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Abstract 

Shale gas is found within the shale formation which is a tight formation. Hence, to 

improve the low permeability of this formation hydraulic fracturing technique is 

used in extracting the shale gas. The injection of fracturing fluid into the wellbore is 

to cause the formation rock to crack and allowed the flowing of gas into the well. 

When production of shale gas starts, some of fracturing fluid known as flowback 

water will flow back to the surface and this flowback water cause corrosion to 

happen on the production casing. This study has been conducted to investigate the 

effects of reservoir conditions and flowback water toward downhole equipment; and 

to identify a suitable material for downhole equipment during the production of 

shale gas. The scopes of this study are focusing on the corrosion problems that could 

occur on the downhole equipment, efficiently select the materials to maintain the 

integrity of the equipment and the effect of reservoir condition such as presence of 

reservoir impurities to the corrosion or degradation rate. The methods used for 

corrosion mitigation is by using corrosion resistant alloy (CRA) as the downhole 

equipment material for shale gas production. Software called Electronic Corrosion 

Engineer (ECE) is used to calculate the corrosion rate of tubing in some specific 

condition of shale gas well and to select the most suitable tubing material for that 

condition. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of Study 

The rises of natural gas in some of the countries around the globe especially in the 

North America region as new source of energy had caused the amount of producing 

and consuming of natural gas had annually increased. Referring to the analysis by 

U.S Energy Information Administration (EIA), world natural gas production had 

increase from 90,562 Billion Cubic Feet (BCF) in year 2002 to 118,866 BCF in year 

2012 which is about 23.8% (Stevens and Paul, 2012). Shale gas is an unconventional 

reservoir with permeability less than one mD and normally cannot be extracted using 

the same methods as conventional reservoirs. Therefore, special technique called 

hydraulic fracturing must be used to extract the shale gas for commercial production.  

Hydraulic fracturing technique involves injecting a mixture of acids, water, gases, 

and additives (Agbaji et al. 2009) known as fracturing fluids into the well to create 

fractures in the shale formation and this technique consumes large water quantity. 

Typical water volume used for hydraulic fracturing treatment is 6000 bbl per stage 

with 6 to 10 stage for horizontal well (Blow et al., 2009). After hydraulic fracturing 

technique is accomplished, some amount of fracturing fluid is recovered through a 

process known as flowback. The flowback water then will cause corrosion to occur 

at downhole equipment. The flowback water is contaminated by metals such as zinc 

and iron, corrosive elements such carbon dioxide and hydrogen sulphide, salt and 

solids such iron carbonate (Blow et al., 2009). All these contaminants in flowback 

water can give unfavourable effects to the well which it could lead to souring of the 

well (Blow et al., 2009).  

The downhole equipment such as production casing is the production facilities that 

bring the produced shale gas from the reservoir to the surface. Mostly, corrosion 

occurs when steel interact with an aqueous environment then rusts (Corbin and 

Willson, 2007). Corrosion during the shale gas production can be one of the major 

problems as it can cause great impact to the operators such as losses of profit. Core 

problem that has been confirmed is corrosion had caused the pipeline to rapture.  
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1.2 Problem Statement 

The fracturing fluid which is used for hydraulic fracturing technique during shale 

gas production has given rise to concerns around the effect to the integrity of 

downhole equipment. Since the hydraulic fracturing technique is using fracturing 

fluid which mostly contains water to crack the shale, a portion of the fluid known as 

flowback water will return back during the production of shale gas. This will create 

a favourable condition for corrosion to occur on the downhole equipment.  

Moreover, natural gas extraction also contains some corrosive impurities which 

highly corrosive such as carbon dioxide (CO2) and hydrogen sulphide (H2S). These 

types of impurities can react with water to form corrosion. Hence, continuous 

extraction of shale gas with these impurities can cause degradation of downhole 

equipment materials. Degradation of the downhole equipment means a loss of its 

mechanical properties such as strength and ductility (Papoola et. al, 2013). Hence, 

the needs on selecting the suitable materials are essential as the carbon steels that are 

currently used in the industry are seems to easily corrode.  

 

1.3 Objectives of Study 

The key objectives of the study are: 

 To investigate the effects of reservoir conditions and flowback water toward 

downhole equipment for shale gas reservoir.  

 To identify a suitable material for shale gas downhole equipment. 

 To analyse the economical values of selected material. 
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1.4 Scope of Study 

This study is focusing on the corrosion problems that could occur in shale gas 

reservoir especially on the downhole equipment such as production casing due to the 

effects of flowback water and reservoir impurities during shale gas extraction. This 

is because corrosion philosophies must be clearly recognized in order to obtain the 

corrosion characteristics during shale gas production. This study will be focusing on 

corrosion mitigation methods by efficiently select the materials that can maintain the 

integrity of the equipment thus prevent failure to occur. Moreover, corrosion 

mitigation can help in significantly reduced the corrosion rate per year which then 

dramatically increases component’s life.  

Furthermore, the scope of study will be focusing on the effects of reservoir condition 

such as the temperature and pressure to the rate of corrosion that could occur at the 

downhole equipment. The corrosion controls or mitigation methods during the 

production phase of the shale gas are main scope of study as accordance to the 

objective. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Shale Gas 

FIGURE 1: The Conventional and Unconventional Reservoir Geology  

(Source: U.S EIA, 2013) 

 

Shale gas is the natural gas that extracted from unconventional reservoir which is 

trapped in fine-grained sedimentary rocks that mostly fill by shale containing clay 

and minerals like calcite and quartz. In recent years, there is an increasing in the 

production of natural gas from the shale formations. The development of natural gas 

production from the unconventional reservoirs especially from shale formations has 

been a new-fangled target as the development of natural gas extraction from 

conventional reservoirs is decreasing and has caused the industry to change their 

focus to the exploration of unconventional reservoir. The development of 

conventional reservoir as the resources for natural gas extraction in Canada has 

declining in recent years and it is predicted to continue to decline for the next few 

years (National Energy Board, 2009). Also, by the year of 2035 the United States 

EIA predicted that shale gas will be supplying about 46% of natural gas in United 

States (Paul and Stevens, 2012).  
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Shale is the sedimentary rocks which are normally combination of silica, carbonate, 

clay and some percentage of organic materials deposited as mud which is clay and 

silt (Blatt and Tracy, 2000). Laminae of sandstone, limestone or dolostone may also 

be contained in shale. The interconnected pores in the shale formations are very low 

as it is 1000 times smaller than the permeability in the conventional reservoirs and 

compared to methane single molecule, it is just 20 times larger (Kent, 2007). 

However, the permeability of shale formations can be increased by the existence of 

natural fractures in the shale that will act as the pathway of fluid movements (Shurr 

and Ridgley, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Shale (Dark bed) and Limestone (Light bed).  

