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ABSTRACT

Distant earthquakes in Sumatra and Sulawesi might possess hazard to the offshore
platforms in Malaysia underlain by soft soils as the soils might amplify the seismic
waves that reach the bedrock of Malaysia. A study of the soil amplification factorsin
PMO, SKO and SBO is necessary to reduce the downtime loses and onsite casualties
of the offshore platforms. This research is one of the pioneers for Malaysian
offshores. Thus, Laho in PMO, Kumang in SKO and Sumandak in SBO are selected
as three representative case studies for this research. The shear wave velocities of the
soils at the selected sites are estimated using published cone penetration test
correlation equation. The input motion is based on the strongest earthquake recorded
in MMD station near to the selected sites between year 2004 and 2007. A second
analysis is conducted by scaling the earthquake recorded to 0.06g to simulate the
shaking caused by an earthquake with areturn period of 475 yearsin Maaysia. One-
dimensional equivalent linear site response analysis is selected and performed by
DEEPSOIL v5.1. The unscaed earthquakes (PGA= 0.0015g) generate high
amplification factors but they are associated with very low levels of earthquake
shaking which hardly harm the structure on site. The scaled earthquakes (0.06g)
generate relatively lower amplification factors which are caused by the nonlinear
behaviour of soils. The scaled earthquake also generates a peak spectra
amplification at a longer period. However, the lower amplification factors of 1.6
(period 0.4s-2.0s) and 3.5 (period 3.5s) in Sumandak should be taken into account in
the design of structure because they are associated with PGA of 0.06g which is
significant enough to damage the platforms on site, especially if the seismic waves
are amplified and the structure has a natural period close to the amplified periods.
This research also shows that the impedance contrast of shear wave velocities at the
boundary of two soil layers amplifies the seismic waves. Besides, the soil
amplification factors depend on the intensity of shaking.
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1 INTRODUCTION
1.1 Background

In spite of the strategic location of Peninsular Malaysia and Singapore on the stable
part of Eurasian Plate, tremors were felt in buildings underlain by soft soil in these
two regions due to distant earthquakes occurred in Sumatra (Balendra, Tan, & Lee,
1990). Lessons learnt from the past suggest that distant earthquake can cause
significant damage. In 1985, Mexico City was subjected to an earthquake that has
caused 4,000 to lose their lives and 100,000 to lose their homes (Sun & Pan, 1995).
The earthquake had a surface wave magnitude (Ms) of 8.1 and the epicentre of the
earthquake was located at remarkably 400km away.

Malaysian offshore platforms in Peninsular Maaysia (PMO), Sarawak Operation
(SKO) and Sabah Operation (SBO) are set on soft marine soil. The earthquake waves
generated in Sumatra have to travel over 600-800 km before reaching the bedrock in
PMO. High-frequency earthquake waves are promptly dampened during propagation,
whereas long-period waves are more resistant to energy dissipation and consequently
they manage to travel long distances (Tan, Mgjid, Ariffin, & Bunnori, 2014).
Therefore, long period or low frequency earthquake waves are able to reach the
bedrock of PMO, SKO and SBO. These long period waves might be amplified by
site soils depend on their rigidity when they propagate upward (Balendra & Li, 2008).
The amplified waves can cause resonate in structures with similar fundamental

period to the site soil, causing significant structure vibrations.



1.2 Problem Statement

In February of 1994, Malaysia’s neighbour, Singapore had some buildings vibrated
due to an earthquake near Liwa, southern Sumatra around 700 km away. The
magnitude (Mg) 7.0 earthquake woke up hundreds of people and they ran out of the
building in panic (Sun & Pan, 1995). Three months later, in May 1994, an
earthquake near Siberut Island, which is 570 km away from Singapore, has set some
office buildings in motion. The earthquake was recorded only 6.2 on the Richter
scale but has again caused panic to the people that they evacuated from the office
buildings (Sun & Pan, 1995). According to Sun and Pan (1995), the buildings in both
incidents were underlain by the Quaternary deposits, namely the Kallang Formation.
In a like manner, PMO, SKO and SBO Malaysia are located on South China Sea
where the site soils might possess similar characteristics and properties as the
Kallang Formation. Above all, the Malaysian offshore platforms were not designed

for seismic loads!

Moreover, Sun & Pan (1995) found out “that the recurrence interval of an earthquake
in Sumatra with a moment magnitude (M,,) of 8.5 or larger is about 340 years, which
is equivalent to a 14% probability of exceedance within 50 years” (p. 105). He also
added that “the emitted energy of a magnitude 8.5 earthquake is more than 100 times
that of the magnitude (Ms) 7.0 Liwa earthquake in 1994” (p. 109).

Due to the fact that Malaysian offshore platforms were not designed for seismic
loads and the probability of occurrence of large earthquake in the vicinity of
Malaysiais significantly high, it is critical to study the soil amplification factor in the
Malaysian offshore to identify the possible hazards on existing platforms and to

guide future platform design criteria



1.3 Objectives

Objective One

Determine the configuration and properties of near surface materialsin Laho (PMO),
Kumang (SKO) and Sumandak (SBO)

Objective Two
Determine the fundamental site period of Laho (PMO), Kumang (SKO) and
Sumandak (SBO)

Objective Three
Determine the soil amplification factors for Laho (PMO), Kumang (SKO) and
Sumandak (SBO)

1.4 Scopeof Study

The scope of this study covers the one-dimensional site response analysis of Laho
(Terengganu offshore, PMO), Kumang (Sarawak offshore, SKO) and Sumandak
(Sabah offshore, SBO) based on the information extracted from the soil investigation
reports available. Maximum bedrock spectral acceleration in the study area will be
obtained and acts as an input in this study. The relationship of ground surface motion

and structure responses is not in the scope of this study.



2 LITERATURE REVIEW
2.1 Distant Earthquake Threats

Sun and Pan (1995) pointed out that distant earthquakes in Sumatra might cause
damage to structures on soft soil in South East Asia learning from the incident of
Mexico City in 1985. In the incident of Mexico City, the epicentre of the earthquake
was located near the southern coast of Mexico, around 400 km away. In this region,
the Cocos Plate subducts under the North America plate at arate of about 55mm per
year (DeMets, Gordon, Argus, & Stein, 1990). The earthquake had a surface wave
magnitude (Ms) of 8.1 and caused at least 4000 people to lose their lives and 100,000
were left homeless (Sun & Pan, 1995). The unexpectedly serious damages were
concentrated in an area underlain by soft soils (Booth, Pappin, Mills, Degg, &
Steedman, 1986). Mexico City is built partially on soft Quaternary deposits. The
peak ground acceleration recorded on hard rock was less than 3-4% of the gravity
acceleration, but that recorded on soft soil was more than 20% of the gravity
acceleration (Booth et a., 1986). It is obvious that the earthquake waves were
amplified locally by the surface layer of soft sails.

2.2 Earthquakein vicinity of Malaysia

From the findings of Sun and Pan (1995), the magnitude of an earthquake in Sumatra
with a probability of exceedance of 10% in 50 years is found to be 8.56. They (Sun
& Pan, 1995) highlighted that this figure is too high to be ignored in Maaysia and
the energy emitted during an 8.5 earthquake is more than 100 times of that
magnitude (Mg) 7.0 Liwa Earthquake and more than 2000 times of that magnitude
6.2 Siberut earthquake in which both the earthquakes have caused tremors to be felt
in Singapore.

2.3 TremorsFetin Malaysiaand Singapore

Some buildings in Singapore experienced tremors due to earthquake of magnitude
(Mg) 7.0 near Liwain southern Sumatra more than 700km away and earthquake near
Siberut Iland, 570 km away, which measure only 6.2 on the Richter scale (Sun &
Pan, 1995). In both incidents, the buildings are located in the south-eastern part of
Singapore Idland, underlain by the Quaternary deposits, namely the Kallang



Formation. Sun and Pan (1995) also mentioned that the Siberut Island earthquake
caused tremorsin Kuala Lumpur.

2.4 Attenuation Mod€

On the other hand, Balendra and Li (2008) successfully found out that Component
Attenuation Model (CAM) predicts the bedrock motion in Singapore caused by
earthquakes in the subduction region of the Indonesian Arc and Burmese Arc reliably
and accurately for prediction up to 600km. Based on the verified CAM model,
Balendra and Li (2008) proceed to generate synthetic bedrock accelerograms and
thus maximum bedrock spectral acceleration for M,,= 9.5 and M= 7.8 earthquake
using a stochastic simulation program named GENQKE (Lam & Wilson, 1999). The
predominant period of the bedrock motions, the period of the site and the period of
the building must coincide for the worst situations. From the data generated by
GENQKE, sites with periods between 1.6s and 1.85s would respond severely to the
bedrock motions due to the M,,= 9.5 earthquake in Sumatran subduction fault, and
that sites with a period of 0.7s would resonate to the bedrock motions due to the
M,=7.8 earthquake in Sumatran fault. The sites with natural periods of 0.7s to 1.85s
would be of interest.

