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ABSTRACT 

Shale oil reservoir is one of the modern studies that oil and gas industries have started to 

concern about it. Although its permeability is very low, shale oil reservoirs can be 

produced by using many techniques such as hydraulic fracturing method. Since the shale 

oil reservoir is much complicated, it is challenging to study hydraulic fracturing in this 

reservoir. Among the literature review, basic theories of hydraulic fracturing technique, 

how the process is performed, equipment used, and some fracture geometry models, will 

be discussed. 

There are several computer software programs that have been established to help 

petroleum engineers and planners to model hydraulic fracturing. These programs use 

numerical methods to model fracture propagation through the targeted formation. The 

user of this model will insert the necessary input parameters to that model. Eventually, 

the final output of these models will be the fracture geometry which is mainly the width 

and length of the fracture. The aim of this study is to analyze the two dimensional 

models which are Perkins-Kern-Nordgen, PKN and Geertsma de-Klerk, KGD fracture 

propagation models to obtain the geometry of the fracture based on the rock data as well 

as fracture treatment data.  

The realization of this project will intensify the knowledge and it will help in the future 

researches of hydraulic fracturing for shale oil reservoir. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study 

Shale is known as one of the most problematical rock types in the majority of its related 

applications. Therefore it is estimated that the annual cost of this shale formation 

problems cost the oil industries billions of dollars each year[ ]. Shale is defined as a 

type of sedimentary rock that is cemented-like sandstone- except in the case of shale the 

particles are much smaller and finer as clay or silt. Shale is typically deposited in a more 

quite environment like a lake or a shallow sea floor. The particles of shale are deposited 

in horizontal layers and cemented together and they tend to form very thin bed. 

Considering engineering properties, shale rock is characterized by a low compressive 

strength (less than 100 MPa” and high sensitivity to water. The properties of shale 

formation are very important that it can make the shale oil as one of the economical and 

reliable resources[ ]. 

Shale oil – sometimes referred to as light tight oil- is a type of unconventional reservoir 

that has a very low permeability. Currently, shale oil is quickly rising as an economical 

unconventional resource in the oil and gas industries. There is a tendency for shale oil 

production to spread widely during the following decades. On the other hand, the 

production of shale oil is different and it will be done by using different procedures 

unlike the oil that is produced by using artificial lift methods[ ]. 

There are many techniques that is used to produce the shale oil. One of these techniques 

is by injecting carbon dioxide that can increase the pressure of the subsurface to let the 

oil lifts through the rock. Other method of producing shale oil is by waterflooding. The 

water that was placed underground will push the hydrocarbon into adjacent producing 



2 
 

well. This method is relatively cheap and it can cost about USD 15 per barrel. Other 

method used to produce shale oil is called hydraulic fracturing and in our study we will 

focus mainly on this method in details. 

1.1.1 Hydraulic Fracturing 

The process of hydraulic fracturing involves pumping numerous gallons of a high 

pressurized fluid to the well to create fractures in the rock. This fracture will later allow 

oil or gas to flow to the wellbore. In order to make the production potential of the well as 

large as possible, the shale formation will be fractured hydraulically[ ]. 

Hydraulic fracturing is one of the methods that provide a safe extraction of hydrocarbon 

from underground shale formations. The initial wellbore is drilled using a drillpipe and 

bit. Drilling mud is pumped down through the drillpipe to cool and lubricate the bit, 

stabilize the wellbore, and remove cuttings and lift them up to the surface. The drilling 

continues until it reaches the target formation and doing all the processes of casing and 

cementing of every section individually. After that, a special tool of perforation is then 

lowered into the well creating holes in the shale layer which will allow the hydrocarbons 

to enter the well created channels. After removing the perforation tool, the fracturing 

fluid is pumped into the well and opens the tiny fractures in shale as we can see in the 

figure below: 

 

Figure 1: Several Hydraulic Fractures in Formation[ ]  
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1.1.2 Fracturing equipment  

The hydro-fracking process is done by using special equipment include: truck-mounted 

pumps, blenders, fluid tanks, and proppant tanks. Figure 2 illustrates the hydraulic 

fracturing equipment for oil and gas wells[ ]. 

The hydraulic fracturing procedure can be divided into two stages. The first stage is 

called the pad stage where the fracturing fluid only is injected into the well to break the 

formation and generate a pad. The creation of this pad results from the injection rate of 

the fracturing fluid that must be higher than the flow rate at which the fluid will escape 

into the formation. The pad will enlarge to a required size and the slurry stage will start. 

