinement creates an overpressure to arise, thus enabling a fast burning dust flame to transition to dust explosion.

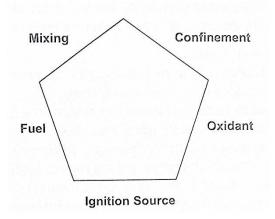


Figure 1: Explosion Pentagon diagram

Besides that, a dust explosion can take place if it satisfied with several conditions where the dust must be explosible. The dust also must have particle size distribution that will allow the propagation of the flame and the atmosphere where the dust disperse as a cloud or forming a suspension must contain sufficient oxidant to support combustion. Then, the dust suspension or cloud must have a concentration within the explosion range according to the upper and lower explosive diagram. The most important is the dust cloud must be in contact with an ignition source of sufficient energy to cause an ignition.

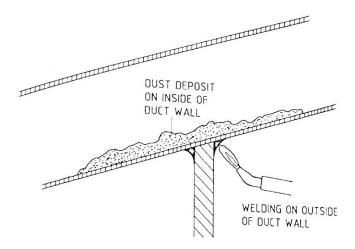
2.2 Possible hazards

There are several factors can bring hazard to the explosion by concerning both dust and the environment where it dispersed and suspended. According to the John Barton in his writing there were nine factors are highlighted where hazard of an explosion might happen. The first factor is the dust itself. Every dust has different variation of their explosibility and the consequent explosion violence generated. The violence generated from each explosion can be determine through two parameters which are the maximum explosion pressure that can be generated and the maximum rate of explosion pressure rise or explosion speed that is related to the *Kst* value. The second factor is about the composition of the dust. For example, coal dust mainly is highly explosible and emits higher explosion violence as the greater its volatile content. Then for the anthracite is non-explosible because it's have low volatile content.

Next highlighted factors are about the particle size and particle size distribution. If the particle is finer, it have bigger surface area and thus more likely to be explosible. For the distribution when the dust is made up from a series of particle ranging from fine to course, the fines particles will play the most prominent role in an ignition and in the propagation of an explosion. The fourth factor is the concentration of the dispersed dust. The concentration of the dispersed dust is depending on the lower explosion limit and upper explosion limit. The explosion will not propagate if the concentration is below the lower explosion limit or beyond the upper explosion limit. At the optimum concentration, the dust will give the most violence explosion.

In the fifth factor, the moisture content will affects the impact of explosion. As the moisture of the increase, the explosion violence will fall and may become explosible. The sixth factor to be considered is the ambient temperature and pressure. It is because a decrease in the maximum explosion in an enclosed explosion resulted by an increase in ambient temperature. Increase in the ambient temperature will cause a very little effect on the rate of pressure rise.

The turbulence of the dust cloud is another factor which can caused hazard for an explosion. In order for the dust cloud to happen, there must be some air movement for the dust to remain dispersed. Explosion violence of a dust cloud at the low level of turbulence is relatively mild but the explosion will propagate more vigorously at high state of turbulence

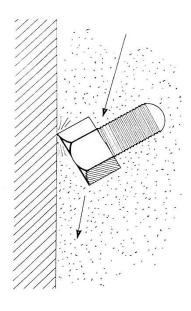

when the flame front is broken up and its effective area are much increased. In addition with the presence of flammable gas, the dispersed dusts' explosion violence increases markedly if admixed with even a low concentration of flammable gas to give a so called 'hybrid mixture'.

The last factor is about the scale of the vessel. When mention about the scale of a vessel, a large vessel will give more explosion impact compare to the smaller vessel, but for a large vessel it will take more time for the pressure to arise. One of the simplest scaling laws is the cubic law, which relates the rate of pressure rise in an explosion to the cube root of the vessel volume.

2.3 Ignition sources

Ignition can be defined as the process where propagation is started or initiated. An ignition will be useful if it was applied to the substance which able to propagate a self-sustained combustion or exothermal decomposition wave. Scientifically, ignition will occur when the heat integration in some volume of a substance exceeds the amount of heat dissipation from the volume. It will be worst if the process continue to do so and increase the temperature. The characteristic dimension for ignition and no ignition of a volume is decided is on the order of the thickness of the front of a self-sustained flame through the mixture. This because self-sustained flame propagation causes a continuous ignition wave to the new part of the cloud which experienced the same condition where the heat generated is more than the heat dissipated.

The most common ignition sources are smoldering or burning dust, open flames, hot surfaces, heat from mechanical impact and electrical discharges and arcs. Ignition caused by smoldering or burning dust happened when combustible dust deposited in heaps or layer, in under certain circumstances may develop internal combustion and high temperature.


Figure 2: A hidden dust deposit inside a duct can bring to ignition by heat supplied to the duct wall from the outside.

The combustion could happen because of the porosity of the dust deposit, which can allow the oxygen access to the dust particles surface throughout and make the heat conductivity of the deposit become low. According to Eckhoff, heat developed due to comparatively slow initial oxidation at moderate temperature inside the dust deposit may not be conducted into the surroundings sufficiently fast to prevent rising temperature in the reaction zone. The temperature of the particles will increase further if the oxygen still available around the particles. For example if a dust deposit containing a hot reaction zone or known as smoldering nest, is disturbed and dispersed by mechanical action or air blast, a dust explosion can be easily initiated by the dust if it contact with combustible dust cloud. On the other hand, a dust deposit on a heated surface, which supplies the heat needed to trigger the self-ignition in the dust.

Open flames will be the most obvious source of ignition. For example during hot work such as welding and cutting, the flames from welding and cutting burners are more than enough to initiate any dust explosion to any dust cloud. The cutting burner flame is hazardous towards the dust is because its supply excess oxygen to the working zone. Besides that, smoking should be prohibited in areas where combustible dusts exist and a wooden match develops about 100J of thermal energy per second where it's enough to initiate the explosion.

Ignition created by hot surfaces is because of direct contact of dust layer with the surfaces. However, for hot surface to initiate an ignition, the temperature of the surface should be in the range of 400° C to 500° C.

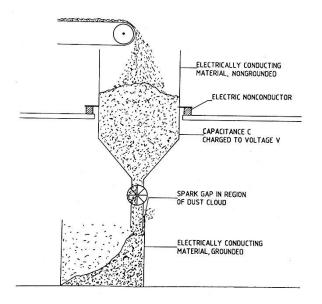

Heat from mechanical impact is sometimes also created an ignition for a dust explosion from its friction. For friction to create an ignition, it will be a long duration process where two surfaces will rub onto each other and caused heat to accumulate. While for a short duration process could give out enough heat if the bodies is under large transient mechanical forces. Small fragments of solids materials maybe torn off, and if the body made of metal, it may start burning in air due to the initial heat absorbed in the impact process.

Figure 3: A steel bolt falls into a tall silo for corn and collides with the concrete silo wall at high velocity.

