

Parallel Kinematic Robot Controller

by

Amir Muhammad Farhan Bin Mohd Fouzi

15490

Dissertation in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronic)

SEPTEMBER 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

PARALLEL KINEMATIC ROBOT CONTROLLER

By

Amir Muhammad Farhan Bin Mohd Fouzi

15490

A project dissertation submitted to the

Electrical and Electronic Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical and Electronic)

Approved by,

(Dr Ho Tatt Wei)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2014

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements, and

that the original work contained herein have not been undertaken or done by unspecified

sources or persons.

Amir Muhammad Farhan Bin Mohd Fouzi

iii

ABSTRACT

In this report, the main work frame of parallel kinematic robot controller consist of two

main components, the hardware and its circuitry, and controlling the end-effector, which

is the software counterparts. In the subject of a parallel kinematic robot, or specifically in

this project, the Delta robot, it is essential to understand the inverse and forward

kinematics as well as the Jacobian matrix. These mathematical model helps to understand

and to calculate the end-effector position in relation to all three of the robot’s angular

motor position which are calculated using the inverse and forward kinematics. Then, the

velocity of the end-effector which corresponds to the angular velocity of the motors are

calculated using the Jacobian matrix. The use of these three models is to regulate and

control the trajectory of the end-effector so that its path can be tightly control. The

trajectory path of the end-effector is calculated using cubic spline interpolation. The

control points are then extracted using this method and each control points can be

individually assigned its end-effector velocity as well as its joint angle velocity. The result

is a smooth control of trajectory of the end-effector.

All these are implemented using an Arduino Mega 2560 microcontroller. PID algorithm

are also implemented in the control system for error compensation of the DC motors. The

design of the Delta robot in CATIA are presented as well as the simulation done in

MATLAB. The finished prototype is also shown together with the complete schematics

of the system.

iv

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my advisor Dr Ho Tatt Wei,

you have been a tremendous mentor for me. I would like to thank you for encouraging my

FYP and for allowing me to grow as an Electrical and Electronic Engineering. Your

advice on both research as well as on my project have been priceless. Furthermore, I would

never have been able to finish my dissertation without the guidance from friends, and

support from my family. I would also like to acknowledge with much appreciation the

crucial role of the staff of Electrical and Electronic Engineering department as well as the

technicians, who gave the permission to use all required equipment and the necessary

material to complete my final year project.

v

Table of Contents
CERTIFICATION OF APPROVAL .. i

CERTIFICATION OF ORIGINALITY .. ii

ABSTRACT ... iii

ACKNOWLEDGEMENT .. iv

INTRODUCTION .. 1

1.1. Background ... 1

1.2. Problem Statement ... 2

1.3. Objective and Scope of study .. 3

1.4. Relevancy and feasibility ... 3

1.4.1. Relevancy .. 3

1.4.2. Feasibility .. 3

LITERATURE REVIEW AND THEORY .. 4

2.1. Literature Review... 4

2.2. Theory ... 4

2.2.1. Inverse Kinematics ... 5

2.2.2. Forward Kinematics .. 7

2.2.3. Jacobian Matrix ... 8

METHODOLOGY ... 10

3.1. Flow Chart .. 10

3.2. Designing and building Delta robot .. 12

3.2.1. Mechanical design .. 12

3.2.2. Selection of electronic hardware ... 18

3.3. Controlling the robot ... 20

3.3.1. MATLAB simulation of the mathematical models ... 21

3.3.2. Coding in Arduino IDE ... 21

3.3.3. Encoder ... 22

3.3.4. Angle control of IG32E-35K motor .. 25

3.3.5. PID controller ... 26

3.4. Gantt Chart .. 29

RESULTS AND DISCUSSION .. 31

4.1. Mechanical Design and Circuit Schematics ... 31

vi

4.1.1. Circuit Schematics of the system .. 31

4.1.2. Delta Robot design ... 33

4.2. Control system of the robot ... 35

4.2.1. Inverse and Forward Kinematics in MATLAB .. 35

4.2.2. Jacobian Matrix ... 36

4.2.3. PID Control and tuning ... 39

4.2.4. Implementation of Inverse Kinematics and Forward Kinematics in Arduino

 40

CONCLUSION AND RECOMMENDATION ... 41

REFERENCES ... 43

APPENDICES .. 44

vii

List of Figures

Figure 1 : Parameters definition for Delta robot .. 5

Figure 2 : Intersection of 2 circle for Inverse Kinematics calculation ... 6

Figure 3 : Trilateration method to solve for Forward Kinematics ... 7

Figure 4 : Flow chart of the methodology .. 10

Figure 5: Delta robot parts (extract from US patent 4,976,582) ... 12

Figure 6 : Planetary DC motor in 3D view .. 14

Figure 7 : Old base design .. 14

Figure 8 : New base design with motor holder .. 14

Figure 9 : Old design DC motor holder ... 15

Figure 10 : Old design End-effector ... 16

Figure 11 : New design end-effector ... 16

Figure 12 : End-effector fabricated using acrylic... 16

Figure 13 : Upper arm design... 17

Figure 14 : Upper arm fabricated using Acrylic ... 17

Figure 15 : Lower arm with magnetic ball joints. .. 17

Figure 16 : Arduino MEGA 2560 ... 19

Figure 17 : Flexibot Driver, FD04A .. 19

Figure 18 : Planetary DC Gear Motor (IG32E-35K) ... 20

Figure 19 : Coding stages ... 22

Figure 20 : 1X encoding ... 23

Figure 21 : 2X encoding ... 23

Figure 22: 4X encoding .. 24

Figure 23 : Process flow of programming the encoder .. 25

Figure 24 : Flow chart of coding for motor angle control .. 26

Figure 25 : Block diagram of PID controller ... 27

Figure 26 : Flow chart of coding the PID algorithm .. 28

Figure 27 : Circuit Schematic of the system ... 31

Figure 28 : Old Design of Delta robot. .. 33

Figure 29 : New Design of Delta robot .. 34

Figure 30 : Delta robot ... 34

Figure 31 : X coordinates VS 𝜃1, 𝜃2 𝑎𝑛𝑑 𝜃3. ... 37

Figure 32: Y coordinates VS 𝜃1, 𝜃2 𝑎𝑛𝑑 𝜃3. ... 38

file:///D:/UTP%20stuff/Sem%207/FYP/Dissertation_Draft.docx%23_Toc407052545

viii

List of Tables

Table 1 : attachInterrupt() modes. .. 24

Table 2 : Gantt Chart for FYP I ... 29

Table 3 : Gantt Chart FYP II .. 30

Table 4 : List of wiring connections .. 32

Table 5 : Converting motor angles to X, Y, Z coordinates using Forward Kinematics 35

Table 6 : Converting X, Y, Z coordinates to motor angles using Inverse Kinematics 35

Table 7: Moving only in X direction with constant velocity. .. 36

Table 8: Moving only in Y direction with constant velocity. .. 37

Table 9 : Moving only in Z direction with constant velocity ... 38

Table 10 : Z coordinates VS 𝜃1, 𝜃2 𝑎𝑛𝑑 𝜃3 .. 39

Table 11: P, I and D tuning parameters .. 39

1

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

The introduction section describes the background, problem statement, and objective

and scope of study of the project

1.1. Background

Since the rise of industrial era, the increasing needs for efficiency are greatly demanded

especially in manufacturing industry. To achieve this engineers and scientist have come

up with an automation system that speed the process of repetitive task that beat human

rotor skills itself. This invention is called robot. Robot can achieved multiple programmed

task using electrical and mechanical principle. The science and engineering of robots are

called robotics. Robots are practically excellent in executing mundane and repetitive task

that requires high accuracy and minute need for feedback for the same routine process [1].

The rise of electronics in this modern age has increase the need for a high precision robot

that could not only operated with high degree of accuracy but speed as well. This has led

to the birth of industrial robots which are usually consist of serial kinematic robot and

parallel kinematic robot. The most generic form of industrial robot are serial manipulators.

Although popular, it has several disadvantages. The nature of open kinematic structure

characteristic is its low stiffness. The design of serial manipulators are like an arm

structure that has link that is connected with another link by a joint which would introduce

errors. Errors can be greatly accumulated and increased going from link to link. The end-

effector can move a relatively small load due to the large weight possessed by most of the

actuators located throughout the arm. Due to this constraint, high precision and speed was

not possible. Parallel kinematic robots have this capabilities. It has several key advantages

when compared with serial arms. The motors of parallel robots are fixed at the base hence

2

the mass of the robot are mostly situated at the base therefore reducing a great deal of

active mobile mass [2]. This also contributes to its high flexibility [3]Direct-drive

actuation are perfect with parallel robots, since the motors are located at the base [2].

Other characteristics such as control on maximum allowable velocities, high rigidity, great

in determining exact orientation and good positional repetitivity makes up the specialty

of a parallel robot [4]. These characteristics allows for great precision and high speed

manipulations. There are various parallel robots known with one of them being the flight

simulator with 6 DOF (Degree of freedom) using the Gough-Steward platform [5], the

parallel manipulator star [6], the HEXA [7] and Delta robot. In this paper, Delta robot will

be used. Delta robot was first introduced by Dr Clavel in 1988 [8]. The difference of this

robot compared with other parallel kinematic robot is that it partially solve the limited

workspace that other parallel manipulators had. Delta robot unique features lies within the

parallelogram. In general, if the number of arms and parallelogram is equal to the number

of degree of freedom (DOF) of the end-effector with each motor controlling each limb of

the robots and number of joints are equal, then is is said to be symmetrical [9].