In this stage, the fracturing fluid is mixed with sand and proppant by using the blender 

and the resulted mixture will be injected to the pad[ ]. 

The fracture will be filled with sand and proppant and the pump will be shut down and 

the process of hydraulic fracturing is said to be completed. 

 

Figure 2: schematic to show the equipment layout in hydraulic fracturing 

treatments of oil and gas wells[ ] 
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1.2 Problem statement 

In the oil and gas industries, there are several softwares that are used for hydraulic 

fracturing. These softwares were made by the well-known companies such as 

Halliburton, Schlumberger, Baker Hughes…etc. However, these softwares are not free 

and the user must pay in order to get the license before setting them up. Moreover, those 

softwares must be used in a high performance system because it needs a high resolution 

and high contrast graphics. 

Microsoft Excel is one of the useful programs that will be utilized in or study. This 

program is not only cheap but friendly for majority of its users because almost 

everybody worldwide who is using computer nowadays is familiar with how to use and 

generate the functions by using Microsoft Excel. Hence, with the aid of Microsoft Excel 

we will analyze some hydraulic fracturing propagation models and differentiate between 

them. These models will describe several aspects in hydraulic fracturing especially the 

width and length of the fracture. In addition, there is a lack of knowledge on applying 

these models in shale oil reservoirs.  

1.3 Objectives and Scope of study 

1.3.1 Objectives 

The objectives of our study include: 

1) Identify the appropriate models that will be used to: 

 Describe hydraulic fracturing in shale formation as well as to obtain 

closed-form solutions for a complex solid/fluid mechanics interaction 

problem. 

 Relate injection rate, q, time of treatment, t, and fluid leak off,    , with 

fracture width, w, and Length, L . 

2) Analyze the effect of flow conditions like injection rate, fracturing fluid type and 

its viscosity, in the geometry of the fracture mainly the width and length and 

relate it with the breakdown pressure. 
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1.3.2 Scope of study  

The scope of our study is to  

 Recognize and review the theoretical concepts of hydraulic fracturing, its history, 

terminology, and the present models used. 

 Model the parameters required in hydraulic fracturing such as width and length 

by using two dimensional models mainly Perkins-Kern-Nordgren, PKN model, 

and Geertsma-deKlerk, GDK model. 

 To analyze simulation results of our study to make a comparison between PKN 

and GDK models. 

 The result of this work will be supported by the data extracted from the previous 

studies which considers the effect of the fracturing fluid flow characteristics in 

porous media. 
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2  

                                                   

                                                   CHAPTER 2 

LITERATURE REVIEW 

2.1 The Idea of hydraulic fracturing 

The idea of hydraulic fracturing was begun during the last century, mainly in 1930s. a 

company called Dow Chemical has revealed that by injecting a high pressurized fluid 

downhole, the rock formation will be deformed and cracked. Currently, hydraulic 

fracturing is expensively used to develop the productivity of oil and gas wells. In 1950s, 

mainly in North America, 70% of gas wells, and 50% of oil wells was hydraulically 

fractured (Valko and Economides, 1995). 

2.2 Theory of hydraulic fracturing 

During the mid-century, hydraulic fracturing was projected as a key to increase the 

production of oil and gas from low pressure and low permeability reservoirs (Murphy& 

Carney, 1977). The theory of hydraulic fracturing method is that the pressure exerted by 

the fluid column should be greater than the formation stress and this can assist in the 

cracking process. The fluid will create the fracture and the fracture propagation will be 

increased by sing other chemicals and proppants to keep the fracture open. After the 

fracture was created, it will be the channel between the formation and the wellbore as a 

path. This path will be supported by a simulation design which consists of two principle 

stages. The first stage is referred to as the pad stage. In this stage, we will not use any 

proppant and the fluid is used to propagate the fracture and improve the fracture width. 

During the second stage which is referred to as slurry stage, the fluid and proppant will 

be mixed together. The main purpose of this stage is to assure that the proppant was 

placed in the fracture to have unlimited concentration at the fracture length when 

pumping finished[ ]. 
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2.3 The extent of the fracture 

According to Hydraulic fracturing Operations-Well Construction and Integrity Guideline 

(2009), the extent of the fracture is including both horizontal and vertical fracture. The 

horizontal fractures are made in the direction that is perpendicular to the least stress. 