2.5 Mechanism of Soil Amplification

Sun and Pan (1995) explained the phenomena in a simplified way as resonance. The
shear wave velocities are very different between the surface material and the bedrock.
The shear wave velocities of surface materia can be below 100 m s™ while bedrock
is normally above 2000 m s™. The difference makes the boundary between soft and
hard layers a surface of reflection, “trapping” the numerous cycles of incoming
waves and when the waves are in phase of each other, a much stronger wave is
produced. Thickness of each soil layer, its shear wave velocity and the fundamental
site period of the subsurface condition are the primary parameters that affect seismic
soil amplification in particular sites (Tan et al., 2014).

On the other hand, Street, Woolery, Wang, and Harris (2001) have a similar
understanding that the properties and configuration of soils highly affect the
amplitude, frequency and duration characteristics of seismic waves that propagate
through them. The critical property is the impedance contrasts at the boundaries

5



between media of differing velocities and densities. Besides, stiffness and damping
of the materials that make up the layers are important. Shear waves from an
earthquake are commonly assumed to propagate vertically upward from the
underlying bedrock because of the sharp impedance contrast between the bedrock

and overlying soils.
2.6 Shear Wave Velocities

Booth et a. (1986) reported that the area of high damage in Mexico City occurred
over a 40m thick soft layer of lacustrine deposit with water content of 200-400%
whose shear wave velocity is about 80 m s, and the amplified wave has a dominant
frequency of 0.5 Hz. Therefore, buildings with a natural period of 2 s experienced
resonant amplification and disaster happened.

Shear wave velocities of the soil are required for the calculation of natural site period
and thus its amplification factor. Empirical formulas which relate Standard
Penetration Test (SPT) values to shear wave velocity are developed by researchers
al around the world. A summary of established correlation in half of the past century
islisted in the table below (Marto, Soon, Kasim, & Suhatril, 2013).
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Figure 1 List of standard penetration test correlation equation to shear wave velocities



On the other hand, Wair, DeJong, and Shantz (2012) has summarised a list of cone
penetration test (CPT) correlation equation to shear wave velocities (V). In addition
to penetration resistance, the incorporation of geologic age, confining stress and soil
type can further increase the prediction accuracy. There are two types of published
CPT-V; correlation equations presented in Figure 2. The first type of equation was
developed for specific soil types (sand/ clay) whereas the second type of equation
was developed for more genera all soils. In the study done by Wair et a. (2012), two
methods were used to estimate the shear wave velocities. The first method used the
equation developed for al soil type and the second method used the equation
developed for specific soil types. It was found out that both type of equation
performed similarly according to their statistic. On average, the soil type-specific
eguation under-predicted the shear wave velocities by approximately 8% and the all
soils equation under-predicted the shear wave velocities by approximately 3% (Wair
et a., 2012). The soil type-specific method produced spikes (high and low) in the
predicted Vs profile at material transitions where difference equations were used for
adjacent CPT sub-layers. For this reason, as well as, ease of implementation, the all

s0ils method was considered to be more desirable.
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Figure 2 List of cone penetration test correlation equation to shear wave velocities
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National Earthquake Hazards Reduction Program (NEHRP) site classification takes
into account the shear wave velocity of the upper 30m of sediments and/or rocks
(BSSC, 2003). NEHRP categorises soilsinto class A, B, C, D, E or F based on their
vertical shear-wave profile, thickness and liquefaction potential. The NEHRP shear
wave velocity (V) assigned to the subsurface at a specific siteis calculated using the

following formula:

il
— =10

5= d
St
where:
V, =the N she w v
Ts = the she w v o a i1 m/s
i, = the thic a a b (b Oa 30m)

The table below is prepared by NEHRP. It shows the site classification system
according to the shear wave velocity of the upper 30m sediments or rocks.

Table 1 National Earthquake Hazards Reduction Program (NEHRP) site classification system

Sail type General description Average shear wave
NEHRP velocity to 30 m (m/s)
A Hard rock > 1500
B Rock 760 < Vs < 1500
C Very dense soil and soft rock 360<Vs< 720
D Stiff soil 15 < N <50 or 50 kPa < Su < 100 kPa 180 < Vs< 360
E Sail or any profile with more than 3 m of soft clay <180
defiled as soil with Pl > 20, w = 40%, and Su < 25
kPa
F Sails requiring site-specific evaluations

D'Appolonia (2009) has modified the NEHRP table so that it suits the geologic
condition of Malaysia. Table 2 shows the modified table that classifies the site class
according to the average propertiesin top 30m of effective seabed.



Table 2 Modified Malaysian Site Class by D'Appolonia

ena or mone of the following characlaristics:

s W0 < B0 mis

SITE CLASS S0IL PROFILE NAME AVERAGE PROPERTIES IN TOP 30m OF EFFECTIVE SEABED
Soll shear wave velocity | Sand: normalized cone Clay: soll undrained
Ve,30 (mis) on resistance ghear strength Cu,30
gel, 30(1) (bar) {kPa)
A Hard rock = 1500 Not Applicable Mot Appicabla
B Ruock, thickress of soft 750 - 1500 Mot Applicable Mot Applicable
sediments < § m
c Very dense hard soil 360 - THO = 200 =100
and soft ok
D SHiff to wery stiff sod 180 - 350 B - 200 BO - 200
- L 0 1ha . i -
F1 Very soft NC clay a0 - 120 Mnirmuam sand Conssstant with Vs
component
F2 Any profile, ncluding those otharase cassifind as A to F1, containing soés having

L] Sois vulnarable o potantial talure or collapss under Ssessmic BClons

such as liguefiable sods, highly sensilive clays. collapsible weakly
cemanbed soils;

Doza (clay containing more than 30% calcareous or sosous material of
bioganic ongin) with a thickness of more than 10 m;

Boll lnyers wilh high gas contend or ambienl excess pone presaune
graater than 30 % of in silu effective overburden

Layers greater than 2 m thick with sharp conlrast in shear wave velncily
(greater than £ 30 %) andior undrained shear sirenglh |greater 1han £ 50

%) campared o stacen [ayan

However, Street et al. (2001) pointed out the possible shortcomings of the NEHRP
soil classification are that the effects of the deeper (>30 m) sediments and the large

impedance contrast at the bedrock/sediment interface are not necessarily accounted

for by this methodol ogy.

2.7 One-Dimensional (1-D) Site Response Analysis

1-D site response analysis assume that waves propagate in one direction only and the

motion is identical on planes perpendicular to that motion. This method cannot

handle refraction so the layer boundaries must be perpendicular to the direction of

wave propagation and the usual assumption is vertically-propagating shear (SH)

Wwaves.

Horizontal surface motion

Horizontal input motion

Figure 3 Vertically-propagating shear waves causing horizontal surface motion
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In 1-D site response analysis, the input (object) motion can be modeled in two
different ways depending on where the motion is recorded. If an outcrop motion is
being used, bedrock should be modelled as an elastic half-space. If awithin motionis
being used, bedrock should be modelled as a rigid half-space (Hashash, Groholski,
Phillips, Park, & Musgrove, 2012).

Free surface
motion

Figure 4 Diagram of input motion and free surface motion

The first method of 1-D site response analysis is complex response method. It is the
approach used in computer programs like SHAKE2000 (Deng & Ostadan, 2000).
Transfer function is used with input motion to compute surface motion. For layered
profiles, transfer function is “built” layer by layer to go from input motion to surface
motion. Complex response method is a linear analysis and it operates in frequency
domain. Input motion represented as sum of series of sine waves. Then, the solution
for each sine wave is obtained and added together to get the total response.

Nevertheless, soils exhibit nonlinear, inelastic behaviour under cyclic loading
conditions. Their stiffness decreases and damping increases as cyclic strain
amplitude increases. The nonlinear, inelastic stress-strain behaviour of cyclically
loaded soils can be approximated by equivalent linear properties. (Hashash et d.,
2012)

Steps of 1-D Equivalent Linear Site Response Analysis

1. Assume some initial strain and use to estimate G and & using the shear
modulus curve and damping curve.

2. Usethese valuesto compute response.
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Determine peak strain and effective strain.

4. Select new G and & from the shear modulus curve and damping curve based
on updated strain level.

5. Compute response with new properties and determine resulting effective
shear strain

6. Repeat until computed effective strains are consistent with assumed effective
strains.
(Hashash et al., 2012)

GG |

= WX -

logl ¥ 1 I+ %

Equivalent shear modulus Equivalent damping ratio

Figure 5 Modulus reduction curve and damping curve for equivalent linear site response analysis

The advantages of equivalent linear approach are:

i.  Canwork in frequency domain
= Compute transfer function at relatively small number of frequencies as
compared to calculating each time interval in time series
ii.  Equivalent linear properties readily available for many soils
iii.  Can make first-order approximation to effects of nonlinearity and inelasticity

within framework of alinear model.
2.8 Redated Studies

Balendra and Li (2008) inputted the borehole data of 3 selected sites in the
Quaternary deposits in Singapore and their bedrock accelerograms generated by
GENQKE (Lam & Wilson, 1999) into the computer program SHAKE91 to calculate
the resultant surface motions, acceleration response spectra at surface and
amplification factors. The results found were the maximum spectral acceleration of
the M= 9.5 earthquake is 95.8 gals for the site with period of 1.6sto 1.8s, and that
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of the M,,=7.8 earthquake is 98.9 gals for the site period of 0.7s (Baendra & Li,
2008). The maximum elastic base shear that would be induced in a building with a
period in the range 0.7 to 1.8 sec due to the worst earthquake scenario is nearly 10%
of the weight of the building (Balendra & Li, 2008).