(Source: The National Energy Board, 2009) 
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2.2 Hydraulic Fracturing 

In the way of producing high flowrate of shale gas, generating additional 

permeability is needed to allow the movements of the gas for collection or producing 

commercially. This can be done by stimulate the reservoir mechanically using 

hydraulic fracturing technique and horizontal drilling for increasing the percentage 

of wellbore exposing to the reservoir as illustrated in Figure 3.  

 

 

 

 

 

 

 

 

 

 

Hydraulic fracturing is a preferred technique for extracting shale gas and helps to 

raise the rates of production and the total recovered amount of shale gas (Perry, 2010 

and Legs Resources, 2011). Hydraulic fracturing is a technique of injecting the 

pressurized fluids that generally contain of water and sand to create the fractures in 

shale formations. The purpose of sand injected with the fluids is to hold the fractures 

open. The injection of fracturing fluids needed to reached production zone and the 

injection is continuous until the pressure inside the well exceeds the rock strength 

and leads the fractures of the shale (Shurr and Ridgley, 2002). The hydraulic 

fracturing technique typically required high amount of water which is about 3–4 

million gallons or equals to 71,000–95,000bbl per shale gas well (Arthur et. al, 

2008).  

FIGURE 3: Illustration of Shale Fractures in Horizontal Well 

(Source: Eawag Aquatic Research, 2013) 
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By referring to the specific geologic formation and structure, pressure of formation 

and the well target, the fracturing fluids composition, volume and types are chosen 

(Perry, 2010). Broderick et. al, (2011) mentioned many factors will influence the 

fracturing fluid to be used including the sensitivity of the reservoir’s clay to water 

and the way reservoir respond to certain fluids. 

 

2.2.1 Flowback water 

After performing hydraulic fracturing technique, shale gas production is started. 

When production started, there will be fluids that will flow back to the surface which 

is called as flowback water.  The flowback water that returns from shale gas wells is 

consist of produced water and some percentage of fracturing fluids that are mix 

together (Eawag Equatic Research, 2013). (Broderick et. al, 2011 and Perry, 2010) 

notes that the percentage of flowback water from fracturing fluids is reported in the 

range between 9% and 35%. The existences of this flowback water can lead to the 

occurring of corrosion of the downhole equipment especially the production casing 

by react with the impurities such as carbon dioxide (CO2) and hydrogen sulphide 

(H2S). 

 

2.2.2 Reservoir Impurities 

Impurities such as CO2 and H2S that exists in the shale well are contributed from the 

reservoir itself and often produce together with the shale gas. For examples, in the 

Horn River Basin, the shale gas contains around 12% of CO2 (Environment 

Canada’s Greenhouse Gas Division, 2008) and in the Horton Bluff Group of Nova 

Scotia, the CO2 contents is around 5% (US Department of Energy, 2008). Actually, 

the presence of these impurities in the reservoir derived from the natural gases it 

selves such as methane and propane due to the high temperature and pressure or 

known as thermogenic system in the reservoir (National Board Energy, 2008). In 

addition, reported by Hamblin (2006), this exposure has also caused some 

percentage of minerals and organic matter converted to CO2.  
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2.3 Corrosion 

Corrosion happens when a material is reacting with its corrosive environment that 

leads to the damaging attack (Roberge, 2000). It is also known as a natural threat 

that linked to the transportation and production in industry of oil and gas (Kermani 

and Smith, 1997). Jones (1988) said that corrosion means the deterioration of 

material properties at every stage in oil and gas. Corrosion can be promoted when 

there is a presence of aqueous environment which could happen under many 

conditions during the hydrocarbon production, processing, and also in the pipeline 

systems (Champion Technologies, 2012).  

During the production of shale gas, there will be the presence of flowback water 

which consists of water that produced from reservoir and return fracturing fluid. 

Many impurity products which are corrosive carried during oil and gas production 

(Lusk et. al, 2008). The presence of liquid water phase containing acidic gases which 

are CO2 and H2S can be the basis for occurring of harsh corrosion problem in gas 

production pipelines (Rendon and Alejendre, 2008). Basically, the types of 

corrosions that may threaten the production casing of shale gas well are CO2 

corrosion and H2S corrosion.  

CO2 corrosion happens when CO2 dissolves in water and carbonic acid (H2CO3) 

formed. Thus, the acid formed will cause the pH to be low and general corrosion or 

pitting corrosion of carbon steel will be promoted (American Petroleum Institute, 

2011). General corrosion or also known as uniform corrosion is a type of corrosion 

damage in which the metal surface is attacked evenly over a large portion of the total 

area or it also can attack the entire surface area (Roberge, 2000). Thinning of general 

corrosion will take place until failures occur but this type of corrosion damage is 

easy to be predicted and measured. Pitting corrosion is a type of corrosion damage 

which the metal surface will severely be attacked at only small areas that cause deep 

pits to form. This corrosion damage is a process of stochastic which is quite hard to 

predict and it is often related to failures of pipeline. 

 

 



9 
 

Sulphide Stress Cracking (SSC), Stress Corrosion Cracking (SCC), Hydrogen 

Induced Corrosion (HIC) are the several types of damage that result due to the 

presence of wet H2S environments. Sulphide Stress Cracking (SSC) is known as 

cracking of metal in the presence of water and H2S, and SSC usually happen when 

there is combination action of corrosion and tensile stress. SSC results from 

absorption of atomic hydrogen that is produced by the sulphide corrosion process on 

the metal surface and SSC is actually a form of hydrogen stress cracking (American 

Petroleum Institute, 2011).  

Stress Corrosion Cracking (SCC) is defined as the growth of crack formation in a 

corrosive environment. Cracking of metal involves anodic processes of localized 

corrosion and tensile stress in the presence of water and H2S. At high temperature 

environment, unexpected sudden failure subjected to a tensile stress could happen 

due to SCC especially for ductile metals (ASM International, 1997). Hydrogen 

induced cracking (HIC) known as the internal cracks in which hydrogen atom 

diffuses into a metallic structure. Hydrogen atom is the smallest atom, so it is easily 

can be diffuse into the metal structure especially at elevated temperature in which 

the solubility of hydrogen is increased. When hydrogen atom is dispersed into the 

metal, internal pressure is created it will further elevate up to the period in which 

makes the metal lose its mechanical properties such as tensile strength and ductility. 

Finally, it will reach to the point of cracking, or HIC (Corrosionpedia, 2010). 

