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ABSTRACT

This study was to determine and compare the cost between the breakwaters, including 

the conventional and the floating breakwater, with respect to the material cost. 

Information of various kind of breakwaters were gathered from the past researches and 

were used in this cost comparative analysis. Four main objectives were being focused, 

which were (i) to account the unit cost of the conventional breakwaters, (ii) to analyze

the unit cost of the floating breakwaters, (iii) to estimate the unit cost material of H-Float 

model, and (iv) to conduct a cost comparative study of the H-Float against other types of 

floating breakwaters. Based on the study case of total water depth of 12.9 m and wave 

period of 8 seconds, the Y-frame breakwater takes the lowest estimation material cost 

(US $ 5556), followed by H-Float (US $ 9495), box-type (US $ 11925) and the 

conventional rubblemound breakwater (US $ 33898). This difference was mainly due to 

the different in sizing of the breakwater to perform the same performance (coefficient 

transmission, Ct = 0.5), thus inducing different material cost. However, although the 

material cost of the H-Float is slightly higher than the Y-frame breakwater, the use of H-

float as a wave defense structure is also economically suitable to be implemented in 

future. More extensive research on this topic is also recommended.
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CHAPTER 1: INTRODUCTION

1.1 Background

Breakwaters are structures located in the sea and are used to protect an area 

against undesirable wave heights. There are two kinds of breakwater, namely 

bottom-founded and floating-type breakwater. The use of breakwater has been 

increasing in demand especially at the coastal areas where a lot of facilities are 

being developed for goods. Numerous functions such as recreational harbors, 

ship ports, marinas and marine agriculture where located at coastal area will 

require breakwaters. This is to provide some protection especially from the 

external sea waves that may hit the areas and limit the activities at such places. 

In the earlier stages, bottom-founded breakwater are quite common as it would 

easily be constructed and have great potential of energy transmitter and energy 

absorber towards sea waves. However, due to industrial economic development 

for developing countries, numerous ports are nowadays established along 

coastline, where it can accommodate larger ships to stop and transfer all kind of 

good at the ports. As the port size increases, the required seabed level at the 

boundary will relatively go deeper. It is no doubt that fixed breakwaters can 

offer excellent protection for the coastal areas and higher durability in 

withstanding the destructive waves, however they contribute several drawbacks

that may not be economically and environmentally friendly. Thus, researchers 

have developed several types of alternative structures to overcome the 

restrictions that are associated with fixed breakwaters. Thus, the method of 

reducing the wave effect are enhanced with the use of floating breakwater, 

which is much easier to be dealt with.

Basically, floating breakwaters are often applied where conventional 

breakwaters are less suitable to apply. This type of breakwaters have been used 

as one of the alternative way to overcome the destruction of waves towards the 

coastal areas. It also may be defined as a structure that combines the ability to 

reduce the height of ocean waves with advantages in terms of environmental 
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friendly, transportation and cost, while being reusable and removable. 

Comparing the floating breakwaters to the fixed breakwaters, the former offers 

more advantages. The cost of floating breakwaters is insensitive to water depth 

and the breakwaters can be easily moved to serve to a new location with 

minimum effort, however they are not as strong as its counterpart. Table 1 shows 

the summarized advantages and disadvantages of both fixed and floating 

breakwaters (Nadia, 2013).

Table 1: Advantages and Disadvantages of Fixed and Floating Breakwater

Fixed Breakwater Floating Breakwater

A
d

va
n

ta
ge

s

¸ Protection against high and 

long waves period

¸ Easily repaired

¸ Aquatic habitat

¸ Strong structure

¸ Easily arranged/moved

¸ Less sensit ive to water depth

¸ Low construction cost

¸ Environmental friendly

¸ Low interference with

water circulat ion and fish

migrat ion

D
is

ad
va

n
ta

ge
s

¸ Semi-permanent structure

¸ Limited water depth

application

¸ High construction cost

¸ Potentially trap debris

¸ Poor water circulat ion 

behind structure

¸ Ineffective  for high and  

lo ng period wave

¸ High maintenance cost

¸ Failure in heavy storm

A number of researches were conducted over the years to study and investigate 

the best model characteristics and interactions in producing more reliable design 

of floating breakwaters. Series of tests and experiments were also conducted on 

these designed models, thus improving their performances, year by year of 
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studies. Together with the study, some researchers were also came with some 

information about the cost of the breakwater. This may give some overview 

about the costing of the available breakwater, in relation to the cost of the 

respective year of the research. The most widely studied model of box-type 

floating breakwater has become the motivation for the design and development 

of the H-type floating breakwater (Teh et al, 2014) as shown in Figure 1. 

Figure 1: Design of H-type Floating Breakwater (Teh et al, 2014)

The new design of H-type floating breakwater, also known as H-Float, offers

better results in attenuating wave energy compared to other conventional floating 

breakwater designs. 