Lastly, electric sparks and arcs are very famous from past century about its ability to initiate dust explosion. The minimum sparks energy required for ignition varies with the type of dust, the effective particle size distribution in the dust cloud, the dust concentration and turbulence, and the spatial and temporal distribution of the energy in the electric discharge or arc. Generally, it is now accepted that many dust can be ignited by sparks energies in the range of 1-10mJ. Some dust may ignite at even lower energies. It may be useful to distinguish between discharges caused by release of accumulated electrostatic charges and sparks or arcs generated when live electric circuits are broken either accidentally or intentionally. According to Luttgens and Glor, electrostatic discharge can be held in six different ways

which are spark discharge, brush discharge, corona discharge, propagating brush discharge, discharge along the surface of the powder or dust in bulk and lightning-like discharge. In between this six ways, spark discharge and brush discharge is the most hazardous.

Figure 4: A practical situation that could lead to a dust explosion initiated by an electrostatic spark discharge.

2.4 Method to study the minimum ignition energy

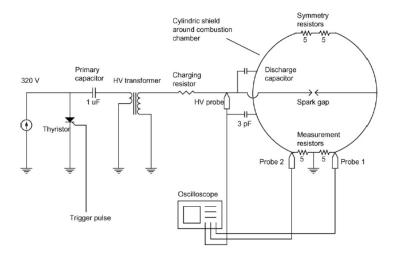

According to Dufaud O. et all, had conducted an experiment to study the minimum ignition temperature for layers of metal powder mixtures. In order to study the characteristic of metal powder mixtures, the dusts have been chosen with regard to two main criteria which is their minimum ignition temperature must be significantly different and these materials must have distinct "thermal signature". The experiments have been conducted on a heating plate consisting on an Inconel square plate of 280 mm length. Powder beds of 5mm thickness were put on the plate and heated at a rate of 40° C/minute to a maximum temperature of 480° C.

At first, various powders have been tested with a maximum diameter of 44 μ m (Table 1). However, only zirconium and niobium powders ignited at a temperature close to 300^o. Then powder with lower particle size distribution ranging between 1 and 6 μ m was used for

the test. As a result only four powders ignited during such test which is iron, niobium, tantalum and zirconium as shown in Table 1.

Powders	Particle size (µm)	Main Oxide	T _{ignition} (⁰ C)	Observation	Providers
Aluminum	44	Al_2O_3	-	No ignition	Alfa Aesar
Iron	1-6	Fe ₂ O ₃	155	Ignition	Goodfellow
Iron	44	Fe_2O_3	-	Self-heating	Sigma-Aldrich
Magnesium	44	MgO	-	No ignition	Alfa Aesar
Niobium	1-5	NbO	293	Ignition	Alfa Aesar
Niobium	44	NbO	304	Ignition	Alfa Aesar
Tantalum	2	Ta_2O_5	334	Ignition	Alfa Aesar
Tantalum	44	Ta ₂ O ₅	-	Self-heating	Alfa Aesar
Titanium	44	TiO ₂	-	No ignition	Alfa Aesar
Tungsten	44	WO ₂	-	No ignition	Alfa Aesar
Zinc	44	ZnO	-	Self-heating	Merck
Zirconium	2-3	ZrO ₂	181	Ignition	Alfa Aesar
Zirconium	44	ZrO_2	290	Ignition	Alfa Aesar

Table 1 : Characteristic of tested metal powder


Figure 5: Ignition of a fine niobium layer during the determination of its minimum ignition temperature

On the other hand, according to Rendeberg E. and Eckhoff R.K. in their journal on measurement of minimum ignition energies of dust cloud in the 1 mJ region, applying the new spark generator to the explosive dust cloud showed that a number of dusts do in fact have minimum ignition energies that are one or two orders of magnitude lower than 1 mJ. The new spark generator may offer a basis for developing a standard test apparatus in the low energy region. An integrated system for measurement of spark voltage and current as function of time offers the opportunity to determine the sparks energy. Sparks are generated

by using a high voltage pulse to charge a discharge capacitor, which is subsequently discharged when the breakdown voltage of the electrode gap is reached.

The spark voltage is measured using a high voltage probe (Tektronic P6015), and the current is measured differentially using two conventional scope probes across the current measurement resistor. The spark energy is taken as the product of spark current and voltage, integrated over the duration of the spark, typically about 0.1 μ s, minus energy losses to the current measurement resistor. Using the present spark generator, spark with energies between about 0.03 and 10 mJ can be generated.

The schematic layout of the discharge circuit is shown in Figure 6. The electrodes are made of 2 mm diameter tungsten rods, sharpen to an angle of approximately 60° C. the electrode gap was one of the parameters that could be varied between tests.

Figure 6 : Schematic layout of the new spark discharge circuit and integrated spark energy measurement system.

Figure 7: The spark generator, the spark energy measurement system and dust explosion chamber.

According to Hong C. W. in his journal in research of minimum ignition energy for nano titanium powder and nano iron powder, also had use almost similar method as above which is using spark generator. In this experiment the apparatus used is the modified version of 1.2 L Hartmann apparatus which requires visual inspection of the ignition to confirm whether or not a dust cloud explosion has been induced. The sizes of titanium powder have been used during the experiment is $3 \mu m$, $8 \mu m$, $20 \mu m$ and $45 \mu m$ for microscale and 35 nm, 15 nm, 75 nm and 100 nm for nano scale. The spark ignition energies also varies from 1 to 1000 mJ.

Therefore, the entire experimental procedure in this research was carried out in accordance with the Standard Test Method for Minimum Ignition Energy of a Dust Cloud in Air in ASTM E 2019 published by American Society for Testing and Materials (2001). The minimum ignition energy is significantly affected by the turbulence that is observed in the apparatus. Then, prior to this experiment 1200 mg each of 15 nm Iron and 35 nm titanium powders were subjected to turbulence experiments and tested at 60 ms, 90 ms, 120 ms, 150 ms and 180ms. All the values are smaller than 1 mJ and the time delay for the experiment was 120 ms. Results from the experiment is as follows.

Table 2 : Minimum	ignition e	energy (of nanoscale	and micr	ometer scal	e metal	powder
10000	Sumone	Sy Sy	of noncoscore		onverer seen		ponorer

Nanoscale	
Diameter	Minimum ignition
	energy
Titanium	
35 nm	<1 mJ
75 nm	<1 mJ
100 nm	<1 mJ
Iron	
15 nm	<1 mJ
35 nm	<1 mJ
65 nm	<1 mJ

Micrometer scale	
Diameter	Minimum ignition
	energy
Titanium	
3 μm	<1 mJ
8 μm	21.91 mJ
20 µm	18.73 mJ
45 μm	21.91 mJ
Iron	
150 μm	