1.2. Problem Statement

Parallel kinematic robot is designed mainly for accurate positioning with speed. This

creates a problem when the end-effector is moving from one position to another. There

are multiple ways or solution for the end-effector to travel. The trajectory merely depends

on the speed and position of the end-effector. Jerking may occur if proper planning of the

motion is not executed. When this occur, this can lead to inaccuracy and sluggish

movements. As such, inverse kinematics, forward kinematics and Jacobian Matrix are

used to tightly control the trajectory of the end-effector so that smooth motion can be

achieved.

3

1.3. Objective and Scope of study

 Analyze and improve performance of the system such as the use of velocity,

acceleration, joint angles and velocity using measurement feedback to achieve

synchronized control and smooth trajectory motion.

 To create a control system that can improve path planning in optimal way so that the

end-effector can be tightly control to increase the efficiency when navigating

through the workspace.

1.4. Relevancy and feasibility

1.4.1. Relevancy

The relevancy of this project is to control the trajectory of the end-effector using position

and velocity control so that tighter and more synchronized movement can be achieve. The

use of mathematical models of inverse kinematics, forward kinematics and Jacobian

matrix is use to achieve the objectives. This project is also relevant to Electrical and

Electronics engineering as it uses knowledge from control system, digital electronics,

microprocessor, circuit theory and structured programming.

1.4.2. Feasibility

By proper planning and execution, this project can be completed as per scope before the

date submission as the major component of this project is the coding part of the system

using the Arduino environment.

4

CHAPTER 2

 LITERATURE REVIEW AND THEORY

2. LITERATURE REVIEW AND THEORY

2.1. Literature Review

The complexity of the joint-variable interactions exist within Delta robot caused

researchers to find a way to carried out the ease of calculation of dynamic models in real

time processing. Several researches have come up with models such as the Lagrange

multipliers or the use of Jacobian matrix of the manipulator. Newton-Eulor method for

certain parallel structure has also gone through. Techniques based on the virtual work

principle, Langrage formalism, Hamilton’s equations and other various methods or

techniques. All came with a conclusion that modeling by considering mass and inertia of

all the links can present a very complex models that are inefficient to be implemented in

a control scheme. Mass and inertia of the arms are ignored in order to create a simple

control algorithm.

2.2. Theory

A lot of mathematical models have been sought out in order to find the best representative

of the real system. When using the control algorithm, it should be simple enough to be

calculated in real time [2]. The approach of simple dynamics are used for the modeling of

the Delta robot in this project. Three dynamic models are introduced, forward kinematics,

inverse kinematics and Jacobian matrix.

First off, the key physical dimensions of the Delta robot’s geometry must be determined.

The side of the fixed base triangle are denoted as f, the end-effector side triangle as e, the

upper arm side starting from the actuators or motors to the joints as rf and the lower arm

as re. As mention earlier in this report, the base triangle would be the reference frame with

5

its center of symmetry be the center of origin of the reference frame. Therefore, end-

effector would always be in the – 𝑍 coordinates.

Figure 1 : Parameters definition for Delta robot

2.2.1. Inverse Kinematics

Inverse kinematics is to determine the motor or actuator angles based on the end-effector

coordinates. This is important when developing the PID controller of the system. Inverse

kinematics is used as feedback to the system in order to correct any error of the end-

effector coordinates in regards to the three angles of the DC motors. The coordinates of

the joints 𝐽1, 𝐽2 and 𝐽3 are key to finding the angle of the motors. Taking 𝐸1
,
as the centre

of the sphere with radius 𝐸1
, 𝐽1 . The intersection of this sphere with another sphere

centered at 𝐹1 along the 𝑌𝑍 plane would give the coordinates of 𝐽1. The end-effector is a

triangle with side’s e, connecting to the robot joints 𝐽1, 𝐽2, 𝐽3.

6

Figure 2 : Intersection of 2 circle for Inverse Kinematics calculation

𝐸𝐸1 =
𝑒

2√3
 (1)

𝐸𝐸1 = 𝑥0 ⟹ 𝐸1
, 𝐽1 = √𝑟𝑒

2 − 𝑥0
2 (2)

𝐹1 (0, −
𝑓

2√3
, 0) (3)

(𝑦𝐽1 − 𝑦𝐹1)
2

+ (𝑧𝐽1 − 𝑧𝐹1)
2

= 𝑟𝑓
2 (4)

(𝑦𝐽1 − 𝑦𝐸1
, 1)

2
+ (𝑧𝐽1 − 𝑧𝐸1

, 1)
2

= 𝑟𝑒
2 − 𝑥0

2 (5)

𝜃1 = arctan
𝑧𝐽1

𝑦𝐹1− 𝑦𝐽1
 (6)

To compute for 𝜃2 and 𝜃3, we simply rotate the reference frame around the 𝑍-axis 120

degrees clockwise and counterclockwise respectively.

7

2.2.2. Forward Kinematics

Forward kinematics are used in determining the end-effector position (𝑋, 𝑌, 𝑍) relative to

the angles of the motors (𝜃1, 𝜃2, 𝜃3) by the use of kinematic equations [10]. Although

straight forward, the use of trilateration in forward kinematics in finding the end-effector

coordinates is not simple as the algebraic approach is complex and tedious. This is the

same as inverse kinematics. However, this direct algebrization approach is straight

forward.

We represent the end-effector as a single point coordinate at 𝐸0(𝑥𝑜 , 𝑦𝑜 , 𝑧0). 𝐽1
, , 𝐽2

, , 𝐽3
,
 being

the center of three spheres intersecting at 𝐸0. Hence in order to find 𝐸0, three spherical

equations of the form (𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)
2 + (𝑧 − 𝑧𝑖)

2 = 𝑟𝑒2 where (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)is the

coordinates of the center of the spheres with radius re where all the spheres intersects.

Using simultaneous equation together with quadratic equation we could solve this.

Figure 3 : Trilateration method to solve for Forward Kinematics

8

2.2.3. Jacobian Matrix

The Jacobian matrix J are derived for Delta robot to express the relation between

operational-space velocities or the end-effector velocities and joint velocities or rate of

actuator displacement [2] as follows:

𝑋̇ = 𝐽 𝜃̇ (8)

This Jacobian matrix was based on a numerical computation approach of the partial

derivatives of the direct-geometric model with respect to the joint variables[2]. To

calculate the Jacobian matrix, constraint equations connecting operational space variables

to the joint-space variables are considered[11].

Codourey (1998) use the constraint equations as

‖𝐽𝑖𝐸𝑖‖
2 − 𝑟𝑒2 = 0 𝑖 = 1,2,3, (9)

stating that the length of the lower arm must be constant. Denoting the vector 𝐽𝑖𝐸𝑖 = 𝑆𝑖,

𝑆𝑖 = [

𝑥𝑛

𝑦𝑛

𝑧𝑛

] − 𝑅𝑖
𝑅 ([

𝑀
0
0

] +
𝑟𝑓 𝑐𝑜𝑠 𝜃𝑖

0
−𝑟𝑓 𝑠𝑖𝑛 𝜃𝑖

) 𝑖 = 1,2,3, (10)

with [

𝑥𝑛

𝑦𝑛

𝑧𝑛

] being the vector matrix of the center of the end-effector and M as the distance

from the origin of the reference frame to the center of the motor. Time derivative of 𝑆𝑖

from equation (9) with commutativity property results in

𝑆𝑖
𝑇𝑆̇𝑖 = 0 𝑖 = 1,2,3. (11)

This then leads to

𝑆̇𝑖 = [

𝑥̇𝑛

𝑦̇𝑛

𝑧̇𝑛

] − 𝑅𝑖
𝑅 [

𝑟𝑓 𝑠𝑖𝑛 𝜃𝑖
0

−𝑟𝑓 𝑐𝑜𝑠 𝜃𝑖

] 𝜃̇𝑖 = 𝑋̇𝑛 + 𝑏𝑖𝜃̇𝑖 𝑖 = 1,2,3, (12)

where

9

𝑏𝑖 = 𝑅𝑖
𝑅 [

𝑟𝑓 𝑠𝑖𝑛 𝜃𝑖
0

−𝑟𝑓 𝑐𝑜𝑠 𝜃𝑖

] 𝜃̇𝑖 𝑖 = 1,2,3. (13)

Using equations (10) and (13) and rearrange equation (12), the following is obtained:

[

𝑆𝑖
𝑇

𝑆𝑖
𝑇

𝑆𝑖
𝑇

] 𝑋̇𝑛 + [

𝑆𝑖
𝑇𝑏𝑖 0 0

0 𝑆𝑖
𝑇𝑏𝑖 0

0 0 𝑆𝑖
𝑇𝑏𝑖

] 𝜃̇𝑖 = [
0
0
0

] , (14)

Comparing this with equation (8), we can deduce that

𝐽 = − [

𝑆𝑖
𝑇

𝑆𝑖
𝑇

𝑆𝑖
𝑇

] −1 [

𝑆𝑖
𝑇𝑏𝑖 0 0

0 𝑆𝑖
𝑇𝑏𝑖 0

0 0 𝑆𝑖
𝑇𝑏𝑖

]. (15)

It can be noted here that the Jacobian matrix 𝐽 is a function of the end-effector position

and function of actuator angles 𝜃𝑖with 𝑖 = 1,2,3.

Trajectory planning and optimal motion control can also be achieved using inverse and

forward kinematics as well as the Jacobian matrix. The use of spline function could also

solve the optimal trajectory planning with case of point to point tasks and continuous path

tasks [12].