Furthermore, Mahgjan (2009) conducted a study of Dehradun fan deposits in India,
found out that attenuation is greater on the south-western side of the Dehradun fan
deposits (thicker, low velocity sediments) which the sites had been classified as class
‘D’ and ‘E’ but the site amplification tends to be greater in the northern and north-

western part of the city due to large impedance contrast within the near surface soils.
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3 METHODOLOGY

The methodology is designed as a step by step approach to achieve the stated

objectives. There are severa project activities in this research and each project

activity will be described in structure and detail in the following order.

3.1 Extraction of Information from Soil Investigation (Sl) Report of Selected

Sites

First of al, the Sl reports of Laho (PMO), Kumang (SKO) and Sumandak (SBO) are
obtained. It should be noted that the field tests of SI were carried out by cone

penetrometer with pore pressure measurements (CPTU). The exact coordinates of the

borehole location in which the Sl was carried out are listed in the table below.

Table 3 Coordinates of borehole location of soil investigation reports

Operation | Location Borehole | Actual Position Geotechnical
Location | Latitude Longitude Investigation
Report No.
(for reference)
PMO Laho BH-LA | 6°1940.485" | 104° 02' 09.953" | KUA/03-
03/0024A(I1T)
SKO Kumang BH Easting (m) | Northing (m) | BTU/02-
KAJT-A | 607,219.34 487,787.85 07/0261
SBO Sumandak- | BH-1AR | 5° 37' 17.044" | 114° 59' 31.378" | LBU/05-
A 04/0039

Secondly, al the relevant information required for this research is extracted from the

Sl reports. The information includes:

i.  Soil layersand their description
ii.  Thickness of each soil layer
iii.  Unit weight of soil
iv.  Sleevefriction resistance, fs (CPT)
v.  Corrected coneresistance, g: (CPT)
vi.  Porosity of soil
vii.  Plasticity Index (PI) of Sail
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3.2 Determination of Shear Wave Véocities, Vs of Each Soil Layer Using
Cone Penetration Test (CPT) Correlation Equations

The geologic age of soilsin PMO, SKO and SBO are Quaternary and hence CPT-V
correlation equations which were devel oped for Quaternary soils are chosen. (Walir et
a. (2012)) have summarised the Vs prediction equations developed for Quaternary
soils from various sites worldwide. Each correlation equation was developed with
different number of data pairs and has different coefficients of determination (r?).
The closer the coefficients of determination (r?) to 1, the greater the agreement
between the Vs estimated and Vs measured.

The correlation equations are chosen after considering the number of data pairs and
coefficients of determination. In other words, all the correlation equations chosen for
this research are reliable as they have large number of data pairs and high

coefficients of determination.

The following section will state the correlation equations chosen for each site and

their description.

Laho and Kumang

The CPT-Vs correlation equation chosen for clay and sand is
¥, = 118.8 log(},) + 18.5 for all Quaternary soils (Mayne, 2006)

This equation is chosen because it has a high coefficient of determination of 0.823.
Additionally, the correlation between Vs and fs (CPT) of this equation is based on
regression of alarge dataset (161 data pairs) from numerous sites around the world.
This method is in accordance to the first method proposed by Wair et al. (2012) to
use the al soils equation as explained in chapter 2.6. The advantage of this method is
to avoid spikes (high and low) in the predicted Vs profile at materia transitions

where difference equations were used for adjacent CPT sub-layers.
Sumandak
The CPT-Vs correlation equation chosen for clay are

V, = 14.13 ¢,“* g% for clay (Hegazy & Mayne, 1995)
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V, =3.18¢q. %% £ for clay (Hegazy & Mayne, 1995)
V., =9.44 g, ¢, 7% for clay (Mayne & Rix, 1995)
V, = 1.75 ¢, “® for clay (Mayne & Rix, 1995)

The CPT-Vs correlation equation chosen for sand are

V, = (10.11og(g,) — 11.4)** (100 f-ﬁfqt)‘i--’-

for all Quaternary soils (Hegazy & Mayne, 1995)

V, = 118.8 log(},) + 18.5 for all Quaternary soils (Mayne, 2006)
¥, = 134.1 + 0.0052q, for sand (Sykora & Stokoe, 1983)
V, =13.18 ¢,%! o)’ for sand (Hegazy & Mayne, 1995)

The shear wave velocities predicted for clay are the average of the estimated values
from the clay CPT-Vs correlation equations. Similarly, the shear wave velocities
predicted for sand are the average of the estimated values from the sand CPT-Vs
correlation equations. This method is in accordance to the second method proposed
by Wair et al. (2012) to use the soil type-specific equation. It should be emphasised
that both methods (first method is used for Laho and Kumang and second method is
used for Sumandak) have been statistically proven to perform similarly (Wair et a.,
2012).

All the prediction equations chosen above for site Sumandak have a high coefficient
of determination (r). The coefficients of determination (r?) range from 0.61 to 0.89.
Furthermore, they have a huge number of data pairs ranging from 161 to 481 data

pairs.

The reason that only one Vs prediction equation is used for Laho and Kumang while
average value of severa Vi prediction equationsis used for site Sumandak isto alow
future comparison of site measured Vs with the estimated V<. The comparison result
will provide an insight to which whether V¢ prediction equation for all soils or Vs
prediction equation for a particular soil type is more suitable to be applied in the
Malaysian offshore soils.
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The second reason is to take into account the possible limitation of applying only one
equation for one site. The only egquation might give an accurate value for a lower
bound estimation and an inaccurate value for a higher bound estimation. Therefore,
by having two methods in this research, it alows for future comparison with

measured data onceit is made available.
3.3 Determination of Fundamental Site Period

Calculate the fundamental site period using the formula below

1 _42 H,
A= v,

where H; = thickness of ith soil layer
Vy =V;of ith layer (Kramer, 1996)

3.4 Determinethe Strongest Felt Earthquake Recorded in MMD Station Near
to the Selected Sites

The location of the three selected sites in Malaysian offshore are shown in the map
below:

— Malaysia

w Malaysia

Eawrarian

Figure 6 Location of Laho, Kumang and Sumandak in Malaysian offshore
The nearest Maaysian Meteorological Department (MMD) seismic stations to the
three selected sites are identified so that the earthquake time series recorded at those

station can be used as an input for this research.
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The nearest MMD seismic station to Laho is Kuala Terengganu weak motion station.
On the other hand, the nearest MMD seismic station to Kumang is Bintulu and Sibu
weak motion station. Lastly, the nearest MMD seismic station to Sumandak is

Sepulut weak motion station and Ranau strong motion station.

The time series of felt earthquake available for this research are from year 2004 to
year 2007 only. Each time series of felt earthquake was gone through to identify the
one that give the highest peak ground acceleration (PGA) in the MMD seismic
station nearest to the three selected sites. The earthquakes that caused highest PGA
recorded for each selected site are listed below.

Table 4 Earthquakes that caused the highest peak ground acceleration recorded at the MMD station nearest to
the selected sites

Station Year East (g) North (g) |Vertical (g)
Laho Terengganu- KTM |SUMATERA EQ 280305 1609UTC -0.000978| 0.001283| 0.001301
Kumang Bintulu- BTM BINTULU EQ 010504 2329UTC 0.001715| -0.001476| -0.000774
Sumandak-A |Bintulu- BTM BINTULU EQ 010504 2329UTC 0.001715| -0.001476| -0.000774

It should be noted that there is no significant earthquake recorded at the MMD
stations near to Sumandak. Therefore, the time series of Bintulu earthquake recorded
at Bintulu weak motion station will be used as an input for the analysis of site
Sumandak.

A second analysis is performed for each selected site after the PGA of the input time
series is scaled to 0.06g which is correspondent to PGA of earthquake with a return
period of 475 yearsin PMO, SKO and SBO. The recorded PGA is relatively small
and therefore the second analysis is designed to simul ate a significant earthquake that

might happen.
3.5 Input Required Datainto DEEPSOIL

As explained in chapter 2.7, DEEPSOIL v5.1 is a one-dimensional site response
analysis program. The method chosen for this research is equivalent linear approach

because of the reasons stated in chapter 2.7.

