Profiling of Nitrogen Dioxide (NO₂) and Ozone (O₃) in an Enclosed Car Park

by

Nur Zawani binti Zahari

14337

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Civil)

SEPTEMBER 2014

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Profiling of Nitrogen Dioxide (NO2) and Ozone (O3) in an Enclosed Car Park

by

Nur Zawani binti Zahari 14337

A project dissertation submitted to the Civil Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL)

Approved by,

(Dr Nurul Izma binti Mohammed)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK September 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NUR ZAWANI BINTI ZAHARI

ABSTRACT

Air is one of an essential elements for human being to survive. Air pollution originated anthropogenic (man-made) and non-anthropogenic can give adverse effects to human health, environment and ecosystem. It is caused by high concentration of air pollutants present in the atmosphere that emitted directly from its sources or from the reaction between the pollutants itself. Emission and production of pollutants reduces the air quality of both indoor and outdoor environment. Air pollution has been mostly deteriorated by traffic emissions with increasing number of vehicles in the road or public highway and thus lead to high demand of parking area facilities in the city.

Nowadays, rapid industrial development in Malaysia cause shortage of land to sustain the facilities area and hence resulted in construction of high-rise commercial and industrial buildings with enclosed car park system beneath or above the buildings. The nature of air in enclosed car park is much differ from indoor, ambient environment or open-space area due to its confined space and poor ventilation flow system. This study is conducted mainly to determine the air quality in the enclosed car park area affected by reaction of pollutants and emission from vehicles that going in and out from the area.

Concerns of this study is the formation of ozone (O_3) due to the relationship between nitric oxide (NO), nitrogen dioxide (NO₂) and presence of ultraviolet energy. Since there is no direct sunlight in enclosed car park, ultraviolet energy may be emitted from other sources such as lights from the car. The objectives of this study is to identify the concentration level of NO₂ and possibility of O₃ formation in an enclosed car park with the absence of sunlight as the source of ultraviolet energy. Other than that, data is collected by using AQM 60 equipment and the relationship between NO₂, O₃ and surrounding temperature in enclosed car park is analysed by using time series analysis.

ACKNOWLEDGEMENT

First and foremost, my graceful and gratitude towards God the Almighty for His blessings giving me the chance and strength to complete my final year project (FYP) entitled 'Profiling of Nitrogen Dioxide (NO₂) and Possibility of Ozone (O₃) Formation in an Enclosed Car Park".

My honest gratitude to goes to my supervisor, Dr Nurul Izma binti Mohammed for her willingness to share the knowledge, experience and continuous guidance throughout the project. With her supervision, it gives me an inspiration along the way to conduct the research with full commitment until it is completed. In addition, special thanks to University Technology PETRONAS (UTP) and Civil Engineering Department particularly for acknowledging and acquiring the students with essential skills during the research process that helps me a lot to improve my research project.

Not to forget, highest appreciation to my family especially my parents, Zahari bin Mohd Jani and Asmah binti Osman who had encouraged and supported me in any difficulties throughout the project research period.

Special acknowledgement for the management of the building in Kuala Lumpur for helping me and giving the permission to use the basement car park as my study area for this project. Finally, my deepest thanks to all my colleagues and friends who have involved either directly or indirectly in completing this project. It has been a pleasure to have all these people in this journey.

TABLE OF CONTENTS

CERTIFICATION APPROVAL	i
CERTIFICATION ORIGINALITY	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
CHAPTER 1: INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Objectives and Scope of Study	6
CHAPTER 2: LITERATURE REVIEW	
2.1 Air Pollutants	7
2.2 Ozone	10
2.3 Oxides of Nitrogen	14
2.4 Ultraviolet Ray	
2.5 Critical Analysis	
CHAPTER 3: METHODOLOGY	
3.1 Introduction	
3.2 Study Area	
3.3 Data Collection	
3.4 Data Analysis	
3.5 Key Milestone	
CHAPTER 4: RESULTS AND DISCUSSION	
4.1 Introduction	
4.2 Analysis of Air Pollutants	33
4.2.1 Concentration of Air Pollutants on Weekday	
4.2.2 Concentration of Air Pollutants on Friday	
4.2.3 Concentration of Air Pollutants on Weekend	40
CHAPTER 5: CONCLUSION AND RECOMMENDATION	43
REFERENCES	45
APPENDICES	51

LIST OF FIGURES

Figure 2.1	Ozone in Layer of Troposphere and Stratosphere	10
Figure 2.2	NO _x emissions from various sources	15
Figure 2.3	Electromagnetic Spectrum	18
Figure 2.4	Factors Influenced UV Radiation	20
Figure 3.1	Map of Study Area Location	24
Figure 3.2	Sampling Location at Level P2	25
Figure 3.3	Aeroqual AQM 60 Station	28
Figure 3.4	Individual Modules in AQM 60	29
Figure 4.1	Concentration of NO2 against Time on Weekday	35
Figure 4.2	Concentration of NO2 and O3 against Time on Weekday	35
Figure 4.3	Concentration of NO2 against Time on Friday	38
Figure 4.4	Concentration of NO2 and O3 against Time on Friday	38
Figure 4.5	Concentration of NO2 against Time on Weekend	41
Figure 4.6	Concentration of NO2 and O3 against Time on Weekend	41

LIST OF TABLES

Table 1.1	Air Quality Guidelines by Malaysian Government and WHO	2
Table 1.2	Air Pollutant Index used in Malaysia	3
Table 2.1	Sources of Pollutants and Effects	7
Table 2.2	Ambient Air Quality Standard for Ozone	13
Table 2.3	Identification and Properties of Nitrogen Dioxide	14
Table 3.1	Key Project Milestone (FYP I)	31
Table 3.2	Key Project Milestone (FYP II)	32
Table 4.1	Pollutants Concentration on Weekday	34
Table 4.2	Pollutants Concentration on Friday	37
Table 4.3	Pollutants Concentration on Weekend	40

CHAPTER 1 : INTRODUCTION

1.1 BACKGROUND OF STUDY

Air is one of the essential elements for human being to survive. Composition of air in our atmosphere are includes nitrogen (78 %), oxygen (about 21 %), argon (almost 1 %) and other molecules in very small quantities (NCAR & UCAR, 2014). Air pollution is a problem as old as history itself (Hutton, 2011). Air pollution can be defined as air in the environment contains gases, dusts, fumes and harmful substances which can give harmful effects to the earth, human beings, animals and plants (EPA Victoria, 2014).

Air pollution can be originated from anthropogenic (man-made) and non-anthropogenic (Hutton, 2011). Making fire, burning biomass and fossil fuel are examples of man-made pollution that lead to the increasing levels of air pollution (Hutton, 2011). Besides that, natural emissions caused by non-living world such as natural fires, volcanic emission and sea-salt emission could also give adverse effects on human and the ecosystem (Daly & Zannetti, 2007). It can affect our health and damages the environment in many ways such as irritation to the eyes, asthma, increase risk of heart problem, acid rain, haze, ozone depletion and global climate change (MassDEP, 2014).

As we breath every day, we come in contact with many kinds of air pollutants. Air pollutants is defined as any substance that emitted into the air whether it is not part of natural atmosphere or present in higher concentrations than the natural atmosphere (Daly & Zannetti, 2007). Pollutants can be classified into two category, which are primary and secondary pollutants (Daly & Zannetti, 2007). Primary pollutants are emitted directly from its sources such as carbon compound, nitrogen compounds and sulfur compounds (Daly & Zannetti, 2007). Secondary pollutants are not emitted directly as it formed as result of reaction or interaction of primary pollutants such as ozone, particulate matter and organic aerosol formed from volatile organic compounds reactions (Hutton, 2011).

Different types of pollutants may give different effects in different ways to the earth's climate and environment. Greenhouse gases are generated by human activities such as carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), ozone (O_3), and fluorinated gases hydrofluorocarbons (HFCs) give effects to the environment in such a way that they trap energy and heat in the atmosphere (US EPA, 2014). As the concentration of greenhouse gases continue to increase, temperature will also increase which lead to global warming and then climate change of the environment.

Particulate matter, nitrogen dioxide, sulphur dioxide, carbon monoxide are examples of harmful and toxic pollutants that are being released to the atmosphere that can affect the ecosystem (WHO, 2010). There are guidelines on concentration level of pollutants for ambient air quality and safe environment. Amount of pollutants that present above the concentration level are considered harmful to the environment and human beings. Table 1.1 shows the air quality guidelines provided by Malaysian government as compared to guidelines by World Health Organization (WHO).

Pollutant	Malaysian Government	World Health Organization (WHO)
Particulate matter with a	50 μg/m ³ (annual mean)	$20 \ \mu g/m^3$ (annual mean)
diameter of 10 µm or less (PM ₁₀)	150 μg/m ³ (24 h mean)	50 μg/m ³ (24 h mean)
Ozone	$120 \ \mu g/m^3 \ (8 \ h \ mean)$	$100 \ \mu g/m^3 \ (8 \ h \ mean)$
Ozone	$200 \ \mu g/m^3 \ (1 \ h \ mean)$	-
Nitrogen dioxide	-	$40 \ \mu g/m^3$ (annual mean)
	$320 \ \mu g/m^3 \ (1 \ h \ mean)$	$200 \ \mu g/m^3 \ (1 \ h \ mean)$
Sulphur dioxide	$105 \ \mu g/m^3$ (24 h mean)	$20 \ \mu g/m^3$ (24 h mean)
Sulphur dioxide	$500 \ \mu g/m^3 \ (10 \ min \ mean)$	$500 \ \mu g/m^3 \ (10 \ min \ mean)$
Carbon monoxide	10 mg/m^3 (8 h mean)	10 mg/m^3 (8 h mean)
	35 mg/m ³ (1 h mean)	30 mg/m^3 (1 h mean)

TABLE 1.1 Air Quality Guidelines by Malaysian Government and WHO(DOE, 2013 & WHO, 2010)

Air Pollutant Index (API) had been introduced by Department of Environment in Malaysia as a means to report the air quality (DOE, 1997). It acts as an indicator for the air quality status that may cause potential harm to human health when the concentration of air pollutants reach unsafe levels as shown in Table 1.2. Following the US EPA system, API is calculated by collecting data from automatic air quality stations within sufficient average time periods from five major air pollutants which are ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulphur dioxide (SO₂) and suspended particulate matter of less than 10 microns in size (PM₁₀). The value is reported as the highest API value among all of the sub-APIs during that particular time and the specific air pollutant responsible for the value is stated (DOE, 1997).

API	Air Pollution Level
0 - 50	Good
51 - 100	Moderate
101 - 200	Unhealthy
201 - 300	Very unhealthy
301 - 500	Hazardous
500+	Emergency

TABLE 1.2 Air Pollutant Index used in Malaysia (DOE, 2014)

Emission of pollutants from its respective sources can affect the air quality around us. Contamination of air quality includes indoor (household) and outdoor (ambient) environment (WHO, 2014). Indoor air pollution could be in the building, house or office where the sources of pollution came from tobacco smoke, combustion of solid fuels, electronic equipments and household products where they can cause health risks until the source of pollution is removed or proper ventilation is installed (NIH, 2014). Sources that contributed to outdoor air pollution includes vehicles, forest fires, combustion of fossil fuel, power generating stations and industrial activities (WHO, 2010). Studies by Environmental Protection Agency on human exposure to air pollutants deduce that indoor level of pollutants is higher than outdoor pollutant levels. Most people in our country have their own vehicles to go from one place to another. The usage of vehicles has been contributed to air pollution problem as the number of vehicles keep increasing from one year to another (Wargo et. al., 2006). Vehicles emits pollutants of volatile organic compounds (VOC), oxides of nitrogen (NO_x), particulate matter (PM) and carbon monoxide (CO) as the result of combustion process of burning fuel in the engine (US EPA, 2014).

In developed cities, lots of enclosed car parks has been built as a part of the building since there is shortage of land for open-space car parks. Pollutants emitted from vehicles in the enclosed car parks may differ from that in the open-space car parks in terms of concentration and sources of air pollution. Aware with the harmful effects of pollutants, this study will analyse the concentration NO_x from the presence of nitric oxide (NO), nitrogen dioxide (NO₂) and possibility of ozone formation in an enclosed car park.

1.2 PROBLEM STATEMENT

Air pollution has been mostly deteriorated by traffic emissions as increasing number of vehicles in the road or public highway (Barnett & Knibbs, 2014). Increasing number of both public and private vehicles lead to a big demand of parking area facilities in the city (Burnett & Chan, 1997). Nowadays, industrial development has been expanding rapidly in Malaysia. Shortage of land had resulted in construction of high-rise commercial and industrial buildings with enclosed car park system beneath or above the buildings.

Enclosed car park is considered as outdoor environment but in worst state as there is no flow of air that make the air trapped inside the building system. However, there is very limited research done in Malaysia for air quality and pollutants level in an enclosed car park. As enclosed car park provide limited and confined space, proper ventilation need to be installed to channel out the hazardous pollutants from accumulating in the said area. Ventilation of an enclosed car park should acts as functions of bringing in fresh air from the outside and removing the polluted air in order to limit the concentration of contaminants in the area (Lopez et. al., 2013). Ozone is a secondary pollutant formed from chemical reaction between oxygen (O₂) and nitrogen dioxide (NO₂) with the presence of ultraviolet energy from sunlight (Shakhashiri, 2007).

Since the concentration of NO_2 in air is usually very low, ozone can also formed by the reaction between oxygen atom (O) and molecular oxygen (O₂). This study will determine the possibility of ozone formation due to its precursor that may be present in an enclosed car park, which are NO_2 emitted from vehicles and presence of ultraviolet energy since there is no direct sunlight in the enclosed car park.

This research is mainly about the criteria of air quality in an enclosed car park. Therefore, it is crucial to conduct the research in order to know whether the quality of air at enclosed car park is the same with open space environment. The concern of this research are in terms of number of vehicles that are going in and out from the car park area. Burning fuel in vehicles' engine exhaust volatile organic compounds, oxides of nitrogen, particulate matter and carbon monoxide (US EPA, 2014).

Pollutants emitted from vehicles that circulate in the car park are likely will give adverse effects to two different groups which are car park users and car park employees or maintenance contractors (Burnett & Chan, 1997). These group of people has been exposed to the pollutants up to 8 hours per day as for their working period. Hence, it is crucial to identify the concentration level of harmful pollutants whether it will affect the safety of people in the enclosed car park.