Figures 3 &4 below demonstrate that the confining stress is exerted on the rock cube in 

three dimensions[ ]. 

 

Figure 3: Horizontal fracture perpendicular to the least stress[ ] 

 

Figure 4: Vertical fracture due to horizontal least stress[ ] 
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2.4 Viscosity and breakdown pressure 

This study is mainly focusing in shale formation and the process of producing the shale 

oil from shale formation by using hydraulic fracturing. From the papers that were 

reviewed, the shale formation is a complicated formation that cannot be evaluated easily 

by using a traditional laboratory setting. The main characteristics of shale formation 

include very low permeability, the presence of micro-fractures and sensitivity to 

contacting fluids. The shale formation is a fine-grained rock that can be rich source of 

oil. Over the past decade, the combination of horizontal drilling and hydraulic fracturing 

has allowed access to large volumes of shale oil and shale gas that were previously 

uneconomical to produce, Seale (2007). 

According to the experiments that were conducted, the main parameter in the design of 

the fracture is the fluid type selection and viscosity. In one of the experiments that was 

done, there are four different fluids that was injected which are 3wt% KCL solution, 

isobar oil, linear polymer gel (35 pptg guar) and crosslinked polymer gel (35 pptg guar). 

While each of the four fluids was injected into the core, the injection pressure was 

continuously increased until the shale broke at an indicated pressure referred to as (the 

breakdown pressure). Figure 5 demonstrates the viscosity of the four fluids, where figure 

6 illustrating the breakdown pressure as a result of pumping those fluids.  

From the experiment that was conducted, the results that was shown in the figures below 

show that the 3wt% KCL solution breakdown the shale formation at 1100 psi, while 

cross-linked gel breakdown the shale at 2700 psi the breakdown pressure in shale 

formation has a big relationship with the viscosity of the fracturing fluid. If the viscosity 

of the fluid is low, the required pressure that will break the shale formation is low. In 

contrast, if the fracture fluid loss has a high viscosity, a higher pressure is required to 

breakdown the shale formation 
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                    Figure 5: Viscosity of four different fracture fluids that was injected[ ] 

 

 

               Figure 6: Breakdown pressure increased with increasing fracture fluid 

viscosity[ ] 
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2.5 The physics of fracturing  

The In-situ stress field will dictate the orientation, size, and the magnitude of the 

pressure needed to create it. The stress field may be defined by three principal 

compressive stresses which are oriented perpendicular to each other as illustrated in the 

figure below. The orientations and magnitudes of these stresses is determined by the 

regime tectonic in the region and by depth, pore pressure, and rock properties, which 

determine how stress is transmitted and distributed among formations. These three 

principal stresses increase with depth. The rate of this depth increasing will define the 

vertical gradient. 

The in-situ stresses will control the orientation and propagation direction of hydraulic 

fractures. Hydraulic fractures are tensile fractures, and they open in the direction of least 

resistance. If the maximum principal compressive stress is the overburden stress, then 

the fractures are vertical propagation parallel to the maximum horizontal stress when the 

fracturing pressure exceeds the minimum horizontal stress. 

 

Figure 7: In situ stresses and hydraulic fracture propagation[ ] 
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2.6 Rock mechanics and rock properties 

Rock mechanics is one of the most significant factors that has to be considered properly 

in hydraulic fracturing. Some of the important properties of rock mechanics are briefly 

explained in the following section. 

2.6.1 Insitu stress  

There are three principle earth stresses oriented at right angles to one another as shown 

in the figure below: 

 

Figure 8: Insitu stresses in subsurface (Davies. 2007) 

The three principle stresses are: 

   = Vertical stress (overburden stress) 

   = Maximum horizontal stress 

    Minimum horizontal stress 
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Normally below 500m in a tectonically relaxed environment the vertical stress is the 

greatest. An average value of 1 to 1.1 psi/ft. is measured for wells at reasonable depth 

(Davies.2007). 

Above 500 m, 

       >    

At shallow depth (< 500 m) 

          Or 

         

The primary rock properties of interest for hydraulic fracturing calculations are the 

elastic properties, particularly the stiffness of the rock[ ]. This usually defaults to the 

modulus of elasticity because most calculations are based on linear elasticity. 