Information is inputted into program DEEPSOIL v5.1 in astep by step manner

1. Select “Equivalent Linear Frequency Domain” as the analysis method.

2. Key in the number of soil layers and the depth of water table.
18



3. For each soil layer the following data is inputted:
a) Layer name
b) Thickness
¢) Unit weight
d) Shear wave velocity
4. Select modulus reduction curve and damping curve for each soil layer
= For clay, the curves of Vucetic & Dobry, 1991 are selected and the
plasticity index is inputted.
= For sand, the curves of Seed & Idriss, 1991 (mean limit) are sel ected.
5. Select the option “Elastic Half-Space” and input the bedrock properties as

follow:

= Shear velocity 1000 m/s
= Unit weight : 20 kN/m®
= Dampition Ratio : 2%

6. Select the input motion file (time series) and select the layers to generate time
history output.
7. Runtheanayss.
8. Output is generated which includes:
a) Acceeration (g) vs Time ()
b) Response Spectra: Peak Spectral Acceleration (g) vs Period ()
¢) Peak Ground Acceleration (g) Profile

3.6 Organise Output Datafor Analysisand Interpretation

The output time series and response spectra are organised into a same graph for
comparison. The soil amplification factors are determined and certain trends in the
graphs are identified. The result are discussed, analysed and interpreted in the
following section.
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4 RESULTSAND DISCUSSION

41 Sumandak

411 Soil Profile

Table 5 Sumandak: Soil layers and their properties

Layer Layer Name Thickness | Unit Wei3ght Average Shear
(m) (kN/m?) Velocity (m/s)
1 Very soft to soft CLAY 17 15.81 60.28
2 Stiff CLAY 4 18.81 207.41
3 Very Stiff CLAY 4 18.81 299.52
4 Very Stiff CLAY 9.5 18.81 193.46
5 Hard CLAY 5.2 18.81 288.62
6 Very Stiff CLAY 2.8 18.81 233.82
7 Hard CLAY 6.3 18.81 297.69
8 Very Stiff CLAY 4.7 18.81 270.64
9 Very Stiff CLAY 2.8 18.81 264.26
10 Very stiff CLAY 12.7 18.81 276.36
11 Medium dense SAND 15 18.81 207.47
12 Medium dense SAND 7 18.81 208.73
13 Medium dense SAND 5.8 18.81 209.41
14 Hard CLAY 8.2 18.81 362.83
15 Medium dense SAND 9 18.81 210.89
16 Hard CLAY 11 18.81 365.02
17 Very dense SAND 7.7 18.81 245.11
18 Medium dense SAND 12.3 18.81 213.25
19 Hard CLAY 4 18.81 386.21
20 Dense SAND 1 18.81 228.21

Fundamental site period

"H
T, = 4ZF—‘ = 4 x0.82161 = 3.29s
5

where H;

Vs

Vs of ith layer

20

thickness of ith soil layer

(Kramer, 1996)



4.1.2 Seismic Ground Response based on Bintulu Earthquake on 1 May 2004

Ground Acceleration Time History

East North

= — Outcropping Bedrock i —Qutcropping Bedrock
c | _0.001715
2
S| o W—“ P %\\\. Lk
5 . ot
8 | ~0.001476
=T

0.004766 —Top of Layer 1
0.002242 Top of Layer 2
g :
'ﬁ Wh_pﬂ- e )
@
‘g: Top of Layer 1

—Top of Layer 2

Time (s) ] Time (s)

Figure 7 Sumandak: Time series of bedrock motion and soil layers due to Bintulu Earthquake on 1 May 2004

Amplification of Peak Ground Acceleration (Apga)

Table 6 Sumandak: Amplification of peak ground acceleration (Ang,) due to Bintulu earthquake on 1 May 2004

East North
Layer 1 2.78 2.74
Layer 2 1.31 1.52

The amplification of PGA at the top of layer 1 in the east and north direction are 2.78
and 2.74 respectively whereas for the top of layer 2 in the east and north direction are
1.31 and 1.52 respectively. It should be noted that layer 1 comprises of very soft clay
with thickness of 17 m and it has a shear wave velocity of 60.28 m/s. On the other
hand, the soils extending from the top of the layer 2 to the end of borehole at depth of
150 m are having a shear wave velocities of more than 200 m/s. It is the impedance
contrast of shear wave velocities at the boundary of layer 1 and layer 2 that amplifies
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the seismic waves. Thus, causing a greater PGA on top of layer 1 as compared to the
top of layer 2. Figure 8 and figure 9 below shows the maximum PGA vs. depth for
the east direction and north direction.

I & T vl .

S -

Figure 8 Sumandak: Graph of maximum peak ground acceleration vs. depth in the east direction

Rt = B ]

a8

Figure 9 Sumandak: Graph of maximum peak ground acceleration vs. depth in the north direction
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Fourier Spectra, Response Spectra and Amplification of Response Spectra (F5)

East North
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Figure 10 Sumandak: Fourier spectra, response spectra and amplification of response spectra (F,) due to Bintulu
Earthquake on 1 May 2004

It can be seen from the graph of amplification of response spectra that layer 1 is
amplified for the whole range of period in both direction. Similarly, layer 2 is
amplified for almost the whole range of period. In the east direction, the peak
spectral amplification for layer 1 is 6.174 which happens at period 1.125s and for
layer 2 is 3.443 at period 2.6858s. In the north direction, the peak spectral
‘amplification’ for layer 1 is 6.446 which happens at period 1.125s and for layer 2 is
3.041 at period 2.858s. It is observed that the soft soil in layer 1 tends to amplify the
incoming seismic waves at period closer to 1.1s whereas the stiffer soil in layer 2

tends to amplify the seismic waves of period 2.7s.
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Table 7 Sumandak: Peak spectral amplification (F, ) and amplification factor (F,) at 0.0015g earthquake

L ayer Fa East North
Layer 1/ Fap 6.17 @ 1.125s 6.45 @ 1.125s
Bedrock Fa(0.1-0.59) 2.34 2.38

Fa(0.4-2.09) 3.66 3.55
Layer 2/ Fap 3.44 @ 2.6858s 3.04 @ 2.858s
Bedrock F, (0.1-0.59) 1.26 1.34

F.(0.4-2.0s) 1.44 1.54

The amplification factors, F; (0.1-0.5s) and F, (0.4-2.0s) are obtained as the average
ratios of Fourier spectra over two period ranges, 0.1 to 0.5s and 0.4 to 2.0s. The
period ranges correspond to those used for obtaining average amplification factors
for the NEHRP Provisions (BSSC, 2003). The amplification factors are shown in the
table above. The peak acceleration at the surface is only about 0.0015g, so the

amplification factors are associated with very low levels of earthquake shaking.
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4.1.3 Seismic Ground Response based on Bintulu Earthquake on 1 May 2004
scaled to 0.06g

Ground Acceleration Time History

East North

—— hurppee g fed s —— Chatr+fpgmng Sedrah

~0.06

Acceleration (g)

0.049982
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- #
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Figure 11 Sumandak: Time series of bedrock motion and soil layers due to Bintulu Earthquake on 1 May 2004
scaled to 0.06g

Amplification of Peak Ground Acceleration (Apga)

Table 8 Sumandak: Amplification of peak ground acceleration (Ayg,) due to Bintulu earthquake on 1 May 2004
scaled to 0.06g

East North
Layer 1 1.10 0.83
Layer 2 0.68 0.56

After the bedrock acceleration time history is scaled to 0.06g, which is about 40
times of the origina bedrock acceleration, the PGA is no longer amplified except on
top of layer 1 in the east direction in which the amplification of PGA is 1.10. The
drastic drop in the amplification of PGA can be explained by the nonlinearity of site
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response. The response of the soil will be nonlinear under strong shaking. The shear
modulus and damping of soil are strain dependent. Thus, the larger strains, caused by
strong shaking, decrease the effective shear moduli and increase the damping. This

reduces the amplification of PGA accordingly.

Besides, similar trend is observed in which the amplification of PGA on top of layer
1 is higher than the top of layer 2 because of the impedance contrast of shear wave
velocities between the two layers as explained in chapter 4.1.2. Figure 12 and Figure
13 show the maximum PGA vs. depth for the east and north direction.

| | |

.i:

B Pl g

Figure 12 Sumandak: Graph of maximum peak ground acceleration vs. depth in the east direction (scaled to
0.06q)
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Figure 13 Sumandak: Graph of maximum peak ground acceleration vs. depth in the north direction (scaled to

0.06)

Fourier Spectra, Response Spectra and Amplification of Response Spectra (F5)

S.(9)

North

East
—Layer 1
Layer 2
—Badrock
Al
.‘ U."E-" '-I

— Layer 1
Layer 2
" ﬂl
— Bedrock lII|
[
£

f'l""'.H'JJI

— Layer 1/Bedrock

— Layer 1/Badrock

K |"'L|,
—Liryer 2/Badrock f ,-I II‘ — Layer 2/Badrock | I.-'“.II
| 1 | I|
l .I |I| i I','.
II i I‘, / I:"ﬂ' '.I"'Ill
r.-"lI 'I JII / hi J
N ﬁ: _|' ,-r K
-|. .'-'. i ¥ _I| — ;l. . '|. -]
'-;_, e Vo
Period (s) Period (s)

Figure 14 Sumandak: Fourier spectra, response spectra and amplification of response spectra (F,) due to Bintulu
Earthquake on 1 May 2004 scaled to 0.06g

From the graph of amplification of response spectra, it can be seen that the
amplification factors are remarkably reduced in the scaled (stronger) earthquake,



although the amplification factor is above 2 for layer 1 over a wide frequency band
of engineering interest. The reduction in amplification with increased intensity of
shaking is due to the nonlinear stress-strain response of the soil, resulting from
reduced effective shear moduli and increased damping as explained in the discussion

of amplification of PGA.