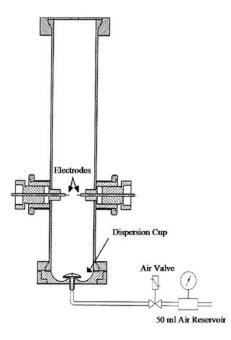
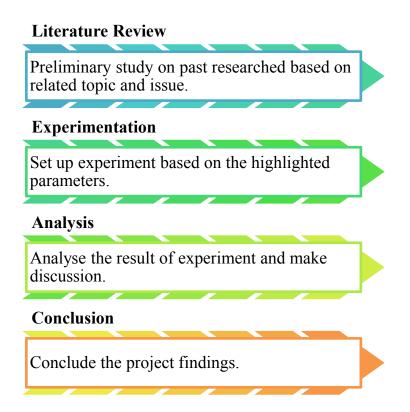



Figure 8: Schematic diagram of the Hartmann apparatus

Chapter 3: Methodology

3.1 Project flowchart

3.2 Gantt Chart and Key Milestone

No.	Detail/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	Selection of project topic.														
2.	Preliminary of research work.														
3.	Submission of extended proposal.						•								
4.	Proposal defense														
5.	Project work continues														
6.	Submission of Interim Draft Report													•	
7.	Submission of Interim Report														

No.	Detail/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	Project work continues														
2.	Submission of Progress Report							•							
3.	Project work continues.														
4.	Pre-SEDEX										•				
5.	Submission of Draft Final Report											•			
6.	Submission of Dissertation (soft bound)												•		
7.	Submission of Technical Paper												•		
8.	Viva														
9.	Submission of Project Dissertation (hard bound)														•

Process

Milestone

3.3 Experiment Methodology

Hot-Plate Test for Minimum Ignition Temperature Determination

Based on previous experiment conducted by researchers, the simplest technique to conduct the experiment to identify the minimum ignition temperature is by using hot plate. In order to set up the apparatus the experiment will need a modified electric hot plate, a temperature control unit, three thermocouples and a two channel recorder.

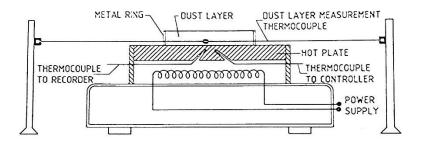


Figure 9: Apparatus set-up for Hot-Plate test

The possible procedures are:

- The hot plate is kept at given temperature, which is read by one of the thermocouples and displayed on one of the recorder channel.
- On the surface of the hot plate is laid a metal ring, with a diameter of 100mm and a height of either 5mm.
- The dust sample to be tested is placed in the metal ring and carefully leveled off to the height of the ring.
- Thermocouple is placed in the sample through holes in the metal ring. The temperature is displayed on the second recorder channel.
- The third thermocouple is used to regulate the plate temperature.
- Repeat the experiment until the minimum ignition temperature recorded.

It is important to know that the minimum hot plate ignition decrease systematically with decrease of dust layer thickness. The minimum ignition temperature will be recorded in the table 3.

From the data collected, the minimum ignition energy will be calculated using the following formula:

$$Q = mC_p \Delta T$$

Where,

m = mass of the dust

 C_p = specific heat capacity

 ΔT = change in temperature of the dust (minimum ignition temperature – initial temperature)

After that, the experiment will be conduct repeatedly to test the effect of minimum ignition temperature on the different sizes of the dust and different types of the dust.

Type of Sample	Mass of Sample (g)	Igni	tion Temperature (^o	C)
Type of Sample	wass of sample (g)	T ₁	T ₂	T ₃
Sago Starch				
Potato Starch				
Tapioca Starch				
Corn Starch				
Custard Powder				
Wheat Flour				
Brown Sugar				
Caster Sugar				

Table 3 : Sample of data collection table for ignition temperature

For the sample sizing, all samples had gone through particle size analyzer (Mastersizer 2000). From this analysis, the size of the samples had been determined according to the size range. The result of the analysis can be seen in the Appendix A. The range of particles size according to its highest percentage has been recorded in table 4 below.

Table 4 : Sample of data collection table for sample size.

Type of Sample	Size of Sample (µm)
Sago Starch	
Potato Starch	
Tapioca Starch	
Corn Starch	
Custard Powder	
Wheat Flour	
Brown Sugar	
Caster Sugar	

After the value of the ignition temperature is collected in the table 3, the value will be used to calculate the minimum ignition energy using the formula as per stated above. The value of the minimum ignition energy will be tabulated in the following table 5.

Table 5 : Sample of data collection table for determining ignition energy

Type of Sample	Ignition Energy (kJ)							
Type of Sample	Q_1	Q ₂	Q3					
Sago Starch								
Potato Starch								
Tapioca Starch								
Corn Starch								
Custard Powder								
Wheat Flour								
Brown Sugar								
Caster Sugar								

Chapter 4: Result

Experiment set-up

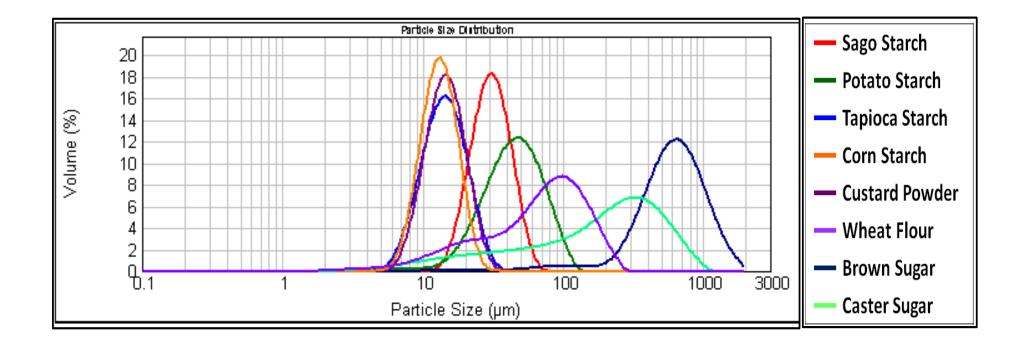


Figure 10 : Experiment apparatus set-up

Please refer Appendix A for individual particle size analysis for each sample.

Type of Sample	Mass of	Ignition Temperature (⁰ C)							
Type of Sample	Sample (g)	T ₁	T ₂	T ₃	T _{avg}				
Sago Starch	26.14	226.2	238.1	210.4	224.9				
Potato Starch	31.72	186.0	189.2	177.7	184.3				
Tapioca Starch	22.83	223.5	215.9	200.8	213.4				
Corn Starch	22.43	251.8	236.2	221.2	236.4				
Custard Powder	25.83	208.9	220.9	212.4	214.1				
Wheat Flour	27.22	197.5	166.6	152.9	172.3				
Brown Sugar	29.02	122.6	129.6	127.9	126.7				
Caster Sugar	29.47	114.7	115.0	109.5	113.1				

Table 6: Data for minimum ignition temperature

Figure 11 : Particle size distribution graph.