 

  

 

 

 

 

 

 

 

Figure 4: Visual illustration of Uniform and Pitting Corrosion 

(Sources: Roberge, 2009) 



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Leak due to Pitting Corrosion in a pipe line  

(Sources: Roberge, 2009) 

 

Figure 6: Pitting Corrosion 

(Sources: Roberge, 2009) 
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FIGURE 9: Carbon Dioxide (CO2) Corrosion Process  

(Source: IEA Greenhouse Gas R&D Programme, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1 CO2 Corrosion 

 

 

 

 

 

 

 

Figure 7: Hydrogen Sulphide Cracking (HIC) 

(Sources: Roberge, 2009) 

Figure 8: Hydrogen Sulphide Cracking (HIC) mechanism 

(Sources: American Petroleum Institute, 2011) 
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CO2 corrosion is one of the main corrosion problem and the most analyse corrosion 

in the industry since many years before (Zhao et al., 2009). Basically, this is due to 

the fact that there are some amounts of CO2 produced from hydrocarbon reservoir 

(Koteeswaran, 2010). As CO2 is one of the key agents for the occurrence of 

corrosion, the anxiety with this type of corrosion is it can disrupt the production of 

oil and gas including the shale gas production by causing failure on the downhole 

equipment such as production tubing (Gray et al., 1990). CO2 at the dry condition is 

not corrosive unless it is in an aqueous environment as shown in equation 1 known 

as dissolution: 

                 [1] 

 

During the extraction shale gas, this aqueous environment is created due to the 

presence of flowback water. When the content of the flowback water is mixed with 

contaminants such as carbon dioxide (CO2), this could results in the occurring of 

internal corrosion. The main reactions for CO2 and water to form CO2 corrosion is 

the reaction of dissolution and hydration. Hydration is a process of CO2 mix with the 

water to form carbonic acid (H2CO3) as shown in equations 2 (Hunnik et. al, 1996): 

                 [2] 

After the formation of carbonic acid (H2CO3), dissociation processes will take place 

which will disassociate the H2CO3 into bicarbonate and carbonate as in equations 3 

and 4: 

              
   [ ] 

    
         

  
  [4] 

Dissociation processes are produce the hydrogen ions (H+) as shown in equation 3 

and 4 that act as oxidation agents that will induced the steel or iron (Fe) to release its 

electron (Hudlický and Miloš, 1996) as shown in equation [5]: 

              [5] 
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This oxidation process or known as electrochemical reaction is process of 

degradation of the material which happens when the metal state of the iron changes 

its form into ions and thus has cause depletion of the material thickness and this is 

called as the CO2 corrosion. This is not only could result in internal corrosion of the 

pipeline due to CO2, but this can have an adverse effect on pipeline integrity system. 

Thus, it needs to be addressed. The electrons that release by the iron will then gain 

by hydrogen ions as the cathodic reaction to form hydrogen gas (H2) as shown in 

equation [6]: 

               [6] 

The overall reaction of CO2 corrosion is given as: 

                         [7] 

From equation 7, CO2 corrosion caused the corrosion product to formed known as 

iron carbonate (FeCO3) (Srinivasan and Kane, 1995). The H2CO3 direct reduction is 

as in equations 8: 

                     
 

  [8] 

Even though the studied about CO2 corrosion have been done in many years, until now, it is 

still not recognized yet between equations 7 or 8 is the actually reaction takes place at the 

surface of the material. As suggested by (Sun and Nesic, 2006) at higher pH, equation 8 can 

be considered to be important. 

 

2.3.2 H2S Corrosion 

Hydrogen sulfide (H2S) gas in one of the major causes that lead to the severe 

corrosion of downhole equipment especially in production casing. H2S corrosion is 

normally electrochemical in nature (Shahid and Faisal, 2009). The H2S gas 

dissociation products can catalyse the electrochemical reactions because of its 

aggressiveness, especially when it comes to the dissolution of Fe. Formation of iron 

sulphide (FeS) film is generated as the corrosion product due to the reaction between 

H2S and Fe in the downhole equipment: 

Fe + H2S → FeS + H2 
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The uniform characteristic of H2S corrosion of steel has been studied by Sun and 

Nesic (2006) in the way to predict the corrosion rate over time at pH 5.0–5.5. Based 

on their report, an increase in H2S gas concentration will cause corrosion rate to 

increase but after 24 hours the rate is lower compared to 1 hour because of the 

protective FeS film has been formed. Also reported by Shahid and Faisal (2009), 

increasing in gas concentration lead to an increase in corrosion rate. 

During shale gas production, the presence of H2S define vital problem to the shale 

gas production facilities such as the casing as it can cause the H2S corrosion. The 

acid that forms by dissociation of H2S gas is approximately 3 times weaker than 

carbonic acid. It is because H2S gas is less soluble than CO2 gas (Ma et al, 1999). 

Hence, the H2S which in dissolved state do not needed to go through the slow 

hydration process (Shoesmith et al., 1980). During the occurrence of H2S corrosion, 

hydrogen ions are also act as the oxiding agents to promote the iron to undergo the 

anodic reaction release the electron and become Fe
2+

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10: Mechanism of H2S corrosion on Iron (Fe)  

(Sources: Koteeswaran, 2010) 
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2.3.3 Factors affecting the corrosion rate 

Reservoir conditions are the main factors that affecting the rates of corrosion inside 

the production casing during the production shale gas. These factors that can affect 

the rate of corrosion are such as temperatures and pressures. As the depth of 

reservoir increase, the temperature and pressure is also increase. 

1) Effect of Temperature 

In CO2 corrosion, the chemical reaction will accelerate as the temperature increases. 

In addition, the rate of precipitation is proportional to the temperature. In 

precipitating the iron carbonate (FeCO3), some literature has stated that the high pH 

or temperature will accelerate rate of carbonate precipitates (Koteeswaran, 2010). 

Temperature effect on corrosion rate is depends on the solubility of protective films.  

For example, protective films of FeCO3 is not form at low pH, so as the temperature 

increases corrosion rate is also increase. This is because there is no barrier to protect 

the material surface from corrosion attack. However at high pH, increases in 

temperature will cause the corrosion rate to decrease due to the form of iron 

carbonate (FeCO3) which acts as the barrier to prevent the corrosion to take place at 

the material surface (Hunnik et. al, 1996).  

Meanwhile, the effect of temperature on H2S corrosion has less influence the rate of 

corrosion. H2S corrosion rate dependency on the temperature is very low. It also 

does not expect to have an effect at longer exposure times. Sun and Nesic (2007) has 

proposed that the presence of iron sulphide (FeS) scale is significant as it mainly 

controlled the H2S corrosion rate.  

2) Effect of Pressure 

A high pressure will cause the partial pressure to be high. As the pressure inside the 

reservoir increases, it will cause the partial pressure of CO2 and H2S to increase. 

Internal corrosion are also significantly affected by the system pressure inside the 

well as the solubility or the partial pressure of corrosive acid gases such as H2S and 

CO2 increase as the system pressure is increase (Kritzer et. al, 1999).  
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So, basically pressure is not directly affect the corrosion rate but it will affect the 

partial pressure of those impurities. Then due to the increasing of the partial 

pressure, it will affect the rates of corrosion inside in the tubing.  