Furthermore, it is observed that the peak spectral acceleration ranges between
periods of 3.04 second to 3.66 second for the both soil layer in the both directions.
These values correspondent to the fundamental site period of site Sumandak whichis
3.29 second. These findings are in the interest of engineering where the design of
structures should avoid the range of these periods as the amplification factor of 3.67
is associated with PGA of 0.06g which is significant enough to damage the platforms

on site.
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Table 9 Sumandak: Peak spectral amplification (F, ) and amplification factor (F,) at 0.06g earthquake

L ayer Fa East North
Layer 1/ Fap 3.67 @ 3.04125s 3.33 @ 3.44375s
Bedrock Fa(0.1-0.59) 0.77 0.51

F. (0.4-2.09) 177 1.53
Layer 2/ Fap 2.22 @ 3.44375s 2.41 @ 3.66456s
Bedrock F. (0.1-0.59) 0.52 0.36
Fa(0.4-2.09) 0.85 0.77

The amplification factors, F, (0.1-0.5s) and F, (0.4-2.0s) are obtained as the average
ratios of Fourier spectra over two period ranges, 0.1 to 0.5s and 0.4 to 2.0s. The
period ranges correspond to those used for obtaining average amplification factors
for the NEHRP Provisions (BSSC, 2003).

Asshown in Table 9, al the amplification factors, F, (0.1-0.5s) and F, (0.4-2.0s) are
less than 1 except for F, (0.4-2.0s) on top of layer 1 in the east and north direction.
The amplification factor for seismic wave period ranging from 0.4s to 2.0s are
between 1.77 and 1.53, which are much less than the values of 3.66 and 3.55 for the
unscaled earthquake counterparts. However, due to the stronger earthquake (PGA=

0.06g), this frequency band should be taken into account in the design of structure.

The peak acceleration at the surface is 0.06g. Therefore, it should be noted that the
amplification factors are associated with fairly low levels of earthquake (PGA=
0.06g) shaking athough it is significantly higher than the very low levels of
earthquake shaking (0.00159) in chapter 4.1.2.
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4.1.4 Discussion

For the unscaled earthquake with PGA of about 0.0015g, the amplification factors
are high, around 3.6 (period 0.4s-2.0s) and 2.35 (period 0.1s-0.5s). However, these
amplification factors are associated with very low levels of earthquake shaking

which will hardly bring harm to the structure on site.

In contrast, for the scaled earthquake with PGA of about 0.06g, the amplification
factors are around 1.6 (period 0.4s-2.0s) and 0.6 (period 0.1s-0.5s). The drastically
reduced amplification factors are caused by the nonlinear behaviour of soils which
has been explained in chapter 4.1.3. On the other hand, the peak spectral
amplification is around 3.5 at period ranging from 3.04s to 3.44s which correspond
to the fundamental site period of 3.29s. These amplification factors should be taken
into account during the design of structure because they are associated with PGA of
0.06g which is significant enough to damage the platforms on site, especialy if the
seismic waves are amplified.
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4.2 Kumang

421

Table 10 Kumang: Soil layers and their properties

Sail Profile

Layer Layer Name Thickness | Unit Weight Shear
(m) (kN/m~3) | Velocity (m/s)
1 Very Soft CLAY 1 17.81 39.42
2 Loose SAND 2.5 17.81 90.02
3 Firm CLAY 1.8 17.81 159.91
4 Loose to Medium Dense SAND 1.9 17.81 146.71
5 Stiff CLAY 3.6 17.81 198.11
6 Firm to Stiff CLAY 211 17.81 221.36
7 Medium Dense SAND 2.1 17.81 235.44
8 Stiff to Very Stiff CLAY 10.9 17.81 251.23
9 Very Stiff CLAY 6.3 17.81 260.78
10 Loose to Medium Dense SILT 4.6 17.81 226.18
11 Very Stiff CLAY 4.3 17.81 265.72
12 Medium Dense SILT 7.9 17.81 235.44
13 Very Stiff CLAY 25.8 17.81 277.02
14 Dense SAND 7.4 17.81 245.23
15 Hard SILT 8.7 17.81 291.86
16 Hard CLAY 12.1 17.81 291.86
17 Dense SAND 4 17.81 245.23
18 Hard CLAY 15.4 17.81 298.17
19 Hard CLAY 4.7 17.81 303.38
20 Dense SAND 5.9 17.81 245.23
21 Hard CLAY 2.5 17.81 314.22
22 Dense SAND 215 17.81 245.23
23 Hard SILT 4 17.81 320.74

Fundamental site period

y _42: H,
5= v,

where H; =

Vg Vs of ith layer

=4 x 0.74756 = 2.99s

thickness of ith soil layer
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4.2.2 Seismic Ground Response based on Bintulu Earthquake on 1 May 2004

Ground Acceleration Time History
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Figure 15 Kumang: Time series of bedrock motion and soil layers due to Bintulu Earthquake on 1 May 2004

Amplification of Peak Ground Acceleration (Apga)

Table 11 Kumang: Amplification of peak ground acceleration (Ag,) due to Bintulu earthquake on 1 May 2004

East North
Layer 2 161 1.99
Layer 3 1.48 1.72
Layer 5 1.49 1.34

From Table 10 above, it should be noted that the thicknesses of layer 2, 3 and 5 are

2.5m, 1.8m and 3.6m respectively and they have a shear wave velocity of 90.02m/s,

159.91m/s and 198.11m/s accordingly. According to Modified Maaysian Site Class

(D'Appolonia, 2009), layer 2 is classified as ‘very soft normally consolidated clay’,
layer 3 is classified as ‘soft to firm soil” and layer 5 is classified as ‘stiff to very stiff

soil’.




The amplification of PGA at the top of layer 2 in the east and north direction are 1.61
and 1.99 respectively. On the other hand, for layer 3 and layer 5 in the both direction,
the amplification of PGA ranges from 1.34 to 1.72. The impedance contrast of shear
wave velocities between the boundaries of layer 2 and layer 3 amplifies the incoming
seismic waves significantly resulting in noticeable higher Apga in layer 2 than layer 3.
Figure 16 and Figure 17 below show the maximum PGA vs. depth in the east
direction and north direction.

S Pk 18

Figure 16 Kumang: Graph of maximum peak ground acceleration vs. depth in the east direction

e P

Figure 17 Kumang: Graph of maximum peak ground acceleration vs. depth in the north direction
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Fourier Spectra, Response Spectra and Amplification of Response Spectra (F5)
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Figure 18 Kumang: Fourier spectra, response spectra and amplification of response spectra (F,) due to Bintulu
Earthquake on 1 May 2004

It can be seen from the graph of amplification of response spectra above that all
layers are amplified for almost the whole range of period in both direction except for

period between 0.1s and 0.3s of layer 5 in the north direction.

On the other hand, al the peak spectral acceleration happens at period 2.6858s and
2.858s in the east and north direction respectively. They are close to the fundamental
site period of 2.99s. The peak spectral acceleration factors range from 3.54 to 3.71.



Table 12 Kumang: Peak spectral amplification (F,p) and amplification factor (F,) at 0.0015g earthquake

L ayer Fa East North
Layer 2/ Fap 3.71 @ 2.6858s 3.57 @ 2.858s
Bedrock Fa(0.1-0.59) 1.97 2.02

Fa(0.4-2.09) 2.05 2.12
Layer 3/ Fap 3.69 @ 2.6858s 3.56 @ 2.858s
Bedrock F. (0.1-0.59) 1.40 1.48

Fa(0.4-2.09) 1.94 2.01
Layer 5/ Fap 3.67 @ 2.6858s 3.54 @ 2.858s
Bedrock F,(0.1-0.59) 1.20 1.05

Fa (0.4-2.09) 1.82 1.88

The amplification factors, F, (0.1-0.5s) and F, (0.4-2.0s) are obtained as the average
ratios of Fourier spectra over two period ranges, 0.1 to 0.5s and 0.4 to 2.0s. The
period ranges correspond to those used for obtaining average amplification factors
for the NEHRP Provisions (BSSC, 2003).