2.6.2 Linear Elasticity 

The assumption that rock behaves as a linear elastic material provides a major 

simplification of the theory of elasticity with the result that many fracturing problems 

are traceable and have analytic solutions. These solutions have been essential for the 

development of hydraulic fracturing theory. It should be remembered, however, that 

many rocks show considerable non-linear behavior over the stress-loading range of 

interest, and the effect of the non-linearity should be considered in certain instances. The 

basic assumption of the theory of linear elasticity is that the components of stress are 

linear functions of the components of strain[ ]. 

2.6.3 Young’s Modulus 

Young’s modulus is the ratio of stress to strain. This can be as a result that the amount of 

strain that is caused by a given stress is a function of the material stiffness[ ]. The 

Stiffness can be characterized by the slope of the stress-strain plot and it is referred to as 

Young’s Modulus (E). 
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E= 
      

       
 …………………………………………………………...……………… (1) 

E= 
 

 
 =   

   ⁄  

For determining modulus for fracturing calculations, the confining pressure is normally 

set equal to the mean effective stress acting on the reservoir rock. The value of E can be 

determined from the resultant stress/strain value[ ].  

2.6.4 Poison’s ratio 

Poison’s ratio is the ratio of lateral expansion to longitudinal contraction for a rock 

under a uniaxial stress condition[ ]. In other words, it is the ratio of strain perpendicular 

to the applied stress to strain along the axis applied stress. The poison’s ratio can be 

calculated from the following formula: 

   
 

      
 …………………………………………………………………… (2) 

Where 

   Poisson’s ratio 

  = lame coefficient, psi  

   Shear modulus, psi  

Poison’s ratio is also a function of the stress or strain (nonlinear), and a value at a 

particular stress or over a range of stresses needs to be computed[ ]. 

Compressive stress applied to a block of material along a particular axis causes it to 

shorten along that axis but also to expand in all directions perpendicular to that axis as 

shown in the figure below. 
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Figure 9: Measurement of Poisson's ratio (Davies.2007) 

2.6.5 Shear and Bulk Moduli 

One of the moduli that are useful for modeling the mechanics of the rock are the shear 

modulus, , and the bulk modulus, K. Shear modulus, G, arises from linear elasticity and 

it can be computed by using the following formula: 

   
 

      
 …………………………………………………………...…………. (3) 

The bulk modulus, K, is the ratio of hydrostatic pressure to the volumetric strain it 

produces. K is can be calculated through the following formula 

   
 

       
 ……………………………………………………………………… (4) 

The bulk modulus, K, is also related to another important factor which is called critical 

stress intensity factor,   , by the following formula: 
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  = 
√ 

 
 K ………………………………….……………………………………...… (5) 

2.7 Fracture propagation models 

The mathematical fracture propagation model is very important to relate the injection 

rate, q, time of treatment, t, and fluid leak off,  , with fracture dimensions such as width, 

w, and length, L. There are several models used to get the fracture geometry and these 

models will complete the calculation at a relatively less time as well as speeding up the 

calculation. One of these models is the two-dimensional fracture propagation models 

that involve four principles: the flow of the fluid, the mechanics of the rock, continuity, 

and the width of the fracture. These two-dimensional models are used in case that we 

have strong barriers[ ]. In our study, we will focus on the variations between two 

models of fracturing which are PKN and GDK models. 

There are two complementary models that were chosen to describe hydraulically 

induced fracture propagation in rocks. Both models include rectangular and a radial 

(circular) propagation mode. The two contrasting models are known as the PKN and 

Geertsma-de Klerk (GDK) models[ ].    

2.7.1 The PKN model 

Perkins and Kern (1961) make a derivation that can solve for a fixed height vertical 

fracture as illustrated in the figure below. Nordgren (1972) added leak off and storage 

inside the fracture (because of width increasing) to the Perkins and Kern model[ ]. 

According to Gidley (1989) the assumptions for PKN model are as follows: 

 The fracture has a fixed height,   , independent of fracture length. 

 The fracturing fluid pressure, p, is constant in vertical cross sections 

perpendicular to the propagation direction. 

 The stiffness of the reservoir rock, its resistance to the deformation under the 

action of p, prevails in the vertical plane.  
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 In these cross sections the equation below will relate height,   , fluid pressure, p, 

and local fracture width. 

 

W(x) = 
           

 
 √      ……………………………………... (6) 

 

The cross sections obtain an elliptic shape with maximum width in the center: 

 

W(x, t) = 
        

 
         …………………………..………………. (7) 

 

 The fluid pressure gradient in x direction is determined by the flow resistance in 

the elliptical flow channel. 