1.2 Proble m State ment

Through decades, various types of breakwater has been studied and investigated 

their performance. This includes the conventional and floating breakwaters in this 

field. In selecting the type of breakwater to be implemented at site, cost is one of 

the most important thing to be considered, in order to select the effective 

economic breakwater. However, less information about the costing of breakwaters 

are available nowadays. Thus, in this study, construction material cost analysis of 

various breakwaters will be analyzed and discussed based on site condition and 

performance for the breakwaters. The H-Float model will also be evaluated to 

check whether the model is a cost-effective model or not.
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1.3 Objectives

The objectives of this study are as follows:

1. To account the unit cost of conventional breakwaters

2. To analyze the unit cost of floating breakwaters

3. To analyze the cost estimation of H-Float breakwater model

4. To conduct a cost comparative study of the H-Float against other types of 

floating breakwaters.

1.4 Scope of Study

In this project, the scope of study are outlined as follows:

1. Literature review

Previous information about breakwater performance and costing from 

available researches and experiments are gathered to explore the development 

phase of the floating breakwater design as well as their findings about the unit 

cost of the breakwater.

2. Analysis of data from literature review

Data collected from literature review will be analyzed and discussed, focusing 

on the cost variation factors among the breakwater.

3. Develop a study case of material cost comparison on breakwaters

A study case will be developed and the material cost of each breakwater 

options available will be compared for the most economical floating 

breakwater, including the H-Float. The use of H-Float as wave defense 

structure will be assessed.
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CHAPTER 2: COST ANALYSIS OF CONVENTIONAL 
BREAKWATERS

This chapter discussed the fundamental concepts on the commonly used 

conventional breakwaters and the cost variation among them. This part will stress 

on the unit cost of the conventional breakwaters including the construction cost 

and transportation cost based on past researches available.

2.1 Rubble Mound Breakwaters

Rubble mound breakwater is one of the most conventionally used breakwater as a 

protector to a coastal area from excessive wave action. It is a bottom-founded 

breakwater that are built up across the sea depth. It primarily dissipate the 

incoming wave energy by creating a turbulent run up within and over the armour 

layer. Some of the energy may squeeze into the slope and dissipate through it. For 

steep wave that running up to the slope, some energy is converted to potential 

energy while the balance is reflected back to the seaward and also transmitted to 

the leeward side. According to Palmer and Christian (1998), the ability to limit the 

height of transmitted wave can judge the effectiveness of a particular breakwater. 

For the incident wave energy, some of it may dissipated internally during flow 

through the core layer, and the remainder will appear as a small wave on the 

leeward side.

Figure 2 show the typical cross-section of a rubble mound breakwater. The bulk 

core of the breakwater cross-section comprises of a relatively dense rockfill. This

core is layered with one or two layers of rock as armour unit. The layer also may 

be made of precast concrete as its armour unit. The term “rubble” itself may 

including rock, riprap and precast concrete armour units (commonly used are 

tetrapods and accropodes), while the term “armour unit” representing both rock 

and precast concrete units.
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Figure 2: Typical Cross-section of a Rubble Mound Breakwater (Palmer and Christian, 
1998)

The design of rubble mound breakwater is enhanced by applying different types 

of armour units, which is replacing the heavy armour rock (around 8 to 15 tons) 

by precast armour unit (Tutuarima and d'Angremond, 1998). The precast armour 

unit is including tetrapods and accropodes, as shown in Figure 3 below. The 

literature suggested that the design may become a potentially cost savings 

breakwaters in terms of rock supply, as it replaced the boulder to a concrete type 

armour.

Figure 3: Tetrapod and Accropode (Southern Dredging & Marine Inc.,n.d.)

A quite similar design of the conventional rubble mound breakwater is a berm 

breakwater. The different between them is about the design of the berm 

breakwater which aims at limiting the damage costs the berm breakwater to gain 

the return period of 500 years (Tutuarima and d'Angremond, 1998). The cross-
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section of the berm breakwater is as shown in Figure 4 below. In this design, the 

incoming wave is prevented from overtop the breakwater. 

Figure 4: Typical Cross-section of Berm Breakwater Design (Hauer et. al, 1995)

2.2 Cost Variation of Conventional Breakwaters

Conventional breakwaters are designed according to collected information on site 

condition and wave data. The size and configuration of the deigned breakwater 

may vary, thus influence the cost of the breakwater. Numerous factors are 

included in determining the cost of the conventional breakwater. There are some 

listing about the cost by some of the past researches on these conventional type 

breakwaters. Hauer et al. (1995) outlines several average cost based on the 

activities included in the construction of the conventional breakwaters, as per 

shown in Figure 5 below. This cost was based on an analysis of cost for the 

opening of a quarry. They stressed that approximately USD 7.5/ton for total 

average production cost, regardless of the number and stone sizes/class. Also in 

the study, they had outlined several cost of the component items used for the berm 

breakwater, which are armour, core, gravel, textile, and nourishment, with 

respected to production, transportation and placement activities (Figure 6).