1.3 OBJECTIVES

The objectives that need to be achieved at the end of this study are :

- i. To determine the concentration level of nitrogen dioxide (NO₂) in an enclosed car park area. The pollutants that trapped and circulate in the area may give adverse effects on people within the area. Thus, it is important to get the concentration level of pollutants so that measures can be taken in order to maintain the pollutants concentration within the safe level.
- ii. To identity the possibility of ozone (O_3) formation in the enclosed car park due to mixture of O_2 and O. Ozone is a secondary pollutant that produced from reaction of primary pollutants. Since there is no direct sunlight present in the enclosed car park, this study will identify whether ozone is possible to be form or not within the closed area.
- iii. To analyse the relationship between NO₂, O₃ and surrounding temperature in an enclosed car park by using time series analysis

1.4 SCOPE OF STUDY

The study area is at one of the famous car park located at Kuala Lumpur city centre. Kuala Lumpur is the capital of Malaysia and has been developed to act as the cultural, financial and economic centre for the country. The basement car park is located underground below the building, which satisfy the need of this study which is enclosed car park system. There are two (2) types of air pollutants that will be analysed, which are NO₂ and O₃. NO₂ are primary pollutant that produce from vehicles emission whereas O₃ is secondary pollutant formed from the reaction between NO₂ and O₂ in the atmosphere with the presence of ultraviolet energy. Sampling period for conducting this study is within 10 days. Results from this study will identify the concentration level of NO₂ and possibility of ozone formation in an enclosed car park with the absence of sunlight as the source of ultraviolet energy.

CHAPTER 2 : LITERATURE REVIEW

2.1 AIR POLLUTANTS

Nowadays, air pollution has become a major problem to the environment. Gas and particles contaminants that present in the atmosphere are called as air pollutants (US EPA, 2014). Sources of air pollutants may come from natural emissions or human activities, which have been linked to give adverse effects to human health, environment and ecosystem (WHO, 2010). Table 2.1 shows pollutants that causes air pollution with respect to their sources and effects on our health or environment.

Pollutant	Sources and Description	Potential Effects on
Tonutant	Sources and Description	Health/Environment
Ozone (O ₃)	Not emitted directly from	Exposure to high concentrations
	man-made source. Produced from	may cause irritation to eyes and
	chemical reactions between NO _x	nose. Damage of airways that lead
	and Volatile Organic Compounds	to inflammatory reactions could
	(VOC) with the presence of	be due to very high level of ozone.
	strong sunlight. Ozone can be	Decrease function of lung and
	formed over several days or	respiratory system. Ground level
	hours. Its emission may be arisen	ozone give adverse impacts to
	from many kilometres away.	vegetation and hence reduce the
		ability of plants or trees to uptake
		carbon dioxide (CO ₂) in the
		atmosphere
Carbon	Formed from incomplete	Reduces capacity of the blood to
Monoxide	combustion of carbon containing	transport oxygen to body's tissues
(CO)	fuels. Mostly from vehicles or	and blocks crucial biochemical
	road transport.	reactions in cell. Affect delivery of
		oxygen to the heart and brain.

TABLE 2.1 Sources of Pollutants and Effects (DEFRA, 2014 & US EPA, 2014)

Mattersize. Made up from wide range of materials where comes from both man-made and natural sources, which are chemical reactions, fuel combustion, industrial processes, agriculture, vehicles emission, quarrying and unpaved road.exposure lead to development of lung or heart diseases and premature mortality. May also related to cardiovascular illness.Oxides of NitrogenAll combustion processes produce oxides of nitrogen. Main source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectors industrial and commercial sectorsContributes to eutrophication, acidification which leads to biodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.Sulphur dioxideEmitted from combustion of fuels sepecially high-sulphur coal or such as volcanoes.Aggravate asthma, chest tightness, espiratory symptoms. At high level, give potential damage to ecosystem includes degradation of scoharper protein metabolism and increase respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of scoharper potein metabolism and increase respiration rates. Deposition contributes to acidification of soils respiration ares. Deposition contributes to acidification of soils respiration rates. Deposition contributes to acidification of soils <th>Particulate</th> <th>Categorized based on particle</th> <th>Both short-term and long-term</th>	Particulate	Categorized based on particle	Both short-term and long-term
and PM2.5)man-made and natural sources, which are chemical reactions, fuel combustion, industrial processes, agriculture, vehicles 	Matter	size. Made up from wide range of	exposure effects. Short term
which are chemical reactions, fuel combustion, industrial processes, agriculture, vehicles emission, quarrying and unpaved road.exposure lead to development of lung or heart diseases and premature mortality. May also related to cardiovascular illness.Oxides of (NO _x)All combustion processes produce oxides of nitrogen. Main source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsContributes to eutrophication, acidification which leads to biodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.Sulphur dioxideEmitted from combustion of fuels sepecially high-sulphur coal or heavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, eloryphl, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils	(PM-PM ₁₀	materials where comes from both	exposure can aggravate lung or
IndexIndexIndexfuel combustion, industrial processes, agriculture, vehicles emission, quarrying and unpaved road.lung or heart diseases and premature mortality. May also related to cardiovascular illness.Oxides of NitrogenAll combustion processes produce oxides of nitrogen. Main source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsContributes to eutrophication, acidification which leads to biodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or (SO2)Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of such as volcanoes.SulphurEntited from combustion ecosystem includes degradation of such as volcanoes.SulphurEmitted from combustion of fuels ecosystem includes degradation of respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils	and PM _{2.5})	man-made and natural sources,	heart diseases. Long term
Processes, agriculture, vehicles emission, quarrying and unpaved road.premature mortality. May also related to cardiovascular illness.Oxides of Nitrogen (NO _x)All combustion processes produce oxides of nitrogen. Main source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsContributes to eutrophication, acidification which leads to biodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.Sulphur (SO2)Emitted from combustion of fuels especially high-sulphur coal or lectrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, shortness of breath, constriction of ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of sould sources is coal natural sources		which are chemical reactions,	exposure lead to development of
emission, quarrying and unpaved road.related to cardiovascular illness.Oxides ofAll combustion processesContributes to eutrophication, acidification which leads to biodiversity loss damagesNitrogenproduce oxides of nitrogen. Main source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsbiodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or (SO2)Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of such as volcanoes.lung airways and increase respiration rates. Deposition contributes to acidification of soils		fuel combustion, industrial	lung or heart diseases and
road.Contributes to eutrophication, acidification which leads to biodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or (SO2)Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of such as volcanoes.		processes, agriculture, vehicles	premature mortality. May also
Oxides of Oxides ofAll combustion processesContributes to eutrophication, acidification which leads toNitrogen (NOx)produce oxides of nitrogen. Main source is road transport, followed by electricity supply fuelbiodiversity loss damages(NOx)source is road transport, followed by electricity supply fuelvegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2.Industrial and commercial sectorsPromotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels (SO2)Aggravate asthma, chest tightness, shortness of breath, constriction of especially high-sulphur coal or refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of such as volcanoes.Koto as volcanoes.chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils		emission, quarrying and unpaved	related to cardiovascular illness.
Nitrogen (NO _x)produce oxides of nitrogen. Main source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsacidification which leads to biodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or neavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, shortness of breath, constriction of ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils		road.	
(NOx)source is road transport, followed by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsbiodiversity loss damages vegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or heavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils	Oxides of	All combustion processes	Contributes to eutrophication,
by electricity supply fuel combustion, wood burning, other industrial and commercial sectorsvegetation. Affects human health (lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.Sulphur dioxideEmitted from combustion of fuels especially high-sulphur coal or heavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, shortness of breath, constriction of ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils	Nitrogen	produce oxides of nitrogen. Main	acidification which leads to
Combustion, wood burning, other industrial and commercial sectors(lung function, respiratory system and infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or (SO2)Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased refineries. Other sources are from processes and natural sources such as volcanoes.lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils	(NO _x)	source is road transport, followed	biodiversity loss damages
industrial and commercial sectorsand infection) and inflammation of airways at high level of NO2. Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or heavy oils by power stations and refineries. Other sources are from processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of such as volcanoes.uch as volcanoes.chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils		by electricity supply fuel	vegetation. Affects human health
Additional and the second and the s		combustion, wood burning, other	(lung function, respiratory system
Promotes formation of secondary particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or heavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils		industrial and commercial sectors	and infection) and inflammation
Particles and ground level ozone, which associated with ill-health effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or (SO2)Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased refineries. Other sources are from processes and natural sourcesIung airways and increased especially nights, industrial level, give potential damage to ecosystem includes degradation of such as volcanoes.Kind as volcanoes.Chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils			of airways at high level of NO ₂ .
SulphurEmitted from combustion of fuels effects.Aggravate asthma, chest tightness, effects.SulphurEmitted from combustion of fuels especially high-sulphur coal or heavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.Aggravate asthma, chest tightness, shortness of breath, constriction of lung airways and increased respiratory symptoms. At high level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils			Promotes formation of secondary
SulphurEmitted from combustion of fuelsAggravate asthma, chest tightness,dioxideespecially high-sulphur coal orshortness of breath, constriction of(SO2)heavy oils by power stations andlung airways and increasedrefineries. Other sources are fromrespiratory symptoms. At highelectrical utilities, industriallevel, give potential damage toprocesses and natural sourcesecosystem includes degradation ofsuch as volcanoes.chlorophyll, reducephotosynthesis, change proteinmetabolism and increaserespiration rates. Depositioncontributes to acidification of soils			particles and ground level ozone,
SulphurEmitted from combustion of fuelsAggravate asthma, chest tightness,dioxideespecially high-sulphur coal orshortness of breath, constriction of(SO2)heavy oils by power stations andlung airways and increasedrefineries. Other sources are fromrespiratory symptoms. At highelectrical utilities, industriallevel, give potential damage toprocesses and natural sourcesecosystem includes degradation ofsuch as volcanoes.chlorophyll, reducephotosynthesis, change proteinmetabolism and increaserespiration rates. Depositioncontributes to acidification of soils			which associated with ill-health
Image: A stateImage: A statedioxideespecially high-sulphur coal orshortness of breath, constriction of(SO2)heavy oils by power stations andlung airways and increasedrefineries. Other sources are fromrespiratory symptoms. At highelectrical utilities, industriallevel, give potential damage toprocesses and natural sourcesecosystem includes degradation ofsuch as volcanoes.chlorophyll, reducephotosynthesis, change proteinmetabolism and increaserespiration rates. Depositioncontributes to acidification of soils			effects.
 (SO₂) heavy oils by power stations and refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes. Level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils 	Sulphur	Emitted from combustion of fuels	Aggravate asthma, chest tightness,
refineries. Other sources are from electrical utilities, industrial processes and natural sources such as volcanoes.	dioxide	especially high-sulphur coal or	shortness of breath, constriction of
electrical utilities, industrial processes and natural sources such as volcanoes.level, give potential damage to ecosystem includes degradation of chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils	(SO ₂)	heavy oils by power stations and	lung airways and increased
processes and natural sources such as volcanoes.		refineries. Other sources are from	respiratory symptoms. At high
such as volcanoes. chlorophyll, reduce photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils		electrical utilities, industrial	level, give potential damage to
photosynthesis, change protein metabolism and increase respiration rates. Deposition contributes to acidification of soils		processes and natural sources	ecosystem includes degradation of
metabolism and increase respiration rates. Deposition contributes to acidification of soils		such as volcanoes.	chlorophyll, reduce
respiration rates. Deposition contributes to acidification of soils			photosynthesis, change protein
contributes to acidification of soils			metabolism and increase
			respiration rates. Deposition
and water			contributes to acidification of soils
and water.			and water.

Ammonia	Mainly from agriculture,	Damage terrestrial and aquatic
(NH ₃)	fertilizers, and livestock manure	ecosystem through deposition and
	or slurry management. Limited	acidifying of pollutants. Lead to
	source came from transport and	eutrophication of surface water
	waste disposal.	and nitrate contamination of
		ground water. Also acts as
		precursor to particulate matter as
		secondary pollutant.
Lead (Pb)	Emitted from combustion of coal,	High level of exposure give toxic
	iron, steel, nonferrous metals and	biochemical effects to the kidney,
	leaded gasoline in piston engine	gastrointestinal tract, joints,
	aircraft. Can also produce from	nervous system and reproductive
	metal refineries, waste	system. Intellectual and behaviour
	incinerators and battery	development in young children
	manufacturing.	also affected. As for adults, give
		cardiovascular and renal effects
		and early effects related to
		anaemia. Accumulates in soil
		which harms plants and wildlife
Benzene	Variety of sources, which	Known as human carcinogen that
(C_6H_6)	primarily from road transport,	attacks genetic materials where
	domestic and industrial	absolute safe level in ambient air
	combustion.	has not been specified. Studies
		show that high level of exposure
		could lead to risk of leukaemia.
Volatile	Deposition of fossil fuel and	They are toxic air pollutants that
Organic	natural sources (e.g. volcanoes,	cause cancer and serious health
Compounds	vegetation and bacteria).	problems. Contributes to
(VOCs)	Emission from transportation,	formation of ozone, carbon
	industrial processes and gasoline	dioxide and greenhouse gases that
	evaporation that occur when	associated with environmental and
	transfer of gasoline is being made	climate effects.
	at service stations.	

2.2 OZONE

2.2.1 Definition

Ozone is a secondary pollutants that formed in the atmosphere through chemical reactions between primary pollutants (California EPA, 2008). Ozone present in the form of molecular oxygen that composed of three oxygen atoms, which acts as an important component for smog, very reactive and unstable gas (Nurwulan, 2007). Besides, ozone has been classified as a powerful oxidant that can oxidize many organic compounds as compared to bleach actions, which can kill living cells upon contact (Shakhashiri, 2007). Characteristics of ozone is that it has a sharp odour and can be detected after a thunderstorm or during electrical equipments discharges (California EPA, 2008).

There are two types of ozone, one type found in the stratosphere and the other one found in the troposphere (Nurwulan, 2007). Troposphere is the first layer of the earth's atmosphere where weather occur in this layer whereas stratosphere is atmospheric layer above the troposphere (Johnson, 2010). Formation of ozone in the stratosphere called as 'good ozone' since it absorbs harmful ultraviolet rays from the sun (Nurwulan, 2007). As for ozone that present in the troposphere known as 'bad ozone' where it create potential harm to human health, climate change, vegetation and natural materials (Ramli et. al., 2009).