 

At particular temperature, the partial pressure of the gas will determine the amount 

of gas dissolves (Dugstad et. al, 1994). Since the partial pressure of CO2 is 

determined by the amount of CO2, thus the lower CO2 partial pressure the higher the 

corrosion resistance. At the conditions without the presence of protective film such 

as at high temperature and low pH, increasing the partial pressure of acid gases will 

lead to the increasing of the concentration of acidic condition which is could results 

in increasing the rate of corrosion. For example, when CO2 partial pressure increase, 

it would cause concentration of H2CO3 in solution to increase thus helps in the 

increasing of the corrosion rate of carbon steel. However, at conditions of favourable 

forming of protective film which is at high temperature and pH, it gives an opposite 

effect which is by increasing the rate of FeCO3 precipitation helps in reducing the 

rate of corrosion. 

 

2.3.4 Corrosion Mitigation Methods 

In order to mitigate corrosion of pipelines and due to safety reasons, impurities 

products that are classified as acid gases such as H2S and CO2 need to be detached 

from the gas flowline (Environment Canada’s Greenhouse Gas Division, 2008). The 

mitigation method of corrosion can be done by using several methods such as select 

appropriate material of production casing and choose suitable corrosion inhibitor to 

be injected into the well.  
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2.4 Selection of Piping Materials 

To control the corrosion in shale gas well, selecting the suitable material for the 

downhole equipment especially the casing is vital as the types of material are also 

the reason why corrosion is occurred. Usually, the type of pipeline materials is 

selected at the design stage. As the Carbon and Low Alloy Steel (CLAS) or known 

as the carbon steel is easily attacked by corrosion especially corrosion with the 

presence of CO2, selecting Corrosion Resistant Alloy (CRA) as the casing material 

to produce the shale gas is seems to be a solution for mitigating the internal 

corrosion of the casing.  In order to prevent the corrosion for a long period of time, 

CRAs are necessary for various types of components that exposed to corrosive 

environments during production (Treseder and Tuttle, 1993).  

Example of CRA that can be used for this purpose is Stainless Steel. The contents of 

stainless steel must consist of chromium with percentage of 10.5% and iron with 

percentage of 50%.  The 10.5% chromium content will helps to form a passive film 

on material surface to act as the corrosion barrier and stop the iron from any 

corrosion reaction (Kolts and Ciaraldi, 1996). This passive layer is composed mainly 

of chromium oxide and it acts to prevents oxidation of the base metal which is the 

iron (Craig and Smith, 2011). In extraction of natural gas applications, selecting 

suitable CRAs as the pipeline materials is based on corrosiveness of environment.  

 

Applicable CRAs proposed in the oil and gas industries are: 

• 13-Cr stainless steels  

• Super 13-Cr stainless steels 

• 22-Cr duplex stainless steels 

• 25-Cr duplex stainless steels 

• 28-Cr stainless steels 

 

The resistance level of CRA to corrosion can be determined using equation of pitting 

resistant equivalent (PRE). The larger the PRE number, the more resistant the CRA 

to pitting corrosion. 
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Equation of Pitting Resistant Equivalent (PRE) number: 

 

 

 

The compositions of chemical of the recommended CRAs and and its PRE number 

are show in Table 2 and Table 3. 

 

TABLE 1: Chemical Composition of Recommended Corrosion Resistant Alloy 

(Source: Craig B., & Smith L., 2011) 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

TABLE 2: PRE Number of Recommended Corrosion Resistant Alloy 
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2.5 Economic Analysis 

 
Optimizing the selection of material for downhole equipment can helps in reducing the life 

cycle cost of the materials used and this can be done by matching the characteristic of the 

environment with the characteristics of the materials (Hill et. al, 1989). Using corrosion 

resistant alloy or carbon steels materials for the downhole equipment such as production 

casing, a comprehensive and complete economic analysis is needed. The economic analysis 

is involving the process of evaluating material cost, installation cost, maintenance cost 

which including the labor cost and replacement cost (Parker Hannifin Corporation, 2008). 

The replacement cost is the cost of replacing the material of the downhole equipment after 

several years hydrocarbon has been produced from the well and it is subjected to the 

materials that have the life expectancy shorter than the well production life time (Redmond 

et. al, 1987).  

 

For initial installation, selecting a more expensive material for the downhole equipment of 

shale gas well is actually a good investment as this selection can be a low-cost and trouble 

free solution especially for the well with medium and long life expectancy. Also, low cost 

material should be avoided because this type of material need to be replaced after sometimes 

and this will involve the consideration of the replacement cost of the equipment, new 

systems re-qualification, depreciation, low production rates during replacement period, and 

environmental loss. Other benefits of using an excellent construction material of the 

downhole equipment are lessening the probability of downtime due to the material corrosion 

and also improved the reliability of that equipment (Redmond et. al, 1987). Compared to 

carbon steels, the initial cost of the downhole equipment of shale gas well constructed of 

corrosion resistant alloy are usually higher but in terms of life cycle cost analysis, the use of 

corrosion resistant alloy is frequently appear to be substantially less than the life cycle cost 

of the carbon steels especially for longer shale gas well as the carbon steels materials have a 

shorter life expectancy in corrosive environment compared to the corrosion resistant alloy 

materials (Redmond et. al, 1987).  

 

From this, the practicality of using high corrosion resistant alloy as the material of the 

downhole equipment for corrosion control appeared to be reasonable. To assist with the 

feasibility of lifecycle cost analysis of pipeline studies incorporating the use of corrosion 

resistant alloys, table 3 shows the example of comparison between two types of the 

materials. From Table 3, it shows that rather investing in a cheap material, investing in an 

expensive material today could be cheaper in a medium and long period of time as the more 

expensive material saved up to 40% life-cycle cost compared to the cheaper one.   
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Figure 11: Materials average price comparison 

(Sources: Parker Hannifin Corporation, 2008) 

Table 3: Example of a typical installation and associated life cycle cost of CRA 

(Sources: Parker Hannifin Corporation, 2008) 
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CHAPTER 3 

RESEARCH METHODOLOGY AND PROJECT ACTIVITIES  

 

3.1 Research Methodology 

 

In this project, Electronic Corrosion Engineer (ECE) software is used for the 

assessment of corrosion and material selection for the downhole equipment of shale 

gas reservoir. ECE software is generally used to predict the rates of corrosion 

quantitatively and to select the suitable materials for oil and gas production and 

processing facilities including downhole segment. Model used for corrosion analysis 

and material selection in ECE software is definitely based on laboratory data and 

field calibration studies both downhole tubing and surface facilities. In details for 

this project, the software will be used to: 

 Predict corrosion rates in both sour and sweet corrosive conditions. 

 Predict failure risk of carbon steel as the downhole equipment. 

 Evaluate Corrosion-resistant alloy (CRA) by selecting the most 

appropriate alloys to be used as the downhole equipment for the specific 

conditions of shale gas reservoir which involving the risks of corrosion. 

 Calculate life cycle cost of carbon steel and corrosion-resistant-alloys 

(CRA) based on net present value by evaluate and compare the cost of these 

types of material. 