Referring to the cost, armour component takes the highest cost including 

transportation and placement at site, although its production cost was quite lower 

than the cost of gravel and core, among the component listed. This was according 

to a transport distance of 75 km between quarry (as the main source of the berm 

breakwater components) and construction site. 
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Figure 5: Average Costs Construction Activities (Hauer et al., 1995)

Figure 6: Costs per Component Optimum Bermbreakwater Design (Hauer et al, 1995)
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Another researchers, Tutuarima and d'Angremond (1998) later outlined the cost 

comparison between the conventional-type rubble mound and other types of 

breakwater including Berm Breakwater, Caisson and Composite Breakwater, as 

shown in Figure 7 below. This comparison was based on the minimum return 

periods to achieve lowest project cost and minimal capitalized damage cost, with 

the currency used in their research as Dutch guilder (the former currency of

Netherlands before being replaced by the euro in 2002).

Figure 7: Construction Costs of Breakwater Types (Tutuarima and d'Angremond, 1998)

Cost of conventional breakwaters design also varies through the comparison of 

wave height at the desired location of the breakwaters. Massie (1976) had outlined

the cost of conventional breakwater as function of wave height, as per shown in 

Table 2 below. This comparison includes the primary and secondary armour, as 

well as core and other considered items in the research. The design was to 

withstand a significant wave height ranging from 5.7 m to 7.5 m, with maximum 

armour unit mass (stone) of 20 tons. 



12

Table 2: Cost as Function of Wave Height (Massie, 1976)

Design Wave Height (m) 5.7 6.75 7.0 7.25 7.5
Slope cot (θ) 1.68 2.78 3.10 3.45 3.82

Primary Armour
Volume (m3/m) 184.9 267.1 292.0 319.5 348.9
Cost/m 13 864 20 031 21 900 23 965 26 167

Secondary Armour
Mass (kg) 7400 4500 4000 3600 3300
Layer thick (m) 2.8 2.4 2.3 2.2 2.2
Barge volume (m3/m) 119.0 142.3 148.1 154.0 165.3
Cost/m 7 140 8 540 8 886 9 242 9 921

Crane volume (m3/m) 39.8 42.9 43.7 44.5 47.4
Cost/m 2 985 3 219 3 278 3 338 3 555

Core
Barge volume (m3/m) 220.1 309.2 325.5 363.5 393.4
Cost/m 15 406 21 463 22 785 25 442 27 539

Other items cost/m 10 024 10 024 10 024 10 024 10 024

Total cost/m 49 419 63 457 66 873 72 011 77 206

The above cost outlined by Massie (1976) was only a rough estimation as the 

allocation prices are only as a relative cost indication, so there was no monetary 

units given. The literature suggested that the actual cost of the breakwater may 

have to be determined by any real case of respective project. He also stressed that 

the construction cost of the conventional breakwaters are also significantly 

influenced by the construction method chosen. This is due to the large volume of

breakwater components (gravels, boulders, etc) may require a portion of the 

breakwater to be constructed under water at the desired site location.
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CHAPTER 3: COST ANALYSIS OF FLOATING 

BREAKWATERS

This chapter focused on the common floating breakwaters and the cost variation 

among them. Three floating breakwaters are selected in this chapter, which are 

box-type, Twin Pontoon-type Breakwater, Y-frame breakwater. This part also will 

stress on the unit cost of the floating breakwaters with regards to the construction 

cost based on past researches available.

3.1 Box-type Breakwater

Box floating breakwater was introduced by McCartney (1985) in his paper 

“Floating Breakwater Design”, which was constructed of reinforced concrete 

module. For a large-scaled box breakwater, it can be made either steel or concrete 

and be used as barges. The box modules could either have flexible connections or 

are pre-tensioned or post-tensioned to make them act as one large single-unit

breakwater. The advantages of this box-type breakwater is it has 50 years design 

life. Its structure allows pedestrian access for fishing and temporary boat moorage, 

besides also effective in moderate wave climate. The shape of the box breakwater 

(Figure 8) is simple to build but a high quality control is needed. In addition, the 

cost of constructing the box type breakwater is quite high. Mani (1998) stated in 

his paper, that barges of 175 ft (53.3m) by 26 ft (7.9m) cost about $230 000 and 

barges with 195 ft (59.4m) by 35 ft (10.7m) cost about  $300 000 for new barges.