The average width of the PKN fracture is expressed as: 

 

 ⃑⃑ = 0.3 *
             

 
+
 

 ⁄

(
 

 
  )…………………….…………………. (8) 

 

Where   is 0.75.  It is important to highlight that even in the contained fractures, 

the PKN is only effective when the length of the fracture is at least three times 

the height. 

 

Figure 10: The PKN fracture geometry [ ] 
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2.7.2   The KGD model                                                                                                   

The KGD model assumes that the height of the fracture is constant and will not 

overcome the pay zone (i.e., the stresses in the layers above and below the pay zone are 

large enough to prevent fracture growth out of the pay zone). 

According to Gidley (1989) the assumptions of GDK model are as follow: 

 Fixed fracture height,   . 

 The stiffness of the rock is considered in the horizontal plane only  

 Fracture width does not depend on fracture height and is constant in the vertical 

direction. 

 The fluid pressure gradient is with respect to a narrow, rectangular slit of 

variable width, 

 

P (0, t) - P(x, t) =      = 
       

  
 ∫

  

        

 

 
………………………..…….. (9) 

 The shape of the fracture in the horizontal plane is elliptic with maximum width 

at the wellbore. 

 

W (0, t) = 
               

 
…………………………………………………. (10) 

 A fracture model is shown in the figure below. 

 

Figure 11: The KGD model [ ] 
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The average width can be calculated by using the following formula  

 ⃑⃑  = 0.29 [
*           

 +

    
]

 
 ⁄

(
 

 
)…………………………...……………………… (11) 

Where  

 ⃑⃑  = average width, in 

   = pumping rate bpm 

G and v represent the rock’s elastic properties, i.e., shear modulus and Poisson’s ratio, 

respectively where 

         …………………………………………………...………………… (12) 

The table below is showing the equations for fracture length and fracture width for 

constant injection rate  

Table 1: Equations for fracture length, width[ ] 

PKN Model 

Length (m) Width (m) 

   [
    

 

         
 ]

 
 ⁄

  
 

 ⁄     [
       

   

   
]

 
 ⁄

  
 

 ⁄  

GDK Model 

Length(m) Width (m) 

   [
   

 

        
 ]

 
 ⁄

  
 

 ⁄    [
       

  

   
 ]

 
 ⁄

 
 

 ⁄  
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The values of C are showed in the following table: 

Table 2: Values for C1 through C6 In table 1 [ ] 

Values for C1 through C6 

 

One wing Two wings 

PKN 

C1 0.68 0.45 

C2 2.5 1.89 

C3 2.75 2.31 

GDK 

C4 0.68 0.48 

C5 1.87 1.32 

C6 2.27 1.19 



20 
 

3  

                                              CHAPTER 3 

METHODOLOGY 

3.1 Research methodology 

In this study which is a numerical modeling of hydraulic fracturing in shale oil 

formation, our objective will be achieved by several steps. Firstly, we have to identify 

the best model of all parameters mentioned earlier followed by developing a computer 

code by using Microsoft excel. The last step in our scope is that we will conduct 

sensitivity analysis that is the study of how the uncertainty in the output a mathematical 

model can be distributed to different sources of uncertainty in its inputs. Following 

diagram shows the planned steps to complete the study. 

 

Figure 12: General description of the workflow

• Gather information from previous research 

• Identify essential model parameters 

First Stage 

• Build the fracture model on Microsoft Excel 

• Validate the constructed model 

Second Stage 

• Perform Sensitivity Analysis 

Third Stage 
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3.2 Gantt chart 

3.2.1 Final Year Project 1 

No Detail/ week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Topic selection                             

2 Gathering important  

information from  

previous papers 

 Shale oil reservoir 

 Hydraulic 

fracturing theories 

 Fracture 

propagation 

models 

    

                

                  

                  

                              

                              

                              

3 Extended Proposal                             

4 Proposal Defense                             

5 Project work                             

6 

  

  

Interim report 

 Reporting 

 Submission 
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3.2.2 Final Year Project 2 

No Detail/ week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Project work                             

  

 Studying of the 

propagation models                             

   Comparison of models                             

   Parametric studies                             

2 Reporting , Documentation and                             

  Submission                             

   Progress report                             

   Pre-SEDEX                             

  

 Final Draft 

(Dissertation)                             

   Technical Paper                             

   Oral Presentation (Viva)                             
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4 CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Prediction of fracture dimensions 

In this section we will discuss our results that was obtained from the calculation of the 

fracture dimensions specifically length and width of the fracture. In our calculation, we 

did a comparison between PKN and GDK models. The comparison is mainly based on 

applying different values of injection rate as well as the time of injection. This 

comparison was conducted for both cases whether there is a leakoff or without leak off. 