The results obtained from the software can be used in order to know the severity of 

the corrosion based on the corrosion rate and to show which material is the most 

suitable to be used in to mitigate corrosion in production casing during the 

production of shale gas. The required field data or operating data that is need to be 

put in the software is based on the general characteristics of Horn River Basin and 

Deep Basin of Western Canada which is a shale gas region. In obtaining the rates of 

corrosion, the input parameter of temperature, pressure, crude oil/condensate 

flowrate and API gravity, gas and water flowrate, steel size must be constant and for 

manipulated input parameter will be the gas composition of CO2 and H2S. 
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The data that to be put in the ECE software is as following: 

 Temperature (
o
C) 

 Pressure (bar) 

 Gas composition of CO2 and H2S (mol %) 

 Crude oil/condensate flowrate (m
3
/d) 

 Crude oil/condensate API gravity (
o
API) 

 Gas flowrate (MMSm
3
/d) 

 Water flowrate (m
3
/d) 

Table below are the input data of shale gas reservoir conditions taken from field data 

of Horn River Basin and Deep Basin of Western Canada which used in the 

Electronic Corrosion Engineer (ECE) software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: General Characteristics of Horn River Basin and Deep Basin 
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Electronic Corrosion Engineer (ECE) Software Procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

YES 

NO 

CO2 and H2S beyond certain 

limiting partial pressures 

(mol% x total pressure). 

Calculate Material Life-Cycle Cost in “Tubing 

Life-Cycle Calculation” menu using following 

data:  

 Oil and gas production rate (m
3
/day) 

 Expected life of well (Years) 

 Material Dimension (Inches) 

 Corrosion rate (mm/year)  

 Material and work-over cost ($) 

 Oil and gas prices ($) 

 Inhibition and Glycol cost ($) 

Determine the main input parameter: 

 Temperature (
o
C) 

 Pressure (psia) 

 Gas composition of CO2 and H2S (mol %) 

 Crude oil/condensate flowrate (m
3
/day) 

 Crude oil/condensate API gravity (
o
API) 

 Gas flowrate (MMSm
3
/day) 

 Water flowrate (m
3
/day) 

The input data 

is not valid 

Generate the rate of corrosion of carbon 

steel (mm/year) 

Generate the Material Life-Cycle Cost based 

on the net present value for the following 

materials ($): 

 Carbon Steel 

 Carbon Steel/Continuous inhibition 

 Carbon Steel/Squeeze Inhibition 

 CRA 
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3.2 Project Activities 

 

 

 

 

 

 

 

 

 

 

Start 

Define Problem Statement 

- Determine the presence of flowback water can lead to corrosion. 

   Literature Review 

- Study of shale gas production (flowback water) and corrosion procedure. 

            Gathering Information & Data 

- Shale gas reservoir data such as temperature, pressure and impurities gases (%). 

            Data Analysis 

- Data collected is transferred into the ECE software to compute the corrosion rate.  

Background & Scope of Study 

- Study about shale gas reservoir and causes of corrosion occurrence. 

Develop Selection procedure 

- Based on the corrosion rate, type of material is choosing for the equipment. 

  Documentation 
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3.3 Gantt Chart 

 

Table 5: Gantt chart of Final Year Project I 

 

No. 

 

Description 

Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection of Project 

- Choosing the topic of Final Year Project. 

              

2 Preliminary Research Work 

- Start finding some reference paper that related 

to the topic. 

              

3 Submission of Extended Proposal 

- Submit report that consists of introduction, 

literature review, and research methodology. 

              

4 Proposal Defence 

- Presentation of project progress. 

              

5 Project Work Continues 

- Finding method for project research. 

              

6 Submission of Interim Draft               

7 Submission of Interim Report 

- Report consists of introduction, literature 

review, research methodology and summary 

of project progress. 
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Table 6: Gantt chart of Final Year Project II 

 

No. 

 

Description 

Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Project Work Continues 

- Start finding the software to be used for 

the project. 

                

2 Submission of Progress Report 

- Report consists of abstract, introduction, 

literature review, research methodology, 

result and discussion, and conclusion and 

recommendation. 

                

3 Project Work Continues 

- Continue to use ECE software for the 

project. 

                

4 Pre-SEDEX 

- Poster presentation based on results 

obtained. 

                

5 Submission of Draft Final Report 

- Report consists of abstract, introduction, 

literature review, research methodology, 

full results and discussion, and 

conclusion and recommendation. 

                

6 Submission of Technical Paper 

- Journal paper. 

                

7 Viva 

- Final presentation about project results. 

                

8 Submission of Project Dissertation (Hard Bound)                 
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3.4 Key Milestone 

 

 

 

 

 

 

 

FYP I START 

SELECTION OF PROJECT TITLE 

PROJECT TITLE CONFIRMATION  

PRELIMINARY RESEARCH OF 
PROJECT 

SUBMISSION OF EXTENDED 
PROPOSAL 

CORRECTION OF PROPOSAL  

PREPARATION FOR PROPOSAL 
DEFENCE   

PROPOSAL DEFENCE 

CONTINUATION OF PROJECT 
RESEARCH 

SUBMISSION OF INTERIM DRAFT 

SUBMISSION OF INTERIM REPORT 

FYP I END 

19 May 19 Jun 19 Jul 19 Aug

PROJECT

KEY MILESTONE OF FYP I
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FYP II START 

BRIEFING & UPDATE ON STUDENTS 
PROGRESS 

SUBMISSION OF PROGRESS 
REPORT 

PRE-SEDEX 

SUBMISSION OF DRAFT FINAL 
REPORT 

SUBMISSION OF TECHNICAL PAPER   

SEDEX 

VIVA 

SUBMISSION OF DISSERTATION 
(HARD BOUND) 

FYP II END 

22 Sep 22 Oct 22 Nov 22 Dec

PROJECT

KEY MILESTONE OF FYP II
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Corrosion Rate 

The results of corrosion rate of Deep Basin are presented in Figure 12 and 13 while 

results of corrosion rate of and Horn River Basin are presented in Figure 14 and 15. 

The condition of Deep Basin is sweet condition and condition of Horn River Basin is 

sour condition. Sweet condition is an environmental condition without the presence 

of H2S gas while sour condition is an environmental condition with the presence of 

significance amount of H2S gas. The summaries of corrosion rate analyses for both 

samples were performed. The analysis was conducted with an assumption of 9800 

feet of tubing length, 3.504 inches of tubing outer diameter and the type of material 

used is carbon steel with 0% and 1.2% of chromium content. The expected life of 

well is also assumed which is 15 years. 

For Deep Basin that used carbon steel with 0% of chromium content as the 

production tubing material, it can be seen that with the presence of 21% mole of CO2 

and 0% mole of H2S, the corrosion rate increased as the tubing length is increased. 

This indicate that the deeper the tubing, the higher the corrosion rate. The corrosion 

rates increased from 1.32 mm/year at 0 feet tubing up to 3.55 mm/year at 9800 feet 

tubing. Meanwhile for Deep Basin that used carbon steel with 1.2% of chromium 

content as the production tubing material, the corrosion rate also increased as the 

tubing length is increased with the same amount of CO2 and H2S presence during the 

production which are 21% mole and 0% mole respectively. This also proved that the 

deeper the tubing, the higher the corrosion rate. The corrosion rates increased from 

0.37 mm/year at 0 feet tubing up to 0.97 mm/year at 9800 feet tubing which is less 

than the corrosion rates of carbon steel without chromium content.  