Figure 8: Solid rectangular box-type floating breakwater (McCartney, 1985)
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3.2 Y-frame Breakwater

A different types of existing breakwaters had been studied by Mani (1991) for 

improved performance in reducing transmission coefficient. It was determined 

that the “relative width”; the ratio of width of the floating breakwater (B) to the 

wavelength (L) influence greatly the wave transmission characteristic of a 

breakwater. It was suggested that in order to obtain transmission coefficient below

than 0.5, the B/L ratio should be greater than 0.3. However, the increment of 

width will increase construction cost of the breakwater thus making the handling 

and installation of the breakwater to become more difficult.

Y-Frame floating breakwater was designed with the aim to reduce B/L ratio and at 

the same time increasing the draft of the breakwater by the installation of row of 

pipes underneath the inverse trapezoidal pontoon. Figure 9 below illustrates the 

design of the Y-Frame floating breakwater.

Figure 9: Details of the Y-Frame floating breakwater (Mani, 1991)

Based on the researcher, the cost estimation of the Y-Frame model is ranging 

between $1 300 and $2 600 per meter run. This was according to wave period of 

10 sec and d/h = 0.46.

3.3 Cost Efficiency: Conventional Breakwaters versus Floating Breakwaters

The summary of the costing of breakwater suggested from the past researches are 

as outlined in Table 3 below. Rubblemound breakwater cost is quite high in 
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relative to unit meter length. This is mainly due to the physical requirements of 

the breakwater that require high amount of material to fit a big cross section of the 

breakwater in the sea. This is also includes the construction method chosen by the 

designer on how to construct and build the breakwater. 

Table 3: Summarization of Breakwater Costing

Breakwater 
Model

Range Cost ($) Contributing 
Factors

Source

Conventional 
Rubblemound

70000/m – 80000/m High volume, 
construction and 
damage cost

Massie (1976)

Box-type 200000 - 300000 Huge size 
(including width), 
material cost

McCartney 
(1985)

Y-frame 1300/m – 2600/m Reduction in W/L 
ratio

Mani (1991)

For box-type breakwater, although its cross section may not as large as the 

rubblemound breakwater, but its rectangle size require large area to overcome the 

incident wave from the sea, thus make it quite costly due to material cost. This is 

supported by McCartney (1985) who agreed that the box-type breakwater is high 

cost compared to the mat-type, which may require towing to dry docks for 

maintenance, and problem with connectors if not adequately designed. However, 

this kind of breakwater has 50-year design life, and has proven its performance 

and agreed to be effective in locations with moderate wave climate McCartney 

(1985). A different design introduced by Mani (1991) had come out with a quite 

low cost floating breakwater, where he applied different approach in reducing the 

transmitted wave by introducing pipes underneath the breakwater to maintain the 

performance without the need to have a larger width of the breakwater. By 

installing the pipes, it helps to increase turbulence level and reflection 

characteristics of the breakwater. By reducing the width requirement, the cost of 

fabrication is also can be reduced. Thus, the Y-frame breakwater may become an 

efficient breakwater as it can serve the same performance at a lower cost.
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CHAPTER 4: COST ESTIMATION OF THE H-FLOAT

4.1 Material Cost of the H-Float

Based on the study by Teh et al (2014), the design of the H-Float was as per 

shown in Figure 1 in the previous chapter, and the construction material and cost 

of the H-Float model are as in Table 4 below. The H-Float has the dimension of 1 

m width, 1.44 m length and 0.5 m height.

Table 4: Construction Material Cost for H-Float

Component Material Material Cost Reference

Autoclave 

lightweight 

concrete

Aerated autoclave 

concrete (AAC)

US $ 60/m3 Sddymachine.en.alibaba.com

(n.d)

Fiberglass for 

coating

Fiberglass US $ 0.25/m2

(fiberglasss 

mesh)

Yzchuangjia.en.alibaba.com 

(n.d)

Concrete for 

ballast 

chamber

Concrete (assume 

concrete grade 

25)

US $ 55.12/m3

(MYR 192.67)

Building Material Price, 

CIDB Malaysia (2014)

Cover Plexiglas US $ 3.6/kg Au.alibaba.com (n.d)

Throughout the cross section of the breakwater, the Autoclave lightweight 

concrete takes up about 67.59% of the total overall cross section, while concrete 

for ballast chamber takes about 31.93% (with the assumption that the ballast is 

full with concrete) followed by the Plexiglas as the cover, about 0.48%. Thus, the 

lightweight concrete and concrete for ballast chamber will greatly influence the 

cost of construction of the H-Float. The increment of these component as a result 

of the sizing increment due to longer wave period and wave length, will result in 

higher construction cost of the H-Float.
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4.2 Construction Cost of H-Float

The unit cost of H-Float depends on its size, and the size of the H-Float depends 

on the design water depth, wave period, and the level of the wave tranquility. The 

influence of the width on the wave transmission depends on the draft and the 

weight of the structure, where its performance is as shown in Figure 10 below. 