FIGURE 2.1 Ozone in Layer of Troposphere and Stratosphere

2.2.2 Sources

Since stratosphere ozone protects life on earth from being exposed to ultraviolet rays emitted from sunlight, this study is focused on ozone that is formed in the troposphere. Presence of ozone in the troposphere has been a concern prior to its characteristics that promotes poor air quality, health risk, environmental problem and affects ecosystem productivity (Hess & Zbinden, 2013). Troposphere ozone is also known as ground-level ozone as it produced close to the ground level where living things live (California EPA, 2008). Moreover, it also plays an important role in the atmosphere since it oxidizes many chemical substances and it is a greenhouse gas that contributes to global warming (Nurwulan, 2007).

There are two major sources of troposphere ozone, which are transported from the stratosphere and photochemical production (Hess & Zbinden, 2013). Ozone is produced when nitrogen oxides, NO_x that is NO and NO₂ reacts with volatile organic compounds (VOCs) in the presence of sunlight (Bailey, 2011). VOCs are organic compounds made up of carbon and hydrogen that can evaporate easily such as sugar, butane and octane (Nurwulan, 2007). Meanwhile, sources of NO_x as primary pollutant mostly came from motor vehicles, fuel combustion, industrial facilities and electrical utilities (US EPA, 2003). In troposphere layer, net ozone production is very limited since reactions of turning NO into NO₂ will destroy the ozone at the same time (Ramli et. Al., 2009). The reaction cycles (1), (2) and (3) shows the process of generating and destroying ozone occur in the troposphere.

When NO₂ is exposed to ultraviolet energy with wavelength (λ) of less than 424 nm, it undergo photolysis reaction and will generated into oxygen atom and NO molecule.

uv light (
$$\lambda$$
<424 nm)
NO₂ \longrightarrow NO + O (³P) (1)

Oxygen atoms formed in this process is extremely reactive to oxygen molecules, O₂ hence producing ozone.

$$O(^{3}P) + O_{2} \longrightarrow O_{3}$$
(2)

However, the ozone can quickly react with NO to convert back into NO₂ and O₂.

$$NO + O_3 \longrightarrow NO_2 + O_2$$
 (3)

Since production of ozone is limited, VOCs would play an important role in processes where they react and form 'free radicals' that convert NO into NO_2 without destroying O_3 .

$$RO_2 + NO \longrightarrow RO + NO_2$$
(4)
*R is hydrocarbons which are class of VOCs.

Reaction (5) shows NO_2 combines with radical to produce product that is not a radical which is nitric acid, HNO_3

$$NO_2 + OH \longrightarrow HNO_3$$
 (5)

Ozone formation continues until NO_x is removed in the atmosphere, where it is removed more rapidly than VOCs (Carter, 2014). The reaction thought to be permanent sink for NO_x (Carter, 2014). Hence, availability of NO_x would ultimately limits the formation of ozone in the troposphere. As this study conducted in an enclosed car park, source of NO_x depends on vehicles exhaust that affects the amount of ozone that will be formed in the area.

2.2.3 Effects

Anthropogenic activities by human that continues to happen will increase the emission of air pollutants and hence increase the formation of troposphere ozone (Bornman et. al., 2010). At ground level, ozone is a harmful pollutants especially during hot weather since concentration of ozone may reach dangerous level for human health and the environment (US EPA, 2003). Breathing of ozone can cause various health problems includes coughing, throat irritation, chest pain and may become worsen to asthma, bronchitis and emphysema (US EPA, 2014).

Exposure to ground-level ozone can affects lung tissue and its function in such a way that reducing the volume of air for the lung to breathe and cause shortness of breath (California EPA, 2008). Adults and children who spend more time outdoor are at greatest risk from exposure to ozone. Children that active outdoor are more likely to suffer the harmful effects than adults because their lungs are still developing that make them breathe and inhale more pollution as compared to adults (California EPA, 2008).

While stratosphere ozone protects us from ultraviolet radiation, troposphere ozone damages forest and crops, destroy leaf tissues, reduce productivity of plants and overall ecosystem (Bailey, 2011). With that, plants' ability to carry out photosynthesis and produce their own food are affected. Ozone can also cause damage on materials such as rubber, plastics, fibres, paint and metals (UCAR, 2014). Both functional and aesthetic qualities of the materials are damaged hence shortens their life span due to ozone exposure (California EPA, 2008). State of California and US EPA had established ambient air quality standards for ozone as for human health protection.

Averaging Time	National EPA Standard	California Standard
1-Hour	0.09 ppm	-
8-Hour	0.07 ppm	0.075 ppm

2.3 OXIDES OF NITROGEN

2.3.1 Definition

Oxides of nitrogen (NO_x) is the sum of mainly nitric oxide (> 95 %) and lesser amount of nitrogen dioxide (< 5%).

$$NO_x = NO + NO_2 \tag{6}$$

Nitric oxide (NO) is a gas composed of one atom of nitrogen and one atom of oxygen (Butler & Nicholson, 2003). Naturally, NO is being released to the atmosphere and reacts with oxygen to form a brown gas known as nitrogen dioxide, NO₂ (Butler & Nicholson, 2003). NO₂ is a reddish-brown coloured gas that is highly reactive and visible although present in small concentration (Thompson, 2011). Characteristics of NO₂ are corrosive, non-combustible, highly oxidizing and has a pungent odour (Kindzierski et. al., 2007). NO₂ is soluble in concentrated sulphuric acid, nitric acid, carbon disulphide and chloroform (Kindzierski et. al., 2007). Table 2.3 provides list of identification and common properties for nitrogen dioxide.

 TABLE 2.3
 Identification and Properties of Nitrogen Dioxide

(Kindzierski	et.	al.,	2007)
--------------	-----	------	-------

Property	Value
Formula	NO ₂
Structure	0 = N = 0
Molecular Weight	46.01 g.mol ⁻¹
Physical State	Clear colourless volatile liquid
Melting Point	-9.3 °C
Boiling Point	21.12 °C
Density (liquid)	1.448 (at 20 °C)
Density (gas)	1.58
Common Synonyms /	azote, azoto, dinitrogen tetroxide, nitrite, nitro,
Trade Names	nitrogen dioxide (liquid), nitrogen oxide, nitrogen
	peroxide, nitrogen peroxide liquid, nitrogen tetroxide

2.3.2 Sources

Naturally, source of NO_2 in the environment could come from forest fires, atmospheric lightning charges (Kindzierski et. al., 2007), biological processes in the soil and oxidation of ammonia in the atmosphere (Thompson, 2011). If NO_2 is released to water, it will decompose into nitric acid that contributes to acid rain phenomena (Kindzierski et. al., 2007). However, man-made sources such as vehicles exhaust, fuel combustion and appliances such as gas stoves, dryers, portable heaters and fireplaces are more crucial to the production of NO_2 (DHFS, 2011). Figure 2.2 shows emission of NO_x from various sources with their respective percentages.

FIGURE 2.2 NO_x emissions from various sources

NO₂ is released directly into the air from the reaction between NO and hydroperoxy radicals (HO₂), alkylperoxy radicals (RO₂) or ozone radicals (Kindzierski et. al., 2007).

$$HO_2 + NO \longrightarrow NO_2 + HO$$
 (7)

$$RO_2 + NO \longrightarrow NO_2 + RO$$
 (8)

 $O_3 + NO \longrightarrow NO_2 + O_2$ (9)

NO and NO₂ are often grouped together as NO_x because of their relationship and rapid reaction between these two compounds itself (Kindzierski et. al., 2007). For instance, NO₂ can rapidly dissociates when exposed to bright light to produce NO.

$$NO_2 \longrightarrow NO + O$$
(10)

Besides, NO_2 is the main cause of smog (DHFS, 2011) and also a major component in the chemical reactions to produce ground-level ozone (Thompson, 2011). In a high populated area, emission of nitrogen oxides to the atmosphere from fuel combustion is mainly in the form of NO (Ramli et. al., 2009). Generally, complete combustion of fuel combines with sufficient oxygen produced carbon dioxide and water (BBC, 2014). Alternately, insufficient oxygen lead to incomplete combustion with by-products of many types of pollutants including oxides of nitrogen (NO_x), carbon monoxide (CO) and VOCs (DHFS, 2011).

During fuel combustion in automobile engines, nitrogen combine with oxygen to form nitric oxide (Brown, 2014).

heat
$$N_2 + O_2 \longrightarrow 2 \text{ NO}$$
 (11)

The NO that formed inside vehicles' engine reacts spontaneously with O_2 to produce nitrogen dioxide, NO_2

$$2NO + O_2 \longrightarrow 2NO_2$$
(12)

From reaction (11) and (12), it can be concluded that increasing number of traffic in the cities tend to promotes higher concentration level of NO_2 due to incomplete combustion that occur in the vehicles powered engine. Production of NO_2 from vehicles exhaust will lead to formation of ozone in the troposphere. As in an enclosed car park, formation of ozone promotes by presence of NO_2 emitted from vehicles and possible sources of ultraviolet energy that will be proven in this study.

2.3.3 Effects

Exposure to NO₂ have been linked to adverse effects on human respiratory system since the particles are small, which can penetrate easily into sensitive part of the lung (US EPA, 2011). Short term exposure to NO₂ ranging from 30 minutes to 24 hours (US EPA, 2011) can cause health symptoms of slight cough, mild fatigue, nausea, eye and throat irritation (DHFS, 2011). At higher concentrations, it can irritate the lungs, cause bronchitis, severe coughing, headache, choking and lower the resistance to respiratory infections (Thompson, 2011). Otherwise, the symptoms may continue as the result of frequent or long term exposure that cause pulmonary edema (Thompson, 2011) and difficulty to breath for weeks (DHFS, 2011). People who spend more time on or near the road have high potential to NO₂ exposures. It happens that NO₂ concentration level in the road especially heavy traffic can be twice than the levels in residential areas and less congested roads (US EPA, 2011).

Presence of NO_2 in the air contributes to several effects to the environment such as acid rain, degradation of vegetation and eutrophication (Thompson, 2011). Eutrophication is the phenomena where nutrients in a body of water increase and reduce amount of oxygen in the water, resulting in destruction of plant and animal life (Thompson, 2011). Since NO_2 is the precursor for nitric acid as a large contributor of acid deposition, it gives effects on materials such as metals, leather, fabrics, paints and coatings (Kindzierski et. al., 2007). In addition, corrosion and structural damages of underground pipes, cables, bridges, buildings and foundation can occur if they are exposed the acidic elements (Kindzierski et. al., 2007). Visibility of the eyes becomes limited when NO_2 and NO react with water vapor to form aerosol droplets in the air (Thompson, 2011).

As this study conducted in an enclosed car park, possible source of NO_2 production that are being taken into consideration are from vehicles exhaust. Thus, it becomes the precursor to formation of ozone in the study area.

2.4 ULTRAVIOLET RAY

2.4.1 Definition

Ultraviolet (UV) ray can be defined as the small portion of the electromagnetic spectrum with wavelength between 10 nm to 400 nm (Li & Nathan, 2005). The electromagnetic spectrum is the range of all types of electromagnetic radiation, which the energy that travels and transport energy from any source such as gamma rays, X-rays, infrared light, and microwaves (Mattson, 2014).

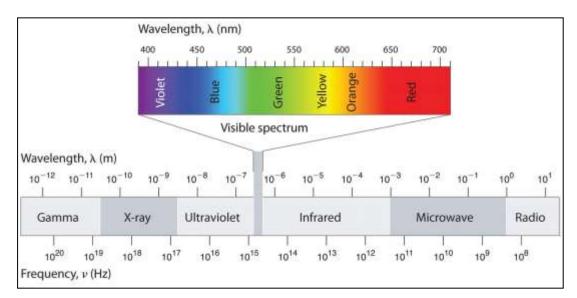


FIGURE 2.3 Electromagnetic Spectrum (Mattson, 2014)

Ultraviolet light is in between the longer wavelength visible light and the shorter wavelength X-ray energy. The term 'ultra' means beyond in Latin word whereas violet is the colour with the shortest wavelength of visible light (Li & Nathan, 2005). Besides, ultraviolet radiation can be expressed in terms of energy, wavelength and frequency where units measured are electron volts, meters and hertz respectively (Mattson, 2014).

Apart from that, ultraviolet radiation has been divided into three (3) wavelength ranges with distinctive properties, potential damage and effects when exposed to such radiation.

i) UVA

UVA ray are the weakest among the UV rays with wavelength of 315 - 400 nm (Akram & Rubock, 2005). It is not absorbed by the ozone layer and thought to play role in causing skin cancer where it can penetrate to the deeper layers of the skin (US FDA, 2010). Adverse health effects that may occur due to exposure are indirect damage to DNA cells, skin cancer, wrinkles and skin allergic reactions such as rash (American Cancer Society, 2014).

ii) UVB

UVB ray are slightly stronger than UVA ray with wavelength of 280 - 315 nm (Akram & Rubock, 2005). Mostly of the rays absorbed by the ozone layer but some does reach the earth's surface (US EPA, 2010). UVB rays can penetrate into the top layers of skin and they are mainly responsible for sunburns (US FDA, 2010), direct damage to the DNA, skin cancer (American Cancer Society, 2014) and erythema (Akram & Rubock, 2005).

iii) UVC

UVC ray are the strongest of UV rays with wavelength of 100 - 280 nm (Akram & Rubock, 2005). It is completely absorbed by the ozone layer and atmosphere (US EPA, 2010). Fortunately, they react with ozone at the upper layer of the atmosphere and do not reach the ground level (American Cancer Society, 2014). Thus, UVC rays are not present in sunlight and are normally not a risk factor for skin cancer.

2.4.2 Sources

Main source of ultraviolet ray is emitted from the sun (American Cancer Society, 2014). However, they may be found in man-made sources such as phototherapy, back-light lamps, mercury-vapour lamps, welding torches and tanning beds (American Cancer Society, 2014). As sunlight passes through the atmosphere, all UVC and approximately 90 % of UVB radiation are absorbed by ozone, water vapour, and carbon dioxide since UVA radiation is less affected by the atmosphere (WHO, 2002).

Therefore, UV radiation that reached the earth's surface is largely composed of UVA with a small amount of UVB component. The level of ultraviolet radiation reaching the earth varies depending on several factors, which are stratospheric ozone layer, time of day, time of year, latitude, altitude, weather condition and surfaces reflections (US EPA, 2010).