10

CHAPTER 3

METHODOLOGY

3. METHODOLOGY

3.1. Flow Chart

Figure 4 : Flow chart of the methodology

The flow chart above states the several steps of activities that need to be executed to

achieve the objectives. First step is to understand the mathematical models, the foundation

of the dynamic kinematics of the Delta robot. In particular, the mathematical models are

Understanding the mathematical model of the dynamic kinematics of
the Delta robot

Simulate the mathematical model in MATLAB

Design the Delta robot in CATIA

Purchasing the materials for Delta robot and prototype fabrication

Develop and program an Arduino board using the mathemactical
models and PID controller for the control system

Measure the performance of Delta robot with the simulator and
analyze and improve performance of the system

Troubleshooting

11

the forward kinematics, inverse kinematics and Jacobian Matrix in order to manipulate

the angle of actuator or DC motors (𝜃1, 𝜃2, 𝜃3), the position of the end-effector (X, Y, Z)

and the angular velocity (𝜃1̇, 𝜃2̇, 𝜃3̇). Inverse kinematics is used to convert the

translational motion of the end-effector to the angular position of the DC motors. This is

use at the beginning of the control system. Forward kinematics is the opposite of inverse

kinematics. It is used to compare the actual angular position of the motors with the desired

values for error correction. Jacobian Matrix is used to translate the translational velocity

of the end-effector to the angular velocity of the motors. This is important in order to

achieve the objectives of the project which is trajectory control. If each control points can

be manipulated, velocity can be control hence smooth trajectory. Next step is simulating

the mathematical model in MATLAB. In order to fully understand the mathematical

models mention above, simulation using MATLAB is a great way to achieve it. MATLAB

handles matrices exceptionally well, therefore perfect for simulation Jacobian Matrix

calculation. The step after is designing Delta robot. Based on the torques and size of the

DC motors, the dimension of the robot is determined. Several redesign have been made

in order to choose the best design. Inverse and forward kinematics solely depends on the

dimension of the robot. It is important to precisely design the robot. Next, is to purchase

the materials needed to fabricate the Delta robot. One of the hardest material to find is the

magnetic ball joints. This is needed for connecting the upper and lower arm of the robot

at the joint also the lower arm and the end-effector. Arduino board is the microcontroller

chosen for this project since it has a wide array of pre-define syntax as well as massive

collection of tutorials and libraries that can be easily obtained. After that, the mathematical

models as well PID controller for error compensation of the control system is developed

and programmed into the Arduino board. Finally, the performance in terms of joint angle

velocities, end-effector velocity, angles of the motors, trajectory and motion of the Delta

robot is measured and compared with the simulator. Using measurement feedback, all this

parameters are analyze and improved during troubleshooting phase.

12

3.2. Designing and building Delta robot

To design and build the Delta robot, it has to be divided into several sections. First, the

mechanical design of the robot in CATIA. The choice of materials used also effect on how

the design is made. Second, the selection of the electronic hardware. This includes the

selection of three DC motors with encoders, microcontroller, motor drivers and circuitry

boards.

3.2.1. Mechanical design

The foundation behind the Delta robot unique features lies on parallelograms usage. The

parallelogram allows the end-effector to have fixed orientation, parallel with the base of

the robot regardless of the angular motion of the motors. Three parallelogram connecting

the end-effector to the upper arm confine the orientation of the end-effector with the

intention of three pure translational degree of freedom. The three DC motors (actuators)

with encoders are attached 120 degrees far apart from each other at the base of the robot.

Refer figure 5 for the schematic of the Delta robot.

Figure 5: Delta robot parts (extract from US patent 4,976,582)

13

1) Robot base

2) Shaft (DC motor shaft)

3) Fixed parts

4) Upper arm

5a, 5b) Parallelogram

6a, 6b, 7a, 7b) Revolute joints

8) End-effector

9) Working element (not used in this project)

10) End-effector joint

11) Fixed motor (not used in this project)

12) Control system

13) Actuator (DC motors)

14) Telescopic arm (not used in this project)

15) First extremity

16) Second extremity

 The design of the Delta robot has undergone a lot of changes. Initially, the base was

design separately with the motor holders. In order to create a better and solid base, the

new design has the base and the holders fabricated together using a single aluminum sheet

of 1mm thickness. It is created based on the length of the centre of the base to the middle

point of thickness of the upper arm. This is important because based on the mathematical

models, the position of the end-effector is determine by the distance of the middle of the

upper arm to the center of the base. Refer figure 8 for the aluminum base. The end-

effector also has undergone several design modification. Each end of the end-effector has

an 11mm hole to fit 3 neodymium magnets of 11mm in diameter, and 15 mm in total

length. Refer figure 11 and 12 for the end-effector. These magnets will hold the upper arm

at the magnetic ball joints. Refer figure 13 and 14 for the upper arm. The lower arm or

parallelogram was design simply using an aluminum rod of 9.5mm in diameter with length

of 90 mm. Each end of the rod is threaded using a 3 mm thread to connect the magnetic

ball joints. Refer figure 15 for the parallelogram. The finished model is then assembled

with ease since the joints can be connected magnetically. See appendix C for the complete

dimensions of the models made in CATIA.

14

3.2.1.1. Planetary DC Gear Motor (IG32E-35K)

Figure 6 : Planetary DC motor in 3D view

3.2.1.2. Base of Delta Robot

Figure 7 : Old base design

Figure 8 : New base design with motor holder

15

3.2.1.3. DC motor holder

The new design has the DC motor holders attached together with the base to form one

single compound. This design makes the structure more solid and rigid compared if

attaching the motor and the base independently. Refer figure 8 for the new design.

Figure 9 : Old design DC motor holder

16

3.2.1.4. End-effector

The old design of the end-effector was very basic since it does not include holes to slot in

the Neodymium magnets and the thickness was not sufficient. All this concern has been

addressed fixed in the new design. The 3 mm holes near the centre was designed to insert

M3 screws tighten with nuts so that the magnets do not slipped out.

Figure 10 : Old design End-effector

Figure 11 : New design end-effector

Figure 12 : End-effector fabricated using acrylic

17

3.2.1.5. Upper arm

The upper arm has a length of 50 mm from each centre of the holes. This also acts as a

coupler to the shaft, hence the M3 screw.

Figure 13 : Upper arm design

Figure 14 : Upper arm fabricated using

Acrylic

3.2.1.6. Lower arm with magnetic ball joints

The lower arm or parallelogram was fabricated using an aluminum rod of 9.5mm diameter,

and length of 90mm. Each end of the rod was drilled and thread with diameter of 3mm.

This threaded hole is to connect each end of the rod with the magnetic ball joints.

Figure 15 : Lower arm with magnetic ball joints.

18

3.2.2. Selection of electronic hardware

The electronic hardware chosen for the microcontroller is Arduino Mega 2560. Arduino

is an open-source, single board microcontroller built for making interactive objects with

the environment easier. It is designed based on 8-bit Atmel AVR or 32-bit Atmel ARM.

The open source nature of this board makes it a great selection for student projects even

at undergraduate level. It has a huge community doing various projects across a lot of

cluster. Variety of libraries and references, including PID library, exist making it more

convenient and suitable to use. Because of this, it is a great microcontroller to use for this

project.

Actuators chosen for this project are based on the required torque. Even though stepper

and servo motor are great for control angular position, it is deemed as not fast and smooth

enough for Delta robot application. Hence, DC motor is chosen. DC motor used in this

project to control the end-effector would be Planetary DC Gear Motor (model: IG32E-

35K). For the position feedback and angular velocity measurement, encoders are used.

IG32E-35K motor is a great choice since it has encoder attached to the end shaft of the

motor, enough torque and has sufficient speed for Delta robot application. The motor

driver to accomodate for this project is Flexibot Driver, FD04A.

3.2.2.1. Arduino Mega 2560

Arduino Mega is based on ATmega2560. This board features 54 digital input/output pins

where 15 of them can be used as Pulse Width Modulation (PWM) outputs. For analog

counterparts, it has 16 inputs. The board also has 3 SPI pins that support SPI

communication using the SPI library, 2 Two Wire Interface (TWI) communication pins,

USB port, power jack and a automatic (software) reset. This is where the main program

of the robot will be implemented in as well as the PID control algorithm. See appendix A

for its schematics.

19

Figure 16 : Arduino MEGA 2560

3.2.2.2. Flexibot Driver, FD04A

This driver has 4 channel specially dedicated for 4 DC brush motors at 3A. It is able to

drive DC motors in 2 direction (CW or CCW) and speed control with maximum 40KHz

PWM frequency via a 14 way IDE cable connector. This is where the driver connects with

the Arduino Due. It has pluggable connector for 4 DC motors and 1 for power supply of

maximum 26V.

Figure 17 : Flexibot Driver, FD04A

20

3.2.2.3. Planetary DC Gear Motor (IG32E-35K)

This DC motor has a gear ratio of 35, rated torque at 270mN.m, rated speed of 170 RPM,

12V input and a rated power of 7W. The encoder (IG32E) is a 2 channel Hall Effect

encoder with its output that provides a 245 pulses per rotation. This is equivalent of 0.68

pulses per degree or 1.47 degree per pulse. This degree of resolution although enough for

the Delta robot, it can be increase using either 2X, 3X or 4X encoding technique. See

appendix A for the encoder specification.

Figure 18 : Planetary DC Gear Motor (IG32E-35K)

3.3. Controlling the robot

In this section of the report, simulation in MATLAB is first presented. Then, it will be on

coding the encoder, angular position control of the DC motors, PID control and tuning.

Lastly will be on the implementation of the mathematical models of the system into the

Arduino. A part-by-part approach of the coding is to minimize error during compilation

of the codes.