To become more familiar with the effect of shale oil rock, we took the critical stress 

intensity factor,     of shale oil is about 8850.43 Kpa√   and the static shear 

modulus,  , of shale rock is about 20000 Kpa. The poison’s ratio of the shale formation 

was estimated as 0.3. By using Eq. 5 the cohesion modulus was found to be: 

     
 

√ 
 = 

           

√ 
             √   

The following is the summary of assumed rock data: 
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Table 3: summary of assumed rock data [ ] 

Rock data 

        20000 

  0.3 

       √   ) 8859.43 

      30 

        1.9 x     

    2.1 x     

The fracture treatment data is illustrated in the following table 

Table 4: Fracture treatment data [ ] 

Fracture treatment data 

   (
  

   ⁄  ) 2 

            200 

            0.00000167 

   (
 

 
 

 ⁄
⁄ ) 0.00046 

    (
 

  ⁄ ) 0.41 

PKN    (m) 39 

GDK        30 

F1 0.75 

4.1.1 No fluid loss case 

The equations that are illustrated in table 1 will be used to determine the length 

and the width of the fracture. 
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For the PKN model, the length of the fracture after 200 minutes (  = 0.45) is 

calculated as follow: 

L= 0.45 *
           

                        +
 

 ⁄

 (   
 

 ⁄ ) = 70.54169957 m 

And for the wellbore fracture width 

W= 1.89 *
                        

        
+
 

 ⁄

      
 

 ⁄  = 0.012365845 m  

For GDK model where the fracture height is taken as 30 m, because it is a plane strain 

configuration with   = 0.48  

L= 0.48 *
           

                        +
 

 ⁄

      
 

 ⁄  = 68.03799689  m 

And for the wellbore fracture width (         

W= 1.32 *
                          

          +
 

 ⁄

      
 

 ⁄  = 0.012416591 m 

The comparison between these two models can be illustrated by changing the values of 

the injection rate    as well as the time of injection. We will repeat the previous 

calculations for both models by increasing the value of    and t.  

Table 5: Result of the length and width for both models when the injection rate is 

0.2 (No Fluid loss case) 

No fluid loss case 

  Length (m) Width (m) 

PKN model 280.8316 0.031062 

GDK model 215.155 0.039265 



26 
 

Starting from an injection rate of 0.2, the results and graphs are shown as follow: 

Table 6: Length changes due to injection rate change (no fluid loss) 

No fluid loss case 

 

 
 

Length (m) 

  
PKN GDK 

0.2 70.5417 68.0379969 

0.4 106.9212 96.220258 

0.6 136.3699 117.845267 

0.8 162.0623 136.075994 

1 185.2797 152.137586 

1.2 206.6982 166.658376 

1.4 226.7278 180.011619 

1.6 245.6405 192.440516 

1.8 263.6279 204.113991 

2 280.8316 215.155038 

 

Figure 13: Length vs flow rate for both models ( no fluid loss ) 
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From the graph and table shown above, we can observe that when we increase the flow 

rate, we observed that the length in PKN model will increase more than GDK length. 

Table 7: Width changes due to injection rate change (no fluid loss) 

No fluid loss case 

 

 
 

Width (m) 

  

 PKN GDK 

0.2 0.012366 0.01241659 

0.4 0.016317 0.01755971 

0.6 0.01919 0.02150617 

0.8 0.02153 0.02483318 

1 0.02354 0.02776434 

1.2 0.025321 0.03041431 

1.4 0.026932 0.03285121 

1.6 0.028409 0.03511942 

1.8 0.02978 0.03724977 

2 0.031062 0.03926471 

 

Figure 14: Width vs flow rate for both models ( no fluid loss ) 
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On the other hand, we can observe that when we increase the flow rate, we observed that 

the width in GDK model will increase more than PKN length. When the time of 

injection increases, we will also observe the increasing the fracture length and width. 

Starting from a time injection of 20 minutes, the results are shown below. 