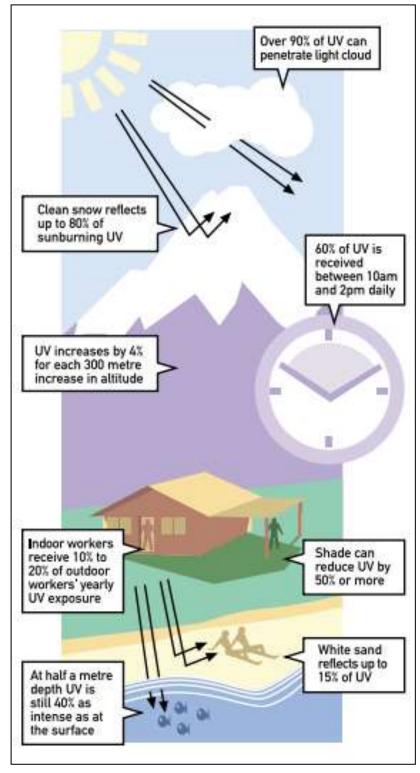


FIGURE 2.4 Factors Influenced UV Radiation (WHO, 2002)

2.4.3 Effects

Presence of ultraviolet radiation at the earth's surface has important implications for human health, biogeochemical cycles, air quality, damage to materials, terrestrial and aquatic ecosystems (Bornman et. al., 2010). Human exposure to solar radiation may result in acute and chronic health effects on the skin, eye and immune system (WHO, 2002). Acute effects appear within a few hours of exposure to radiation while chronic effects are long lasting, cumulative and may not appear for years (Akram & Rubock, 2005). Sunburn and redness of skin called erythema are the acute effects of excessive exposure to the UV radiation (Akram & Rubock, 2005). Chronic effects include accelerates skin ageing, skin cancer and gradual loss of skin's elasticity that results in wrinkles, dry and coarse skin (WHO, 2002).

Risk of skin exposure to radiation is independent to skin type, whether fair-skinned or dark-skinned people (WHO, 2002). People need to be concerned about overexposure to the sun regardless of skin colour. Darker skin has more protective melanin pigment that make them to have lower risk of skin cancer (WHO, 2002). In addition to serious risk of skin cancer, tanning can lead to premature aging, immune suppression, eye damage and allergic reaction (US FDA, 2010).

Eye problems that can impair vision caused by radiation are inflammation of cornea, cataracts formation, affects retina that senses light and pterygium where tissue growth on the surface of the eye (American Cancer Society, 2014). Other than that, sensitivity of the eyes to the exposure of UVB and UVC rays will give effects of conjunctivitis and photokeratitis (Akram & Rubock, 2005).

The immune system is the body's defence mechanism against infections and cancers (WHO, 2002). Exposure to UV rays weaken the immune system and alter activity of cells responsible for triggering immune responses in human (American Cancer Society, 2014). As the result, body has a harder time fending off infections and reduce the effectiveness of vaccines (American Cancer Society, 2014).

2.5 CRITICAL ANALYSIS

There are several researches done about formation of ozone and other pollutants such as sulphur dioxide (SO₂), carbon monoxide (CO) and oxides of nitrogen (NO_x) at indoor environment or enclosed area. Study done by Nzotungicimpaye et. al. (2014) on sources of air pollution in Cape Town, South Africa proves that ozone levels in the site area mainly due to the presence of NO_x. During daytime, production of ozone is mainly driven by traffic emissions while sunlight acts as main contributor to the formation process.

Apart from that, Lopez et. al. (2013) proves that ventilation flow of an enclosed parking garage need to be improved since polluted substances emitted by vehicles are harmful to people's health. Pollutants present in the parking area influenced by the number of vehicles and duration of vehicles movement. In this research, Lopez et. al. (2013) has proposed method to calculate the ventilation flow and solution to achieve greater efficiency in the ventilation system of enclosed parking garage. It is crucial to have an efficient ventilating system for an enclosed car park to ensure the safety of people and workers from dangerous exposure to pollutants.

Contribution of vehicles exhaust to ozone formation was studied by Dong et. al. (2014) in China where emission from heavy-duty diesel vehicles were tested. The main factors for carbonyl emissions are vehicle types, average speed and emission standard. Carbonyl compounds are species of VOCs that highly reactive and serve as one of the major sources of free radicals. They are important precursors leading to the formation of ozone, hence vehicle exhaust should be considered as a stringent issue in controlling level of ozone in the environment.

In Japan, study by Hasunuma et. al. (2014) shows that increasing automobile traffic caused increasing level of air pollutants includes NO_x and particulate matter (PM). As mention before, presence of NO_x contributes to the formation of ozone through chemical reaction in the atmosphere. The study also proved that the enforcement of measures to control automobile emissions had reduced the pollutants levels and thus improve the quality of air.

Chaloulakou et. al. (2002) conducted a research of air monitoring for pollutant levels at enclosed parking garages in Athens urban area. They concluded in their study that workers in enclosed car park were exposed to long-term stay inside the location where pollutants concentrations gave adverse effects on their health. Generally, pollutant levels were found to depend on vehicles entering and exiting the enclosed car park. Besides, the levels are expected to reach the highest value on weekdays during afternoon period of time.

As in Malaysia, a research on modelling of ozone in urban environment in Malaysia done by Ramli et. al. (2009) which focuses on ozone characteristics and management to its precursor in the atmosphere. There are very limited studies done about on ozone formation and its effects in an enclosed car park. Most of the researches particularly done in other countries such as South Africa, China, Japan and Athens. Therefore, it is crucial to conduct this study so that the precursors and effects of ozone formation in enclosed area can be identified. Production of ozone can be controlled and take into consideration if it gave adverse effects to human health or environment. Other than that, ventilation flow system need to be improved to channel out hazardous pollutants from the enclosed area provided clean environment to the car park users and workers. Since the guidelines for indoor environment has not been established in Malaysia, this study is relevant and could contribute to continuation of further researches in this particular field.

CHAPTER 3 : METHODOLOGY

3.1 INTRODUCTION

This chapter elaborates the research methodology conducted to obtain concentration levels of air pollutants in the study area of an enclosed car park located at one of the famous building in Kuala Lumpur city centre. The sampling of air pollutants was carried out from 6th November 2014 until 16th November 2014. Data were collected for every two (2) minutes interval from 12:00 am to 11:00 pm and tabulated for hourly average of pollutants concentration by using Microsoft Office Excel. Trends of each pollutants will also be analysed, which provides information on high or low concentration level of pollutants at certain period of time. At the end of this chapter, a Gantt chart with project activities and milestones will summarize the whole of the research process.

3.2 STUDY AREA

Kuala Lumpur is a developed and most populous city as the federal capital in Malaysia. The city covers an area of 243 km² with estimated population of 1.6 million where it is among the fastest growing city in the country in terms of urban development, population and economy. This study will be conducted at one of the famous building located in Kuala Lumpur city centre.

FIGURE 3.1 Map of Study Area Location

Designed for commercial places and tourist attractions, the building consists of offices, shopping malls and basement parking area. There are 5 levels of basement parking and occupied with 5400 parking bays. Study area where sampling procedures takes place was at level 2 (P2) of the building's basement parking. The location of sampling contains 1363 parking bays and the spot chosen is near to the office of the building. The equipment for data recording is placed at the path that the car park users commonly used to access the main road, coming in and going out from the building.

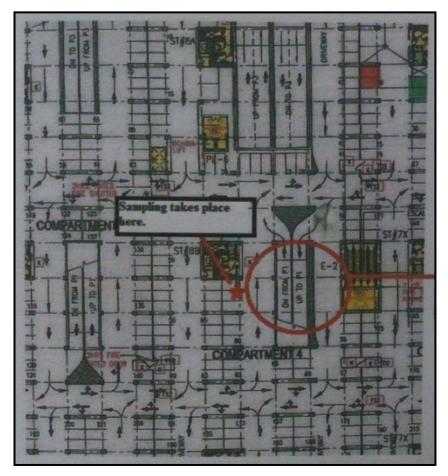


FIGURE 3.2 Sampling Location at Level P2

3.3 DATA COLLECTION

3.3.1 Pollutants Concentration

This study involves data collection by using Aeroqual's AQM 60 Air Quality Station. In this particular study, concentration level of two (2) air pollutants will be collected from the recorded data that are nitrogen dioxide (NO₂) and ozone (O₃). These pollutants were chosen because NO₂ is precursor to the formation of O₃, which involves chemical reactions and contributors to the production process. For the sampling, AQM 60 Station will be installed and set up in the study area before the data collection started.

Pollutants level will be recorded throughout the sampling period of 10 days and readings were taken by the equipment at 2 minutes interval for 24 hours per day. It is significant to determine the changes of concentration level of pollutants for 24 hours period of time so that the validity of the field's measurement data can be obtained. However, data will be taken and analysed from average reading for every hour where trends of pollutants level can be clearly seen. Moreover, NO₂ are the nitrogen oxides that produced from vehicles emissions.

Vehicles acts as the main contributor to the presence of NO_2 and O_3 in the enclosed car park. Therefore, this study depends on the number of vehicles that entering and leaving the study area. All the information can be used to analyse the concentration level of respective pollutants and its trends throughout the day. Specific time that the level of pollutants are the highest and lowest can be obtained from the analysis done.

3.3.2 Equipment (AQM 60)

The Aeroqual AQM 60 Station is a custom-built ambient air quality instrument for maintaining our safe environment. The station is designed for low-cost and easy monitoring of air quality, which concerns about adverse impacts that may occur to our environment and human well-being. It is a highly flexible instrument that it's platform is configurable to measure common air pollutants including ozone (O₃), nitrogen dioxide (NO₂), nitrogen oxides (NO_x), carbon monoxide (CO), sulphur dioxide (SO₂), volatile organic compounds (VOC), hydrogen sulphide (H₂S), non-methane hydrocarbons (NMHC), carbon dioxide (CO₂), particulate matter (PM₁₀, PM_{2.5}, PM₁), noise and meteorological parameters such as temperature, humidity, wind speed and direction.

Key features of AQM 60 includes :

- i. Continuous high quality measurement of gases and particles
- ii. Compact instrument and small footprint for network deployment
- iii. Lower capital cost for affordable profiling and assessments
- iv. Calibrated against EPA and EU Reference Methods (2008/50/EC)
- v. Built-in zero air scrubber and optional automatic calibration system
- vi. User calibration to available and traceable primary standards
- vii. Climate-controlled compact enclosure for pole or wall installation
- viii. Active sampling via brushless pumps and PTFE filter
- ix. Single-board computer and Secure Digital card data storage
- x. PC configuration and data logging software in units ppm or mg/m^3
- xi. Remote communication and diagnostics solutions
- xii. Flexible instrument platform for meteorological and noise sensors

The components of AQM 60 consists of an enclosure typically containing control module, power module, thermal management system, gas treatment module, a number of gas sensor modules, a RH/T sensor and associated cabling and plumbing.

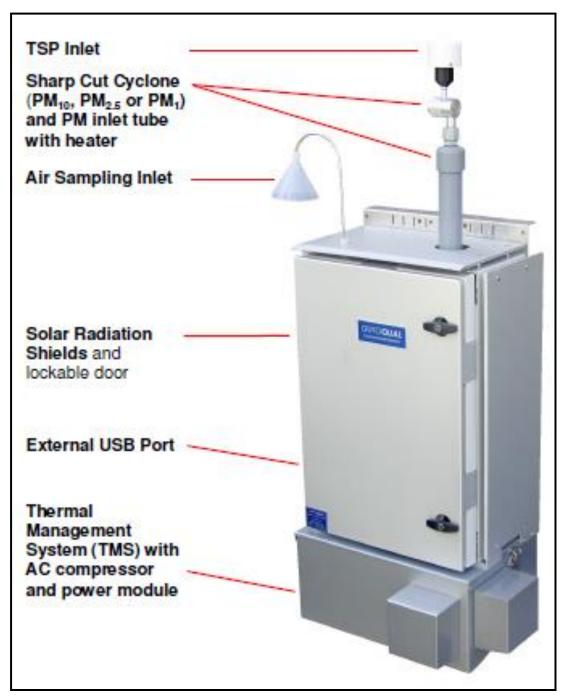


FIGURE 3.3 Aeroqual AQM 60 Station

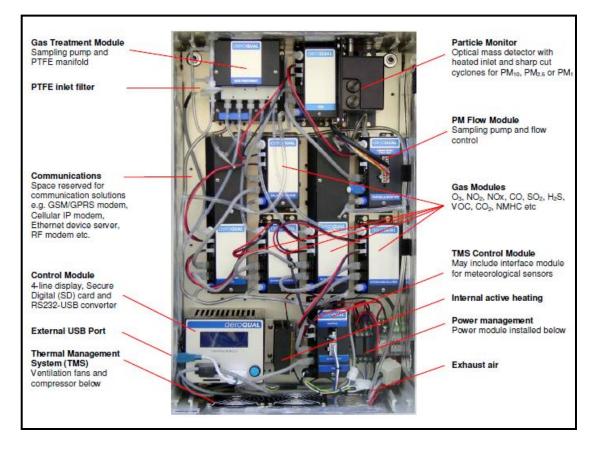


FIGURE 3.4 Individual Modules in AQM 60

There are various applications for the usage of AQM 60 instrument :

- i. Urban air quality monitoring
- ii. Local area air quality networks
- iii. Community exposure : epidemiological studies, microenvironment, residential, schools and hospital
- iv. Near road : motorways, street canyons, traffic information systems
- v. Perimeter : petrochemical, power plants, waste sites, industrial point sources
- vi. Airport, ports, railways, construction sites
- vii. Open space : parks, forests, crop research
- viii. Environmental impact assessment

3.4 DATA ANALYSIS

3.4.1 Microsoft Office Excel

Data collected by the equipment AQM 60 are tabulated in table forms using Microsoft Office Excel software. The software can be used to arrange the results properly according to the pollutants concentration with respect to time of the data sampling period. This study emphasis on concentration level of pollutants in an enclosed car park which are nitrogen dioxide and ozone.

3.4.2 Time Series Model

Analysis of the results are done by using time series model analysis. Time series is a sequence of data points measured typically at successive points in time spaced of uniform time intervals. The analysis will be shown graphically with the relationship between two or more variables in so that it can be related to one another. From data sampling and analysis of time series model, the trends of NO₂ and O₃ formation at the site in variation of time can be observed. Other than that, results will be analysed to produce reliable statistics of NO₂ levels and possibility of O₃ formation in an enclosed car park.

