
i

HANDWRITING RECOGNITION USING WEBCAM FOR DATA ENTRY

By

WONG YOONG XIANG

14312

Final Report submitted in partial fulfilment of

the requirements for the

Degree Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

FYP II September 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

MR PATRICK SEBASTIAN

ii

CERTIFICATION OF APPROVAL

HANDWRITING RECOGNITION USING WEBCAM FOR DATA ENTRY

by

Wong Yoong Xiang

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved:

Mr. Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2014

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements, and

that the original work contained herein have not been undertaken or done by unspecified

sources or persons.

Wong Yoong Xiang

iv

ABSTRACT

 The Handwriting Recognition using Webcam for Data Entry project has its

primary purpose to develop a system or algorithm that is robust enough to recognize

numerical handwritings. A web camera is to be utilized to capture images of handwritten

scores and question numbers on the examination score sheet in real time. It is then

preprocessed and all the features are being fed into a neural network that is already been

trained by various test samples. The outcome of the project should be able to obtain a

system that is able to recognize handwritten numerical data with the lowest overshoot and

errors. Several distinctive feature from each character is extracted using a few feature

extraction methods, in which a comparison between three types of feature extraction

modules were used. The first test was done with a neural network trained with only the

Character Vector Module as its feature extraction method. A result that is far below the

set point of the recognition accuracy was achieved, a mere average of 64.67% accuracy.

However, the testing were later enhanced with another feature extraction module, which

consists of the combination of Character Vector Module, Kirsch Edge Detection Module,

Alphabet Profile Feature Extraction Module, Modified Character Module and Image

Compression Module. The modules have its distinct characteristics which is trained using

the Back-Propagation algorithm to cluster the pattern recognition capabilities among

different samples of handwriting. Several untrained samples of numerical handwritten

data were obtained at random from various people to be tested with the program. The

second tests shows far greater results compared to the first test, have yielded an average

of 84.52% accuracy. As the recognition results have not reached the target of 90%, further

feature extraction modules are being recommended and an additional feature extraction

module was added for the third test, which successfully yields 90.67%. With the time-

frame target achieved, a robust data entry system was developed using web camera

together with a user-friendly GUI (Graphical User Interface).

v

ACKNOWLEDGEMENTS

With immense pleasure, it is my greatest gratitude to be blessed with the opportunity to

undertake Final Year Project in Universiti Teknologi PETRONAS (UTP). This Final Year

Project report, entitled ‘Handwriting Recognition using Webcam for Data Entry’, was the

outcome of vast hard work, effort placed and is completed in a span of 2 active semesters.

Reminiscing the process of project completion, the author is appreciative towards

numerous individuals whom are accountable for their assistance towards achieving the

project’s objective.

Primarily, the author would like to place on record, a sincere gratitude to Mr.

Patrick Sebastian, the project supervisor, whom have trusted the author on his capabilities

and competencies on handling the project towards completion. Without Mr. Patrick

Sebastian’s selfless knowledge, support, advice and guidance, the project would not be

completed on time.

 Additionally, this Final Year Project has successfully gained recognition and

reputation in the 34th Science and Engineering Design Exhibition (SEDEX34) held in

Universiti Teknologi PETRONAS (UTP) on the 8th and 9th of December 2014, whereby

it won the Gold Award for Electrical and Electronics Engineering Final Year Project

Category and Idea Generation Funds for Education worth RM10,000.00 (Appendix J).

Subsequently, I would also like to express special and sincere thanks to all

colleagues, classmates and seniors for all the responsive help, encouragements and

guidance towards the accomplishment of the project. Last but not least, I also placed on

record, his sense of gratitude towards his parents for their unceasing encouragement and

support. Superior thanks also to one and all who, directly or indirectly, have lent their

helping hand in contributing towards the success of this project.

vi

TABLE OF CONTENTS
ABSTRACT .. iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1 BACKGROUND ... 1