The amplification factors for period between 0.4s and 2.0s range from 1.82 to 2.12
for al selected layers. The peak ground acceleration of the input motion is only about
0.0015g, so the amplification factors are associated with very low levels of
earthquake shaking.
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4.2.3 Seismic Ground Response based on Bintulu Earthquake on 1 May 2004
scaled to 0.06g
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Figure 19 Kumang: Time series of bedrock motion and soil layers due to Bintulu Earthquake on 1 May 2004
scaled to 0.06g

Amplification of Peak Ground Acceleration (Apga)

Table 13 Kumang: Amplification of peak ground acceleration (A, due to Bintulu earthquake on 1 May 2004
scaled to 0.06g

East North
Layer 2 111 0.84
Layer 3 0.97 0.68
Layer 5 0.85 0.62

After the bedrock acceleration time history is scaled to 0.06g, which is about 40
times of the origina bedrock acceleration, the PGA is no longer amplified except on
top of layer 2 in the east direction in which the amplification of PGA is 1.11. The
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drastic drop in the amplification of PGA can be explained by the nonlinearity of site
response as discussed in chapter 4.1.3.

Besides, similar trend is observed in which the amplification of PGA on top of layer
1 is higher than the top of layer 2 because of the impedence contrast of shear wave
velocities between the two layers as explained in chapter 4.1.2.

Figure 20 and Figure 21 below show the maximum PGA vs. depth in the east
direction and north direction.
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Figure 20 Kumang: Graph of maximum peak ground acceleration vs. depth in the east direction (scaled to 0.06g)
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Figure 21 Kumang: Graph of maximum peak ground acceleration vs. depth in the north direction (scaled to
0.060)
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Fourier Spectra, Response Spectra and Amplification of Response Spectra (F5)
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Figure 22 Kumang: Fourier spectra, response spectra and amplification of response spectra (F,) dueto Bintulu
Earthquake on 1 May 2004 scaled to 0.06g

From the graph of amplification of response spectra, it can be seen that the
amplification factors are remarkably reduced in the scaled (stronger) earthquake,
although the amplification factor is above 2 for all layers over awide frequency band
of engineering interest. The reduction in amplification with increased intensity of
shaking is due to the nonlinear stress-strain response of the soil, resulting from
reduced effective shear moduli and increased damping as explained in chapter 4.1.3

above.

Furthermore, it is observed that the peak spectral amplification happens at period
4.15s in the east direction and 3.66 in the north direction. These periods are far from
the fundamental site period of 2.99 second calculated in chapter 4.2.1. The peak
spectral amplification factors of 2.45 at period 4.15s and 2.54 at period 3.66s are in
the interest of engineering where the design of structures should avoid the range of
these periods as these amplification factors are associated with PGA of 0.06g which

is significant enough to damage the platforms on site.
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Table 14 Kumang: Peak spectral amplification (F, ) and amplification factor (F,) at 0.06g earthquake

L ayer Fa East North
Layer 2/ Fap 2.46 @ 4.14955s 2.55 @ 3.66456s
Bedrock Fa(0.1-0.59) 0.96 0.72

Fa(0.4-2.09) 1.36 1.13
Layer 3/ Fap 2.45 @ 4.14955s 2.54 @ 3.66456s
Bedrock F. (0.1-0.59) 0.76 0.52
F,(0.4-2.09) 1.27 1.06
Layer 5/ Fap 2.44 @ 4.14955s 2.53 @ 3.66456s
Bedrock F. (0.1-0.59) 0.64 0.40
Fa(0.4-2.09) 1.17 0.99

The amplification factors, F; (0.1-0.5s) and F, (0.4-2.0s) are obtained as the average
ratios of Fourier spectra over two period ranges, 0.1 to 0.5s and 0.4 to 2.0s. The

period ranges correspond to those used for obtaining average amplification factors

for the NEHRP Provisions (BSSC, 2003).

Asshownin Table 14, F, (0.1-0.5s) are less than 1 in the both direction. F, (0.4-2.0s)
ranges from 1.17 to 1.36 in the east direction and 0.99 to 1.13 in the north direction.
These values are much less than the F, (0.4-2.0s) of 1.82 in the east direction of the
unscaled earthquake counterpart. Lastly, it should be noted that these amplification

factors are associated with fairly low levels of earthquake (PGA= 0.06g).
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4.2.4 Discussion

For the discussion, only the top of layer 5 will be considered because layer 5 extends
from the depth of 7.2m to 10.8m. The soils at depth shallower than 7.2m shall not
bring significant influence to the structure response due to the relatively deep piling
in offshore structures.

For the unscaled earthquake with PGA of about 0.0015g, the amplification factors
are around 1.85 (period 0.4s-2.0s) and 1.1 (period 0.1s-0.5s). However, these
amplification factors are associated with very low levels of earthquake shaking

which will hardly bring harm to the structure on site.

In contrast, for the scaled earthquake with PGA of about 0.06g, the amplification
factors are around 1.1 (period 0.4s-2.0s) and 0.5 (period 0.1s-0.5s). The drastically
reduced amplification factors are caused by the nonlinear behaviour of soils which
has been explained in chapter 4.1.3. On the other hand, the peak spectral acceleration
is around 2.5 at period ranging from 3.66s to 4.15s which are deviated from the
fundamental site period of 2.99s. These amplification factors should be taken into
account during the design of structure because they are associated with PGA of 0.06g
which is significant enough to damage the platforms on site, especially if the seismic
waves are amplified.
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43 Laho

431 Soil Profile

Table 15 Laho: Soil layers and their properties

Layer Layer Name Thickness | Unit Weight Shear
(m) (kN/m~3) | Velocity (m/s)
1 Stiff to very stiff CLAY 15 18.31 173.06
2 Stiff to very stiff CLAY 15 18.11 193.98
3 Stiff to very stiff CLAY 20 18.61 208.82
4 Stiff to very stiff CLAY 20 18.41 225.04
5 Very stiff to hard CLAY 10 18.31 231.81
6 Very stiff to hard CLAY 10 18.31 220.34
7 Medium dense to dense SAND 5 18.71 198.71
8 Medium dense to dense SAND 10 18.81 265.51
9 Medium dense to dense SAND 10 18.81 265.51
10 Very stiff to hard CLAY 10 18.31 220.34
11 Very stiff to hard CLAY 15 18.01 242.29

Fundamental site period

"H
1, = 4ZV—* = 4 x 0.64496 = 2.58s
L1

where H;
Vs

Vof ith layer

thickness of ith soil layer
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4.3.2 Seismic Ground Response based on Sumatra Earthquake on 28 March
2005
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Figure 23 Laho: Time series of bedrock motion and soil layers due to Sumatra earthquake on 28 March 2005

Amplification of Peak Ground Acceleration (Apga)

Table 16 Laho: Amplification of peak ground acceleration (Ang,) due to Sumatra earthquake on 28 March 2005

East North
Layer 1 1.98 2.45
Layer 2 1.85 2.30

The amplification of PGA at the top of layer 1 and layer 2 in the east direction are
1.98 and 1.85 respectively and in the north direction are 2.45 and 2.30 respectively.
Layer 1 and layer 2 are both 15m thick ‘stiff to very stiff clay’ having shear wave
velocities of 173.06m/s and 193.98m/s respectively. The relatively small difference
in shear wave velocities between the two layers caused the A g, difference between
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layer 1 and 2 to be small as well. Figure 24 and Figure 25 below show the maximum
PGA vs. depth in the east direction and north direction.
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Figure 24 Laho: Graph of maximum peak ground acceleration vs. depth in the east direction
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Figure 25 Laho: Graph of maximum peak ground acceleration vs. depth in the north direction



Fourier Spectra, Response Spectra and Amplification of Response Spectra (F5)
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Figure 26 Laho: Fourier spectra, response spectra and amplification of response spectra (F,) due to Sumatra
Earthquake on 28 March 2005

It can be seen from the graph of amplification of response spectra that layer 1 and
layer 2 are amplified for the whole range of period in both direction. In the both
direction, the peak spectral amplification for the both layers happens at period 2.52s

which is very close to the fundamental site period of 2.58s although the amplification

isaround 3.4 in the east direction and 2.7 in the north direction.
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Table 17 Laho: Peak spectral acceleration (F, ) and amplification factor (F,) at 0.0011g earthquake

L ayer Fa East North
Layer 1/ Fap 3.44 @ 2.52396s 2.73 @ 2.52396s
Bedrock Fa(0.1-0.59) 2.04 241

Fa(0.4-2.09) 2.10 2.12
Layer 2/ Fap 3.37 @ 2.52396s 2.68 @ 2.52396s
Bedrock F, (0.1-0.59) 1.75 2.20
Fa(0.4-2.09) 1.86 1.98

The amplification factors, F, (0.1-0.5s) and F, (0.4-2.0s) are obtained as the average
ratios of Fourier spectra over two period ranges, 0.1 to 0.5s and 0.4 to 2.0s. The
period ranges correspond to those used for obtaining average amplification factors
for the NEHRP Provisions (BSSC, 2003). The amplification factors are shown in the
table above. The peak acceleration at the surface is only about 0.0011g, so the

amplification factors are associated with very low levels of earthquake shaking.
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4.3.3 Seismic Ground Response based on Sumatra Earthquake on 28 March
2005 scaled to 0.06g
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Figure 27 Laho: Time series of bedrock motion and soil layers due to Sumatra earthquake on 28 March 2005
scaled to 0.06g

Amplification of Peak Ground Acceleration (Apga)

Table 18 Laho: Amplification of peak ground acceleration (Ay) due to Sumatra earthquake on 28 March 2005
scaled to 0.06g

East North
Layer 1 1.29 1.12
Layer 2 1.28 1.09

After the bedrock acceleration is scaled to 0.06g, which is about 54 times of the
original bedrock acceleration, the PGA is only slightly amplified. The drastic drop in
the Apga Can be explained by the nonlinearity behaviour of soil as explained in
chapter 4.1.3. The Apga 0N top of layer 1 is only dightly higher than layer 2 due to
their very similar shear wave velocities.
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It should be noted that the Apga in Sumandak and Kumang is less than one in scaled
earthquake but more than 1 in Laho. The difference might be caused by the different
input ground motion. It is noticeable that the input ground motion of Sumatra
earthquake on 28 March 2005 has a much longer zero-crossing period than the
Bintulu earthquake on 1 May 2004.