3.5 KEY MILESTONE

The key milestone for this study tabulated in Table 3.1 and Table 3.2, which listed out the project activities, targeted weeks to complete works and the research process.

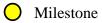

Detail/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Project Title														
Selection														
Preliminary														
Research Work														
Literature Review														
Submission of														
Extended Proposal						\bigcirc								
Revised on														
Literature Review														
Research Work														
Continues														
Proposal Defense										0				
Project Work														
Continues														
Field Measurement														
& Data Sampling														
Draft Report														
Submission of														0
Interim Report														

TABLE 3.1 Key Project Milestone (FYP I)

Detail/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Project Work														
Continues														
Submission of														
Progress Report							\bigcirc							
Collection of Data														
Data Analysis														
i) Concentration														
Level of Pollutants														
ii) Trends of														
Pollutants over														
Time														
iii) Relationship														
between pollutants														
formation and														
vehicles														
Draft Final Report														
Submission of														
Dissertation (soft												0		
bound)														
Submission of														
Technical Paper												0		
Viva Presentation													0	
Submission of														0
Project Dissertation														
(hard bound)														

TABLE 3.2Key Project Milestone (FYP II)

CHAPTER 4 : RESULTS AND DISCUSSION

4.1 INTRODUCTION

This chapter evaluates the results obtained from the data sampling done for this study. Data sampling of air pollutants was carried out from 6th November 2014 until 16th November 2014. The ten (10) days data collection was done at the study area of an enclosed car park located in one of the building in Kuala Lumpur city centre. Equipment used in this study is Aeroqual's AQM 60 that can record data for 24 hours in every two (2) minutes interval.

Data collected is tabulated by using Microsoft Office Excel for hourly average of concentration level of air pollutants. Trends of the air pollutants can be analysed by time series model plotted. In addition, evaluation of the results are in terms of pollutants concentration level, their relationship and the surrounding temperature. Analysis of the results is done according to three (3) categories which are weekdays, friday and weekends. Friday is chosen along with weekdays and weekend because it has slight difference in working hour period as compare to weekdays. Raw data received from the equipment during sampling and remaining results is attached in Appendix A.

4.2 ANALYSIS OF AIR POLLUTANTS

Results from data sampling is taken from 12:00 am to 11:00 am for one day analysis. Concentration levels of nitrogen dioxide (NO₂), ozone (O₃) and surrounding temperature at the study area are tabulated with respect to time. From the table, it shows that concentration of NO₂ has higher level than O₃. Main source of NO₂ in the enclosed car park area emitted from incomplete combustion of vehicles' exhaust. Fluctuations of NO₂ concentration level happens since amount vehicles that coming in and out from the area changes at different period of time. Formation of O₃ occur in the enclosed car park due to NO₂ as its precursor. Malaysia standard limit for NO₂ is 0.17 ppm and 0.10 ppm for ozone in one (1) hour mean time.

4.2.1 Concentration of Air Pollutants on Weekdays

<u>г</u>			
Time	Ozone	Nitrogen Dioxide	Temperature
TIME	(ppm)	(ppm)	(°C)
12:00 AM	0.0297	0.0057	31.91
1:00 AM	0.0284	0.0076	31.88
2:00 AM	0.0202	0.0208	31.82
3:00 AM	0.0161	0.0209	31.66
4:00 AM	0.0157	0.0176	31.80
5:00 AM	0.0182	0.0151	31.86
6:00 AM	0.0191	0.0121	31.92
7:00 AM	0.0179	0.0163	31.94
8:00 AM	0.0125	0.0200	31.71
9:00 AM	0.0094	0.0154	31.36
10:00 AM	0.0110	0.0276	31.52
11:00 AM	0.0097	0.0607	32.01
12:00 PM	0.0095	0.0678	32.58
1:00 PM	0.0096	0.0787	32.85
2:00 PM	0.0050	0.0704	32.98
3:00 PM	0.0084	0.0762	33.30
4:00 PM	0.0076	0.0733	33.14
5:00 PM	0.0073	0.0580	32.78
6:00 PM	0.0073	0.0640	32.40
7:00 PM	0.0041	0.0536	32.33
8:00 PM	0.0102	0.0436	32.13
9:00 PM	0.0146	0.0327	32.12
10:00 PM	0.0164	0.0210	32.20
11:00 PM	0.0176	0.0470	32.18

 TABLE 4.1
 Pollutants Concentration on Weekday

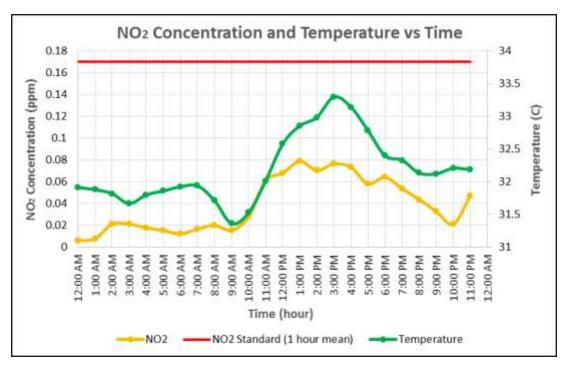


FIGURE 4.1 Concentration of NO₂ against Time on Weekday

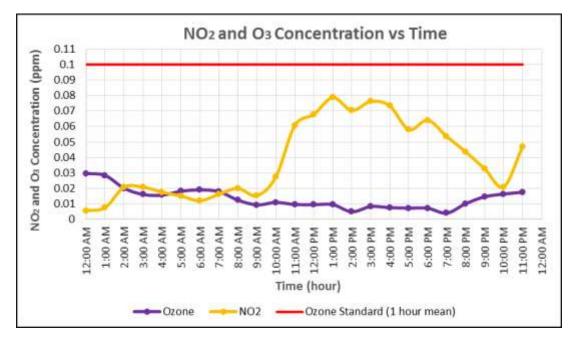


FIGURE 4.2 Concentration of NO₂ and O₃ against Time on Weekday

Figure 4.1 shows the concentration of NO₂ (ppm) and temperature (°C) against time (hour) on weekday. It can be said that the trends of NO₂ is much related to the temperature in the enclosed car park. The concentration level for NO₂ started to increase from 9:00 am and reached the highest value at 1:00 pm with the concentration of 0.079 ppm. After that, concentration of NO₂ decreased starting from 3.00 pm until 10:00 pm where it started to increase back at this particular hour. The lowest value of NO₂ is observed at 12:00 am with concentration of 0.006 ppm.

The concentration of NO_2 increase from 9:00 am because number of vehicles that emits NO_2 increases when people comes to work at the building. Highest concentration value at 1:00 pm since it is the time for people going out for lunch. However, it starts to decrease back at 3:00 pm because it is the time for people to get back to work after lunch period. Increasing of NO_2 concentration shows that most of the working people going back from work at 10:00 pm on weekday. This is because they might have stayed back at the office to finish their work or attended meetings for urgent project works.

From Figure 4.2, it can be seen the trends of NO_2 and O_3 with respect to time. Concentration level of O_3 increase and decrease inversely with the concentration of NO_2 in the area. In this case, it happened because NO_2 has become the precursor to the occurrence of O_3 formation. Although there is no presence of direct sunlight in enclosed car park area, the source of UV to form ozone may come from the lights in the car park area or lights from vehicles present inside the area.

Therefore, the results for weekday shows concentration level of NO₂ depends on number of vehicles as well as effect of temperature and existence of O₃ in the study area. Both pollutants indicated that the concentration level do not exceed the Malaysian Standards limit for NO₂ and O₃ which is given by 0.17 ppm and 0.10 ppm respectively. This means that the pollutants in the study area are considered safe to people for 1 hour mean time of exposure.

4.2.2 Concentration of Air Pollutants on Friday

Time			Temperature
_			(°C)
12:00 AM	0.0167	0.0073	32.79
1:00 AM	0.0138	0.0069	32.63
2:00 AM	0.0083	0.0150	32.69
3:00 AM	0.0078	0.0105	32.65
4:00 AM	0.0063	0.0091	32.64
5:00 AM	0.0078	0.0066	32.57
6:00 AM	0.0054	0.0055	32.53
7:00 AM	0.0061	0.0168	32.75
8:00 AM	0.0049	0.0079	32.34
9:00 AM	0.0026	0.0084	31.88
10:00 AM	0.0003	0.0210	31.99
11:00 AM	0.0036	0.0334	32.62
12:00 PM	0.0051	0.0421	33.10
1:00 PM	0.0064	0.0421	33.32
2:00 PM	0.0013	0.0390	33.41
3:00 PM	0.0024	0.0370	32.71
4:00 PM	0.0033	0.0366	32.12
5:00 PM	0.0018	0.0326	31.57
6:00 PM	0.0048	0.0188	31.31
7:00 PM	0.0009	0.0250	31.23
8:00 PM	0.0059	0.0269	31.61
9:00 PM	0.0123	0.0404	32.06
10:00 PM	0.0161	0.0233	32.42
11:00 PM	0.0272	0.0369	32.65

TABLE 4.2Pollutants Concentration on Friday

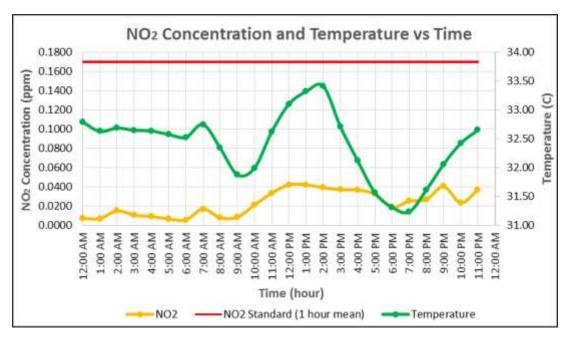


FIGURE 4.3 Concentration of NO₂ against Time on Friday

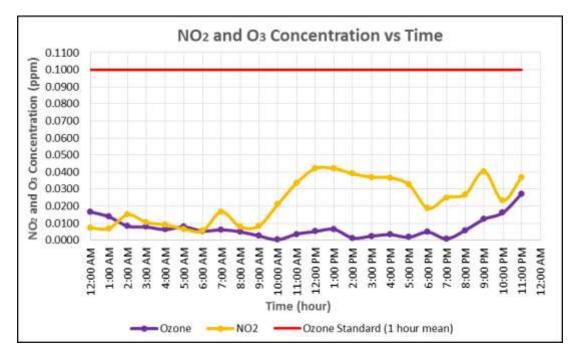


FIGURE 4.4 Concentration of NO₂ and O₃ against Time on Friday

On Friday, the results from Figure 4.3 shows the concentration of NO₂ (ppm) and temperature (°C) against time (hour). It can be said that the trends of NO₂ is similar with the results obtained from weekday. The concentration level for NO₂ started to increase consistently from 9:00 am to the highest concentration value of 0.042 ppm at 12:00 pm. After that, the concentration of NO₂ is having fluctuations and increase back starting from 6:00 pm. Lowest value recorded during 6:00 am with concentration of 0.006 ppm.

The concentration of NO₂ increase from 9:00 am during starting of working period and have the highest concentration at 12:00 on friday instead of 1:00 pm on weekday. This is due to difference in lunch hour period between Friday and weekday. In Malaysia, the lunch period allocated for workers is longer on Friday than that on weekday. However, it starts to decrease at the same time of 3.00 pm because after lunch period is over. NO₂ concentration increased back at 6:00 am which early than on weekday due to people coming back home more early than usual. They might be celebrating that weekends is coming or going out with their family and friends.

As from Figure 4.4, it is observed that concentration of NO_2 and O_3 have lower value as compared to weekday. This happen as concentration of NO_2 depends on number of vehicles going in and out from the area. Nevertheless, O_3 fluctuations occur due to presence of its precursor which is NO_2 that reacts with UV lights in the enclosed car park.

The analysed results for Friday can be considered same with weekday in terms of the relationship between concentration level of NO_2 and surrounding temperature which is the precursor to formation of ozone in an the enclosed car park. On top of that, the pollutants concentration are within the Malaysian Standards limit for 1 hour mean time of exposure.

4.2.3 Concentration of Air Pollutants on Weekend

Times	Ozone	Nitrogen Dioxide	Temperature
Time	(ppm)	(ppm)	(°C)
12:00 AM	0.0105	0.0246	31.90
1:00 AM	0.0194	0.0061	31.91
2:00 AM	0.0145	0.0124	31.94
3:00 AM	0.0116	0.0099	31.89
4:00 AM	0.0098	0.0124	31.90
5:00 AM	0.0090	0.0133	32.01
6:00 AM	0.0093	0.0084	31.99
7:00 AM	0.0127	0.0071	32.04
8:00 AM	0.0138	0.0120	32.08
9:00 AM	0.0185	0.0165	31.94
10:00 AM	0.0197	0.0164	32.13
11:00 AM	0.0234	0.0407	31.99
12:00 PM	0.0215	0.0313	31.57
1:00 PM	0.0197	0.0306	31.66
2:00 PM	0.0237	0.0318	31.87
3:00 PM	0.0259	0.0341	31.79
4:00 PM	0.0251	0.0293	31.77
5:00 PM	0.0239	0.0203	31.77
6:00 PM	0.0183	0.0148	31.52
7:00 PM	0.0167	0.0301	31.88
8:00 PM	0.0178	0.0296	31.78
9:00 PM	0.0169	0.0186	31.66
10:00 PM	0.0154	0.0196	31.76
11:00 PM	0.0229	0.0174	31.93

 TABLE 4.3
 Pollutants Concentration on Weekend

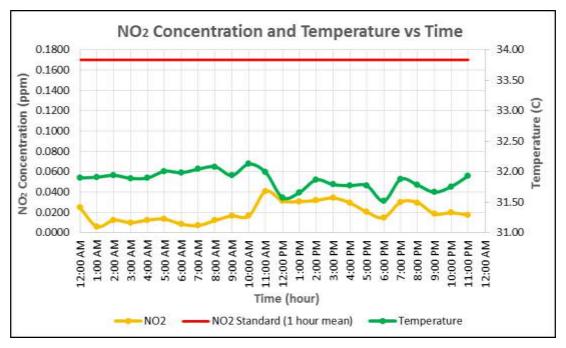


FIGURE 4.5 Concentration of NO₂ against Time on Weekend

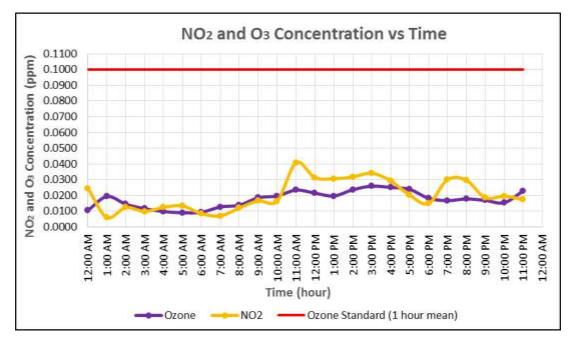


FIGURE 4.6 Concentration of NO₂ and O₃ against Time on Weekend

Figure 4.5 and Figure 4.6 indicates the correlation between concentration level of NO_2 and O_3 in enclosed car park with respect to its surrounding temperature and time on weekend. The concentration levels of NO_2 and O_3 showed lower values than during weekday and Friday. NO_2 concentration started to increase from 7:00 am to its highest value recorded at 11:00 pm with the reading of 0.041 ppm. Then, the concentration of NO_2 started to decrease inconsistently until 6:00 pm. After 6:00 pm, it started to increase back as according to the surrounding temperature of the study area. The lowest value of NO_2 is observed at 1:00 am with concentration of 0.006 ppm.