1.2 PROBLEM STATEMENT ... 2

1.3 OBJECTIVES ... 2

1.4 SCOPE OF STUDY .. 3

CHAPTER 2: LITERATURE REVIEW AND THEORY .. 4

2.1 BACK PROPAGATION NEURAL NETWORK .. 4

2.2 IMAGE PREPROCESSING & FEATURE EXTRACTION 6

2.2.1 MODIFIED ALPHABETS ENCODER MODULE 7

2.2.2 EDGE DETECTION METHOD .. 8

2.2.3 KIRSCH EDGE DETECTION MODULE ... 8

2.2.4 IMAGE COMPRESSION MODULE .. 10

2.2.5 CHARACTER VECTOR MODULE ... 10

2.2.6 CURVATURE VECTOR MODULE ... 10

2.3 CHARACTER RECOGNITION .. 11

CHAPTER 3: METHODOLOGY ... 12

3.1 METHODOLOGY .. 12

3.2 SOFTWARE & HARDWARE TOOLS ... 13

3.3 IMAGE PRE-PROCESSING ... 13

vii

3.3.1 IMAGE NOISE REDUCTION .. 15

3.3.2 SCRATCHES REMOVAL .. 16

3.3.3 SLANT CORRECTION .. 17

3.4 FEATURE EXTRACTION MODULES .. 18

3.4.1 CHARACTER VECTOR MODULE .. 20

3.4.2 KIRSCH EDGE DETECTION MODULE .. 20

3.4.3 ALPHABET PROFILE EXTRACTION MODULE 21

3.4.4 MODIFIED CHARACTER MODULE ... 22

3.4.5 IMAGE COMPRESSION MODULE ... 23

3.4.6 CURVATURE VECTOR MODULE .. 24

3.5 NEURAL NETWORK.. 26

3.6 IMAGE ACQUISITION MODULE ... 28

3.6.1 PROTOTYPE ... 29

3.6.2 ACQUIRING THE REGION OF INTEREST .. 31

3.7 GRAPHICAL USER INTERFACE MODULE.. 32

3.7.1 GRAPHICAL USER INTERFACE COMMAND STEPS 33

3.8 GANTT CHART & KEY MILESTONES ... 39

CHAPTER 4: RESULTS AND DISCUSSION ... 41

4.1 HANDWRITING RECOGNITION TESTS ... 41

4.1.1 TEST 1 ... 41

4.1.2 TEST 2 ... 43

4.1.3 TEST 3 ... 47

4.1.4 COMPARISON AMONG ALL THREE TESTS 50

4.1.5 COMPARISON AMONGST FEATURE EXTRACTION MODULES ... 51

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 52

viii

REFERENCES ... 53

APPENDICES ... 56

APPENDIX A: TEST 1 MATLAB CODES ... 56

APPENDIX B: TEST 2 MATLAB CODES .. 60

APPENDIX C: TEST 3 MATLAB CODES .. 70

APPENDIX D: TEST 1 TRAINING SET ... 73

APPENDIX E: TEST 2 TRAINING SET ... 74

APPENDIX F: TEST 3 TRAINING SET .. 75

APPENDIX G: TEST SET SAMPLE FOR TEST 1 ... 76

APPENDIX H: TEST SET SAMPLE FOR TEST 2 ... 78

APPENDIX I: TEST SET SAMPLE FOR TEST 3 ... 80

APPENDIX J: SEDEX AWARDS .. 84

ix

LIST OF FIGURES

Figure 1: Modified Alphabet Encoder Classified Regions .. 7

Figure 2: Edge Detection Method Classified Regions ... 8

Figure 3: Predefined masks of Kirsch Edge Detection Module ... 9

Figure 4: Example of Kirsch Edge Detection Module output.. 9

Figure 5: Character Vector Module Elements ... 10

Figure 6: Process flow identification and implementations for the handwritten recognition

project ... 12

Figure 7: Process flow of pre-processing raw image using MATLAB’s Image Processing

Toolbox .. 14

Figure 8: Image after object plotting which detects the unwanted noise 15

Figure 9: Process Flow Image Noise Reduction .. 15

Figure 10: Scratches removal ... 16

Figure 11: Numbers before and after slant correction ... 17

Figure 12: Process Flow of Character Vector Module Algorithm 20

Figure 13: Process Flow of Kirsch Edge Detection Module Algorithm 21

Figure 14: Process Flow of Alphabet Profile Feature Extraction Module Algorithm 22

Figure 15: Process Flow of Modified Character Module Algorithm 23

Figure 16: Process Flow of Image Compression Module Algorithm 24

Figure 17: Process Flow of Curvature Vector Module Algorithm 25

Figure 18: Output from first camera .. 28

Figure 19: Output from second camera .. 29

Figure 20: Location of the camera and the prototype .. 30

Figure 21: Defining the region of interest .. 31

Figure 22: Graphical User Interface Layout for Handwriting Recognition System using