Table 7: Data for size of samples

Type of Sample	Size of Sample
Sago Starch	30.20 - 34.67
Potato Starch	45.71 - 52.48
Tapioca Starch	13.18 - 15.14
Corn Starch	13.18 - 15.14
Custard Powder	13.18 - 15.14
Wheat Flour	91.20 - 104.71
Brown Sugar	630.96 - 724.44
Caster Sugar	316.23 - 363.08

Table 8 : Data for Minimum ignition energy of samples

Type of Sample	Ignition Energy (kJ)				
i ype of Sample	Q ₁				
Sago Starch	9.2039				
Potato Starch	8.9371				
Tapioca Starch	7.9306				
Corn Starch	8.9025				
Custard Powder	8.3127				
Wheat Flour	8.2170				
Brown Sugar	4.9566				
Caster Sugar	4.6261				

Sample calculation:

 $Q = mC_p \Delta T$

m = 26.14g

 $C_p = 1.75 k J/kg.K$

 $\Delta T = (499.2 - 298) = 255K$

$$Q = (0.02614)(1.75)(201.2)$$

Q = 9.2039 kJ

Discussion

From the experiment conducted on the sugar dust the dust start to melt and become brownish in colour as the temperature was increased. At the temperature the dust start to become brown the temperature was recorded and consider as the minimum temperature for the particle to burns in figure 10 below. Comparing between brown sugar and caster sugar, the brown sugar took a longer time to burn compare to caster sugar. This is because brown sugar has bigger particle size compare to caster sugar.

Figure 12: Comparison of caster sugar dust before (left) and after (right) the experiment.

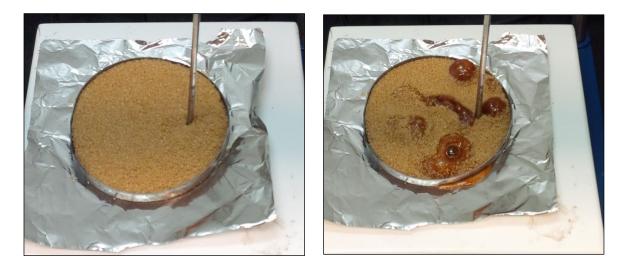


Figure 13: Comparison of brown sugar dust before (left) and after (right) the experiment

For the experiment conducted on the wheat flour dust the dust start to become brown as the temperature was increased. When the dust start to browning and produce smokes, the temperature was recorded and consider as the minimum temperature for the dust start to burns as shown in figure 14 below. Comparing between all the flour dust samples, corn starch should have the lowest ignition energy as it have the smallest size of all the samples.

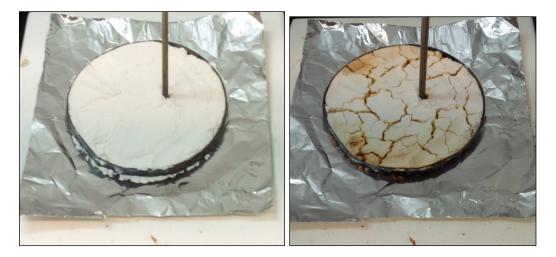


Figure 14: Comparison of wheat flour dust before (left) and after (right) the experiment.

Figure 15: Comparison of corn starch dust before (left) and after (right) the experiment

Figure 16: Comparison of custard powder dust before (left) and after (right) the experiment

Figure 17: Comparison of potato starch dust before (left) and after (right) the experiment

Figure 18: Comparison of sago starch dust before (left) and after (right) the experiment

Figure 19: Comparison of tapioca starch dust before (left) and after (right) the experiment

Comparing between starches and sugar, sugar has lower ignition temperature and ignition energy. This occurred might be due to the chemical properties of the starch and sugar. As sugar is the simplest molecule of starch which is glucose known as monosaccharide. While starch is the complex form of glucose, it was made up of multiple chains of disaccharides. Where disaccharides is refer to the two molecule glucose.

Chapter 5: Conclusion

In conclusion, hopefully this project will benefit human beings in a long term and will give human more awareness towards the hazards of dust fire and explosion in the workplace. Thus, study in the minimum ignition energy for dust fire and explosion will be the best option for industries to know the hazards around their factories and be more cautious towards the consequences, especially to the food processing industries. On the same time the will be ready with the method to prevent or reduce the risk of dust fire and explosion.

In future, I would like to recommend running this experiment by using other techniques such as Thermogravimetric Analysis (TGA) or Differential Thermal Analysis (DTA). In addition, this project is feasible by taking into account the time constraint and the capability of final year student with the assist from the supervisor and coordinator. It is a big hope for the accomplishment of this study. Later in the final report there will be improvement on the outcomes of the experiment as well as on the method of the experiment.

References

- A. Janes, D. C. (2008). Correlation between self-ignition of a dust layer on a hot surface. *Journal of Hazardous Materials*, 528-535.
- Amyotte, P. (2013). *An Introduction to Dust Explosion*. Massachusetts: Butterworth-Heinemann.
- Barton, J. (1997). *Dust Explosion Prevention And Protection*. Massachusetts: Gulf Professional Publishing.
- Eckhoff, R. K. (2003). *Dust Explosion in The Process Industries*. Massachusetts: Gulf Professional Publishing.
- Erlend Randeberg, R. K. (2006). Measurement of minimum ignition energies of dust clouds in the <1 mJ region. *Journal of Hazardous Materials*, 237-244.
- Hong-Chun Wu, R.-C. C.-C. (2008). Research of minimum ignition energy for nano Titanium powder. *Journal of Loss Prevention in the Process Industries*, 21-24.
- Hong-Chun Wu, R.-C. C.-C. (2009). Research of minimum ignition energy for nano Titanium powder. *Journal of Loss Prevention in the Process Industries*, 21-24.
- Olivier Dufaud, D. B.-P. (2014). Self ignition of layers of metal powder mixtures. *Powder Technology*, 160-169.
- Shengjun, Z. (2010). *Explosion Characteristics Measurement of Combustible Dust.* Shenyang: Northeastern University.
- Vorderbrueggen, J. B. (2011, March). Imperial Sugar Refinery Combustible Dust Explosion Investigation. *Process Safety Progress*, *30*(1), 66-81.