Concentration level of NO_2 is lower on weekend as compare to weekday and Friday because only few people came to the building during holiday. Hence, reduced number of vehicles in the study area leads to the decreasing level of NO_2 emission. NO_2 increase at certain period of time that might be the time for people coming in and leaving the building. Other than that, the maintenance workers probably came and do their works on weekend to avoid crowded area during weekdays.

As for concentration level of O_3 , the fluctuation patterns is inversely with the concentration of NO₂ in the area where it is converted to O_3 . Consequencely, possibility of O_3 formation in an enclosed car park is practical as according to the analysis done. From figure 4.6, it signifies that the decreasing of NO₂ leads to increasing of O_3 and vice versa. It can be explained by NO₂ that is the precursor of O_3 has been used up in the reaction process of producing O_3 with reliable source of UV light in the enclosed car park.

Results of concentration level of NO_2 and O_3 on weekends satisfied with the standards limit given by Malaysian government and classified as below hazardous level of pollutants in 1 hour mean time of exposure.

CHAPTER 5 : CONCLUSION AND RECOMMENDATIONS

Quality of air in an enclosed car park must not be taken for granted as the area is differ from ambient or open-space area. The confined space and high concentration level of pollutants could give adverse effects especially to human health. This study examines the concentrations of air pollutants in an enclosed car park area to comply with hazardous levels given by the Malaysian Standards limit. Analysis of the results was done to evaluate the trends of air pollutants during weekdays, Friday and weekends.

Objectives of this study have been achieved. Firstly, the concentration level of NO_2 in an enclosed car park can be determined. Secondly, there is formation of O_3 occurring in enclosed car park even with absence of direct sunlight. Lastly, the relationship between NO_2 , O_3 and surrounding temperature of the study area is analysed by using time series analysis. By using time series model, trends of selected air pollutants against time can be clearly seen.

From the analysis, NO_2 concentration in an enclosed car park is corresponding with the working trends in Malaysia. The NO_2 emission depends on incomplete combustion of vehicles' exhaust and much related to the surrounding temperature of the study area. Possibility of O_3 formation aligned to its precursor which is NO_2 and reliable source of UV light inside the enclosed car park area. The concentration for both NO_2 and O_3 recorded in this study do not exceed the Malaysian Standard limit.

In Malaysia, there is no regulation and guideline on indoor ambient air quality and thus this study can be used as continuation for further research in the future. Indoor air quality guideline is crucial to ensure people who working with indoor environment are safe from being exposed to dangerous level of air pollutants. On top of that, intense study regarding ozone need to continue in such a way in future the value may increase because NO2 is the precursor to the formation of ozone. The study can be improved by some modifications as follows :

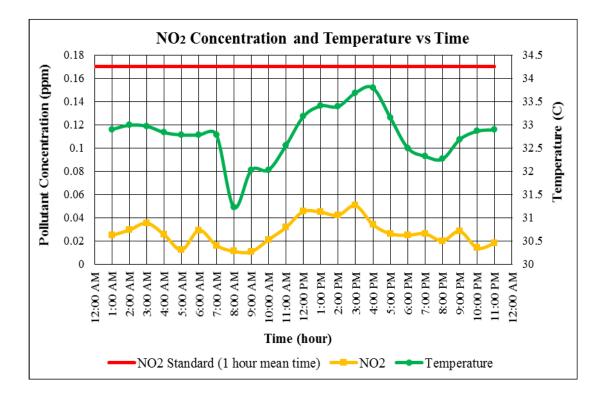
- Installation of equipment in the study area that able to measure UV radiation level
- 2) Data sampling is done for a longer period of time to get more reliable results
- Air sample is taken from several points in the enclosed car park area to increase accuracy
- 4) Number and types of vehicles in the enclosed car park area can be measured to relate with the rate of pollutants emission from vehicles' exhaust

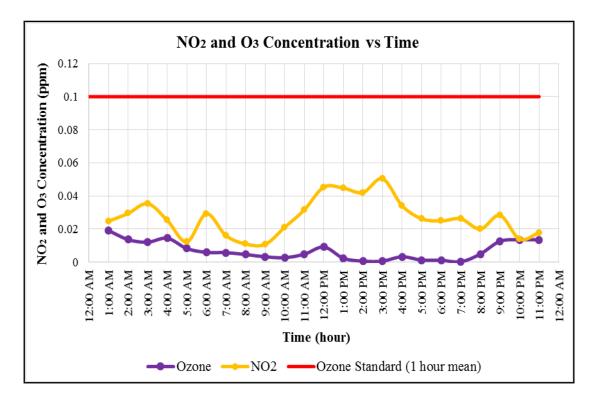
REFERENCES

- Akram, M. & Rubock, P. (2005). Working Safely with Ultraviolet Radiation : Policy and Procedures. Columbia University Health Sciences Division, Environmental Health & Safety.
- American Cancer Society (2014). Ultraviolet (UV) Radiation. Retrieved July 10th, 2014 from http://www.cancer.org/acs/groups/cid/documents/webcontent/acspc-039643-pdf. pdf
- Bailey, D. (2011). Gasping for Air : Toxic Pollutants Continue to Make Millions Sick and Shorten Lives. *Natural Resources Defense Council*.
- Barnett, A.G. & Knibbs, L.D. (2014). Higher Fuel Prices are Associated with Lower Air Pollution Levels. *Environmental International 66.* 88-91.
- Bornman, J. F., Paul, N. & Tang, X. (2010). Environmental Effects of Ozone Depletion and Its Interactions with Climate Change : 2010 Assessment. United Nations Environment Programme, Kenya.
- Brown (2014). Oil, Useful Products, Environmental Problems, Introduction to Organic Chemistry. Atmospheric Pollution : The Incomplete Combustion of Hydrocarbon. Retrieved June 27th, 2014 from http://www.docbrown.info/page04/OilProducts04.htm
- Burnett, J. & Chan, M.Y. (1997). Criteria for Air Quality in Enclosed Car Parks. Proc. Instn Civ. Engrs, Transp., 1997, 123, May, 102-110.
- Butler, A. & Nicholson, R. (2003). Life, Death and Nitric Oxide. *The Royal Society* of Chemistry, Cambridge, United Kingdom.

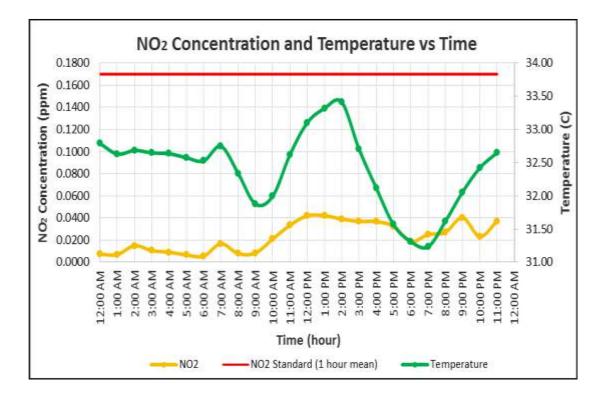
- California EPA (California Environmental Protection Agency). (2008). Article on "Facts About Ozone and Health : Overview of the Harmful Health Effects of Ground Level Ozone". *Air Resources Berhad www.arb.ca.gov*
- Carter, P. L. W. (2014). Quantification of Ozone Impacts of Volatile Organic
 Compounds. College of Engineering Center for Environmental Research and
 Technology, and Statewide Air Pollution Research Center University of
 California. Retrieved July 2nd, 2014 from
 http://www.cert.ucr.edu/~carter/pubs/usctalk.pdf
- Chaloulakou, A., Duci, A., Spyrellis, N. (2002). Exposure to Carbon Monoxide in Enclosed Multilevel Parking Garages in Central Athens Urban Area. *Indoor and Built Environment, vol. 11 : 191-201*
- Daly, A. and Zannetti, P. (2007). An Introduction to Air Pollution -Definitions ,Classifications, and History. Chapter 1 of AMBIENT AIR POLLUTION. Published by The Arab School fro Science and Technology (ASST) and The EnviroComp Institute.
- DEFRA (Department for Environment Food and Rural Affairs). (2014). Article on "What Are Causes of Air Pollution". Retrieved May 15th, 2014, from http://www.defra.gov.uk/
- Department of Environment (2014). Official Air Pollutant Index (API) of Ministry of Natural Resources and Environment. Retrieved May 10th, 2014, from http://apims.doe.gov.my/apims/hourly4.php
- Department of Environment Malaysia (1997). A Guide to Air Pollutant Index in Malaysia (API).
- DHFS (Wisconsin Department of Health Services). (2011). Indoor Air Issues : Nitrogen Dioxide. Wisconsin Division of Public Health, Bureau of Environmental Health, Wisconsin.

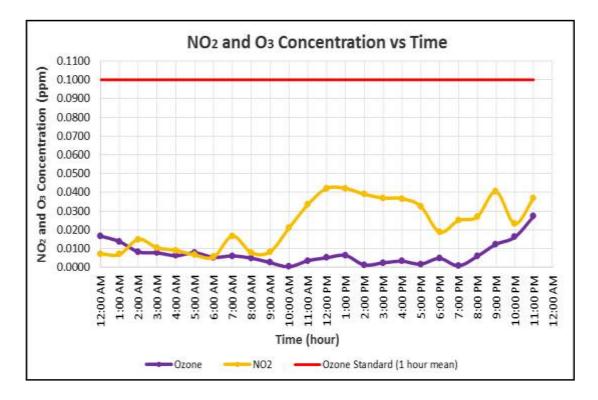
- Dong, D., Shao, M., Li, Y., Lu, S., Wang, Y., Ji², Z., Tang², D. (2014). Carbonyl Emissions from Heavy-Duty Diesel Vehicle Exhaust in China and the Contribution to Ozone Formation Potential. *Journal of Environment Sciences 26* (2014) 122-128.
- EPA Victoria (Protection Agency Victoria). (2014). Retrieved June 23rd, 2014, from http://www.epa.vic.gov.au/air/aq4kids/pollution.asp
- Hasunuma, H., Ishimaru, Y., Yoda, Y., Shima, M. (2014). Decline of Ambient Air Pollution Levels due to Measures to Control Automobile Emissions and Effects on the Prevalence of Respiratory and Allergic Disorders among Children in Japan. *Environmental Research 131 (2014) 111-118*.
- Hess, P. G. & Zbinden, R. (2013). "Stratospheric Impact on Tropospheric Ozone Variability and Trends : 1990 - 2009". *Atmos. Chem. Phys.*, *13*, 649-674, 2013.
- Hutton, G. (2011). "Assessment Paper : Air Pollution". Copenhagen Consensus on Human Challenges.
- Investopedia (2014). Multiple Linear Regression MLR. Retrieved June 30th, 2014 from http://www.investopedia.com/terms/m/mlr.asp
- Johnson, R. (2010). Windows to the Universe. Article on "Layers of the Earth's Atmosphere". Retrieved July 1st, 2014 from http://www.windows2universe.org/earth/Atmosphere/layers.html
- Kindzierski, W., Guigard, S., Schulz, J., Vidmar, J. & Purtill, C. (2007). Assessment
 Report on Nitrogen Dioxide for Developing Ambient Air Quality Objectives.
 Toxico-Logic Consulting Inc. *Air Policy Branch, Alberta Environment, Alberta.*
- Li, F. M. & Nathan, A. (2005). CCD Image Sensors in Deep-Ultraviolet : Degradation Behaviour and Damage Mechanisms. Springer-Verlag Berlin Heidelberg, New York.