21

3.3.1. MATLAB simulation of the mathematical models

To fully understand the mathematical reasoning presented in the theory section of this

report, all the required mathematical models are simulated using MATLAB. The reason

why MATLAB is chosen is because it can handle matrix very efficiently which in this

case, the models are presented a lot in matrix form. To check whether the inverse and

forward kinematics are correct, the value gotten from the inverse kinematics are put as the

input to the forward kinematics equation. If both values appears the same, the codes and

the mathematics are correct. For the Jacobian Matrix, the end-effector velocity is only

considered in one axis at a time (X, Y, Z). See Appendix B for the MATLAB codes for

the forward kinematics, inverse kinematics and Jacobian Matrix.

3.3.2. Coding in Arduino IDE

For this report, some of the coding has been made in parallel with the fabrication and

designing work of the Delta robot. The programming is made using Arduino integrated

development environment (IDE). The programs are written in Arduino IDE which uses a

language based on C. The codes are done in several stages. The first stage is the coding

to read the encoder values from the DC motors. Next stage is to do the code for controlling

the angles of the motors using feedback from the encoders. Then, PID controller is used

for error compensation of the motors. The later part would be implementing the inverse

kinematics, forward kinematics and Jacobian matrix compatible with Arduino IDE.

22

Figure 19 : Coding stages

Below is the control loop of the system, together with the inverse kinematics, forward

kinematics and Jacobian Matrix.

3.3.3. Encoder

The encoder used in this project is a 2-channel encoder with resolution up to 245 pulse

per revolution (ppr). By dividing with 360 only gives the resolution up to 0.68 pulse per

degree or 1.469 degree per pulse. Quadrature encoder has 2 channel with each channel

Encoder feedback
Angle control of

IG32E-35K motor.

PID controller

Inverse kinematics,
forward kinematics

and Jacobian
Matrix

Desired Position
Inverse

Kinematics
Controller Delta Robot

Inverse Kinematics

Differentiation
Controller

Differentiation

J-1

X, Y, Z 𝜃1, 𝜃2, 𝜃3

𝑋̇, 𝑌̇, 𝑍̇

𝜃1̇, 𝜃2̇, 𝜃3̇

𝜃1, 𝜃2, 𝜃3

23

producing a set of pulses 90 degree out of phase with the other channel. In order to make

encoder measurements, the number of edges (low to high or high to low transitions) must

be counted. External interrupts pins can be used to count this. Arduino Due has powerful

interrupt abilities that allows the user to attach ISR (Interrupt Service Routine) on all

available pins. From the number of edges counted, this information can be used to convert

to angular position, speed, and acceleration. The pulse resolution can further be increase

using either 1X, 2X or 4X encoding. 1X encoding is by measuring the low to high

transition edges of channel A. By looking at the state of channel A and B during this

transition edge, we can determine the CW direction or CCW direction. The downside of

1X encoding is that it uses the same frequency of channel A. Therefore that is the result

with 245 ppr.

Figure 20 : 1X encoding

This can be improve by using both edges of channel A. The same principle works just as

well only this time for falling edges. Thus we can get twice the transition, increasing the

resolution from 245 ppr to 490 ppr.

Figure 21 : 2X encoding

24

With 4X encoding, we check the failing and rising edges of both channel A and channel

B. Therefore getting four times the resolution from the original ppr, which 980 ppr.

Figure 22: 4X encoding

For this project, I use 4X encoding to maximize the resolution of the motor angle. In

Arduino IDE, in order to detect the transition edges, attachInterrupt() is used.

AttachIntterupt() calls a specified Interrupt Service Routine (ISR) when interrupt happens.

Interrupts are a good way to read rotary encoder as reading rotary encoder requires high

timing precision and it need to be done as quickly as possible. The encoder wires for

channel A and B are connected to the digital I/O pins of the Arduino Due. Inside the

attachInterrupt() function is where the pin number, ISR to call, and the mode is declared.

Mode defines when the interrupt should be triggered. Following are the modes:

Mode Description

LOW When pin is low, interrupt is triggered

CHANGE When pin changes value, interrupt is

triggered

RISING When pin goes from low to high, interrupt

is triggered

FALLING When pin goes from high to low, interrupt

is triggered

HIGH When pin is high, interrupt is triggered

Table 1 : attachInterrupt() modes.

25

Below is the flow chart of coding the interrupt routine of the encoder and to determine the

direction and pulses of each encoder motors.

Figure 23 : Process flow of programming the encoder

3.3.4. Angle control of IG32E-35K motor

As Arduino IDE does not have any library for controlling angle for DC motors, this has

to be code from scratch. Below is the flow chart of the coding for angle control for DC

motors.

The encoder pin for
each motors are

defined.

#define encoder0PinA

In void setup(), each
encoder pin is set to

INPUT

pinMode (encoder0pinA,
INPUT)

Each encoder is digitally
wrote HIGH to turn on the

built in pullup resistor

digitalWrite(encode0PinA,
HIGH)

attachIntterupt() syntax is
defined so that the ISR
(doEncoderA) is called

whenever theres a change in
the encoder state

attachintterupt(30,
doEncoderA, CHANGE)

Inside the doEncoderA function, increment the
encoder counts for clockwise (CW), and decrease

for counter clockwise (CCW)

if (digitalRead(encoder0PinA) == HIGH){

if (digitalRead(encoder0PinB) == LOW) {

encoder0Pos++; }

else { encoder0Pos--; }}

26

Figure 24 : Flow chart of coding for motor angle control

3.3.5. PID controller

The measured value (input) subtract it with desired value (set-point) would equals to an

error. This error is then minimize by the PID controller by adjusting the output. This is

the definition of PID control. In a control system, we would want the system’s input to be

close to the set-point as possible. This is achieved by PID controller. The PID controller

would then adjust the output accordingly. In any PID control, tuning the parameters is one

of the important aspects. There are three tuning parameters, Kp (Proportional), Ki

(Intergral) and Kd (Derivative).

Check if there is any
bytes available from

serial port.

if (Serial.avalabile()>0)

Received any decimal
input (o to 360) in the

serial monitor.

Pos = Serial.parseInt();

Since the number of pulse
is 980 (4X encoding), an

equation to convert
degrees to number of pulse

counts is added.

newPos = encoder0Pos +
(2.722222*Pos);

Clamp the maximum and
minimum limit of newPos

variable (-980 to 980)
using if-else-if statement

If the input is
positive, turn the
motor CW. If the

input is negative, turn
tue motor CCW. Use
if-else-if statement

Stop the motor when the
motor reaches the desired

position using if
statement.

if (encoder0Pos ==
newPos)

27

Figure 25 : Block diagram of PID controller

From figure 24, we can see that, Error is equivalent of Set Point minus Process Variable. Output

in this system would be the PWM. Each error goes to each P, I and D before it is summed and

feed to the process block. Below are the equation governing this PID controller.

 (16)

Proportional controller is used to compensate the error present in the system. For example

if the desired position is still far away then the current position of the shaft, more power

is needed, so that it can reach there faster. If there is an overshoot, it must revere its

direction to achieve the desired position. This is why we use Kp. The power of the motor

is proportional to the error.

However, Kp will not get the motor to reach its required position as the closer the shaft to

the desired position, the smaller the area it would be. As this becomes smaller. PWM also

becomes smaller hence not sufficient enough to drive the motor because of friction and

gravity. This small error that exist when the system has settled down is known as steady

state error. Integral controller is introduced to overcome this as it accumulates the error

signals since the start of the system. Only then would the motor reached its desired

position.

28

The last controller would be Derivative controller. Derivative controller speeds up the

process to prevent overshoot from happening. This is useful when the process takes a long

time to reach its set point. It calculates the rate of change of the error.

All this controllers are rarely used alone. When combined, it takes the advantages of each

controller to make a one robust controller. Each of this parameters can be adjust and the

output will change accordingly. This is all simplified using Arduino PID library. The

tuning is done manually by inputting a set point and observing the current position of the

motor shaft u. This is done until the optimum parameter values of the controller is reached.

Figure 26 : Flow chart of coding the PID algorithm

Error is calculated by taking the
desired position (set-point) minus the

actual position

Error = Setpoint - input;

P (Proportional) value is calculated. Kp is
the constant that need to be determine

by trial and eror

PID = Error*Kp;

Integral gain is added with
accumulated error

ITerm+= (ki * error)

Differential gain is then added
next.

Kd * dInput (dInput is input
minus lastInput)

All the term are added to
gether and the PID is compute

output = Kp * error + ITerm -
Kd * dInput;

The PID is clamp to the
resolution for the PWM. In this
case, the PWM is set at -255 to

255.

Take only the absolute aclue of
the Output as PWM only range

from 0 to 255

abs(Output)

Tuning

29

3.4. Gantt Chart

Table 2 shows the Gantt chart for FYP I

Table 2 : Gantt Chart for FYP I

Activities

W
ee

k
 1

W
ee

k
 2

W
ee

k
 3

W
ee

k
 4

W
ee

k
 5

W
ee

k
 6

W
ee

k
 7

W
ee

k
 8

W
ee

k
 9

W
ee

k
 1

0

W
ee

k
 1

1

W
ee

k
 1

2

W
ee

k
 1

3

W
ee

k
 1

4

First meeting with coordinator

and supervisor

Problem Statement and analysis

of Forward kinematics, inverse

kinematics and Jacobian Matrix

Preliminary research work to

find the most optimal and

easiest way to compute forward

and inverse kinematics and

literature review.

Submission of extended

proposal defense

Finding the materials for

fabrication of Delta Robot

Oral proposal defense

presentation

Fabrication of Delta Robot

together with the Arduino

board.