30 
 

Figure 12: Corrosion rate of carbon steel with 0% chromium content of Deep Basin 

shale gas well 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Corrosion rate of carbon steel with 1.2% chromium content of Deep Basin 

shale gas well 
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Generally, the type of corrosion that occurs in the shale gas well of Deep Basin is 

CO2 corrosion and the CO2 corrosion rate in this environment is taken as a possible 

rate of general corrosion and pitting corrosion as shown in the graph. This is because 

the rate of pitting attack is typically reported to be similar to the rate of CO2 

corrosion and when there is no presence of sulfide films or the films is break down, 

then the form of corrosion which takes place is pitting corrosion. 

For Horn River Basin, significant amount of H2S gas is presence during the 

production of the shale gas which is 0.25% mole. For corrosion rate analysis using 

carbon steel with 0% of chromium content as the production tubing material, it can 

be seen that the corrosion rate increased as the tubing length is increased which is 

the similar behavior as the corrosion rates in the shale gas well of Deep Basin. This 

also indicate that the deeper the tubing, the higher the corrosion rate. The corrosion 

rates increased from 2.21 mm/year at 0 feet tubing up to 4.8 mm/year at 9800 feet 

tubing.  

Meanwhile for Horn River Basin that used carbon steel with 1.2% of chromium 

content as the tubing material, the corrosion rate also increased as the tubing length 

increased and the amount of CO2 presence is the still the same during production of 

shale gas which is 21% mole. The corrosion rates increased from 0.38 mm/year at 0 

feet tubing up to 1.00 mm/year at 9800 feet tubing which is less than the corrosion 

rates of carbon steel without chromium content. From both corrosion rates analysis 

of Horn River Basin, this also proved that corrosion rate will be higher as the depth 

of the well is deeper. The types of corrosion that occurs in the shale gas well of Horn 

River Basin are CO2 corrosion and H2S corrosion due to the presence of both 

impurities gases during the shale gas production. The graph also shows that general 

and localized pitting corrosion are occurred.  
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Figure 15: Corrosion rate of carbon steel with 1.2% chromium content of Horn River 

Basin shale gas well 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Corrosion rate of carbon steel with 0% chromium content of Horn River 

Basin shale gas well 
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The results obtained based the graph presented above for both wells are summaries 

in the table below: 

 

 

 

 

 

 

 

 

 

 

 

Based on the results obtain from both wells, it can be seen that the corrosion rate of 

the tubing that used carbon steel with 1.2% chromium content as the tubing material 

is normally less compared to corrosion rate of tubing that used carbon steel with 0% 

chromium content. This is because according to the research, the presence of 

chromium element in the carbon steel will helps in preventing the base metal which 

is the iron from reacting with the environment and hence corrosion reaction will not 

perform. The chromium element will form a passive film on top of the iron to act as 

the barrier between the iron and the environment. This passive layer is composed 

mainly of chromium oxide and it acts to prevents oxidation of the base metal. So, for 

this case, the some carbonic acid that forms from the reaction between flowback 

water and carbon dioxide were block by the chromium oxide layer from reacting 

with the iron and hence the process of oxidation of the base metal were not perform 

vigorously which then resulting in less corrosion rate of the tubing. 

Chromium content (%) 

Corrosion Rate (mm/year) 

Minimum Maximum 

0 1.32 3.55 

1.2 0.37 0.97 

Chromium content (%) 

Corrosion Rate (mm/year) 

Minimum Maximum 

0 2.21 4.8 

1.2 0.38 1.00 

Table 7: Corrosion rate of Deep Basin 

Table 8: Corrosion rate of Horn River Basin 
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The severities of these corrosion rates shows that the downhole environments of 

Deep Basin and Horn River Basin are really corrosive and suitable material such as 

corrosion resistant alloy (CRA) is necessary to be used as the material of the 

downhole production tubing in order to mitigate the CO2 and H2S corrosion. The 

reason for the corrosion rates to increase over the length of the tubing is due to the 

increasing of pressure and temperature. This is because the temperature and pressure 

inside the well is increase with the depth of the tubing as shown in Figure 16 and 17 

respectively. The effect of temperature and pressure to the rate of corrosion can be 

explained through the basic equation that used in the ECE software to calculate the 

CO2 corrosion: 

     
 

 
  

  
 
  

 

Where: 

               
    

     
        (    

)                      
   

        
    

    
    

 

    (    
)            (       

   

     
)  

 

   Temperature (
o
C) 

    
  Fugacity of CO2 (bar); it is similar to partial pressure of CO2 

   Pressure (bar) 

The rate of corrosion in the presence of H2S is higher than without the presence of 

H2S is because there are two effects of the presence of H2S on corrosion in the ECE 

software model which are: 

 It increases the acidity of the water 

 It scavenges the dissolved Fe ions by forming Fe- sulphide precipitates, 

which decrease the pH and increase the corrosion rate. 
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These factors can slightly increase the corrosion rate under certain conditions but 

except at very low concentrations of H2S, these effects are usually outweighed by 

significant reductions in corrosion rate due to sulphide scaling because of the 

presence of sulfide films. Moreover, when the dissolved iron is precipitated as FeS, 

this H2S-containing environment is more acid than without the FeS film because 

there is no dissolved iron carbonate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Pressure graph as a function of tubing length of Deep Basin and Horn 

River Basin shale gas well 
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4.2 Risk of Failure 

Risk Analysis shows a graph of accumulated risk of failure vs. time (years). For its 

construction, it is assumed that the calculated corrosion rates have a normal 

distribution with a standard deviation of 25%. ECE software calculates a normal 

distribution curve around the maximum corrosion rate and converts this to an 

accumulated risk of failure by dividing into the wall thickness and integrating over 

time.  In the presence of H2S, the arbitrary assumption has been made that there is a 

25% risk that the protective sulfide layer fails. Risk of Failure can be described as 

the probability of a component to fail due to the loss of mechanical properties of its 

material. Risk of failure is very important as it could be the technical information to 

measure the safety life of aging tubing and it can be assessed on the basis of the 

degradation of the tubing or pipelines. In other words, risk of failure is related to the 

resistance of the component to its loading.  

 

 

Figure 17: Temperature graph as a function of tubing length of Deep Basin and Horn 

River Basin shale gas well 
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With sufficient data for this project, it can be presented through the graph of risk of 

failure, on the average, the production tubing fails after a certain period of time. For 

Deep Basin that used carbon steel with 0% of chromium content as the production 

tubing material, it can be seen that with the presence of 21% mole of CO2 and 0% 

mole of H2S, the risk of tubing failure increased after a certain period of time usage. 