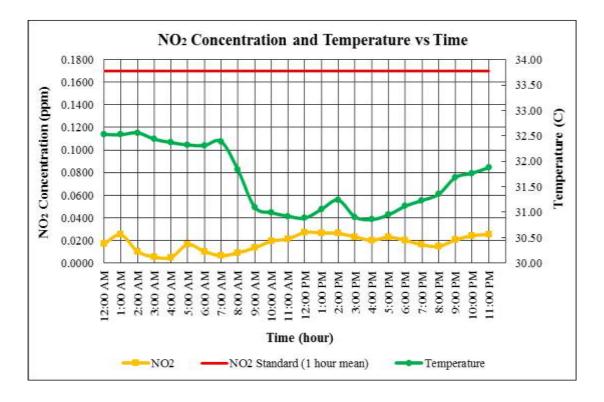

- Lopez, T.G., Sanchez, A.S., & Molina, C.G. (2013). Energy, Environmental and Economic Analysis of the Ventilation System of Enclosed Parking Garages : Discrepancies with the Current Regulations. *Applied Energy 113 (2014)* 622-630.
- MassDEP (Commonwealth of Massachusetts Department of Environmental Protection). (2014). Retrieved June 11th, 2014, from http://www.mass.gov/eea/agencies/massdep/
- Mattson, B. (2014). Electromagnetic Spectrum. Retrieved July 9th, 2014 from http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html
- NCAR & UCAR (The National Centre for Atmospheric Research & The University Corporation for Atmospheric Research). (2014). Retrieved May 20th, 2014, from http://www.eo.ucar.edu/basics/wx_1_b_1.html
- NIH (National Institute of Health), 2014. Retrieved June 21st, 2014, from http://www.nlm.nih.gov/medlineplus/indoorairpollution.html
- Nurwulan, S. (2007). World Issues 360. Article on "Stratospheric Ozone vs Tropospheric Ozone Why One is Good and One is Not". Retrieved July 1st, 2014 from http://www.worldissues360.com/index.php/stratospheric-ozone-vs-troposphericozo ne-why-one-is-good-and-one-is-not-67450/
- Nzotungicimpaye, C. M., Abiodun, B. J., Steyn, D. G. (2014). Tropospheric Ozone and Its Regional Transport over Cape Town. *Atmospheric Environment* 87 (2014) 228-238.
- Ramli, N. A., Yahaya, A. S., Ghazali, N.A. (2009). Modelling of Ozone in Urban Environment in Malaysia. Pusat Pengajian Kejuruteraan Awam, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

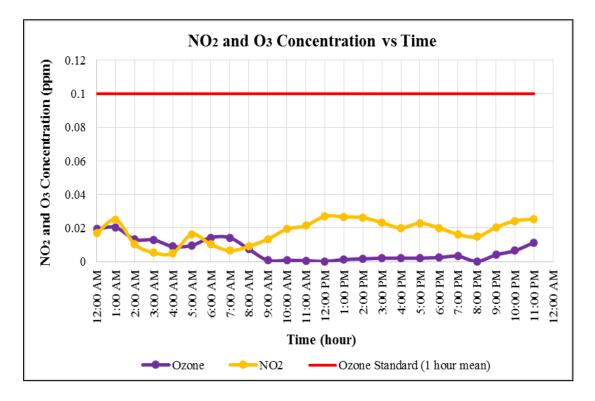

- Shakhashiri (2007). Chemical of the Week : Ozone (O₃). *General Chemistry www.scifun.org*
- Stevenson, D. S. (2006). Influence of Emissions, Climate and the Stratosphere on Tropospheric Ozone. Science Report. Environment Agency, Almondsbury, Bristol.
- Thompson, S. A. (2011). Air : Nitrogen Dioxide. Department of Environmental Quality, Oklohama.
- UCAR (The University Corporation for Atmospheric Research). (2014). Article on "Tropospheric Ozone, the Polluter". Retrieved July 2nd, 2014 from https://www.ucar.edu/learn/1_7_1.htm
- US EPA (United States Environmental Protection Agency). (2014). Article on "Air Pollution : Health, Environmental and Climate Impacts". Retrieved May 14th, 2014 from http://www.epa.gov/
- US EPA (United States Environmental Protection Agency). (2014). Article on "Air Pollution : Health and Environmental Impacts". Retrieved May 17th, 2014, from http://www.epa.gov/
- US EPA (United States Environmental Protection Agency). (2014). Article on "Ground Level Ozone : Health Effect". Retrieved July 2nd, 2014 from http://www.epa.gov/groundlevelozone/health.html
- US EPA (United States Environmental Protection Agency). (2014). Article on "Vehicle Emissions". Retrieved June 17th, 2014, from http://esa21.kennesaw.edu/activities/smog-cars/doe-veh-pollutants.pdf
- US EPA (United States Environmental Protection Agency). (2011). Air Quality Guide for Nitrogen Dioxide. *Air Quality Index, Office of Air and Radiation (6301A)*. *EPA-456/F-11-003*.

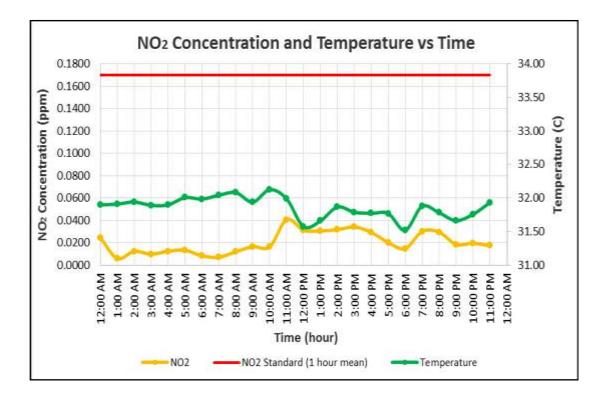
- US EPA (United States Environmental Protection Agency). (2010). Article on "UV Radiation". *Air and Radiation 6205J. EPA 430-F-10-025*
- US EPA (United States Environmental Protection Agency). (2003). Ozone. Office of Air and Radiation, Washington, DC
- US FDA (U.S. Food and Drug Administration). (2010). Indoor Tanning : The Risks of Ultraviolet Rays. *Consumer Health Information www.fda.gov/customer*
- Wargo, J., Wargo, L., & Alderman, N. (2006). "The Harmful Effects of Vehicle Exhaust : A Case for Policy Change". *Environment & Human Health, Inc., North Haven Connecticut.*
- WHO (World Health Organization). (2014). Retrieved May Wednesday, 2014, from http://www.who.int/topics/air_pollution/en/
- WHO (World Health Organization). (2010). Exposure to Air Pollution : A MajorPublic Health Concern. *Public Health and Environment, Switzerland*.
- WHO (World Health Organization). (2002). Global Solar UV Index : A Practical Guide. WHO/SDE/OEH/02.2 - joint recommendation of the World Health Organization, World Meteorological Organization, United Nations Environment Programme and the International Commission on Non-Ionizing Radiation Protection.

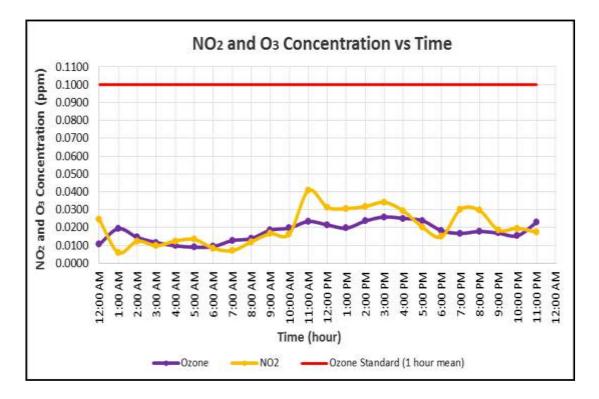

APPENDICES

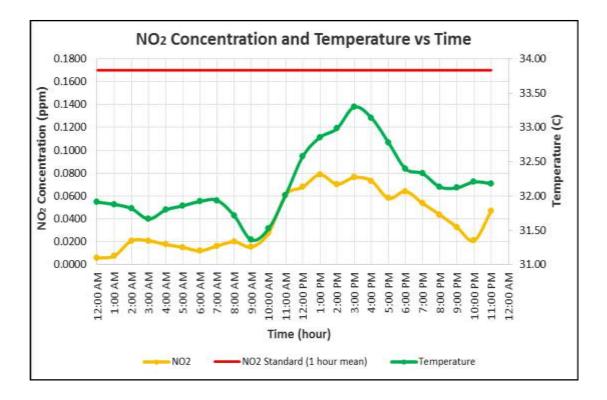

Time	Ozone	Nitrogen Dioxide	Temperature
Time	(ppm)	(ppm)	(°C)
12:00 AM	-	-	-
1:00 AM	0.0191	0.0247	32.90
2:00 AM	0.0136	0.0294	32.99
3:00 AM	0.0120	0.0353	32.97
4:00 AM	0.0144	0.0252	32.83
5:00 AM	0.0082	0.0122	32.78
6:00 AM	0.0059	0.0292	32.78
7:00 AM	0.0057	0.0160	32.79
8:00 AM	0.0046	0.0110	31.22
9:00 AM	0.0032	0.0107	32.02
10:00 AM	0.0027	0.0210	32.03
11:00 AM	0.0047	0.0315	32.55
12:00 PM	0.0091	0.0453	33.18
1:00 PM	0.0023	0.0447	33.40
2:00 PM	0.0006	0.0420	33.39
3:00 PM	0.0006	0.0504	33.69
4:00 PM	0.0032	0.0340	33.79
5:00 PM	0.0012	0.0262	33.15
6:00 PM	0.0011	0.0248	32.50
7:00 PM	0.0002	0.0262	32.32
8:00 PM	0.0049	0.0199	32.26
9:00 PM	0.0126	0.0283	32.68
10:00 PM	0.0135	0.0139	32.86
11:00 PM	0.0134	0.0178	32.89

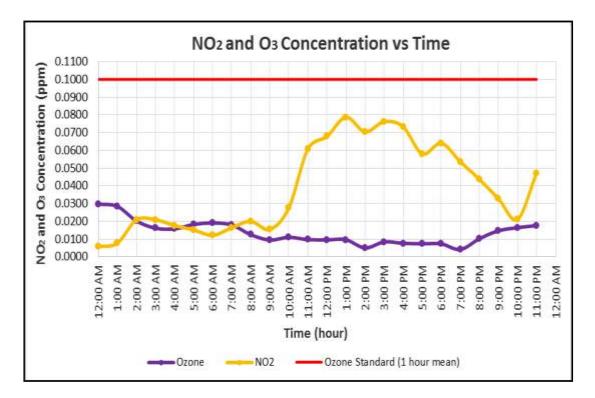


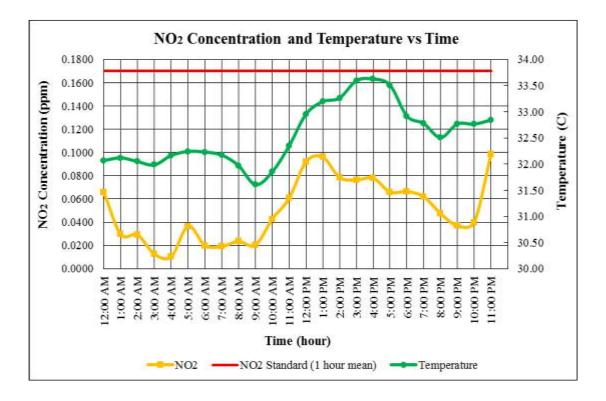

Time	Ozone (ppm)	Nitrogen Dioxide (ppm)	Temperature (°C)
12:00 AM	0.0167	0.0073	32.79
1:00 AM	0.0138	0.0069	32.63
2:00 AM	0.0083	0.0150	32.69
3:00 AM	0.0078	0.0105	32.65
4:00 AM	0.0063	0.0091	32.64
5:00 AM	0.0078	0.0066	32.57
6:00 AM	0.0054	0.0055	32.53
7:00 AM	0.0061	0.0168	32.75
8:00 AM	0.0049	0.0079	32.34
9:00 AM	0.0026	0.0084	31.88
10:00 AM	0.0003	0.0210	31.99
11:00 AM	0.0036	0.0334	32.62
12:00 PM	0.0051	0.0421	33.10
1:00 PM	0.0064	0.0421	33.32
2:00 PM	0.0013	0.0390	33.41
3:00 PM	0.0024	0.0370	32.71
4:00 PM	0.0033	0.0366	32.12
5:00 PM	0.0018	0.0326	31.57
6:00 PM	0.0048	0.0188	31.31
7:00 PM	0.0009	0.0250	31.23
8:00 PM	0.0059	0.0269	31.61
9:00 PM	0.0123	0.0404	32.06
10:00 PM	0.0161	0.0233	32.42
11:00 PM	0.0272	0.0369	32.65

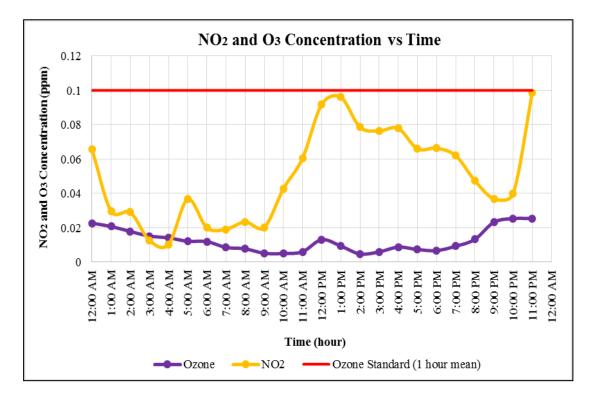


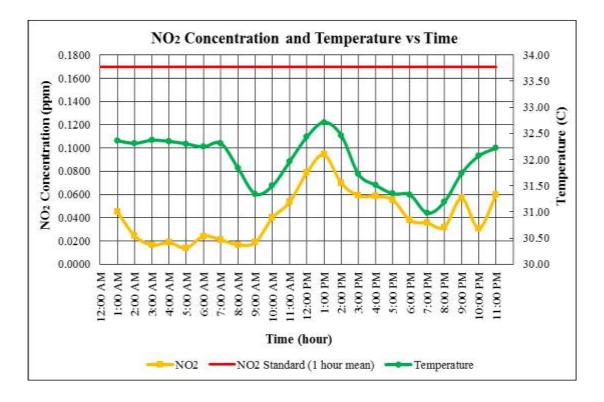

Time	Ozone (ppm)	Nitrogen Dioxide (ppm)	Temperature (°C)
12:00 AM	0.0196	0.0170	32.53
1:00 AM	0.0204	0.0251	32.52
2:00 AM	0.0133	0.0104	32.56
3:00 AM	0.0130	0.0054	32.44
4:00 AM	0.0091	0.0051	32.37
5:00 AM	0.0097	0.0164	32.32
6:00 AM	0.0144	0.0103	32.31
7:00 AM	0.0143	0.0066	32.39
8:00 AM	0.0075	0.0092	31.83
9:00 AM	0.0008	0.0135	31.10
10:00 AM	0.0009	0.0194	30.99
11:00 AM	0.0007	0.0215	30.92
12:00 PM	0.0002	0.0271	30.88
1:00 PM	0.0013	0.0267	31.06
2:00 PM	0.0017	0.0263	31.24
3:00 PM	0.0022	0.0233	30.91
4:00 PM	0.0021	0.0201	30.86
5:00 PM	0.0021	0.0230	30.95
6:00 PM	0.0025	0.0201	31.12
7:00 PM	0.0033	0.0163	31.23
8:00 PM	0.0002	0.0148	31.35
9:00 PM	0.0041	0.0205	31.68
10:00 PM	0.0066	0.0243	31.77
11:00 PM	0.0115	0.0254	31.88