Preparation of Interim Report

Submission of Interim Draft

Report

Submission of Interim Final

Report

30

Table 3 shows the Gantt chart for FYP II

Table 3 : Gantt Chart FYP II

Activities

W
ee

k
 1

W
ee

k
 2

W
ee

k
 3

W
ee

k
 4

W
ee

k
 5

W
ee

k
 6

W
ee

k
 7

W
ee

k
 8

W
ee

k
 9

W
ee

k
 1

0

W
ee

k
 1

1

W
ee

k
 1

2

W
ee

k
 1

3

W
ee

k
 1

4

W
ee

k
 1

5

Designing and

fabricating the

Delta robot

Coding and

Debugging the

Arduino

Submission of

Progress Report

Pre-EDX

Draft Report

Final Report

VIVA

31

CHAPTER 4

RESULTS AND DISCUSSION

4. RESULTS AND DISCUSSION

This section explains about the finalized design and fabrication of Delta robot along with

the circuit schematics of the system. For control system, results of the mathematical model

simulation using MATLAB, PID control and tuning, and the mathematical models

implementation in Arduino are shown.

4.1. Mechanical Design and Circuit Schematics

4.1.1. Circuit Schematics of the system

Figure 27 : Circuit Schematic of the system

32

Figure 19 shows the connection of the Arduino Mega 2560, the motor driver, DC motors

and the power supply. Black line from the motor going to the motor driver indicates the

Vcc and GND pin of the motor. The purple line connecting the motors to the Arduino are

the encoder pin A and pin B. The motor driver connects to the Arduino via the 7 x 2 IDE

socket. There are 3 wires for each channel of the motor with wire 1 indicating ON/OFF

for Vcc pin, wire 2 indicating ON/OFF for GND pin , and wire 3 indicating speed control

(PWM) of the motor. Power supply of 12V and 2A is used to supply the power to the

motors via the motor driver. The Arduino’s power is supplied by the USB cable of 5V.

The details of the schematic wiring is shown in the table 4 below. Refer to figure 26 for

the numbering.

Table 4 : List of wiring connections

No Motor Driver Pins Arduino Mega 2560 pins DC Motor IG32E-35K

1 Pin 1 Pin 52 -

2 Pin 2 Pin 5 -

3 Pin 3 Pin 50 -

4 Pin 4 Pin 46 -

5 Pin 5 Pin 6 -

6 Pin 6 Pin 44 -

7 Pin 7 Pin38 -

8 Pin 8 Pin 7 -

9 Pin 9 Pin 40 -

10 Pin 13 - USB, +

11 Pin 14 - USB, -

12 - Pin 21 Motor 2, Encoder A

13 - Pin 20 Motor 2, Encoder B

14 - Pin 19 Motor 3, Encoder A

15 - Pin 18 Motor 3, Encoder B

16 - Pin 2 Motor 1, Encoder A

17 - Pin 3 Motor 1, Encoder B

18 Channel 1, CCW - Motor 1, Black

33

19 Channel 1, CW - Motor 1, Red

20 Channel 2, CCW - Motor 2, Black

21 Channel 2, CW - Motor 2, Red

22 Channel 3, CCW - Motor 3, Black

23 Channel 3, CW - Motor 3, Red

24 Power Supply, GND - Power Adapter 12V, GND

25 Power Supply, + - Power Adapter 12V, +

26 Motor 1, Encoder Vcc - USB, +

27 Motor 1, Encoder GND - USB, -

28 Motor 2, Encoder Vcc - USB, +

29 Motor 2, Encoder GND - USB, -

30 Motor 3, Encoder Vcc - USB, +

31 Motor 3, Encoder GND - USB, -

4.1.2. Delta Robot design

Below shows the old and new Delta robot design drawn together as a product file in

CATIA.

Figure 28 : Old Design of Delta robot.

34

Figure 29 : New Design of Delta robot

Below is the fabricated final prototype of the Delta robot with all of the components

attached.

Figure 30 : Delta robot

35

4.2. Control system of the robot

4.2.1. Inverse and Forward Kinematics in MATLAB

For the software part, most of the time was done for the research and the building of the

code for inverse kinematics, forward kinematics, and Jacobian matrix using MATLAB

environment. The same value are compared when using forward and inverse kinematics

in order to check for the accuracy of the code [see table 5and table 6 below].

Table 5 : Converting motor angles to X, Y, Z coordinates using Forward Kinematics

Joint Angle

of Motor 1

(radian)

Joint Angle

of Motor 2

(radian)

Joint Angle of

Motor 3

(radian)

X-

coordinate

Y-

coordinate

Z-

coordinate

0 0 0 0 0 -1.2759

0 0 0.1 0.0478 -0.0276 -1.2917

0 0.1 0 -0.0478 -0.0276 -1.2917

0.1 0 0 0 0.0552 -1.2917

0.1 0.1 0.1 0 0 -1.3274

0.2 0.2 0.2 0 0 -1.3814

0.1 0.2 0.3 0.0529 -0.0901 -1.3776

Table 6 : Converting X, Y, Z coordinates to motor angles using Inverse Kinematics

X-

coordinate

Y-

coordinate

Z-

coordinate

Joint Angle

of Motor 1

(radian)

Joint Angle

of Motor 2

(radian)

Joint Angle

of Motor 3

(radian)

0 0 -1.2759 0 0 0

0.0478 -0.0276 -1.2917 0 0 0.1000

-0.0478 -0.0276 -1.2917 0 0.1000 0

0 0.0552 -1.2917 0.1000 0 0

0 0 -1.3274 0.1000 0.1000 0.1000

0 0 -1.3814 0.2001 0.2001 0.2001

0.0529 -0.0901 -1.3776 0.1000 0.2001 0.3000

36

Based on table 5 and table 6, we can conclude that the solution of forward kinematics

when inputting the radian value will give the coordinates of the end-effector, will is

confirmed by the inverse kinematics equation.

4.2.2. Jacobian Matrix

Table 7 below listed the resulting end-effector velocity in terms of X, Y and Z coordinates

using Jacobian matrix with 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3 being the angular velocity for the first, second

and the third motor respectively. 𝜃1, 𝜃2 𝑎𝑛𝑑 𝜃3 represent the joint angle for the first,

second and third motor respectively. The result would be the end-effector velocity which

are denoted as 𝑋̅, 𝑌̅ 𝑎𝑛𝑑 𝑍̅. Below are the table for the resulting jacobian matrix with three

case.

The first case is considering the direction of end-effector moving only in the X-axis,

starting from (0, 0, -1) coordinates to (1, 0, -1) coordinates with a constant end-effector

velocity of 0.1 m/ s in the direction of increasing X-axis. Table 7 below shows the

resulting angular velocity 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3.

Table 7: Moving only in X direction with constant velocity.

𝜃1 𝜃2 𝜃3 X Y Z 𝑋̅ 𝑌̅ 𝑍̅ 𝜃̇1 𝜃̇2 𝜃̇3

0.79 0.79 0.79 0 0 -1 0.1 0 0 -0.0044 0 -0.0027

0.72 1.21 0.35 0.2 0 -1 0.1 0 0 0.0043 0.0004 0.0037

0.53 1.32 -0.076 0.4 0 -1 0.1 0 0 0.016 0.0046 0.017

0.28 1.21 -0.47 0.6 0 -1 0.1 0 0 0.027 0.014 0.032

-0.012 1.06 -0.86 0.8 0 -1 0.1 0 0 0.037 0.028 0.045

-0.36 0.89 1.24 1 0 -1 0.1 0 0 0.019 -0.0021 0.047

37

Figure 31 : X coordinates VS 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3.

The second case is considering the direction of end-effector moving only in the Y-axis,

starting from (0, 0, -1) coordinates to (0, 1, -1) coordinates with a constant end-effector

velocity of 0.1 m/ s in the direction of increasing Y-axis. Table 8 below shows the

resulting angular velocity 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3.

Table 8: Moving only in Y direction with constant velocity.

𝜃1 𝜃2 𝜃3 X Y Z 𝑋̅ 𝑌̅ 𝑍̅ 𝜃̇1 𝜃̇2 𝜃̇3

0.79 0.79 0.79 0 0 -1 0 0.1 0 0.0022 -0.0038 -0.0027

0.29 0.97 0.97 0 0.2 -1 0 0.1 0 0.0032 -0.0047 -0.0045

-0.15 0.96 0.96 0 0.4 -1 0 0.1 0 -0.0012 0.0013 0.0015

-0.56 0.82 0.82 0 0.6 -1 0 0.1 0 -0.0109 0.0092 0.011

-0.95 0.63 0.63 0 0.8 -1 0 0.1 0 -0.024 0.016 0.021

-1.32 0.41 0.41 0 1 -1 0 0.1 0 -0.038 0.023 0.0303

38

Figure 32: Y coordinates VS 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3.

The third case is considering the direction of end-effector moving only in the Z-axis,

starting from (0, 0, -1) coordinates to (0, 0, -2) coordinates with a constant end-effector

velocity of 0.1 m/ s in the direction of increasing Z-axis in the negative direction. Table

9 below shows the resulting angular velocity 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3.