The risk of failure of the tubing increased up to 100% after 4 years of usage (Figure 

19). Hence, the time limit of using this type of production tubing is only 4 years. For 

Deep Basin that used carbon steel with 1.2% of chromium content as the production 

tubing material, it can be seen that the risk of failure of the tubing increased up to 

100% after 6 years of usage (Figure 20). Hence, the time limit of using this type of 

production tubing is only 6 years. At this failure risk of 100%, the production tubing 

must completely be removed and replace by a new production tubing in order to 

safely produce the shale gas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Risk of failure of carbon steel with 0% chromium content of Deep Basin 

shale gas well 
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For Horn River Basin that used carbon steel with 0% of chromium content as the 

production tubing material, the risk of failure of the production tubing increased up 

to 100% after 3 years of usage (Figure 21) with the presence of 21% mole of CO2 

and 0.25% mole of H2S. Hence, the time limit of using this type of production tubing 

is only 3 years.  

For shale gas well of Horn River Basin that used carbon steel with 1.2% of 

chromium content as the production tubing material, it shows that the risk of failure 

of the tubing increased up to 100% after 5.5 years of usage (Figure 22). Therefore, 

the time limit of using this type of production tubing is only 5.5 years. The reason 

for the usage time limit of carbon steel with 0% chromium content is shorter than 

carbon steel with 1.2% chromium content for both of Deep Basin and Horn River 

Basin is once again because of chromium content. Chromium in the carbon steel 

helps to reduce the corrosion rate. The function of chromium element is that it helps 

in forming a passive film to act as the corrosion barrier and prevent the iron from 

any corrosion reaction. Hence, tubing without chromium content will have shorter 

time limit of usage or high risk of failure. 

Figure 19: Risk of failure of carbon steel with 1.2% chromium content of Deep Basin 

shale gas well 
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Figure 18: Risk of failure of carbon steel with 0% chromium content of Horn River 

Basin shale gas well 

Figure 19: Risk of failure of carbon steel with 1.2% chromium content of Horn River 

Basin shale gas well 
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The results obtained based the graph presented above for both wells are summaries 

in the table below: 

 

 

 

 

 

 

 

 

 

Also, based on the results obtained it can be seen that the risk of failure of tubing in 

Horn River Basin is higher compared to the risk of failure of tubing in Deep Basin. 

The reason is because in Horn River Basin there is 0.25% mole of H2S presence in 

the reservoir. This amount of H2S is significant as it turns the condition in the well 

into sour condition. In the presence of H2S, additional chemical reactions occurring 

in the bulk of the solution include dissociation of dissolved H2S which generating 

the hydrogen ions and bisulfide. This has caused extra amounts of hydrogen ions 

presence in the condition. These hydrogen ions produced will act as oxidation agents 

that will induced the steel or iron to release its electron which cause the degradation 

of the metal surface or known as the corrosion. Another reason is because of the 

effect of H2S gas formed a weak acid and had causing the solution pH to decrease. 

This acid also increases the corrosion rate by providing an extra cathodic reaction in 

which H2S will receive an electron and produced hydrogen atom and bisulfide. This 

hydrogen atom is the smallest atom, so it is easily can be diffuse into the metal 

structure especially at elevated temperature in which the solubility of hydrogen is 

increased. When it diffused, it can cause HIC to happen. These are the reasons that 

cause the risk of tubing failure in the Horn River Basin is higher than in Deep Basin.  

 

Risk of Failure (year) 

50% 100% 

0% Chromium 2.25 4 

1.2% Chromium 3.25 6 

 

Risk of Failure (year) 

50% 100% 

0% Chromium 1.75 3 

1.2% Chromium 2.75 5.5 

Table 9: Risk of tubing failure of Deep Basin 

Table 10: Risk of tubing failure of Horn River 

Basin 
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When the risk of failure reach 100%, the production tubing must completely be 

removed and replace by new production tubing in order to safely produce the shale 

gas. The reason why there is a risk of failure of the production tubing of shale gas 

well is evidently because of the mechanical damage due to corrosion. Generally, it is 

identified that the existence of corrosion due to the presence of CO2 and H2S in the 

tubing reduces the strength of tubing material. The reliability of a component can be 

used as the way to represent the risk of failure of a component. The technique that 

used to predict failure of tubing due to corrosion damage is by determines the 

corrosion rate of the tubing to know how much the defected length to be compared 

with the corrosion allowance or tolerance of tubing design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Defect length of material due to corrosion 
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4.3 Tubing CRA Evaluation 

The limits of use of the different alloys are defined in terms of their resistance to 

corrosion in ‘sweet’ conditions and in terms of their resistance to corrosion or 

cracking in ‘sour’ environments. There is no minimum value partial pressure of H2S 

which has to be exceeded for the environment to be referred to as ‘sour’, the 

performance of CRAs is checked against limits defined for each alloy individually as 

soon as any level of H2S is present. 

The suitable CRA are assessed based upon the following input data:  

 Temperature = 90°C 

 Pressure = 70 bara 

 CO2 = 21 mol% 

 H2S = 0 mol% (Deep Basin) / 0.25 mol% (Horn River Basin) 

 Chloride Content = 1000 ppmw Cl
-
 

The assessment of the suitability of all CRAs is considered for each set of input data 

entered. This assessment of CRAs is independent of any data entered in other tools 

within the ECE, for example the Corrosion Predictor.  The range of conditions 

which can be evaluated is wider, since CRAs may be utilized in conditions where 

carbon steels would not be applicable. The suitability of the alloys in a given 

environment is indicated by "traffic light" indicators on the right hand side of the 

window: 

Green: The assessment indicates that an alloy will not suffer general or localized 

corrosion or sulfide stress corrosion cracking. 

Red: the assessment indicates that there is a high risk of corrosion or cracking and 

the alloy should not be applied. 

Amber: A ‘safety margin’ is established in some cases to indicate that the alloy is 

close to its application limit. When the alloy is judged to be close to a limit where 

there may be a risk of corrosion or of cracking then an amber light will show. 
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The available CRA listed in ECE software that can be used as the tubing materials 

are: 

 13Cr Martensitic Stainless Steel 

 S13Cr Martensitic Stainless Steel 

 22Cr Duplex 

 25Cr Duplex 

 Alloy 28 

 Alloy 825 

 Alloy 2550 

 Alloy C276 

For shale gas well of Deep Basin, with the presence of 21% mole of CO2 and 0% 

mole of H2S, all of the CRA listed by ECE are suitable and can be used in this 

specific shale gas well condition (Figure 23). This indicate that this condition will 

not cause the CRA to suffer general, localized and sulfide stress cracking (SSC) and 

all of the CRA are safe to be used as the tubing materials in this type of shale gas 

well environment. For Horn River Basin, with 0.25% mole of H2S presence in the 

well during production of shale gas, it shows that all of the CRA are suitable to be 

used as the tubing material except for two types of CRA which are 13Cr Martensitic 

Stainless Steel and S13Cr Martensitic Stainless Steel (Figure 24). This point out that 

the two types of CRA should not be apply as the tubing material for this specific 

well condition because there is a high risk for the CRA to suffer cracking and 

corrosion either general or localized.  