Webcam for Data Entry .. 32

Figure 23: GUI Command Steps .. 33

Figure 24: Extracting data from Webcam 1 onto the GUI ... 34

Figure 25: Extracting data from Webcam 2 onto the GUI ... 35

Figure 26: Comparing the total marks with sub marks on GUI 35

x

Figure 27: Verifying data entry on GUI ... 36

Figure 28: Completed GUI .. 37

Figure 29: Exported data to the Excel Database .. 38

Figure 30: Exported data to the Excel Database .. 38

Figure 31: Mistakes and occurrences of each number in Test 1 42

Figure 32: Percentage of accuracy of each number in Test 1 .. 42

Figure 33: Mistakes and occurrences of each number in Sample 3 of Test 2 44

Figure 34: Percentage of accuracy of each number in Sample 3 of Test 2 45

Figure 35: Mistakes and occurrences of each number in Sample 4 of Test 2 45

Figure 36: Percentage of accuracy of each number in Sample 4 of Test 2 46

Figure 37: Graph of Number of Training Sets vs Avg. Accuracy 48

Figure 38: Comparison between the percentages of accuracy between 3 tests................ 50

xi

LIST OF TABLES

Table 1: Comparison between matrix sizes of two tests .. 19

Table 2: Neural Network Training Parameters .. 27

Table 3: Gantt Chart and Key Milestones for FYP I ... 39

Table 4: Gantt Chart and Key Milestones for FYP II .. 40

Table 5: Percentage of accuracy of Test 1 ... 41

Table 6: Percentage of accuracy of Test 2 ... 44

Table 7: Neural Network Training Accuracy ... 47

Table 8: Percentage of accuracy of Test 3 ... 49

Table 9: Comparison test with each feature extraction module 51

xii

LIST OF ABBREVIATIONS

A.I.: Artificial Intelligence

UTP: Universiti Teknologi PETRONAS

OCR: Optical Character Recognition

ANN: Artificial Neural Network.

MLP: Multilayer Perceptron

ROI: Region of Interest

GUI: Graphical User Interface

1

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Teachers and lecturers of various academia fields have been given the authority for many

years to carry out data entry of student’s academic results into computers. There is a need

to reduce the burden of these educators with the enhancement of science and technology,

which sees the advancements and implementations of artificial intelligence (A.I.) in

various industries. Handwriting recognition systems have worked its way into the

scientific era of modern technology but has yet to achieve a prime solution for various

handwriting trends. Applications such as passport number recognition, signature

identification and plate number scanning are the examples of optical character

recognitions (OCR).

In Malaysia, general or public examinations are mandatory to be taken by all students,

with educators responsible in conveying information such as marks and total scores from

the examination score sheet to be computerized. Human errors are prone to arise, with

data often entered incorrectly causing the student victim to be given undeserved grades

for the particular examination. Thus, it is oblique to have a handwriting recognition system

for current or future data entry into online systems, which will also facilitates the transfer

of data across web link systems in the education industry.

Throughout the years, various efficient techniques have been deployed by researchers

to recognize various numeric handwritten characters, but still remains a sturdy hurdle with

thousands of different shaped handwriting trends. This project has high similarities from

a previous thesis by Poo entitled, “Handwriting Recognition for Data Entry (HandRec)”

[1], which in this project, the goal is to achieve a more robust output.

2

1.2 PROBLEM STATEMENT

Humans have unique handwriting styles which proves to be an obstacle for handwriting

recognition algorithms. To date, multiple researches have been done to recognize these

different handwriting styles, most notable using the artificial neural network (ANN) with

back propagation algorithms [2], which has also been proven to give adequately high

accuracies. By using real time process image capturing, this system and algorithm can be

implemented to apply multiple handwritten entry data for schools and universities, where

the handwritten data of a standard score sheet from different individuals can be transferred

to a spreadsheet.

1.3 OBJECTIVES

The prime purpose of the project is to utilize a web camera to capture images of

handwritten scores and question numbers on the examination score sheet, with an

algorithm that has the capability to recognize handwritings and computerized numerals in

real time. In short, an intelligent neural network has to be developed for robust

handwriting recognition of the numbers from the webcam to be able to be input into a

database. The neural network method will be deeply explored to obtain the optimal

solution with the lowest overshoot and errors. Other methods of handwriting recognition

includes Fuzzy Logic [3], Hidden Markov Model [4], Principal Component Analysis

(PCA) [5], Local Affine Transformation (LAT) [6], Wavelet Transform [7] and Curvature

Coefficient Method [8].