Table 8: Length changes due to injection time change (no fluid loss) 

No fluid loss case 

 
Length (m)  

t (minutes) PKN GDK 

20 44.5088 46.3537477 

40 77.49433 73.5819878 

60 107.1872 96.4196807 

80 134.9255 116.804125 

100 161.2954 135.53918 

120 186.6238 153.056703 

140 211.1176 169.622534 

160 234.9189 185.414991 

180 258.1309 200.561018 

200 280.8316 215.155038 

 

Figure 15: Length vs  time for both models ( no fluid loss ) 
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Here we can observe that, as time goes by, we will have more length for GDK model at 

the beginning. But after a certain time, the length of PKN model starts to increase and 

override the GDK length. 

Table 9: Width changes due to injection time change (no fluid loss) 

No fluid loss case 

 Width(m) 

t (minutes) PKN GDK 

20 0.019599 0.01822506 

40 0.022513 0.02296214 

60 0.024415 0.02628509 

80 0.02586 0.02893049 

100 0.027041 0.03116442 

120 0.028045 0.03311714 

140 0.028923 0.03486329 

160 0.029706 0.03645013 

180 0.030414 0.03790966 

200 0.031062 0.03926471 
 

 

Figure 16: Width vs  time for both models ( no fluid loss ) 

In contrast, we can observe that, at the beginning, we will have more width by PKN 

model. But as time goes by, the GDK model start to override PKN model. 
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4.1.2 Incorporation of fluid loss 

The second case that we are going to analyze it to have a comparison between 

the two models is when we have a leak. We will also use the same values of the 

injection rate and time of injection and the results are shown below. 

Table 10: Result of the length and width for both models when the injection rate is 

0.2 (Fluid loss case) 

Incorporation of fluid loss 

 
Length (m) Width (m) 

PKN model 250.9243  0.029534 

GDK model 326.2016 0.039674 

 

        The following are the results that obtained in case that there is a fluid loss 

Table 11: Length changes due to injection rate changes (fluid loss) 

Fluid loss case 

 

 
 

Length (m) 

  
PKN GDK 

0.2 25.09243 32.6201564 

0.4 50.18486 65.2403128 

0.6 75.27728 97.8604691 

0.8 100.3697 130.480626 

1 125.4621 163.100782 

1.2 150.5546 195.720938 

1.4 175.647 228.341095 

1.6 200.7394 260.961251 

1.8 225.8319 293.581407 

2 250.9243 326.201564 

𝒒𝟎  (𝒎
𝟑

𝒎𝒊𝒏⁄ ) 
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Figure 17: Length vs. flow rate for both models (fluid loss) 

From the above graph and table, we can clearly observe that GDK model can give 

greater length as the injection rate is increasing. 

Table 12: Width changes due to injection rate changes (fluid loss) 
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Figure 18: Width vs. flow rate for both models (fluid loss) 
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Figure 19: Length vs. injection time changes for both models (fluid loss) 
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Figure 20: Width vs. injection time changes for both models (fluid loss) 
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5  

                                           CHAPTER 5 

                 CONCLUSION AND RECOMMENDATIONS 

As a conclusion, shale oil currently embraces a reliable and economic resource as well 

as in the future. Therefore, the oil and gas industries worldwide must focus attention on 

the means and techniques of producing shale oil from shale rock especially the hydraulic 

fracturing method. Although hydraulic fracturing is a complex and requires a lot of tools 

and professional engineers, it is considered an effective method of shale oil production. 

From the results obtained, in the case that there is no leak off, we observed that PKN 

model can give more length than GDK model. On the other hand, in the case that we 

have fluid loss, we also observed that GDK model can provide more length and width 

than PKN model. 

Besides, the fracture propagation models that are used, mainly PKN and KGD models 

were found to be very useful model for the process of hydraulic fracturing. Also these 

models can facilitate the calculation of prediction of dimensions of the fracture and 

complete it in a relatively short time. In the future, scientists and engineers must invent 

new models that can represent the hydraulic fracturing and this will increase the 

effective production of shale oil reservoirs. In addition, engineers and scientists must 

conduct an experimental research in order to validate the success of using PKN and 

GDK model. 

Below are some future recommendations: 

 Experimental research has to be conducted to validate the success of using PKN 

and GDK models. 
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 Environmental impacts of hydraulic fracturing in shale oil reservoir, particularly 

on the amount of water consumed. 

 Study on shale oil production. 
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