Appendix

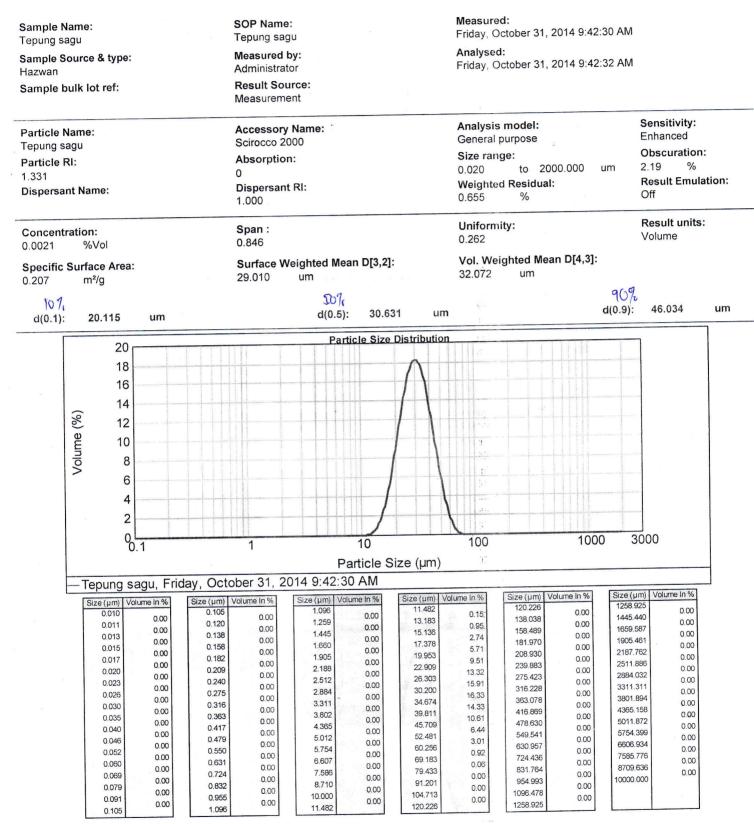
Particle Size Analysis Report

Sample N Tapioca S			SOP Name Tapioca St			Meası Friday	u red: , October 31	, 2014 9:5	7:10 AM			
Sample So Hazwan	ource & type:		Measured Administrat			Analy: Friday	sed: , October 31	2014 9.5	7·12 AM			
Sample b	ulk lot ref:		Result Sou Measureme				,	,				
Particle N Tapioca St	tarch		Accessory Scirocco 20	000			sis model: al purpose	-		Sensitivity Enhanced		
Particle R 1.330	: :		Absorption	1:		Size ra 0.020	-	000.000	um	Obscuratio		
Dispersan	nt Name:		Dispersant 1.000	RI:			ited Residua %		um	Result Emu Off		
Concentra 0.0015	ation: %Vol		Span : 0.960			Unifor 0.299	Uniformity: 0.299			Result units: Volume		
Specific S 0.453	Surface Area: m²/g		Surface W 13.237	eighted Mean um	D[3,2]:	Vol. W 15.049	/eighted Me) um	an D[4,3]:				
d(0.1):	8.799	um		d(0.5):	14.216 ur	n 11			d(0.9):	22.448	um	
	Г			Particle	e Size Distributio	n iy				1	7	
	16				\sim	3						
	14				/							
-	2 12											
10/	(%) emnio A					1975 - 19						
	8 8			/		÷			-			
To A	× 6					2.0						
	0					4 Ç () 3.0						
	4			<u>+++</u> //+								
	2			+++/++		Fr.						
	0 L 0.1		<u> </u>	1(100		1000	30	00		
			2		cle Size (µm)	ر تاری ایک		1000	50			
			riday, October 31, 2	014 9:57:10	AM						-	
	Size (µm) Volun 0.010	ne In %	Size (µm) Volume In %	Size (µm) Volume Ir 1.096		olume In %	Size (µm) Vo	lume in %) Volume In %		
	0.011	0.00	0.120 0.00	1.259 0	.00 11.482 .00 13.183	13.46 14.58	120.226 138.038	0.00	1258.925 1445.440	0.00		
	0.013 0.015	0.00	0.138 0.00	1.445	.00 15.136	13.99	158.489 181.970	0.00	1659.587 1905.461	0.00		
	0.017	0.00 0.00	0.182 0.00	1.905 0	19.953	11.79 8.62	208.930	0.00	2187.762	0.00		
	0.020	0.00	0.209 0.00 0.240 0.00	2.188	.00 22.909	5.29	239.883 275.423	0.00	2511.886 2884.032	0.00		
3	0.026 0.030	0.00 0.00	0.275 0.00 0.316 0.00	2.884 0	30.200	2.61 0.91	316.228	0.00	3311.311	0.00		
· .	0.035	0.00	0.363 0.00	3802	00 34.674 00 39.811	0.14	363.078 416.869	0.00	3801.894 4365.158	0.00		
	0.040 0.046	0.00	0.417 0.00	4.365	06 45.709	0.00 0.00	478.630	0.00	5011.872	0.001		
	0.052	0.00	0.550 0.00	5.754 0	32 52.481 25 60.256	0.00	549.541 630.957	0.00	5754.399 6606.934	0.001		
	0.060	0.00	0.631 0.00	6.607	77 69.183 79.433	0.00	724.436 831.764	0.00	7585.776 8709.636	0.00		
	0.069		0.724									
	0.069 0.079 0.091	0.00 0.00	0.724 0.832 0.00 0.955	8710 5.	13 91.201 02 104.713	0.00 0.00	954.993 1096.478	0.00	10000.000	0.00		

Operator notes:

Malvern Instruments Ltd. Malvern, UK

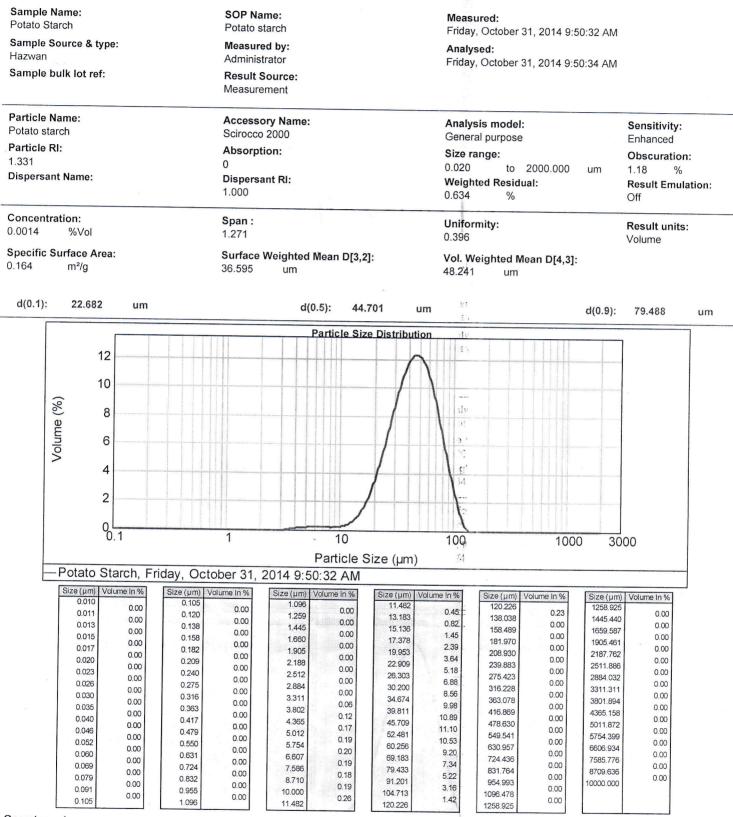
Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789


Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486

File name: Hazwan Record Number: 3 10 Nov 2014 10:55:03 AM

Operator notes:

Malvern Instruments Ltd Malvern, UK

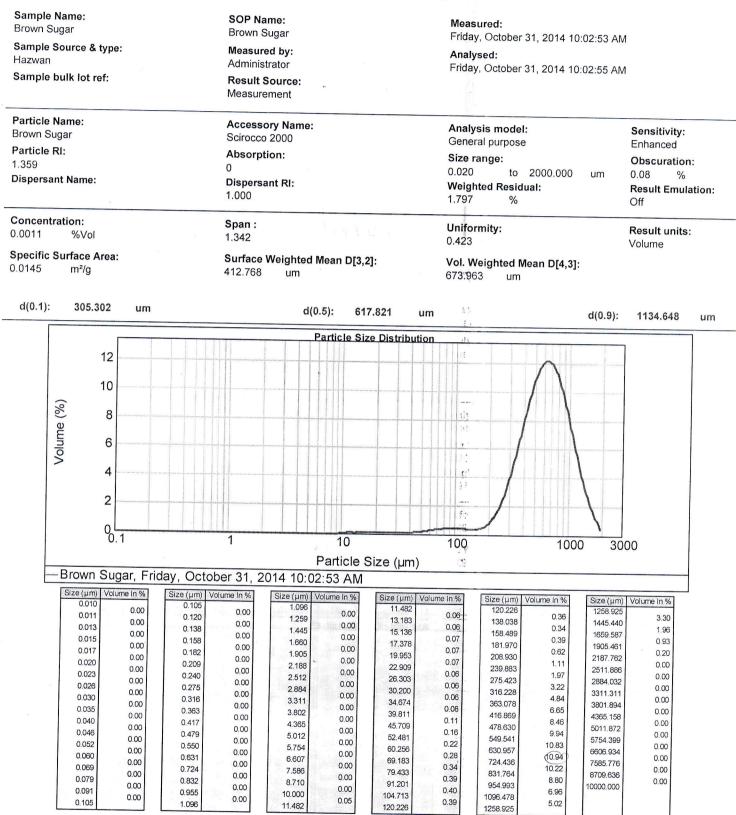

Tel = +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486 File name: Hazwan Record Number: 1 31 Oct 2014 9:42:45 AM

Operator notes:

Malvern Instruments Ltd. Malvern UK

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789


Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486

File name: Hazwan Record Number: 2 31 Oct 2014 9:51:05 AM

Operator notes:

Malvern Instruments Ltd. Malvern, UK

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486

File name: Hazwan Record Number: 4 31 Oct 2014 10:03:10 AM

MASTERSIZER (2000

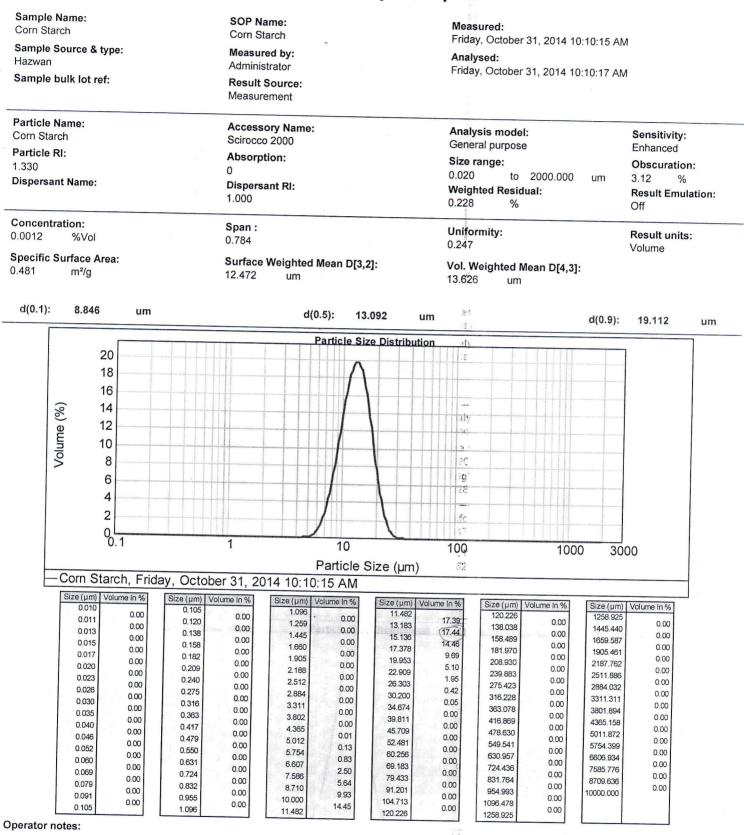
Result Analysis Report

Sample Name: Custard Powder Sample Source & type: Hazwan Sample bulk lot ref:	SOP Nam Custard Po Measured Administra Result So Measurem	by: tor urce:	Analysed:	Friday, October 31, 2014 10:06:36 AM				
Particle Name: Custard Powder Particle RI: 1.331 Dispersant Name:	Accessory Scirocco 2 Absorptio 0 Dispersant 1.000	000 n:	General purpos Size range: 0.020 to Weighted Resi	0.020 to 2000.000 um Weighted Residual:				
Concentration: 0.0014 %Vol Specific Surface Area: 0.439 m²/g	Span : 0.855 Surface W 13.677	eighted Mean D[3,2]: um in Annaiy Sci	0.264 Vol. Weighted 15.164 un					
d(0.1): 9.454 u	m	d(0.5): 14.463 u	im diff	d(0.9):	21.816	um		
18 16 14 12 0 10 10 10 10 8 6 4 2 0 0.1	<u> </u>	Particle Size Distributi	ε aly 10 20 10 32 	1000 3	000			
-Custard Powde	er, Friday, October 31,		12			-		
Size (µm) Volume In 9 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00 0.052 0.00 0.069 0.000 0.079 0.00 0.091 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Size (µm) Volume In % Size (µm) X 1.096 0.00 11.482 11.482 1.259 0.00 15.136 13.183 1.445 0.00 15.136 15.136 1.660 0.00 19.953 19.953 1.905 0.00 19.953 2.612 2.188 0.00 22.909 2.512 2.884 0.00 30.200 3.311 3.802 0.00 39.811 4.365 0.00 5.012 0.05 60.256 6.607 6.49 69.183 7.586 3.95 79.433 8.710 7.25 91.201 10.000 11.17 104.713 104.713	Size (µm) 14.55 138.038 16.30 158.489 15.66 181.970 12.78 239.883 2.02 275.423 0.50 363.078 0.00 416.869 0.00 446.869 0.00 549.541 0.00 630.957 0.00 630.957 0.00 831.764 0.00 831.764 0.00 954.993 0.00 1096.478	0.00 1258.92 0.00 1445.44 1659.58	0 0.00 7 0.00 1 0.00 2 0.00 6 0.00 2 0.00 1 0.00 4 0.00 8 0.00 9 0.00	-		