3

1.4 SCOPE OF STUDY

The current range of study of the project is limited to only Universiti Teknologi

PETRONAS (UTP) score sheet handwriting recognitions. Handwriting trend subjects will

only be concentrated on various lecturers and students within UTP, in which a flexible

image will be captured by a webcam and a robust neural network will be trained based on

the samples obtained. The handwritten data of question number written by students and

examination scores written by lecturers will only be taken into consideration for data entry

into an online database system. Further studies and future researches would include

handwritings by various people of various professions on different applications.

4

CHAPTER 2: LITERATURE REVIEW AND THEORY

2.1 BACK PROPAGATION NEURAL NETWORK

Researchers have used different approaches towards solving the handwriting recognition

problems, with some trying to fuse multiple recognition algorithms to overcome the weak

points of another algorithm. Nonetheless, neural network as a single algorithm is robust

enough to recognize handwriting samples and produce high recognition rate. Neural

network has self-learning, self-adapt and self-process capabilities which make it robust

for handwritten recognition systems [9]. There are three layers in the typical neural

network, which are the input layer, output layer and the hidden layer. These layers

correspond with each other to train training sets for recognition algorithms.

 During handwritten recognition process, the pre-processed image is interpreted in

the form of an input signal which is then propagated through the network of the three

layers in forward direction. The neural network is sometimes referred as multilayer

perceptron (MLP). One advantage of using neural network is that it can be trained to

perform the error-correction learning rule [10].

Most of the research that is based on neural network have achieved ultimately high

recognition accuracy of more than 95%. Even with this high accuracy, the correct learning

rate (𝜇) has to be chosen to ensure the recognition results obtained in optimal. The learning

rate is the rate of which the number of training sample sets used to train the neural network.

If a low value of 𝜇 is chosen, the result obtained will be slow and inaccurate. However, if

a high value of 𝜇 is chosen, the algorithm will memorize the training sets and exceed the

threshold consistency of recognition [11].

5

Throughout the years, neural network has been recognized as the key for future

computer processing improvisations, as it has proven to be very successful solving

numerous problem domains, particularly in diverse areas of science and technology [1].

Neural network has been able to counter problems which requires the computer processor

to predict and classify a control problem, instead of just following programming

algorithms [1]. Some of the key factors which has contributed to the sweeping success of

this systems are:

 Computing capabilities: Neural networks consists of extremely complex functions

and various sophisticated modeling techniques. As its modeling is non-linear, as

compared to various linear modeling techniques, it has the advantage of simulating

functions to predict an outcome given an input that has already been trained

throughout its neurons. One advantage of using neural network is that it could

handle large amount of computing command and still perform optimally.

 Ease of use: Neural network is an intelligent system whereby it learns by training

samples. It has the ability to gather input data and produce complex functions to

automatically learn the set of data, as well as interpreting the outcomes. Neural

network learn by various examples and does not require the user to select

distinctive features of the training data set, as the system has the ability to produce

analysis itself. Hence, it is highly regarded for this reason that the neural network

is used to encounter the problem in this handwritten recognition project.

 Convenience: The neural network system also has now been widely used on

different platforms. One such common platform is MATLAB, which already has

a pre-installed Neural Network Toolbox for the convenience of the user. The

neural network need not to be implemented using long and hefty coding, but only

requires the user to understand the amount of training iterations and parameters to

be used to train the given input data.

6

2.2 IMAGE PREPROCESSING & FEATURE EXTRACTION

Before the numeric character is being trained in the neural network, the sample of data

must first be pre-processed to extract the relevant data and information to be trained.

Among the common pre-processing and feature extraction used in general, is by

binarization of a digitized image of handwritten samples and forming an array of data

pixels [12].

There are several features of the handwritten in which must be considered to be

trained and in this paper [13], it focused on a few features namely the Gradient Based

Wavelet Features, MAT based Directional Features, Complex Wavelet Features, Binary

Gradient Directional Features, Median Filter Gradient Features, Image Thinning Distance

Feature and Geometrical Features. It is in contrast with the feature extraction module with

[1], who uses the Horizontal, Vertical and Diagonal Alphabet Regions Encoder Features,

Kirsch Edge Detector Feature, Image Compression Features and Profiling Alphabet

Smoothness, Width and Height Features. Both these feature extraction methods can be

compared based on the recognition accuracy. In fact, there are many other extraction

feature models that are used by various researchers.