Figure 28 and Figure 29 below show the maximum PGA vs. depth in the east
direction and north direction.
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Figure 28 Laho: Graph of maximum peak ground acceleration vs. depth in the east direction (scaled to 0.06g)
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Figure 29 Laho: Graph of maximum peak ground acceleration vs. depth in the north direction (scaled to 0.06g)
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Fourier Spectra, Response Spectra and Amplification of Response Spectra (F5)
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Figure 30 Laho: Fourier spectra, response spectra and amplification of response spectra (F,) due to Sumatra

Earthquake on 28 March 2005 scaled to 0.06g

Similar to site Sumandak and Kumang, the amplification factors are remarkably
reduced in the scaled to stronger earthquake (0.06g) due to the nonlinearity
behaviour of soil. However, it should be noted that the F, of high frequency waves
with period less than 0.3s are more than 1. In other words, the high frequency waves
of site Laho are amplified. Conversely, in both the case studies of Sumandak and
Kumang with earthquake scaled to 0.06g, these high frequency seismic waves are
mostly dampened. This is probably caused by the different seismic input motion

which has varying characteristics and properties.

Besides, the peak spectral acceleration is 2.28 at period 5s in the east direction and
2.11 at period 4.7s in the north direction. They are far from the fundamental site

period of 2.58s.
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Table 19 Laho: Peak spectral amplification (F, ) and amplification factor (F.) at 0.06g earthquake

L ayer Fa East North
Layer 1/ Fap 2.28 @ 5s 2.11 @4.70s
Bedrock Fa(0.1-0.59) 1.17 1.07

Fa(0.4-2.09) 1.03 1.08
Layer 2/ Fap 2.27 @ 5s 2.10 @ 4.70s
Bedrock F, (0.1-0.59) 1.15 1.02

Fa(0.4-2.09) 0.99 1.01

The amplification factors, F; (0.1-0.5s) and F, (0.4-2.0s) are obtained as the average
ratios of Fourier spectra over two period ranges, 0.1 to 0.5s and 0.4 to 2.0s. The

period ranges correspond to those used for obtaining average amplification factors

for the NEHRP Provisions (BSSC, 2003).

All the amplification factors, F, (0.1-0.5s) and F; (0.4-2.0s) are only dightly more
than one and they are associated with fairly low levels of earthquake (PGA= 0.06Q).
In other words, the scaled-to-0.06g earthquake is slightly amplified by the soil in

Laho.
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4.3.4 Discussion

For the unscaled earthquake with PGA of about 0.0015g, the amplification factors
are high, around 2.1 (period 0.4s-2.0s) and 2.2 (period 0.1s-0.5s). However, these
amplification factors are associated with very low levels of earthquake shaking

which will hardly bring harm to the structure on site.

In contrast, for the scaled earthquake with PGA of about 0.06g, the amplification
factors are around 1.05 (period 0.4s-2.0s) and 1.12 (period 0.1s-0.5s). The drastically
reduced amplification factors are caused by the nonlinear behaviour of soils which
has been explained in chapter 4.1.3. On the other hand, the peak spectral acceleration
isaround 2.2 at period ranging from 4.7s to 5s which are significantly deviated from
the fundamental site period of 2.58s. The peak spectral acceleration and its period
should be taken into account during the design of structure because they are
associated with PGA of 0.06g which is significant enough to damage the platforms
on site, especialy if the seismic waves are amplified.
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44 Summary

Time Series; Amplification of PGA

It is observed that all the unscaled earthquakes, Bintulu earthquake (0.0015¢g) and
Sumatra earthquake (0.0011g) amplify the PGA significantly, especialy in
Sumandak where the PGA of the first layer (soft soil) is amplified for about 2.75
times. It is also observed that the impedance contrast of shear wave velocities at the

boundaries of two layers amplifies the seismic waves.

For the scaled earthquakes (0.06g), the amplification of PGA is drastically reduced
due to the nonlinear stress-strain response of soil, resulting in reduced effective shear
moduli and increased damping. Besides, the scaled earthquakes (0.06g) only amplify
the PGA in Laho but not in Sumandak and Kumang. It is assumed to be caused by
the distinct characteristics of the input ground motion. The input ground motion of
Sumatra earthquake has a much longer zero-crossing period than the Bintulu
earthquake.

Response Spectra: Peak Spectral Amplification

For unscaled earthquakes (0.0015g) in Sumandak, the peak spectral amplification
occurs at period 1.1s and 2.7s which does not correspond to the calculated
fundamental site period of 3.3s. Conversely, the peak spectral amplification in
Kumang and Laho occurs at periods correspond to the calculated fundamental site

period.

The scaled earthquakes (0.06g) cause the amplification factors to be greatly reduced
due to the nonlinearity of soil. Besides, it is observed that the stronger earthquakes
cause the peak spectral amplification to be occurred at a longer period as compared
to the unscaled earthquake counterparts. In contrast to the observation for unscaled
earthquakes, the peak spectral amplification of Sumandak occurs a period
correspond to the fundamental site period. At the same time, the peak spectral
amplification of Kumang and Laho occurs at period much longer than the calculated

fundament site period.
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Amplification Factors: F, (0.4-2.0s) & F,(0.1-0.59)

For the unscaled earthquake, the amplification factors are high but they are
associated with very low levels of earthquake (0.0015g) shaking which will not harm

the structures on site.

For scaled earthquake, the amplification factors are relatively lower but they are
associated with fairly low level of earthquake shaking (0.06g). This level of
earthquake shaking is significant enough to damage the platforms on site, especialy
if the seismic waves are amplified and the structure has a natural period close to the
amplified periods. Therefore, the design of structures should take into account the
amplification factors and their associated period and level earthquake shaking.
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5 CONCLUSION AND RECOMMENDATION
5.1 Conclusion

The unscaled earthquakes that were recorded in Malaysia has a very low level of
earthquake shaking (PGA= 0.0015g). Although these earthquake gives a high
amplification factor, the amplified earthquake shaking hardly bring any damage to
the platforms. The time series of the earthquakes are scaled to 0.06g to simulate the
shaking caused by an earthquake with a return period of 475 years in Maaysia. The
scaled earthquake gives a much lower amplification factor which is caused by the
nonlinear behaviour of soils and a peak spectral amplification at a longer period
compared to the unscaed weaker earthquake counterparts. However, the lower
amplification factor should be taken into account when necessary in the design of
structure because they are associated with PGA of 0.06g which is significant enough
to damage the platforms on site, especialy if the seismic waves are amplified and the
structure has a natural period close to the amplified periods. This research also shows
that the impedance contrast of shear wave velocities at the boundaries of two layers
amplifies the seismic waves. Besides, the soil amplification factors depend on the

intensity of shaking.
5.2 Recommendation

The shear wave velocities estimated from the cone penetration test correlation
eguation should be compared to the site measured data in the future. The difference
in the estimated values and measured values can be used to develop a cone
penetration test correlation equation specifically for PMO, SKO and SBO Malaysia.
Besides, the estimated bedrock depth and properties should be verified with the site

measured data in the future.
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APPENDICES
Appendix A: DEEPSOIL v5.1

Description of DEEPSOIL v5.1

1-D Wawe Propagation Ansalysis Program for Geotechnical Site

Response Analysis of Deap Soill Deposits
Buid: 51,70
Main Features Include:
a) -0 Nonineer Snafyss
b} 1D Eguivalent Lineer Ansiysis

Copyright [C) 2002-2014, Board of Trustees of Uriversty of Bnois at Lbana-Champaign and Youssef Hashash
Sponsored in part by NSF Grant EERC-5701 785

Developed by, oussel Hashash, Dubee Park. Ohi-Chin Tsax, Camio Phillips, and Davd R. Groholsk
User irterface: Mchasl Musgrove, David R Groholski

For future updates check hitp /e linois s~ despsal or cortact hashash @illinois adu

Figure 31 DEEPSOIL V5.1 program description

Screen Shots of DEEPSOIL v5.1 Interface

Figure 32 Screen shot of step 2 in DEEPSOIL V5.1 program
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Figure 33 Screen shot of step 4 in DEEPSOIL v5.1 program
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Appendix B: Detailed Soil Profile and Soil Properties of the three selected sites