The reason why the 13Cr and S13Cr Martensitic Stainless Steel cannot survive in 

the condition of Horn River Basin is because of the presence of H2S. These materials 

have the limits of application in environments containing H2S which occurrence of 

sulfide stress cracking (SSC) is possibly high. With the presence of 0.25% mole of 

H2S which is equal to 0.175 bar partial pressure of H2S, the possibility of 13Cr and 

S13Cr Martensitic Stainless Steel to suffer cracking during production of shale gas is 

high which fall in the red area of safe range graph of 13Cr and S13Cr in sour service 

as expressed in the Figure 25 and Figure 26. The pH assume by ECE is about 3.3 to 

3.4. 



44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Tubing CRA evaluation for Deep Basin shale gas well 

Figure 21: Tubing CRA evaluation for Horn River Basin shale gas well 
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Figure 22: Safe Range Graph of 13Cr in sour service 

Figure 23: Safe Range Graph of S13Cr in sour service 
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4.4 Tubing Life Cycle Cost (LCC) 

The LCC calculation used to carry out a cost comparison on completion of a 

corrosion analysis and CRA material selection, or it can be used totally 

independently by overwriting all the input field data with new information for any 

case being investigated. The LCC evaluation compares the cost of certain options of 

costing exercise especially in terms of material selection but do not estimating the 

actual costs of the projects. Many significant costs which are basically the same 

regardless of the corrosion control option chosen. Net Present Value graph (NPV) 

shows the changing cost of the CRA and carbon steel options as a function of time, 

up to the given life of the project. 

The ECE lifecycle cost calculator for tubing is used to make an economic 

comparison of various corrosion control options for tubing: 

 Carbon steel  

 Corrosion resistant alloy 

 Carbon steel with continuous inhibition 

 Carbon steel with squeeze inhibition 

For carbon steel tubing without injection of inhibitor, the life cycle cost seems to be 

the lowest as the net present value for each year until the end of project life is the 

same which is 3.02$ Million. For carbon steel tubing with squeeze inhibition, the life 

cycle cost seems to be the second highest as the net present value for each operating 

year increase until the end of project life. Squeeze inhibition means inhibitor is 

injected into the well at certain period of time not continuously injected. The net 

present value starts with 3.028$ Million at the first year of operation and end with 

3.106$ Million at the final year of operation which increased 0.078$ Million 

throughout the 15 years of operation period. For carbon steels tubing with 

continuous inhibition, the life cycle cost seems to be the highest as the net present 

value at the end of project life is the highest compare to other material. The net 

present value starts with 3.03$ Million at the first year of operation and end with 

3.116$ Million at the final year of operation which increased 0.086$ Million 

throughout the 15 years of operation period.  
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For CRA, the graph shows a straight line which means it has same net present value 

from the first year until the end of project life which is 3.069$ Million. The result of 

LCC is shown in Figure 27. Based on the result of LCC obtained, the most economic 

material option is carbon steel without injection of inhibitor because it is the one that 

is lowest in cost (the lowest line) at the end of the required project life. But, when it 

comes to the consideration of environmental factor which is corrosive condition, the 

best material should be used in as the tubing material of shale gas well is CRA. This 

is because CRA has the lowest cost compared to the carbon steel with squeeze or 

continuous inhibitor and CRA has better resistant to corrosion compared to carbon 

steel. Other than that, CRA also has longer expected life than carbon steel, so 

workover operation may not be needed.  

The reason why the graph shows the CRA option as a straight line is because there 

are no operating costs calculated for this material option, as there is no need for 

inhibitor injection. The carbon steel without inhibitor also has no annual operating 

cost, in this model, so there is no increase in the costs including workover and tubing 

replacement cost on annual basis. Hence the graph is horizontal, unless a workover 

and tubing replacement is required, which shows as a step in the NPV graph. The 

graph of carbon steel with squeeze and continuous inhibitor show an annual increase 

because of the operating costs. At this point the costs arise for the tubing 

replacement, workover and deferred production. Costs later in the future are less 

than costs today, so the slope of the lines gradually becomes less steep at the end of 

project life. Again, if tubing replacement is expected more, there will be a jump in 

the graph for the workover costs. Note that with very high corrosion rate values the 

tubing replacements may be so frequent that the graph may appear to be a 

continuously rising line. 

Naturally, in practice there would be some annual costs arising from operations, 

inspection and monitoring, but these are assumes by ECE to be roughly equivalent 

for the different tubing options. The mathematical definition of the Life Cycle Cost 

is given by the following formula: 

          ∑
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Where: 

 LCC = Life Cycle Cost 

 AC = Initial acquisition cost of materials 

 IC = Initial installation costs (including fabrication) 

 OC = Operating +/or maintenance costs 

 LP = Lost production costs during downtime 

 RC = Replacement materials costs 

 SC = Residual value of replaced materials 

 N = Desired life time (years) 

 i = Discount rate  

 n = year of the event 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Life Cycle Cost (LCC) graph of material option for downhole tubing 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

In order to mitigate the corrosion that may happen to the downhole equipment due to 

the effect of flowback water, the method of selecting the most suitable materials of 

downhole equipment is choose. Using ECE software, it really helps in achieving this 

objective as ECE can assist in selecting the best CRA that can be used for the 

specific environmental condition of shale gas well and it also assist in calculating 

corrosion rate of tubing made up of carbon steel. The implementation of this strategy 

in mitigating the corrosion helps in protecting the integrity and longevity of the 

equipment. Hence, shale gas can be produce without undergo the production 

downtime. In selecting materials, the suitable CRA used can helps to prevent the 

corrosion activities happen at the surface of the equipment especially the production 

tubing as this equipment is exposed to the flowback water most of the time during 

shale gas production. The types of CRA that can used such as 13-Cr Stainless Steels, 

S13-Cr Stainless Steels, 22-Cr Duplex Stainless Steels, 25-Cr Duplex Stainless 

Steels and Alloy 28-Cr Stainless Steels are resist to corrosion as they contain the 

chromium (Cr) element. Therefore, for example the production tubing is made up of 

CRA such as 22 Duplex Stainless Steels, corrosion will not occur on the surface of 

the tubing. Thus, cracking that usually happens because of corrosion will not happen 

and no downtime for shale gas production.  

5.2 Recommendation 

Some significant recommendation are further study on H2S and CO2 corrosion for 

some other effects in shale gas reservoir such as erosional factors,  as the erosional 

factors are also affects the corrosion behavior. Furthermore, the effect of high 

temperature and pressure should also be considered in selecting the best CRA as 

these two parameters are also affecting the corrosiveness of the environment. Effects 

of higher pH level on the acidity of the environment is also need to be investigate as 

this effects is also influence the corrosion rate on the carbon steel material. 
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