Figure 10: Wave Transmission Coefficient of H-Float (Teh et. al, 2014)

When the structural width is increased while the draft is kept constant, the mass 

will increase too. A wide and heavy structure is hard to put it onto oscillation, thus 

performs better. However, in sea condition with longer period waves and 

wavelength, the H-Float may require larger width to maintain its performance, 

thus yielding a high cost breakwater. At lower wave period and wave length, the 

H-Float may perform better in attenuating wave if compared to longer wave 

period with respecting to the same breakwater sizing. This is in line with Teh et al

(2014) that prove the result of their experiment that the H-Float is hydraulically 

efficient and capable to attenuate a short-period wave.
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CHAPTER 5: CASE STUDY

In this chapter, a study case was developed and the construction material cost of 

each breakwater options were assessed to find the most economic breakwater to 

be used. Various sources of price were collected to be included in this analysis.

Then, the evaluation of the H-Float as wave defense structure was performed to 

check whether the model is economic to be used at the selected location of the 

case study.

5.1 Case Study Details

In this case study, site condition and wave data were selected from the book 

“Coastal Engineering (Volume III – Breakwater Design)’, edited by Massie 

(1976), from Coastal Engineering Group, Department of Civil Engineering, Delft 

University of Technology, Delft, The Netherlands. The site condition data were

used to develop the outlined breakwaters to assess their cost. The parameters for 

the design were outlined in Table 5 below:

Table 5: Design Parameter for Case Study

Design Parameter Value Unit

Water depth, h relative to MSL 10.0 m

Water level, h’ relative to MSL 2.9 m

Total water depth, d 12.9 m

Wave height, H 4.5 m

Wave period, T 8 s

Bottom slope, m 0.01 -

Transmission Coefficient, Ct 0.5 -

Transmission coefficient is quantified by ratio of the transmitted wave height, Ht

to the incident wave height, Hi, such that
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?? = ???? (5.1)

Wave transmission is the phenomenon in which wave energy is passing over, 

under or through a breakwater, creating a reduced wave (transmitted wave) at the 

lee side of the structure (Verhagen et al., 2009). Chakrabarti (1999) in his paper 

“Wave Interaction with an Upright Breakwater Structure” stated that the 

effectiveness of a floating breakwater in attenuating wave energy can be 

measured by the amount of wave energy that is transmitted past the floating 

structure. The breakwater is considered to be effective if the transmission 

coefficient is small, since it shows that the amount of energy that has transmitted 

past the structure is much less than the energy level of incident wave. The greater 

the wave transmission coefficient, the lesser will be the wave attenuation ability, 

and vice versa. 

Wavelength, L of the wave can be determined through the airy wave theory, with 

function of depth and wave period.

? = ???
?? ???ℎ ???

? (5.2)

Where:

g is the acceleration of gravity,

T is wave period,

d is water depth.

However, the use of the above equation involves some difficulty since the 

unknown L appears on both sides of the equation.  Tabulated values of d/L and 

d/L0 in Table C-1, Shore Protection Manual 1984, where L0 is the deepwater 

wavelength, was used to simplify the solution.

?? = ???
2? = (9.80665)(8)?

2? = 99.9?
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Comparing the value of d/L and d/L0 in the Table C-1 (Figure 11 in Appendix), 

the wavelength L of the wave was 78m.

5.2 Breakwater Material Cost Comparison

In this study of cost comparison of breakwaters, the main item selected for 

comparison was the component cost, which covers the material cost of the 

breakwater. The discussed breakwaters in the previous chapter were assessed for 

their cost based on the data given.

5.2.1 Conventional Rubblemound Breakwater

The design of the conventional rubblemound breakwater was based on the design 

method outlined in the book “Coastal Engineering (Volume III – Breakwater 

Design)’. The storm data used in this design were based on Table 13 and Figure 

12 in Appendix. Based on Figure 13 (in Appendix), taking wave height = 4.5 m 

and wave period, T = 8 s, thus the design were based on 5 storm events per year 

occurrence. Assuming the maximum armor unit mass is 11 tons, the slope of the 

breakwater was determined by applying the Hudson formula.

cot ? = ?? ???
?? ∆?? (5.3)

where

g is the acceleration of gravity,

H is the design wave height,

KD is the damage coefficient,

W is the weight of the armour unit,

Δ is relative density of armour,

ρa is the armour unit density,



21

θ is the slope angle.

The armour unit was taken as stone rubblemound with damage coefficient of 3.5 

(Massie, 1976) and density of 2700 kg/m3, thus the slope of the breakwater was 

calculated. Wave steepness was expressed by selecting the rubble slope as 1:1.5 

(Figure 14 in Appendix), yield R/H = 1.04. For the calculation of the minimum 

crest width, equation below is used:

? = ? ??∆( ?
???)?