Table 9 : Moving only in Z direction with constant velocity

𝜃1 𝜃2 𝜃3 X Y Z 𝑋̅ 𝑌̅ 𝑍̅ 𝜃̇1 𝜃̇2 𝜃̇3

0.79 0.79 0.79 0 0 -1 0 0 0.1 0.0022 0.0038 -0.0027

0.16 0.16 0.16 0 0 -1.2 0 0 0.1 -0.017 -0.029 0.014

-0.23 -0.23 -0.23 0 0 -1.4 0 0 0.1 -0.0305 -0.052 0.018

-0.58 -0.58 -0.58 0 0 -1.6 0 0 0.1 -0.039 -0.069 0.018

-0.97 -0.97 -0.97 0 0 -1.8 0 0 0.1 -0.042 -0.074 0.013

39

Table 10 : Z coordinates VS 𝜃̇1, 𝜃̇2 𝑎𝑛𝑑 𝜃̇3

4.2.3. PID Control and tuning

When PID controller is implemented, the arms would rotate about the desired position for

some period of time before it stop oscillates. This is expected from a PID controller. The

amount of overshoots (oscillations) highly depends on the Proportional value (Kp). To

make sure the arm move towards the set point (desired angular position), Integral value

(Ki) needs to be determined. Derivative term (Kd) is only use when we want the motor to

move to the set point as quickly as possible. Commonly, Kd is not needed since the motor

is already fast enough with Kp and Ki term. But in this project, all P, I and D is use. Each

tuning constant need to be define by using trial and error for every motor separately. After

the most suitable tuning parameters are known, then the implementation of the

mathematical models can proceed. Table 11 below shows the tuning parameters for each

motor.

Table 11: P, I and D tuning parameters

 Proportional (Kp) Integral (Ki) Derivative (Kd)

Motor 1 0.4 0.6 0.05

Motor 2 0.6 0.8 0.05

Motor 3 0.4 0.9 0.05

40

4.2.4. Implementation of Inverse Kinematics and Forward Kinematics in

Arduino

The inverse kinematics and forward kinematics functions just as planned. By inputting

the coordinates into the serial monitor of the Arduino IDE, the motor moves accordingly.

By using a mouse to control the end-effector, it can smoothly move by the actuators with

each coordinates of the end-effector at each control points of the movement converted by

the inverse kinematics. Forward kinematics can then be use to compare the actual and

desired angular position of the DC motors for error correction by the PID controller.

41

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5. CONCLUSION AND RECOMMENDATION

5.1. Conclusion

To achieve a tight and synchronized control of the trajectory of the kinematic parallel

robot or Delta robot, the mathematical model of forward and inverse kinematics as well

as the Jacobian matrix must be fully understood. Forward kinematics is useful to

determine the exact coordinates of the end-effector in 3 dimensional space given only the

angle of the actuators. Inverse kinematics are then used in the opposite way of forward

kinematics. This is extremely useful when designing the PID controller based on the

position of the end-effector to correct any error conduct by the actuators. The Jacobian

matrix can be used for speed control using the given joint angle velocities. Smooth

trajectory could also be achieved. With all these mathematical method in consideration,

the Delta robot can be designed with position and velocity control as well as optimal

trajectory planning.

5.2. Recommendation

Recommendation for this project would be to increase the FYP budget. With only RM500,

the hardware range is very limited. A better motor and encoder could have been chosen

so that better resolution and accuracy can be reach. With small motors, limits the

dimension of the robot, therefore smaller workspace. To enable a larger workspace of the

Delta robot, longer upper arm and parallelogram could have been considered. Time

management also play a large role in managing project. If fabrication of the robot have

been done in FYP I, more time can be spent of the software part, making the robot more

finely tune.

42

Proposed future works are to calculate the cubic spline function of the trajectory of the

end-effector with GUI for ease of changing the parameters. With all the mathematical

models implemented, the trajectory can be further defined by manipulating each control

points.

43

REFERENCES

[1] M. Mustafa, R. Misuari, and H. Daniyal, "Forward Kinematics of 3 Degree of Freedom
Delta Robot," in Research and Development, 2007. SCOReD 2007. 5th Student
Conference on, 2007, pp. 1-4.

[2] A. Codourey, "Dynamic modeling of parallel robots for computed-torque control
implementation," The International Journal of Robotics Research, vol. 17, pp. 1325-
1336, 1998.

[3] L. Hui-Hung, W. Chih-Chin, L. Shi-Wei, T. Yuan-Hung, and L. Chao-Shu, "Robust control
for a delta robot," in SICE Annual Conference (SICE), 2012 Proceedings of, 2012, pp.
880-885.

[4] S. Staicu and D. C. Carp-Ciocardia, "Dynamic analysis of Clavel's Delta parallel robot," in
Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference
on, 2003, pp. 4116-4121 vol.3.

[5] S. D, A Platform with Six Degrees of Freedom vol. 15. Proceedings of the Inst. Mech.
Engrs, 1965.

[6] H. J. M and S. F, Star. A New Concept in Robotics, 1992.
[7] F. Pierrot, P. Dauchez, and A. Fournier, "HEXA: a fast six-DOF fully-parallel robot," in

Advanced Robotics, 1991. 'Robots in Unstructured Environments', 91 ICAR., Fifth
International Conference on, 1991, pp. 1158-1163 vol.2.

[8] R. Clavel, "Delta A fast robot with parallel geometry.," Proc. Int. symposium on
Industrial Robots, pp. 91-100, 1988.

[9] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators: John
Wiley & Sons, 1999.

[10] R. Paul, "Robot manipulators: mathematics, programming, and control : the computer
control of robot manipulators.," 1981.

[11] P. Guglielmetti, "Model-based control of fast parallel robots - a global approach in
operational space," EPFL, 1994.

[12] M. Afroun, T. Chettibi, and S. Hanchi, "Planning Optimal Motions for a DELTA Parallel
Robot," in Control and Automation, 2006. MED '06. 14th Mediterranean Conference on,
2006, pp. 1-6.

44

APPENDICES

Appendix A : IG32E encoder specification

Appendix B : MATLAB codes for forward kinematics, inverse kinematics and Jacobian

matrix.

Appendix C : Delta Robot dimensions

Appendix D: Encoder Coding in Arduino IDE

Appendix E : Full coding with PID controller and Inverse and Forward Kinematics

45

Appendix A

46

Appendix B

Forward kinematics

function [x,y,z] = forward(t1,t2,t3)

 theta1 = t1;

 theta2 = t2;

 theta3 = t3;

% robot geometry

 e = 0.5; %// end effector - length of 1 side of the

triangle

 f = 1.5; % // base - length of 1 side of the triangle

 rf = 0.5;

 re = 1.50;

% // trigonometric constants

 sqrt3 = sqrt(3.0);

 pi = 3.141592653; % // PI

 sin120 = sqrt3/2.0;

 cos120 = -0.5;

 tan60 = sqrt3;

 sin30 = 0.5;

 tan30 = 1/sqrt3;

% // forward kinematics: (theta1, theta2, theta3) -> (x0, y0,

z0)

% // returned status: 0=OK, -1=non-existing position

 t = (f-e)*tan30/2;

 dtr = pi/180.0;

 y1 = -(t + rf*cos(theta1));

 z1 = -rf*sin(theta1);

 y2 = (t + rf*cos(theta2))*sin30;

 x2 = y2*tan60;

 z2 = -rf*sin(theta2);

 y3 = (t + rf*cos(theta3))*sin30;

 x3 = -y3*tan60;

 z3 = -rf*sin(theta3);

 dnm = (y2-y1)*x3-(y3-y1)*x2;

 w1 = y1*y1 + z1*z1;

 w2 = x2*x2 + y2*y2 + z2*z2;

 w3 = x3*x3 + y3*y3 + z3*z3;

47

 %// x = (a1*z + b1)/dnm

 a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1);

 b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0;

 %// y = (a2*z + b2)/dnm;

 a2 = -(z2-z1)*x3+(z3-z1)*x2;

 b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0;

 % // a*z^2 + b*z + c = 0

 a = a1*a1 + a2*a2 + dnm*dnm;

 b = 2*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm);

 c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 -

re*re);

 % // discriminant

 d = b*b - 4.0*a*c;

 if (d < 0)

 d=-1;% // non-existing point

 end

 z0 = -0.5*(b+sqrt(d))/a;

 x0 = (a1*z0 + b1)/dnm;

 y0 = (a2*z0 + b2)/dnm;

 x=x0;

 y=y0;

 z=z0;

end

48

Inverse kinematics

function [t1,t2,t3] = inverse (x,y,z)
for n=0:2
if n==0
 x0=x;
 y0=y;
 z0=z;
elseif n==1
 x0=x*cos(2.0944) + y*sin(2.0944); %% +120 degree rotation
 y0=y*cos(2.0944) - x*sin(2.0944);
 z0=z;
else
 x0=x*cos(2.0944) - y*sin(2.0944); %% -120 degree rotation
 y0=y*cos(2.0944) + x*sin(2.0944);
 z0=z;

end
 % robot geometry
 e = 0.5; %// end effector - length of 1 side of the triangle
 f = 1.5; % // base - length of 1 side of the triangle

 rf = 0.5; % arm near motor
 re = 1.50; % parallelogram

 y1 = -0.5*0.57735*f; %// f/2 * tg 30
 y01 = y0-(0.5*0.57735*e); % // shift center to edge
 %// z = a + b*y
 a = (x0*x0 + y01*y01 + z0*z0 +rf*rf - re*re - y1*y1)/(2*z0);
 b = (y1-y01)/z0;
 %// discriminant
 d = -(a+b*y1)*(a+b*y1)+rf*(b*b*rf+rf);
 if (d < 0)
 d= -1;
 end %// non-existing point
 yj = (y1 - a*b - sqrt(d))/(b*b + 1); %// choosing outer point
 zj = a + b*yj;
 theta = atand(zj/(y1 - yj));
 theta=theta/180*pi;
 if n==0
 t1=theta;
 elseif n==1
 t2=theta;
 else
 t3=theta;
 end
end

end

49

Jacobian Matrix

function v = jacobm(t1,t2,t3,qb1,qb2,qb3,x,y,z)
%e = 0.5; %// end effector - length of 1 side of the triangle
f = 1.5; % // base - length of 1 side of the triangle