Through feature extraction modules, the important elements of the handwritten

data can be trained to achieve the highest recognition rate. If some of the character written

to be recognized has missing features, the neural network has the ability to respond to the

error and discriminate patterns [14]. Researchers have also tried using multilayer feed

forward neural network (MLFFNN) [15] and auto associative neural network [16], both

which are upgraded versions of back propagation neural network and achieved a slightly

higher percentage of accuracy. These methods differ by the number of input layers, hidden

layers and output layers used. Despite insignificant differences shown, the accuracy of

recognition increased slightly.

7

2.2.1 MODIFIED ALPHABETS ENCODER MODULE

This feature extraction module uses 15 different regions to map out the number of

bits of the particular handwritten number. In order to achieve equal and identical marked

bit regions, the image is rescaled first onto 32 x 32 bitmap, which is then divided into 15

different regions, consisting 8 vertical regions (V1, V2, V3, V4, V5, V6, V7 and V8), 4

diagonal regions (D1, D2, D3 and D4) and 3 horizontal regions (H1, H2 and H3) as shown

in Figure 1.

Figure 1: Modified Alphabet Encoder Classified Regions

Once the featured region has been divided, the number of marked bits is taken into

account and computed using Equation 1, where the region feature is the sum of marked

bits divided by the region size.

region feature =
sum of marked bits

region size
 (Equation 1)

8

2.2.2 EDGE DETECTION METHOD

This feature extraction module involved the detection of the other edge of each

number character from four different corner views, namely from the top, right, bottom and

left direction. As depicted in Figure 2, the number of bits from each direction is taken into

consideration with the program running through from each specific direction. Once a bit

change is detected, the edge of the number character from each direction is computed and

the extraction of features from the number is completed.

Figure 2: Edge Detection Method Classified Regions

2.2.3 KIRSCH EDGE DETECTION MODULE

This feature extraction module is able to distinguish the unique features of each of

the 10 numerical digits. 8 predefined masks or filters were first determined as shown in

Figure 3, which is then used to detect the horizontal, vertical, right – diagonal and left –

diagonal edge of the number. Next, convolution between the 8 defined masks and the

binary alphabet image takes place to produce 8 Kirsch Edge Detection Module images, 2

of each direction each.

9

Figure 3: Predefined masks of Kirsch Edge Detection Module

All the 8 Kirsch Edge Detection Module images will be divided into pairs and will

undertake a process of determining the highest number of bit values from each of the pair

images. The output of the module as shown as an example in Figure 4 is that there will be

one image from each defined direction, namely horizontal, vertical, right – diagonal and

left – diagonal. The images will be compressed before being future processed.

Figure 4: Example of Kirsch Edge Detection Module output

10

2.2.4 IMAGE COMPRESSION MODULE

 The purpose of this feature extraction module is to reduce the computing power

needed for image processing, as well as obtaining the features from a compressed image.

The size of the image cropped from pre-processing of the raw image is reduced by 16

times using Equation 2 which will give a different result of feature extraction module.

4

),(

),(

2

12

2

12

i

ix

j

jy

yxS

jiT (Equation 2)

2.2.5 CHARACTER VECTOR MODULE

 This feature extraction module is the most simple extraction module of image

processing of characters. The single character is simply segmented into 35 equal areas of

5 x 7. The matrix of each element will represent the ratio of marked bits area over the

ration of unmarked bits area in these 35 areas, as shown in Figure 5.

Figure 5: Character Vector Module Elements

2.2.6 CURVATURE VECTOR MODULE

This feature extraction module is another method to extract important data out

from numerical handwritten data, in which the numbers can be differentiated through

curves or circles. The module calculates the number of bits which forms a curve or circle

at two different regions, top half and bottom half of the number.

11

2.3 CHARACTER RECOGNITION

Character recognition has not much difference compared to word recognition, but easier

to be classified and need not to be segmented into individual characters. In this paper,

character recognition is only focused towards producing a robust individual numerical

handwritten numbers recognition system instead of grouped numbers, due to its

complexity and time constraint.

 Various researches have been carried out to distinguish handwritten data into

digital form. One such method is through determining the distinctiveness and similarities

which are present in the handwritten numerals as being carried out by [17]. This paper

highly emphasized on the consideration of placing crucial parts into crucial combinations

of numeral handwritten data features to exploit better recognition rate. This method was

highly regarded as success, as various handwritten data patterns are being considered. The

paper considered 29 patterns of 10 numerals with each giving a different but above 89%

of mean percentage accuracy.

 As compared to [18], the paper has carried out several experiments and proposed

a few different methods to recognize unconstrained handwritten numerals. It is mentioned

that a good feature extraction method should represent the numbers 0 to 9, and are able to

distinguish the unique feature in each of them. Kirsch masks were proposed as being used

in [1] recognition system as well, and are able to obtain an average of 97% accuracy based

on the training set used.