? (5.4)

where

B is the crest width,

KΔ is the packing coefficient,

m’ is the number of armour unit across the crest.

Selecting m’ = 3 and KΔ for quarry stone = 1.02. For the thickness, t of the armour 

layer, the same formula was applied, with the number of armour units in the layer, 

m was taken as 2. After designing the toe, all dimensions were tabulated in Table 

6 below.

Table 6: Design Summary of Rubblemound Breakwater

Parameters Value

Breakwater slope, θ 33.69o (cot θ = 1.50)

Crest elevation, zc 7.58 m above MSL

Minimum crest width, B 4.89 m

Primary armour layer thickness, tp 3.26 m

Secondary armour layer thickness, ts 2.97 m

Slope of breakwater toe protection, θ 26.80o (cot θ = 1.98)

Filter gravel layer thickness, tf 2.00 m
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The components of the breakwater and its material assumptions were as listed in 

Table 7 below.

Table 7: Component Classification and Cost for Rubblemound Breakwater

Component Material Material Cost Reference

Filter gravel Crushed 

Gravel/bricks

US $ 57.82 / m3

Corkhill Bros, 

2014

Toe stone Boulders (large 

river rocks)

US $ 70.21 / m3

Primary and 

secondary armour

Boulders (large 

river rocks)

US $ 70.21 / m3

Core Sand and gravel US $ 44.60 / m3

The cost estimation of the rubblemound breakwater was tabulated in following 

Table 8 below. Note that the estimation cost was based on the construction 

material cost.

Table 8: Cost Estimation for Rubblemound Breakwater

Component Volume (m3/m) Material Cost

(US $ / m3)

Total Cost (US 

$ / m)

Filter gravel 79.08 US $ 57.82 4572.60

Toe stone 4.08 US $ 70.21 286.80

Primary armour 130.37 US $ 70.21 9153.10

Secondary armour 136.89 US $ 70.21 9611.40

Core 230.36 US $ 44.60 10274.07

Total estimation cost 33897.95
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5.2.2 Box-type Breakwater

The box-type breakwater was scaled up according to the performance required, 

which is Ct value of 0.5. Referring to the Figure 15 (in Appendix) with 12 feet 

breakwater width, the ratio of width to wavelength, W/L value was 0.28. Using 

Froude’s model law and the known wavelength from this case study as 78m, the 

model-to-prototype relations were obtained. The actual width of the breakwater 

was

? = (0.28)(78 ? ) = 21.84 ?

This was lead to the geometrical ratio, λ of

? = ? ? ??????????????
21.84 ?(12 ??)(0.3048? /??) = 5.97

This scale ratio was used to assess the new size of the box-type breakwater to 

achieve the Ct value of 0.5, as detailed in Table 9 below.

Table 9: Characteristics of Box-type Breakwater

Dimension Prototype Model

Width, B 12 ft 71.65 ft 21.84 m

Length, l 96 ft 573.23 ft 174.72 m

Depth, d 5 ft 29.86 ft 9.1 m

Draft, D 3.5 ft 20.90 ft 6.37 m

Volume, V 5760 ft3 1226286 ft3 34724.55 m3

This dimension was calculated with the assumption that the breakwater was a 

solid-box breakwater, based on its classification from the literature illustrated by 
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McCartney (1985) as a ‘Solid Rectangle’ box breakwater. According to the 

literature, this box-type breakwater unit were commonly made of reinforced 

concrete. Taking the material as autoclave aerated concrete (light weight concrete) 

with cost of US $ 60/m3 (sddymachine.en.alibaba.com, n.d), the total material cost 

of the breakwater unit was US $ 2083473. Dividing with the overall length of 

174.72 m, the unit cost material of the box-type breakwater was US $ 11925 per 

meter run.

5.2.3 Y- Frame Breakwater

In determining the cost of the Y-frame breakwater to the outlined criteria, the 

same method of geometrical scaling was applied to this breakwater. Referring to 

the Figure 16 (in Appendix), the value of W/L obtained for Y-frame breakwater 

was 0.15. Applying Froude’s model law, the actual width of the breakwater with 

respected to wavelength of 78 m was

? = (0.15)(78 ? ) = 11.70 ?