rf = 0.5; % arm near motor
re = 1.50; % parallelogram

LA=rf;
f1=f/(2*sqrt(3));
OA=[f1; 0; 0];
OB=transpose([x y z]); %position of end-effector
qbar=transpose([qb1,qb2,qb3]);
for n=0:2
if n==0
 zeta=0;
 theta=t1;
elseif n==1
 zeta=2.0944;
 theta=t2;
else
 zeta=-2.0944;
 theta=t3;
end
R=[cos(zeta) -sin(zeta) 0; sin(zeta) cos(zeta) 0; 0 0 1];
AC=[LA*cos(theta); 0; -LA*sin(theta)];
S=OB-R*(OA+AC);
ACder=[LA*sin(theta); 0; -LA*cos(theta)];
B=R*ACder;
S_T = transpose(S);
if n==0
 B1 = S_T*B;
 S1_T=S_T;
elseif n==1
 B2 = S_T*B;
 S2_T=S_T;
else
 B3 = S_T*B;
 S3_T=S_T;
 B = [B1 0 0; 0 B2 0; 0 0 B3];
 ST=[S1_T; S2_T; S3_T];
 J = -(inv(ST))*B;

 v=J*qbar;

end

end

50

Appendix C

Front and side view of Planetery DC Gear Motor with dimensions

Planetary DC motor dimensions before applying shaft technique in CATIA

51

Base of the Delta Robot’s dimension

DC motor holder dimensions 1

52

DC motor holder dimensions 2

DC motor holder dimensions 3

53

End-effector dimensions

54

Appendix D : Encoder coding in Arduino IDE

void setup() {

 pinMode(encoder0PinA, INPUT);

 digitalWrite(encoder0PinA, HIGH);

 pinMode(encoder0PinB, INPUT);

 digitalWrite(encoder0PinB, HIGH);

 attachInterrupt(30, doEncoderA, CHANGE);

 attachInterrupt(32, doEncoderB, CHANGE);

 Serial.begin (115200);

 Serial.println("start");

 pinMode(mtr2_p1, OUTPUT);

 pinMode(mtr2_p2, OUTPUT);

 pinMode(mtr2_spd, OUTPUT);

}

void loop(){

Serial.println(encoder0Pos,DEC);

digitalWrite(mtr2_p1, LOW);

digitalWrite(mtr2_p2, HIGH);

analogWrite(mtr2_spd, 50);

}

void doEncoderA(){

 if (digitalRead(encoder0PinA) == HIGH) {

 if (digitalRead(encoder0PinB) == LOW) {

 encoder0Pos++; // CW

55

 }

 else {

 encoder0Pos--; // CCW

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

}

 else

 {

 if (digitalRead(encoder0PinB) == HIGH) {

 encoder0Pos++; // CW

 }

 else {

 encoder0Pos--; // CCW

 }

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

 }

void doEncoderB(){

56

 if (digitalRead(encoder0PinB) == HIGH) {

 if (digitalRead(encoder0PinA) == HIGH) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

 }

 else {

 if (digitalRead(encoder0PinA) == LOW) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

 } }

57

Appendix E : Full coding with PID controller and Inverse and Forward Kinematics

#include <PID_v1.h> //PID Algorithm library header

#define encoder0PinA 2 //encoder for motor 1

#define encoder0PinB 3 //

#define encoder0PinC 21 //encoder for motor 2

#define encoder0PinD 20 //

#define encoder0PinE 19 //encoder for motor 3

#define encoder0PinF 18 //

volatile long encoder0Pos = 0;

volatile long encoder0Pos2 = 0;

volatile long encoder0Pos3 = 0;

const int mtr1_p1 = 52; // declare motor_1 p1, p2 and speed

const int mtr1_p2 = 50; //

const int mtr1_spd = 5; //

const int mtr2_p1 = 46; // declare motor_2 p1, p2 and speed

const int mtr2_p2 = 44; //

const int mtr2_spd = 6; //

const int mtr3_p1 = 40; // declare motor_3 p1, p2 and speed

const int mtr3_p2 = 38; //

const int mtr3_spd = 7; //

58

// robot geometry

const float e = 48.301; // end effector width in mm

const float f = 173.205; // base width in mm

const float re = 108.0; // parallelogram length in mm

const float rf = 50.0; // upperarm length in mm

// trigonometric constants

const float sqrt3 = sqrt(3.0);

const float pi = 3.141592653; // PI

const float sin120 = sqrt3 / 2.0;

const float cos120 = -0.5;

const float tan60 = sqrt3;

const float sin30 = 0.5;

const float tan30 = 1 / sqrt3;

float x, y, z, t1, t2, t3, xEE, yEE, zEE;

int newPos, newPos2, newPos3;

//Define Variables we'll be connecting to

double Setpoint, Input, Output;

double Setpoint2, Input2, Output2;

double Setpoint3, Input3, Output3;

//Specify the links and initial tuning parameters

PID myPID(&Input, &Output, &Setpoint, 3, 1.5, 0, DIRECT);

PID myPID2(&Input2, &Output2, &Setpoint2, 1.8, 1.3, 0, DIRECT);

PID myPID3(&Input3, &Output3, &Setpoint3, 2, 1, 0, DIRECT);

void setup() {

59

 pinMode(encoder0PinA, INPUT);

 digitalWrite(encoder0PinA, HIGH); // turn on pullup resistor

 pinMode(encoder0PinB, INPUT);

 digitalWrite(encoder0PinB, HIGH); // turn on pullup resistor

 pinMode(encoder0PinC, INPUT);

 digitalWrite(encoder0PinC, HIGH); // turn on pullup resistor

 pinMode(encoder0PinD, INPUT);

 digitalWrite(encoder0PinD, HIGH); // turn on pullup resistor

 pinMode(encoder0PinE, INPUT);

 digitalWrite(encoder0PinE, HIGH); // turn on pullup resistor

 pinMode(encoder0PinF, INPUT);

 digitalWrite(encoder0PinF, HIGH); // turn on pullup resistor

 attachInterrupt(0, doEncoderA, CHANGE);

 attachInterrupt(1, doEncoderB, CHANGE);

 attachInterrupt(2, doEncoderC, CHANGE);

 attachInterrupt(3, doEncoderD, CHANGE);

 attachInterrupt(4, doEncoderE, CHANGE);

 attachInterrupt(5, doEncoderF, CHANGE);

 pinMode(mtr1_p1, OUTPUT);

 pinMode(mtr1_p2, OUTPUT);

 pinMode(mtr1_spd, OUTPUT);

 pinMode(mtr2_p1, OUTPUT);

 pinMode(mtr2_p2, OUTPUT);

60

 pinMode(mtr2_spd, OUTPUT);

 pinMode(mtr3_p1, OUTPUT);

 pinMode(mtr3_p2, OUTPUT);

 pinMode(mtr3_spd, OUTPUT);

 //turn the PID on

 myPID.SetOutputLimits(-255, 255);

 myPID2.SetOutputLimits(-255, 255);

 myPID3.SetOutputLimits(-255, 255);

 myPID.SetMode(AUTOMATIC);

 myPID2.SetMode(AUTOMATIC);

 myPID3.SetMode(AUTOMATIC);

 Serial.begin (115200);

 Serial.println("start");

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ENCODER FOR MOTOR 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\

void doEncoderA() {

 if (digitalRead(encoder0PinA) == HIGH) {

 if (digitalRead(encoder0PinB) == LOW) {

 encoder0Pos++; // CW

 }

 else {

61

 encoder0Pos--; // CCW

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

 }

 else

 {

 if (digitalRead(encoder0PinB) == HIGH) {

 encoder0Pos++; // CW

 }

 else {

 encoder0Pos--; // CCW

 }

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

}

void doEncoderB() {

62

 if (digitalRead(encoder0PinB) == HIGH) {

 if (digitalRead(encoder0PinA) == HIGH) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

 }

 else {

 if (digitalRead(encoder0PinA) == LOW) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 if (encoder0Pos > 979) {

 encoder0Pos = encoder0Pos - 980;

 } else if (encoder0Pos < -979) {

 encoder0Pos = encoder0Pos + 980;

 }

63

 }

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ENCODER FOR MOTOR 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\

void doEncoderC() {

 if (digitalRead(encoder0PinC) == HIGH) {

 if (digitalRead(encoder0PinD) == LOW) {

 encoder0Pos2++; // CW

 }

 else {

 encoder0Pos2--; // CCW

 }

 if (encoder0Pos2 > 979) {

 encoder0Pos2 = encoder0Pos2 - 980;

 } else if (encoder0Pos2 < -979) {

 encoder0Pos2 = encoder0Pos2 + 980;

 }

 }

 else

 {

 if (digitalRead(encoder0PinD) == HIGH) {

 encoder0Pos2++; // CW

 }

 else {

64

 encoder0Pos2--; // CCW

 }

 }

 if (encoder0Pos2 > 979) {

 encoder0Pos2 = encoder0Pos2 - 980;

 } else if (encoder0Pos2 < -979) {

 encoder0Pos2 = encoder0Pos2 + 980;

 }

}

void doEncoderD() {

 if (digitalRead(encoder0PinD) == HIGH) {

 if (digitalRead(encoder0PinC) == HIGH) {

 encoder0Pos2 = encoder0Pos2 + 1; // CW

 }

 else {

 encoder0Pos2 = encoder0Pos2 - 1; // CCW

 }

 if (encoder0Pos2 > 979) {

 encoder0Pos2 = encoder0Pos2 - 980;

 } else if (encoder0Pos2 < -979) {

 encoder0Pos2 = encoder0Pos2 + 980;

 }

 }

65

 else {

 if (digitalRead(encoder0PinC) == LOW) {

 encoder0Pos2 = encoder0Pos2 + 1; // CW

 }

 else {

 encoder0Pos2 = encoder0Pos2 - 1; // CCW

 }

 if (encoder0Pos2 > 979) {

 encoder0Pos2 = encoder0Pos2 - 980;