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486)(


3

File name: Hazwan Record Number: 5 31 Oct 2014 10:06:49 AM

Malvern Instruments Ltd. Malvern, UK

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486

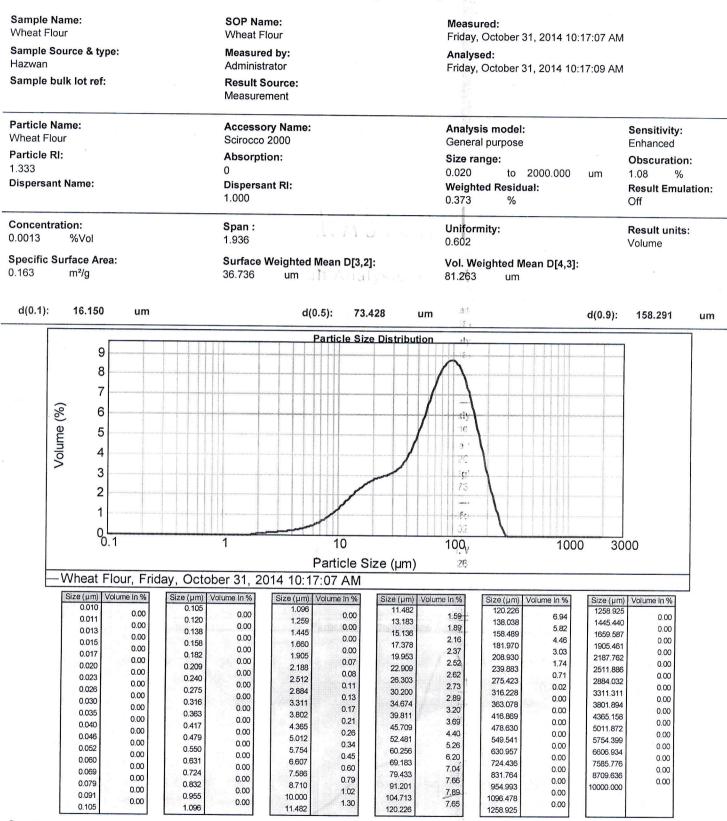
File name: Hazwan Record Number: 6 31 Oct 2014 10:10:28 AM