Thus, the geometrical ratio, λ was

? = ? ? ??????????????
11.70 ?0.5 ? = 23.4

This scale ratio was used to assess the new size of the Y-frame breakwater to 

achieve the Ct value of 0.5, as detailed in Table 10 below. There were no 

information about the pipe thickness, thus the prototype’s pipe thickness was

assumed to be 0.001m, which will make the model’s pipe thickness to be 

0.0234m. Mani (1991) had stated that the pipe gap to diameter ratio, b/Di to be 

0.22, thus getting the breakwater pipe gap as 0.46 m. 
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Table 10: Characteristics of Y-frame Breakwater

Dimension Prototype Model

Width, B 0.50 m 11.7 m

Length, l 1.95 m 45.63 m

Float height 0.30 m 2.06 m

Float volume 0.18 m3 2248.67 m3

Draft, D N/A 5.93 m

Pipe length 0.2-0.4 m 3.87 m

Pipe diameter, Di 0.09 m 2.11 m

Pipe gap, b 0.02-0.09 m 0.46 m

Number of pipes N/A 17

Based on data above, the cross section of the pipe was 0.153 m2, while the total 

volume of pipe was 10.072 m3. Assuming the pipe to be a steel pipe with density 

of 7850 kg/m3, the weight of the pipe used was 79068 kg. Taking the float 

material as autoclave aerated concrete (light weight concrete) with price of US $ 

60/m3 (sddymachine.en.alibaba.com, n.d), the material cost of the float unit is US 

$ 134920, while price of steel is taken as US $ 1.5/kg 

(Heubach.trustpass.alibaba.com) to make the steel cost to become US $ 118602. 

Overall material (float and pipes) cost will be US $ 253522. Dividing to the length 

of the breakwater, the unit material cost for the Y-frame breakwater will be US $ 

5556 per meter run.

5.2.4 H-Float

The same approach was taken in determining the cost of the H-Float breakwater to 

the desired criteria, with respect to wavelength of 78 m. W/L ratio obtained for H-

Float breakwater was 0.23 (Figure 10 in previous chapter). Applying Froude’s 

model law, the actual width of the breakwater was
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? = (0.23)(78 ? ) = 17.94 ?
Thus, the geometrical ratio, λ was

? = ? ? ??????????????
17.94 ?1 ? = 17.94

Referring to the model configuration outlined by Teh et al. (2014), the new size of 

the model was tabulated in Table 11 below. This was including the assumption 

that all material covered in the construction material were scaled up and fully 

occupied based on the respective materials with the respective scale ratio, 

according to the Froude’s model law.

Table 11: Characteristics of H-Float Breakwater

Dimension Prototype Model

Width, W 1 m 17.94 m

Length, l 1.44 m 25.83 m

Float height, h 0.5 m 8.97 m

Cross sectional 

area

AAC 0.254 m2 81.75 m2

Ballast 0.12 m2 38.62 m2

Plexiglas 0.0018 m2 0.58 m2

Float volume

AAC 0.366 m3 2111.85 m3

Ballast 0.17 m3 997.73 m3

Plexiglas 0.0026 m3 14.97 m3

Taking the price of autoclave aerated concrete (light weight concrete) of US $ 

60/m3 (sddymachine.en.alibaba.com, n.d), the cost of the concrete for ballast as 

US $ 55.12/m3 (Building Material Price, 2014) and cost for Plexiglas (Density = 

1180 kg/m3) as US $ 3.6/kg, total construction material cost would be US $ 

245280. Dividing the material cost with the length of the H-Float, the unit 

material cost of this floating breakwater would be US $ 9495 per meter run.
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5.3 Discussion

The construction cost material for the specified site condition for each breakwater 

options as illustrated above was summarized in Table 12 below.

Table 12: Summary of Construction Cost Material of Breakwaters

Breakwater Model
Estimated material cost

(US $ / m)

Conventional rubblemound 33898

Box-type 11925

Y-frame 5556

H-Float 9495

Based on the Table 12 above, it was shown that the Y-frame floating breakwater 

had the lowest estimated material cost among the breakwaters, followed by the H-

Float, Box-type, and the conventional rubblemound. It is important to note that, 

the cost estimation was according to the construction cost material of the 

particular breakwaters. In reality, there are also some other related cost that are 

put into consideration, which can classified as other cost. In the meanwhile, 

indirect cost may include the fabrication process of the floating breakwater, where 

it requires molding and storage during the fabrication of the breakwater units. 

Damage cost is also to be considered as breakwaters will be monitored for 

maintenance.

The different in cost of these breakwater types may according to several factors. 

In this case study, the major difference was the sizing of the breakwater to 

perform the same performance (coefficient transmission, Ct = 0.5), which yield 

different cost of the construction material. A bigger width is required to confront a 

long wavelength of sea water. In this case, the model configuration of the Y-frame 

floating breakwater with the presence of row of pipes installed underneath, took a 

significant advantage of reducing the width requirements of the breakwater (W/L 

= 0.15), thus reducing the material cost induced. The H-Float, however, applying 
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the innovative geometrical configuration, which performed better than the box-

type (W/L = 0.23 for H-Float, compared to W/L=0.28 to box-type).

For conventional breakwater, Massie (1976) has specified that the total project 

cost is based on the following variables; (i) location of the breakwater, (ii) crest 

elevation, (iii) type of breakwater, (iv) construction details such as armour unit 

type used, and (v) the wave climate. Also, for rubblemound breakwater 

construction, the total cost is also influenced by the method of construction 

chosen. Two common method chosen in constructing this rubbemound breakwater 

are by applying barges and working crane over the crest Massie (1976). These 

may vary the overall construction cost of the breakwater.