 } else if (encoder0Pos2 < -979) {

 encoder0Pos2 = encoder0Pos2 + 980;

 }

 }

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ENCODER FOR MOTOR 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\

void doEncoderE() {

 if (digitalRead(encoder0PinE) == HIGH) {

 if (digitalRead(encoder0PinF) == LOW) {

 encoder0Pos3++; // CW

 }

 else {

 encoder0Pos3--; // CCW

 }

66

 if (encoder0Pos3 > 979) {

 encoder0Pos3 = encoder0Pos3 - 980;

 } else if (encoder0Pos3 < -979) {

 encoder0Pos3 = encoder0Pos3 + 980;

 }

 }

 else // must be a high-to-low edge on channel A

 {

 if (digitalRead(encoder0PinF) == HIGH) {

 encoder0Pos3++; // CW

 }

 else {

 encoder0Pos3--; // CCW

 }

 }

 if (encoder0Pos3 > 979) {

 encoder0Pos3 = encoder0Pos3 - 980;

 } else if (encoder0Pos3 < -979) {

 encoder0Pos3 = encoder0Pos3 + 980;

 }

}

void doEncoderF() {

 if (digitalRead(encoder0PinF) == HIGH) {

67

 if (digitalRead(encoder0PinE) == HIGH) {

 encoder0Pos3 = encoder0Pos3 + 1; // CW

 }

 else {

 encoder0Pos3 = encoder0Pos3 - 1; // CCW

 }

 if (encoder0Pos3 > 979) {

 encoder0Pos3 = encoder0Pos3 - 980;

 } else if (encoder0Pos3 < -979) {

 encoder0Pos3 = encoder0Pos3 + 980;

 }

 }

 else {

 if (digitalRead(encoder0PinE) == LOW) {

 encoder0Pos3 = encoder0Pos3 + 1; // CW

 }

 else {

 encoder0Pos3 = encoder0Pos3 - 1; // CCW

 }

 if (encoder0Pos3 > 979) {

 encoder0Pos3 = encoder0Pos3 - 980;

 } else if (encoder0Pos3 < -979) {

 encoder0Pos3 = encoder0Pos3 + 980;

 }

 }

68

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% forward kinematics: (theta1, theta2,
theta3) -> (x0, y0, z0) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\

int delta_calcForward(float theta1, float theta2, float theta3, float &x0,
float &y0, float &z0) {

 float t = (f - e) * tan30 / 2;

 float deg_to_rad = pi / (float)180.0;

 theta1 *= deg_to_rad;

 theta2 *= deg_to_rad;

 theta3 *= deg_to_rad;

 float y1 = -(t + rf * cos(theta1));

 float z1 = -rf * sin(theta1);

 float y2 = (t + rf * cos(theta2)) * sin30;

 float x2 = y2 * tan60;

 float z2 = -rf * sin(theta2);

 float y3 = (t + rf * cos(theta3)) * sin30;

 float x3 = -y3 * tan60;

 float z3 = -rf * sin(theta3);

 float dnm = (y2 - y1) * x3 - (y3 - y1) * x2;

 float w1 = y1 * y1 + z1 * z1;

 float w2 = x2 * x2 + y2 * y2 + z2 * z2;

69

 float w3 = x3 * x3 + y3 * y3 + z3 * z3;

 // x = (a1*z + b1)/dnm

 float a1 = (z2 - z1) * (y3 - y1) - (z3 - z1) * (y2 - y1);

 float b1 = -((w2 - w1) * (y3 - y1) - (w3 - w1) * (y2 - y1)) / 2.0;

 // y = (a2*z + b2)/dnm;

 float a2 = -(z2 - z1) * x3 + (z3 - z1) * x2;

 float b2 = ((w2 - w1) * x3 - (w3 - w1) * x2) / 2.0;

 // a*z^2 + b*z + c = 0

 float a = a1 * a1 + a2 * a2 + dnm * dnm;

 float b = 2 * (a1 * b1 + a2 * (b2 - y1 * dnm) - z1 * dnm * dnm);

 float c = (b2 - y1 * dnm) * (b2 - y1 * dnm) + b1 * b1 + dnm * dnm * (z1 *
z1 - re * re);

 // discriminant

 float d = b * b - (float)4.0 * a * c;

 if (d < 0) return -1; // non-existing point

 z0 = -(float)0.5 * (b + sqrt(d)) / a;

 x0 = (a1 * z0 + b1) / dnm;

 y0 = (a2 * z0 + b2) / dnm;

 return 0;

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% inverse kinematics
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\

int delta_calcAngleYZ(float x0, float y0, float z0, float &theta) {

70

 float y1 = -0.5 * 0.57735 * f; // f/2 * tg 30

 y0 -= 0.5 * 0.57735 * e; // shift center to edge

 // z = a + b*y

 float a = (x0 * x0 + y0 * y0 + z0 * z0 + rf * rf - re * re - y1 * y1) / (2
* z0);

 float b = (y1 - y0) / z0;

 // discriminant

 float d = -(a + b * y1) * (a + b * y1) + rf * (b * b * rf + rf);

 if (d < 0) return -1; // non-existing point

 float yj = (y1 - a * b - sqrt(d)) / (b * b + 1); // choosing outer point

 float zj = a + b * yj;

 theta = 180.0 * atan(-zj / (y1 - yj)) / pi + ((yj > y1) ? 180.0 : 0.0);

 return 0;

}

// inverse kinematics: (x0, y0, z0) -> (theta1, theta2, theta3)

int delta_calcInverse(float x0, float y0, float z0, float &theta1, float
&theta2, float &theta3) {

 theta1 = theta2 = theta3 = 0;

 int status_delta = delta_calcAngleYZ(x0, y0, z0, theta1);

 if (status_delta == 0) {

 status_delta = delta_calcAngleYZ(x0 * cos120 + y0 * sin120, y0 * cos120 -
x0 * sin120, z0, theta2); // rotate coords to +120 deg

 }

 if (status_delta == 0) {

 status_delta = delta_calcAngleYZ(x0 * cos120 - y0 * sin120, y0 * cos120 +
x0 * sin120, z0, theta3); // rotate coords to -120 deg

 }

 return status_delta;

}

71

void loop() {

 if (Serial.available() > 0) {

 x = Serial.parseInt();

 y = Serial.parseInt();

 z = Serial.parseInt();

 delta_calcInverse(x, y, z, t1, t2, t3);

 newPos = (2.722222 * t1);

 newPos2 = (2.722222 * t2);

 newPos3 = (2.722222 * t3);

 //Clamping the converted angle to encoder values to -980 to 980

 if (newPos > 979) {

 newPos = newPos - 980;

 }

 else if (newPos < -979) {

 newPos = newPos + 980;

 }

 if (newPos2 > 979) {

 newPos2 = newPos2 - 980;

 }

 else if (newPos2 < -979) {

 newPos2 = newPos2 + 980;

 }

 if (newPos3 > 979) {

 newPos3 = newPos3 - 980;

72

 }

 else if (newPos3 < -979) {

 newPos3 = newPos3 + 980;

 }

 }

 Setpoint = newPos;

 Input = encoder0Pos;

 myPID.Compute();

 Output=abs(Output);

 Setpoint2 = newPos2;

 Input2 = encoder0Pos2;

 myPID2.Compute();

 Output2=abs(Output2);

 Setpoint3 = newPos3;

 Input3 = encoder0Pos3;

 myPID3.Compute();

 Output3=abs(Output3);

// int spd = 70;

 do {

 if (newPos > encoder0Pos) { //%%%%%%%%%%%%%%%%%%%%%%%%%
MOTOR 1 %%%%%%%%%%%%%%%%%%%%%%\\

 digitalWrite(mtr1_p1, LOW);

 digitalWrite(mtr1_p2, HIGH);

 analogWrite(mtr1_spd, Output);

 }

 if (newPos < encoder0Pos) {

73

 digitalWrite(mtr1_p1, HIGH);

 digitalWrite(mtr1_p2, LOW);

 analogWrite(mtr1_spd, Output);

 }

 if (newPos2 > encoder0Pos2) { //%%%%%%%%%%%%%%%%%%%%%%% MOTOR 2
%%%%%%%%%%%%%%%%%%%%%%\\

 digitalWrite(mtr2_p1, LOW);

 digitalWrite(mtr2_p2, HIGH);

 analogWrite(mtr2_spd, Output2);

 }

 if (newPos2 < encoder0Pos2) {

 digitalWrite(mtr2_p1, HIGH);

 digitalWrite(mtr2_p2, LOW);

 analogWrite(mtr2_spd, Output2);

 }

 if (newPos3 > encoder0Pos3) { //%%%%%%%%%%%%%%%%%%%%%%% MOTOR 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%\\

 digitalWrite(mtr3_p1, LOW);

 digitalWrite(mtr3_p2, HIGH);

 analogWrite(mtr3_spd, Output3);

 }

 if (newPos3 < encoder0Pos3) {

 digitalWrite(mtr3_p1, HIGH);

 digitalWrite(mtr3_p2, LOW);

 analogWrite(mtr3_spd, Output3);

 }

 } while ((encoder0Pos != newPos && encoder0Pos2 != newPos2 &&
encoder0Pos3 != newPos3));

 digitalWrite(mtr1_p1, LOW);

74

 digitalWrite(mtr1_p2, LOW);

 digitalWrite(mtr2_p1, LOW);

 digitalWrite(mtr2_p2, LOW);

 digitalWrite(mtr3_p1, LOW);

 digitalWrite(mtr3_p2, LOW);

}