 From the above research papers, it is found that by occupying and combining a

few methods to extract information from each handwritten numerals could greatly

improve the handwritten recognition accuracy rate. Another method that could be

considered in improving handwritten recognition accuracy is through statistical method

which involves knowing the distinct features of the numbers such as circles, nodes and

intersections in between the handwritten numbers.

12

CHAPTER 3: METHODOLOGY

3.1 METHODOLOGY

Based on the reviews of various handwriting recognition techniques from literature

reviews, artificial neural network is the choice of implementation for this project, in which

MATLAB software will be used. Neural network is seen to be the best and wisest choice,

as it has been proven to give the best results and accuracy.

Figure 6 shows the process flow identification and implementations for the

handwritten recognition project using neural network.

Start

Handwriting
Trend Sample

Collection

Webcam
Image

Capture

Noise
Reduction

Focused on
Region of

Interest (ROI)

Pre-
processing

Feature
Extraction
Modules

Neural
Network
designs

Train Neural
Network

Test Neural
Network

Performance
Evaluation

Accuracy
> 90%

Re-design
Neural Network

architecture

No

Training Set

Test Set

Real time
Image input

Output for
database

entry
End

Yes

Figure 6: Process flow identification and implementations for the handwritten

recognition project

13

3.2 SOFTWARE & HARDWARE TOOLS

In this early stages of implementation, a scanner will be used to entry handwritten data

onto MATLAB to be trained and tested for its accuracy. Once the neural network

handwritten recognition system has been developed maturely, a web camera will be used

for real time image input and algorithms have to be implemented to capture the data in the

region of interest (ROI). The information captured, as well as the recognized handwritten

data will be stored in a database which can easily be accessed through a Graphical User

Interface (GUI).

3.3 IMAGE PRE-PROCESSING

When an image is fed into the MATLAB handwriting recognition system, either from a

scanner or a web camera, it is vital to process the image using standard signal-processing

techniques for easy and appropriate data acquisitions. Noises are the most common

portion of the image that have to be discriminated and removed. There are two types of

noises defined in this project. One of it is insignificant, and could disorientate the

recognition accuracy, usually small dots, ticks or particles which does need to be

recognized as handwritten data. The other is scratches of handwritten data which should

be discounted, which usually forms a larger number of bits compared to normal

handwritten data. The following pre-processing techniques are used to remove noise and

extract individual numerical handwritten data in MATLAB (Figure 7).

 The MATLAB software has already the Image Processing Toolbox which has the

capabilities to perform ideal image processing using the matrix data structure [19].

Various functions within the toolbox has been explored by researchers such as [11],

together with MATLAB’s Neural Network Toolbox on the basis of training data for

handwriting recognition programs. Yet, the methods used varies with different

programmers.

14

Read full Image

Convert to grayscale full image

Convert to binary full image

Detect image object edges

Perform image object dilation
and filing

Perform blob analysis and
image object plotting

Crop into individual numerical
numbers

Convert to binary individual
images

Filter and remove noise of
individual images

Crop to edges and resize the
individual images

Feature Extraction Modules

Figure 7: Process flow of pre-processing raw image using MATLAB’s Image Processing

Toolbox

15

3.3.1 IMAGE NOISE REDUCTION

In this first phase of a robust handwriting algorithm implementation, scanned images were

used, which would later be turned into binary format images. It is known that little

distortions such as unwanted markings or paper cripple can cause noise to the image

processing module to detect the noise as one of its individual object (Figure 8). These

noises have to be removed from the system before being transferred into the Feature

Extraction Modules for further processing.

Figure 8: Image after object plotting which detects the unwanted noise

A simple method was implemented by summing all the binary bits of the noise

image and comparing it with the important image data with the least number of binary bits

was implemented. Once the least number of binary bits of the important image data is

known usually from the numerical number ‘1’, all images with the summation of binary

bit lesser than that will be termed as noise (Figure 9).

Cropped binary image

Sum all the bits of each array matrix
column

Sum all the bits of each array matrix row

Sum of bits < Least
sum of important bits

Noise
Remove from the binary

image array matrix
Neural Network / Image

Recogntion

Yes No

Figure 9: Process Flow Image Noise Reduction

16

3.3.2 SCRATCHES REMOVAL

Scratches removal is almost similar to noise removal from the previous sub-section.