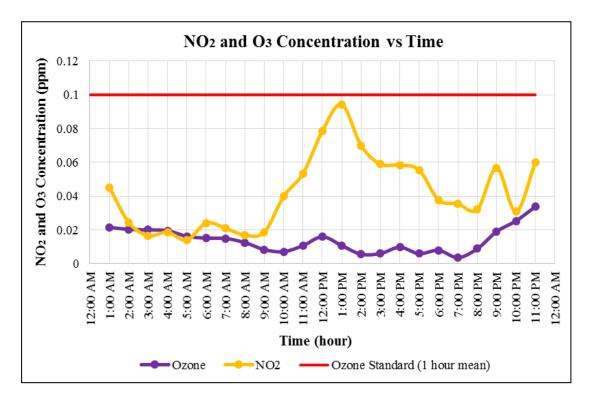


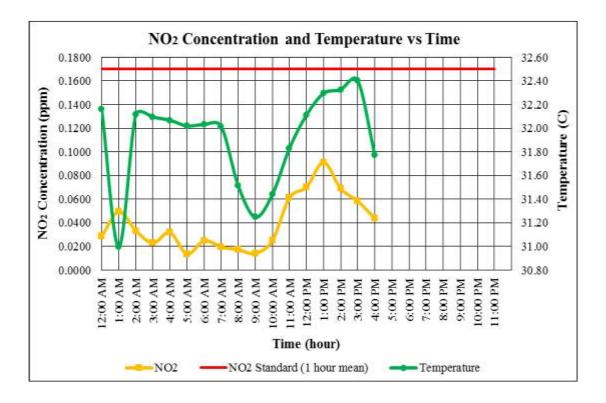

Time	Ozone (ppm)	Nitrogen Dioxide (ppm)	Temperature (°C)
12:00 AM	0.0105	0.0246	31.90
1:00 AM	0.0194	0.0061	31.91
2:00 AM	0.0145	0.0124	31.94
3:00 AM	0.0116	0.0099	31.89
4:00 AM	0.0098	0.0124	31.90
5:00 AM	0.0090	0.0133	32.01
6:00 AM	0.0093	0.0084	31.99
7:00 AM	0.0127	0.0071	32.04
8:00 AM	0.0138	0.0120	32.08
9:00 AM	0.0185	0.0165	31.94
10:00 AM	0.0197	0.0164	32.13
11:00 AM	0.0234	0.0407	31.99
12:00 PM	0.0215	0.0313	31.57
1:00 PM	0.0197	0.0306	31.66
2:00 PM	0.0237	0.0318	31.87
3:00 PM	0.0259	0.0341	31.79
4:00 PM	0.0251	0.0293	31.77
5:00 PM	0.0239	0.0203	31.77
6:00 PM	0.0183	0.0148	31.52
7:00 PM	0.0167	0.0301	31.88
8:00 PM	0.0178	0.0296	31.78
9:00 PM	0.0169	0.0186	31.66
10:00 PM	0.0154	0.0196	31.76
11:00 PM	0.0229	0.0174	31.93

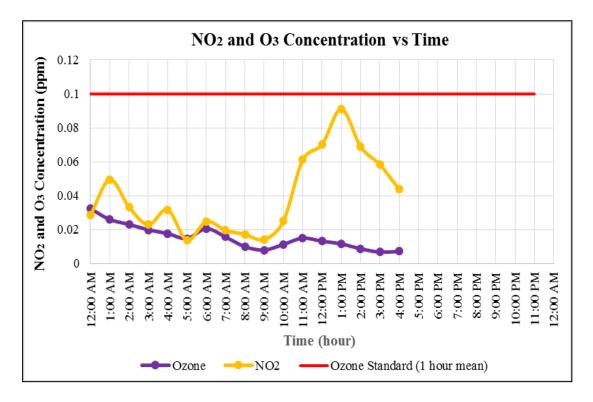


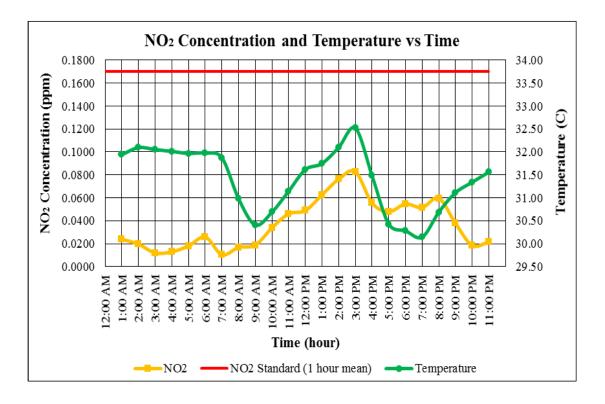

Time	Ozone (ppm)	Nitrogen Dioxide (ppm)	Temperature (°C)
12:00 AM	0.0297	0.0057	31.91
1:00 AM	0.0284	0.0076	31.88
2:00 AM	0.0202	0.0208	31.82
3:00 AM	0.0161	0.0209	31.66
4:00 AM	0.0157	0.0176	31.80
5:00 AM	0.0182	0.0151	31.86
6:00 AM	0.0191	0.0121	31.92
7:00 AM	0.0179	0.0163	31.94
8:00 AM	0.0125	0.0200	31.71
9:00 AM	0.0094	0.0154	31.36
10:00 AM	0.0110	0.0276	31.52
11:00 AM	0.0097	0.0607	32.01
12:00 PM	0.0095	0.0678	32.58
1:00 PM	0.0096	0.0787	32.85
2:00 PM	0.0050	0.0704	32.98
3:00 PM	0.0084	0.0762	33.30
4:00 PM	0.0076	0.0733	33.14
5:00 PM	0.0073	0.0580	32.78
6:00 PM	0.0073	0.0640	32.40
7:00 PM	0.0041	0.0536	32.33
8:00 PM	0.0102	0.0436	32.13
9:00 PM	0.0146	0.0327	32.12
10:00 PM	0.0164	0.0210	32.20
11:00 PM	0.0176	0.0470	32.18

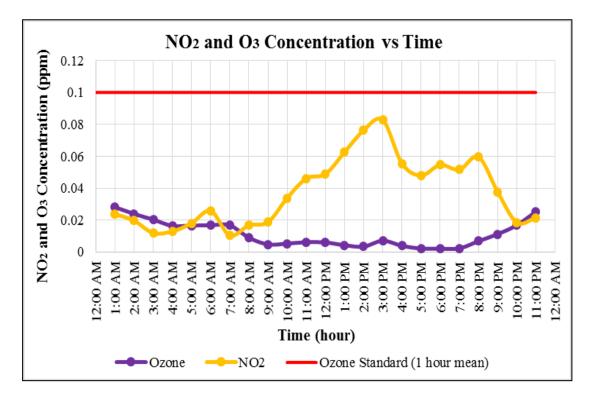


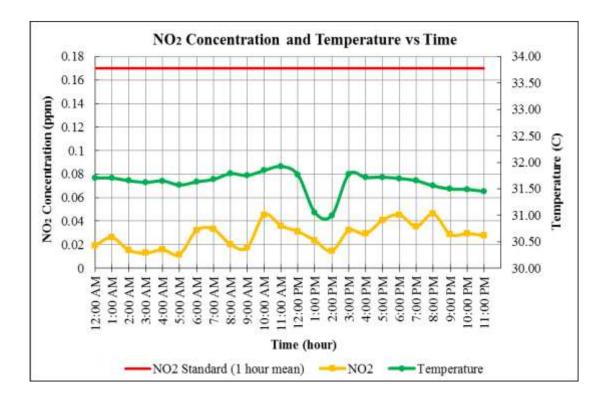

Time	Ozone	Nitrogen Dioxide	Temperature	
Time	(ppm)	(ppm)	(°C)	
12:00 AM	0.0227	0.0657	32.07	
1:00 AM	0.0208	0.0296	32.12	
2:00 AM	0.0179	0.0291	32.05	
3:00 AM	0.0152	0.0127	31.99	
4:00 AM	0.0142	0.0104	32.17	
5:00 AM	0.0122	0.0366	32.24	
6:00 AM	0.0120	0.0200	32.23	
7:00 AM	0.0086	0.0192	32.17	
8:00 AM	0.0078	0.0235	31.97	
9:00 AM	0.0052	0.0203	31.61	
10:00 AM	0.0050	0.0428	31.85	
11:00 AM	0.0061	0.0606	32.35	
12:00 PM	0.0131	0.0919	32.95	
1:00 PM	0.0094	0.0960	33.20	
2:00 PM	0.0048	0.0786	33.26	
3:00 PM	0.0060	0.0765	33.60	
4:00 PM	0.0088	0.0779	33.63	
5:00 PM	0.0074	0.0660	33.51	
6:00 PM	0.0068	0.0664	32.92	
7:00 PM	0.0093	0.0620	32.78	
8:00 PM	0.0133	0.0475	32.51	
9:00 PM	0.0233	0.0369	32.77	
10:00 PM	0.0254	0.0400	32.77	
11:00 PM	0.0254	0.0987	32.84	

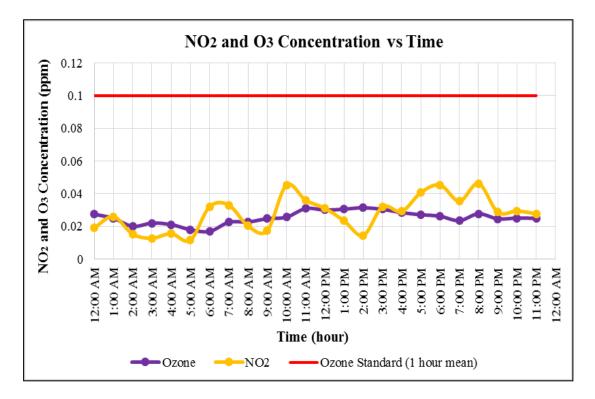



Time	Ozone (ppm)	Nitrogen Dioxide (ppm)	Temperature (°C)
12:00 AM	-	-	-
1:00 AM	0.0215	0.0451	32.36
2:00 AM	0.0203	0.0244	32.31
3:00 AM	0.0200	0.0166	32.37
4:00 AM	0.0195	0.0186	32.35
5:00 AM	0.0162	0.0140	32.30
6:00 AM	0.0151	0.0241	32.24
7:00 AM	0.0149	0.0209	32.31
8:00 AM	0.0125	0.0168	31.84
9:00 AM	0.0083	0.0187	31.34
10:00 AM	0.0071	0.0399	31.50
11:00 AM	0.0107	0.0534	31.96
12:00 PM	0.0159	0.0786	32.43
1:00 PM	0.0107	0.0942	32.71
2:00 PM	0.0056	0.0699	32.47
3:00 PM	0.0060	0.0589	31.72
4:00 PM	0.0097	0.0584	31.51
5:00 PM	0.0059	0.0554	31.35
6:00 PM	0.0079	0.0377	31.33
7:00 PM	0.0036	0.0354	30.98
8:00 PM	0.0088	0.0320	31.19
9:00 PM	0.0190	0.0567	31.74
10:00 PM	0.0253	0.0308	32.07
11:00 PM	0.0337	0.0598	32.22




Time	Ozone	Nitrogen Dioxide	Temperature
	(ppm)	(ppm)	(°C)
12:00 AM	0.0324	0.0284	32.16
1:00 AM	0.0260	0.0495	30.99
2:00 AM	0.0231	0.0333	32.11
3:00 AM	0.0199	0.0229	32.09
4:00 AM	0.0177	0.0318	32.07
5:00 AM	0.0148	0.0137	32.02
6:00 AM	0.0206	0.0248	32.03
7:00 AM	0.0157	0.0196	32.02
8:00 AM	0.0100	0.0172	31.51
9:00 AM	0.0080	0.0142	31.25
10:00 AM	0.0113	0.0251	31.44
11:00 AM	0.0150	0.0611	31.83
12:00 PM	0.0132	0.0702	32.11
1:00 PM	0.0116	0.0911	32.29
2:00 PM	0.0087	0.0689	32.33
3:00 PM	0.0068	0.0583	32.40
4:00 PM	0.0072	0.0437	31.77
5:00 PM	-	-	-
6:00 PM	-	-	-
7:00 PM	-	-	-
8:00 PM	-	-	-
9:00 PM	-	_	-
10:00 PM	-	-	-
11:00 PM	-	-	-




Time	Ozone (ppm)	Nitrogen Dioxide (ppm)	Temperature (°C)
12:00 AM	-	-	_
1:00 AM	0.0281	0.0238	31.94
2:00 AM	0.0239	0.0196	32.10
3:00 AM	0.0203	0.0119	32.05
4:00 AM	0.0164	0.0130	32.01
5:00 AM	0.0166	0.0180	31.97
6:00 AM	0.0168	0.0258	31.98
7:00 AM	0.0168	0.0104	31.87
8:00 AM	0.0090	0.0167	30.98
9:00 AM	0.0048	0.0188	30.41
10:00 AM	0.0053	0.0338	30.69
11:00 AM	0.0062	0.0461	31.14
12:00 PM	0.0060	0.0489	31.62
1:00 PM	0.0043	0.0626	31.75
2:00 PM	0.0034	0.0763	32.10
3:00 PM	0.0071	0.0827	32.52
4:00 PM	0.0039	0.0555	31.48
5:00 PM	0.0022	0.0480	30.43
6:00 PM	0.0021	0.0546	30.28
7:00 PM	0.0023	0.0516	30.14
8:00 PM	0.0068	0.0596	30.69
9:00 PM	0.0112	0.0378	31.11
10:00 PM	0.0168	0.0186	31.34
11:00 PM	0.0253	0.0214	31.56

Time	Ozone	Nitrogen Dioxide	Temperature
	(ppm)	(ppm)	(°C)
12:00 AM	0.0275	0.0192	31.71
1:00 AM	0.0250	0.0261	31.70
2:00 AM	0.0201	0.0153	31.65
3:00 AM	0.0221	0.0129	31.62
4:00 AM	0.0212	0.0156	31.65
5:00 AM	0.0181	0.0117	31.57
6:00 AM	0.0170	0.0321	31.63
7:00 AM	0.0226	0.0331	31.68
8:00 AM	0.0228	0.0204	31.79
9:00 AM	0.0248	0.0175	31.75
10:00 AM	0.0257	0.0453	31.85
11:00 AM	0.0310	0.0361	31.92
12:00 PM	0.0301	0.0312	31.76
1:00 PM	0.0306	0.0235	31.05
2:00 PM	0.0315	0.0146	31.00
3:00 PM	0.0305	0.0321	31.77
4:00 PM	0.0285	0.0292	31.72
5:00 PM	0.0272	0.0408	31.72
6:00 PM	0.0263	0.0454	31.69
7:00 PM	0.0236	0.0355	31.65
8:00 PM	0.0278	0.0463	31.56
9:00 PM	0.0247	0.0287	31.50
10:00 PM	0.0252	0.0295	31.49
11:00 PM	0.0250	0.0278	31.45