	e Name:		SOP Na	ame:			Measu	ured:				
Caster			Caster S	Sugar				, October 31, 2014 10:	13:49 AN	1		
Sample Hazwar	e Source & type:		Measur Adminis				Analys					
	e bulk lot ref:			Source:			Friday	, October 31, 2014 10:	13:51 AN	1		
			Measure									
Particle Castor :	e Name:			ory Name:				sis model:		Sensitivity:		
Particle	-		Scirocco Absorpt		x.			al purpose		Enhanced		
1.366			0	tion:			Size ra 0.020	to 2000.000	um	Obscuration	า:	
Dispers	sant Name:		Dispersa 1.000	ant RI:				ted Residual: %	um	Result Emul	ation:	
Concen 0.0022	n tration: %Vol		Span : 2.569				Unifor 0.805	mity:		Result units: Volume		
Specific	c Surface Area:		Surface	Weighted I	Mean D [3.2	1:		eighted Mean D[4,3]:		Volume		
0.103	m²/g		58.406	um			253.24	9 um				
d(0.1)): 22.225	um		d(0	.5): 208	.040 um			d(0.9):	556.646	um	
		1-1-1		F	Particle Siz	e Distribution				_	7	
	7						184					
	6											
	5							/ \				
	8						aly	/				
							26					
							L					
							igi					
	1					- And -	1121					
	2											
	1											
	1											
			1		10		ifo ∂€ 100γ	1000) 30	00		
	1 0 0.1	aar, Friday			Particle S	ze (µm)		1000) 30	00		
	1 0 0.1 — Caster Sug Size (µm) Volu		1 , October 31, 2	2014 10:1	Particle S 3:49 AM		по 08 100у 22				-	
	1 00.1 — Caster Sug Size (µm) Volu 0.010	ne In % Siz 0.00	, October 31, 2 (μm) Volume In % 0.105 0.00	2014 10:1 Size (µm) \ 1.096	Particle S 3:49 AM	Size (µm) Volu 11.482	по 08 100у 22	Size (µm) Volume In %	Size (µm) 1258.925	Volume In %		
	1 0.1 —Caster Sug Size (µm) Volur 0.010 0.011 0.013	ne In % Siz 0.00 0.00	, October 31, 2 (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00	2014 10:1 Size (µm)	Particle S 3:49 AM /olume In % 0.00 0.00	Size (µm) Volu	100 _γ .22 me In % 0.99 1.10	Size (µm) Volume In % 120.226 138.038 158.489 3.76	Size (µm) 1258.925 1445.440	Volume In % 0.00 0.00		
	1 0 0.1 —Caster Sug Size (µm) Volu 0.010 0.011	ne In % Siz 0.00 0.00 0.00 0.00	October 31, 2 0:105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.158 0.00	2014 10:1 Size (µm) \ 1.0% 1.259 1.445 1.660	Particle S 3:49 AM /olume In % 0.00	Size (µm) Volu 11.482 13.183 15.136 17.378	100 ₁ γ 3.2 me in %	Size (µm) Volume In % 120.226 138.038 158.489 181.970 4.83	Size (µm) 1258.925 1445.440 1659.587 1905.461	Volume In % 0.00 0.00 0.00		
	1 0.1 	ne In % Siz 0.00 0.00 0.00 0.00 0.00 0.00	, October 31, 2 (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00	2014 10:1 Size (µm) \ 1.096 1.259 1.445	Particle S 3:49 AM /dume In % 0.00 0.00 0.00 0.00 0.00	Size (µm) Volu 11.482 13.183 15.136	те In % 0.99 1.10 0.99 1.10 1.19 1.28 1.35	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.28 208.930 4.83 208.930 5.36	Size (µm) 1258.925 1445.440 1659.587 1905.461 2187.762	Volume In % 0.00 0.00 0.00 0.00 0.00		
	1 0.1 	ne In % Siz 0.00 0.00 0.00 0.00	October 31, 2 (μm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00	2014 10:1 Size (µm) 1 1.096 1.259 1.445 1.660 1.905 2.188 2.512	Particle S 3:49 AM /olume In % 0.00 0.00 0.00 0.00	Size (µm) Volu 11.482 13.183 15.136 17.378 19.953 22.909 26.303	me In % 0.99 1.10 1.19 1.28 1.35 1.42	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.28 208.930 5.36 239.883 5.79 275.423 6.06	Size (µm) 1258.925 1445.440 1659.587 1905.461	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00		
	1 0.1 	ne In % Siz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	October 31, 2 (μm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.275 0.00 0.316 0.00	2014 10:1 Size (µm) \ 1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884	Colume In % 0.00 0.05 0.10	Size (µm) Volu 11.482 13.183 15.136 17.378 19.953 22.909 26.303 30.200	те In % 0.99 1.10 0.99 1.10 1.19 1.28 1.35	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 3.76 181.970 4.28 208.930 4.83 209.930 5.36 275.423 6.06 316.228 6.12	Size (µm) 1258.925 1445.440 1659.587 1905.461 2187.762 2511.886 2884.032 3311.311	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	1 0.1 Caster Sug 0.11 0.11 0.013 0.015 0.017 0.020 0.023 0.026 0.030 0.035	ne In % Siz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	October 31, 2 (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.158 0.00 0.209 0.00 0.240 0.00 0.275 0.00 0.316 0.00 0.363 0.00	2014 10:1 Size (µm) 1 1.096 1.259 1.445 1.660 1.905 2.188 2.512	Colume In % 0.00 0.05 0.10 0.14	Size (µm) Volu 11.482 13.183 15.136 17.378 19.953 22.909 26.303	me In % 0.99 1.10 1.19 1.28 1.35 1.42 1.49 1.56 1.64	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.83 208.930 5.36 239.883 5.79 275.423 6.06 363.078 6.12 368.078 5.91	Size (µm) 1258.925 1445.440 1659.587 1905.461 2187.762 2511.886 2884.032 3311.311 3801.894	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	1 0.1 	ne In % Siz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	October 31, 2 (μm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.158 0.00 0.158 0.00 0.209 0.00 0.240 0.00 0.275 0.00 0.316 0.00 0.363 0.00 0.417 0.00	2014 10:1 Size (µm) 1 1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884 3.311 3.802 4.365	Colume In % 0.00 0.05 0.10	Size (µm) Voiu 11.482 13.183 15.136 17.378 19.953 22.909 26.303 30.200 34.674 39.811 45.709	if α 0.5 100 γ 1.2 me In % 0.99 1.10 1.19 1.28 1.35 1.42 1.56 1.64 1.72	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.83 208.930 4.83 239.883 5.36 375.423 5.79 376.423 6.06 316.228 6.12 363.078 5.91 416.869 5.45 478.630 4.76	Size (µm) 1258.925 1445.440 1659.587 1905.461 2187.762 2511.886 2884.032 3311.311	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	1 0.1 Caster Sug 0.11 0.11 0.013 0.015 0.017 0.020 0.023 0.026 0.030 0.035	ne In % Siz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	October 31, 2 (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.138 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.00 0.363 0.00 0.417 0.00 0.479 0.00	2014 10:1 Size (µm) 1 1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884 3.311 3.802 4.365 5.012	Particle S 3:49 AM /dume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.14 0.20 0.27 0.35	Size (µm) Voiu 11.462 13.183 15.136 17.378 19.953 22.909 26.303 30.200 34.674 39.811 45.709 52.481	me In % 0.99 1.10 1.19 1.28 1.35 1.42 1.49 1.56 1.64	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.83 208.930 5.36 275.423 5.79 316.228 6.06 316.228 6.12 363.078 5.91 416.869 5.45 478.630 4.76 549.541 3.89	Size (µm) 1258,925 1445,440 1659,587 1905,461 2187,762 2511,886 2884,032 3311,311 3801,894 4365,158 5011,872 5754,399	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	1 0 0.1 0.1 0.1 0.10 0.010 0.011 0.013 0.015 0.017 0.020 0.023 0.026 0.023 0.026 0.030 0.035 0.040 0.046 0.052 0.060	ne In % Siz 0.00	October 31, 2 ie (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.158 0.00 0.209 0.00 0.240 0.00 0.275 0.00 0.363 0.00 0.417 0.00 0.4550 0.00 0.550 0.00	2014 10:1 Size (µm) 1 1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884 3.311 3.802 4.365	Particle S 3:49 AM /olume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.14 0.20 0.27 0.35 0.44	Size (µm) Voiu 11.482 13.183 15.136 17.378 19.953 22.909 26.303 30.200 34.674 39.811 45.709	me In % 0.99 1.10 1.19 1.28 1.35 1.42 1.49 1.56 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.82 1.82 1.92 2.04	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.28 208.930 5.36 239.883 5.36 237.5423 6.06 316.228 6.12 363.078 5.91 416.869 5.45 478.630 4.76 59.541 4.76 630.957 3.89 724.436 2.95	Size (µm) 1258.925 1445.440 1659.587 1905.461 2187.762 2511.886 2884.032 3311.311 3801.894 4365.158 5011.872 5754.399 6606.934	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	1 0.1 	ne In % Siz 0.00	October 31, 2 (Pm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.138 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.00 0.316 0.00 0.417 0.00 0.450 0.00 0.550 0.00 0.631 0.00 0.724 0.00	2014 10:1 Size (µm) \ 1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884 3.311 3.802 4.365 5.012 5.754 6.607 7.586	Particle S 3:49 AM /olume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.14 0.20 0.27 0.35 0.44 0.54	Size (µm) Volu 11.482 13.183 15.136 17.378 19.953 22.909 26.303 30.200 34.674 39.811 45.709 52.481 60.256 69.183 79.433	me In % 0.99 1.10 1.19 1.28 1.35 1.42 1.49 1.56 1.64 1.72 1.82 1.82 1.92 2.04 2.19	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 3.76 181.970 4.28 208.930 5.36 239.883 5.36 275.423 6.06 316.228 6.12 363.078 5.91 416.869 5.45 549.541 3.76 549.541 3.89 630.957 2.95 724.436 2.00 831.764 1.14	Size (µm) 1258,925 1445,440 1659,587 1905,461 2187,762 2511,886 2884,032 3311,311 3801,894 4365,158 5011,872 5754,399	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
	1 0 0.1 0.1 0.1 0.10 0.010 0.011 0.013 0.015 0.017 0.020 0.023 0.026 0.023 0.026 0.030 0.035 0.040 0.046 0.052 0.060	ne In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	October 31, 2 (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.240 0.00 0.240 0.00 0.275 0.00 0.316 0.00 0.417 0.00 0.631 0.00 0.631 0.00	2014 10:1 Size (µm) \ 1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884 3.311 3.802 4.365 5.012 5.754 6.607	Particle S 3:49 AM /olume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.14 0.20 0.27 0.35 0.44	Size (µm) Volu 11.482 13.183 15.136 17.378 19.953 22.909 26.303 30.200 34.674 39.811 45.709 52.481 60.256 69.183	me In % 0.99 1.10 1.19 1.28 1.35 1.42 1.49 1.56 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.82 1.82 1.92 2.04	Size (µm) Volume In % 120.226 3.29 138.038 3.76 158.489 4.28 181.970 4.28 208.930 5.36 239.883 5.79 316.228 6.06 316.228 6.12 363.078 5.91 416.869 5.91 478.630 4.76 630.957 2.95 724.436 2.00	Size (µm) 1258.925 1445.440 1659.587 1905.461 2187.762 2511.886 2884.032 3311.311 3801.894 4365.158 5011.872 5754.399 6606.934 7585.776	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486 G. 11 | 121


File name: Hazwan Record Number: 7 31 Oct 2014 10:14:04 AM

MASTERSIZER (200

Result Analysis Report

Operator notes:

Malvern Instruments Ltd. Malvern UK

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.54 Serial Number : MAL18486 File name: Hazwan Record Number: 8 31 Oct 2014 10:17:20 AM