However, scratches removal uses the threshold of the highest number of bit of a regular

handwritten number to remove invalid handwritten data which have already been

scratched out (Figure 10).

Figure 10: Scratches removal

Several tests have been carried out and it has proven that ‘/’, which is one stroke scratches

gives the best results in terms of determining the threshold.

17

3.3.3 SLANT CORRECTION

This phase of image pre-processing is to reduce the variations of handwriting by different

humans. There is a tendency that different types of handwritings which are written slanted.

However, when the slant is corrected, the handwritten number appears the same as most

of the non-slanted handwritten data (Figure 11).

Figure 11: Numbers before and after slant correction

The slant of a handwritten number can be corrected by calculating the angle of

slant of the handwritten data and readjust it based on the angle of slant obtained. This is

done by considering two points from each side of the handwritten number and obtaining

a straight line before calculating its angle.

18

3.4 FEATURE EXTRACTION MODULES

Table 1 shows three tests were conducted using distinctive feature extraction modules.

The first test utilizes only Character Vector Module as its feature extraction module to be

used as neural network test samples [11]. The second test was later enhanced with a

combination of several feature extraction modules namely the Character Vector Module,

Kirsch Edge Detection Module, Alphabet Profile Feature Extraction Module, Modified

Character Module and Image Compression Module [1]. With results known that the

feature extraction methods used in [1] could not achieve up to 90% time frame accuracy,

another feature extraction module was added to the existing modules of Test 3, which is

Curvature Vector Module. Each of these modules have its distinct characteristics and has

to be known before being trained in the neural network to recognize handwritten data.

Test 1 and Test 2 were conducted as control tests and simulation results to validate

previous researches with different sets of handwriting collections.

 The input that will be used to be fed into the neural network system is the

summation of each individual feature extraction matrixes. In test 1, there will be only 35

input elements (Appendix A), while in test 2 there will be 380 input elements (Appendix

B). In test 3, there are a total of 388 input elements (Appendix C).

19

Table 1: Comparison between matrix sizes of two tests

Test 1 Test 2 Test 3

No Feature

Extraction

Module

Matrix

Size

No Feature

Extraction

Module

Matrix

Size

No Feature

Extraction

Module

Matrix

Size

1 Character

Vector

Module

5 x 7 1 Character

Vector Module

5 x 7 1 Character

Vector Module

5 x 7

2 Kirsch Edge

Detection

Module

4 x 8 x 8

2 Kirsch Edge

Detection

Module

4 x 8 x 8 3 Alphabet

Profile Feature

Extraction

Module

1 x 10

3 Alphabet

Profile Feature

Extraction

Module

1 x 10 4 Modified

Character

Module

1 x 15

4 Modified

Character

Module

1 x 15 5 Image

Compression

Module

8 x 8

5 Image

Compression

Module

8 x 8 6 Curvature

Vector Module

1 x 8

Total size 1 x 35 Total size 1 x 380 Total size 1 x 388

20

3.4.1 CHARACTER VECTOR MODULE

This module is the most basic module in the image processing feature extraction elements.

A character vector, with the weight of shaded bits within a region of 5 x 7 matrix is

produced and stored in an array matrix (Figure 12).

Cropped binary image

Image resized into 5 x 7 matrix

Weight of each pixel from 0 to 1 is known

Character vector matrix is obtained

Neural Network / Image
Recognition

Figure 12: Process Flow of Character Vector Module Algorithm

3.4.2 KIRSCH EDGE DETECTION MODULE

This module involves convolution of predefined masks to detect horizontal, vertical, right

diagonal and left diagonal edges. The outcome of the module gives the maximum edge

strength of each mask in the form of 4 x 8 x 8 matrix, which is then stored in an array

matrix (Figure 13).

21

Cropped binary image

2 of each horizontal, vertical, right diagonal
and left diagonal masks are defined

Image undergoes convolution with the
defined masks

Maximum values of the pair images is
determined

Neural Network / Image
Recogntion

Image is compressed into 4 x 8 x 8 array
matrix

Figure 13: Process Flow of Kirsch Edge Detection Module Algorithm

 3.4.3 ALPHABET PROFILE EXTRACTION MODULE

This is the module which detects the smoothness of the cropped image numerical

handwritten data and also the edge profile by interpreting the image line by line. It also

detects the size, in the form of width and height of the cropped image data. As this module

highlights only the global feature of the data, the output of the module only generates 1 x

10 floating point matrix (Figure 14).