It was also stated by Mani (1991) in his paper that in the location where the wave 

period of 10 sec coming from the sea, it is quintessential to provide breakwaters 

with greater width and draft. However, the use of the Y-frame floating breakwater

(width around 7 to 14 m) may perform the same but lower in production cost. 

Also, it is important to note that the cost of material used of the breakwater may 

varies according to the current market value of where the breakwater is build. 

Sometimes, it is more economical to import materials from other country which 

has lower material cost if the local material is too costly, and vice versa. However, 

since large amount of material are needed to construct the rubblemound 

breakwater (gravel/boulders/sand), a local supply seems to be much economical to 

keep the transport cost at a minimal rate (Massie, 1976).

In addition to floating breakwaters, a common section that will be equipped to all 

floating breakwaters is the mooring system, where it will restrict and maintain the 

floating breakwater at the same position during its operation. This mooring system 

is consisting of the anchor at the sea bed, mooring cables and hooks attached at 

the breakwaters. As the depth of the water level increases, the cost of this mooring 

system is also increase (longer mooring cable will be needed), but at a lower rate 

compared to the sizing requirement of the breakwater. This also may add to the 

total cost of the floating breakwater.

For H-Float, the cost comprises of the bigger volume of material usage compared 

to the Y-frame, thus make it at higher cost compared to the latter. However, the 

cost of the H-Float may potentially be reduced when the ballast chamber is not 
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fully occupied with concrete (to adjust the draft). As the innovation of the H-Float 

is quite new, it is potentially be enhanced its performance to reduce cost.

CHAPTER 6: CONCLUSION AND 
RECOMMENDATION

6.1 Conclusion

Throughout this study, the unit cost material of conventional and floating 

breakwaters were analyzed based on data collected from various sources including 

past researches and books available in libraries. The cost estimation of H-Float 

also was conducted based on the material cost of the breakwater. Lastly, a study 

case was performed to assess the material cost comparison of the H-Float against 

the other breakwater options. Based on the study case of total water depth of 12.9 

m and wave period of 8 seconds, the Y-frame breakwater takes the lowest 

estimation material cost (US $ 5556), followed by H-Float (US $ 9495), box-type 

(US $ 11925) and the conventional rubblemound breakwater (US $ 33898). This 

difference was mainly due to the different in sizing of the breakwater to perform 

the same performance (coefficient transmission, Ct = 0.5), thus inducing different 

material cost. However, although the cost of the H-Float is slightly higher than the 

Y-frame breakwater, the use of H-float as a wave defense structure is also 

economically suitable to be implemented in future. More extensive research on 

this topic is also recommended.
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6.2 Recommendation

The cost estimation of both conventional and floating breakwaters were assessed 

based on material cost as the main parameter. However, few recommendations are 

suggested for this cost comparative study:

∑ The material price for breakwaters should be collected based on local price

as the price may vary based on resource availability of the local area.

∑ The addition of construction method cost may be essential to estimate the 

cost of the breakwaters in a more precise value.

∑ The material and configuration of each breakwaters (conventional and 

floating) should be clearly configured to ease the assessment of the 

breakwater costing.

∑ The H-Float is one of the recent developed model for floating breakwaters. 

Thus, further development on this model is recommended to enhance its 

attenuating ability with respect to a longer period wave, thus potentially 

reduce its width requirements, and hence reduce the material cost.

∑ Extensive research may be performed to find the most economical 

breakwater, with respected to the material improvement of the existing 

breakwaters. This aims for the lowest material cost possible, but 

maintaining or better performance.

∑ A cost projection of the breakwaters may become beneficial to predict and 

estimate the cost of breakwater in future application. This may include the 

material cost and the construction cost of the breakwater with respect to 

the economic status projection.
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APPENDIX

Figure 11: Table C-1(Shore Protection Manual, 1984)



34

Figure 12: Storm Wave and Water Level Data (Massie, 1976)

Figure 13: Wave Shoaling (Massie, 1976)
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Figure 14: Run-up Steepness Curves After Hudson (Massie, 1976)

Figure 15: Wave Transmission Coefficient, Ct, versus W/L ratio, for Box-type Breakwater
(McCartney, 1985)
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Figure 16: Variation of Kt with W/L - Comparison (Mani, 1991)

Table 13: Storm Data (Massie, 1976)

Recurrence interval 
(yrs)

Significant wave 
height, Hsig (m) Period, T (s)

Water level relative 
to MSL (m)

0.1 4.5 7.4
0.5 5.5 9
1 6.0 10 3.2
5 7.0 11

20 8.0 12
100 9.0 13 4.6