Sumandak
ALL SAND CLAY
Eq.56 |Eq.57 |Eq.5.11 |Eq.5.13 |Eq.5.16 |Eq.5.17 |Eq.5.18 |Eq.5.19 |Eq.5.20
i . Corrected | Effective Average
. Unit  [Plasticity| Sleeve : ) . .
Layer Layer Name from _to__ Thickness Weight | Index | Friction Qone Vertical Vﬁ)ld Shear Velocity Shear Velocity Shear Velocity (m/s) Shea-r
(m) (kN/m?) %) f. (kPa) Resistance | Stress [Ratio, e (m/s) (m/s) Velocity

° q:(kPa) |s',(kPa) (m/s)

1 | VerysofttosoftCLAY | © 17 17 15.81 36 [ 125 140 51.00 1.50 68.76 5106  65.29 3878  77.51 60.28
2 Stiff CLAY 17 | 21 4 18.81 26 63.65 860 12000 | 0.32 275.68 14407 32946  121.05 16678 | 207.41
3 Very Stiff CLAY 21 | 25 4 18.81 30 93.7 1530 156.00 | 0.22 402.66  199.58  513.64  173.72  208.03 | 299.52
4 Very Stiff CLAY 25 [ 345 95 18.81 34 85.55 990 21675 | 0.54 22529  156.80  263.69  132.22  189.32 | 193.46
5 Hard CLAY 345|397 | 52 18.81 29 129.15 1800 28290 | 033 35032 219.96 44141  192.35  239.07 | 288.62
6 Very Stiff CLAY 397 | 25| 28 18.81 28 121.6 1440 31890 | 0.52 263.18 19431  317.77  167.24 226,61 | 233.82
7 Hard CLAY 425 | 488 | 63 18.81 27 158.55 2210 359.85 | 0.43 334.84 24746 42223 21876  265.19 | 297.69
3 Very Stiff CLAY 488 | 535 | a7 18.81 26 143.9 1620 409.35 | 0.37 32113 208.16  398.95  180.05 24491 | 270.64
9 Very Stiff CLAY 535 | 563 | 2.8 18.81 25 149.1 1620 41310 | 041 30640  208.35 37843  180.05  248.07 | 264.26
10 Very stiff CLAY 56.3 | 69 12.7 18.81 22 159.1 1620 512.85 | 0.35 329.02  208.69  409.99  180.05  254.04 | 276.36
11 | Mediumdense SAND | 69 | 84 15 18.81 67 2900 63750 | 035 | 251.74 23544 14918 193.51 207.47
12 | Mediumdense SAND | 84 | 91 7 18.81 67 2900 73650 | 033 | 251.74 23544 14918 198.57 208.73
13 | MediumdenseSAND | 91 | 9.8 | 58 18.81 67 2900 79410 | 032 | 251.74 23544 14918 201.27 209.41
14 Hard CLAY 9.8 | 105 8.2 18.81 24 254.3 2570 857.10 | 0.32 40841  272.03  530.41 240.47| Assume | 362.83
15 | Medium dense SAND | 105 | 114 9 18.81 67 2900 93450 | 030 | 251.74 23544 14918 207.22 soils 210.89
16 Hard CLAY 114 | 125 11 18.81 26 283.95 2700 1024.50 | 0.33 405.21  280.27  526.55 248.03| below | 365.02
17 Very dense SAND 125 [1327| 77 18.81 95.7 9600 1108.65 | 0.30 | 273.72 253.83 184.02 268.86 69mare | 245.11
18 | Mediumdense SAND | 132.7 | 145 | 123 18.81 67 2900 1198.65 | 033 | 251.74 23544 149.18 216.66 Pleistoce | 213.25
19 Hard CLAY 145 | 149 4 18.81 28 340.2 3150 1272.00 | 035 417.73  306.40  547.52 273200 ne 386.21
20 Dense SAND 149 | 150 1 18.81 81.3 4800 129450 | 0.23 | 26639 24542 159.06 241.98 228.21

Figure 34 Detailed soil profile and soil properties of site Sumandak
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Kuman

Submerged Unit - Shear Velocity
) i Sleeve Friction (m/s)
Layer Layer Name from_to__ Thickness (m) Weight
f, (kPa) Vs =118.8 log(fs)
(kN/m~3)

+18.5
1 Very Soft CLAY 1 1 17.81 1.5 39.42
2 Loose SAND 1 3.5 2.5 17.81 4 90.02
3 Firm CLAY 3.5 5.3 1.8 17.81 15.5 159.91
4 Loose to Medium Dense SAND 53 7.2 1.9 17.81 12 146.71
5 Stiff CLAY 7.2 10.8 3.6 17.81 32.5 198.11
6 Firm to Stiff CLAY 10.8 31.9 21.1 17.81 51 221.36
7 Medium Dense SAND 31.9 34 2.1 17.81 67 235.44
8 Stiff to Very Stiff CLAY 34 44.9 10.9 17.81 91 251.23
9 Very Stiff CLAY 44.9 51.2 6.3 17.81 109.5 260.78
10 Loose to Medium Dense SILT 51.2 55.8 4.6 17.81 56 226.18
11 Very Stiff CLAY 55.8 60.1 4.3 17.81 120.5 265.72
12 Medium Dense SILT 60.1 68 7.9 17.81 67 235.44
13 Very Stiff CLAY 68 93.8 25.8 17.81 150 277.02
14 Dense SAND 93.8 101.2 7.4 17.81 81 245.23
15 Hard SILT 101.2 109.9 8.7 17.81 200 291.86
16 Hard CLAY 109.9 122 12.1 17.81 200 291.86
17 Dense SAND 122 126 4 17.81 81 245.23
18 Hard CLAY 126 141.4 15.4 17.81 226 298.17
19 Hard CLAY 141.4 146.1 4.7 17.81 250 303.38
20 Dense SAND 146.1 152 5.9 17.81 81 245.23
21 Hard CLAY 152 154.5 2.5 17.81 308.5 314.22
22 Dense SAND 154.5 176 215 17.81 81 245.23
23 Hard SILT 176 180 4 17.81 350 320.74

Figure 35 Detailed soil profile and soil properties of site Kumang
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Submerged | Plasticity L Dynamic Cone e .
Depth e . Corrected| Sleeve Friction - Friction Ratio | Eq.5.7forclay Average
Description Density Index Pore Resistance Layer

(m) kN/m3 % dt (kPa) fs (kPa) uz (kpa) dc (kPa) R (%) Vs Vs

0 Very stiff CLAY 1581 30

5 18.61 35

10 Stiff CLAY 18.31 47

15 Very Stiff CLAY 18.31 28 2,000 20 1,000 1,750 1 173.06

20 18.61 21 2,000 20 1,250 1,688 1 173.06 173.06 1
25 18.31 2,000 20 1,250 1,688 1 173.06

30 18.61 2,000 30 1,250 1,688 1.5 193.98

35 18.11 2,500 30 1,500 2,125 1.5 193.98 193.98 2
40 Stiff to very stiff 17.61 43 2,500 30 1,500 2,125 1.5 193.98

45 CLAY 18.41 2,500 40 1,500 2,125 1.5 208.82

50 18.71 2,500 40 1,500 2,125 1.5 208.82 208.82 3
55 18.61 3,000 40 2,000 2,500 1.5 208.82 '

60 18.31 38 3,000 40 2,000 2,500 1.5 208.82

65 18.61 3,000 50 2,000 2,500 1.5 220.34

70 Stiff to very stiff 17.81 54 4,000 60 2,000 3,500 1.5 229.74 225.04 4
75 CLAY 18.51 4,000 60 2,000 3,500 1.5 229.74

80 18.21 4,000 50 2,000 3,500 1.5 220.34

85 18.11 4,000 65 2,000 3,500 1.5 233.87 231.81 5
90 Very stiff to hard 18.61 4,000 60 2,000 3,500 1 229.74

95 CLAY 18.61 26 4,000 50 2,000 3,500 1 220.34 220.34 6
100 18.01 4,000 50 2,000 3,500 1 220.34

105 18.71 12,500 80 300 12,425 0.5 244.59 198.71 7
110 Medium dense to 18.81 17,500 120 300 17,425 0.5 265.51 265.51 3
115 dense 18.91 17,500 120 300 17,425 1 265.51

120 SAND 18.81 20,000 120 300 19,925 0.5 265.51 265.51 9
125 18.81 20,000 120 300 19,925 0.5 265.51

130 18.01 24 5,500 50 3,000 4,750 0.5 220.34 220.34 10
135 Very stiff to hard 18.71 23 5,500 50 3,000 4,750 0.5 220.34

140 CLAY 18.01 5,500 70 3,000 4,750 0.5 237.70

145 18.01 6,000 80 2,000 5,500 1 244.59 242.29 11
150 18.01 6,000 80 2,000 5,500 1 244.59

Figure 36 Detailed soil profile and soil properties
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