22

Cropped binary image

Scan the image line by line vertically and
horizontally

Detects the left, right, top and bottom
edges

Differentiate the image edges to smoothen
the cropped image

Neural Network / Image
Recogntion

Maximum values of all the edges of the
differentiated image is determined

Width and height of the differentiated
image is determined from maximum values

Figure 14: Process Flow of Alphabet Profile Feature Extraction Module Algorithm

3.4.4 MODIFIED CHARACTER MODULE

In this module, the input binary image must first be resized into 32 x 32 matrix. Predefined

3 horizontal, 8 vertical and 4 diagonal regions are mapped onto the resized input binary

image. The number of bits in the specific region of the data is calculated and divided with

the size of the region to obtain an outcome of 1 x 15 floating point matrix. In this method,

it is clearly seen that the important feature of each handwritten number is extracted before

being fed into neural network or undergo image recognition (Figure 15).

23

Cropped binary image

Resize into a 32 x 32 matrix binary image

Predefine horizontal, vertical and diagonal
regions

Mask the image into the predefined
regions

Neural Network / Image
Recogntion

Extract important information from the
region by calculating the number of bits

Divide the number of bits in the region
with the size of the region

Figure 15: Process Flow of Modified Character Module Algorithm

3.4.5 IMAGE COMPRESSION MODULE

This module is used to reduce the size of the neural network input by 16 times so that less

processing units is needed to train the neural network or for image recognition. The input

of the module will have to be resized into 32 x 32 matrix array, and the output will be

compressed into an 8 x 8 floating point matrix (Figure 16).

24

Cropped binary image

Resize into a 32 x 32 pixel binary image

4 x 4 regions are selected

Sum the binary bits in each of the regions
and divide by 16

Neural Network / Image
Recogntion

Figure 16: Process Flow of Image Compression Module Algorithm

3.4.6 CURVATURE VECTOR MODULE

This module is used to determine the number of bits that forms a curve based on particular

regions on the handwritten character. There are 4 regions each on the top half and bottom

half of the number which will later form an output of 1 x 8 floating point matrix. This

method is important to know which number of the handwritten data has curves and circles

which will form a distinctive feature to differentiate the numbers (Figure 17).

25

Cropped binary image

Resize into a 32 x 32 pixel binary image

4 top half and 4 bottom half regions are
defined

Compare the top and bottom bit of the
each row and sum the bit if they are

different

Neural Network / Image
Recogntion

Figure 17: Process Flow of Curvature Vector Module Algorithm

26

3.5 NEURAL NETWORK

The neural network system is the core architecture of this numeric handwritten recognition

systems project. Its architecture, including its number of input layer neurons, hidden layer

neurons, output layer neurons and training parameters have to be well defined before

training begins. The number of input layer neurons is equivalent to the number of input

elements extracted from the feature extraction modules. The number of output layer

neurons is meanwhile, equivalent to the number of handwritten numerals that is targeted,

which is 0 to 9. Thus, there will be 10 output layer neurons. The hidden layers of the neural

network system cannot be observed or predicted through the output nor input behavior of

the system. Hence, suitable number of neurons in the hidden layer can be obtained

heuristically. It is known that complex pattern recognition such as handwriting recognition

cannot be trained using little amount of hidden neurons; as the accuracy will be very low.

However, if the number of hidden neurons appear to be too large, the system

computational burden will increase dramatically and the network might just memorize all

the training data input. Therefore, a suitable amount of hidden layer neurons have to be

defined, as it is known that the greater amount of hidden neurons present in the layer, the

higher the accuracy of the handwritten recognition system capabilities. This is due to the

fact that the artificial neural network system has limited capacity in terms of computing

large amount of input data. Hence, the more input data and hidden neuron supplied to the

system will actually complicate and confuse the network to generate the function to

compute the output. In order to achieve better recognition results and the need to balance

computational load, there are certain rules to select the amount of hidden neurons to be

used to predict the output based on all the input data; which is that the amount of hidden

neurons must be between the number of input neurons and output neurons, as well as

choosing the best parameters which gives the lowest validation error.

 Table 2 shows the training parameters used to train the Multilayer Feed Forward

Back Propagation Neural Network systems. These are the standardize parameters to obtain

the optimum network performance for numeric handwriting recognition system. In test 1,

the system is trained with 5 sets of handwritten numerals (Appendix D), while in test 2,

27

the system is trained with 30 sets of handwritten numerals (Appendix E). However, both

test 1 and test 2 are only used as a control set and verification of previous work. In test 3

(Appendix F), a finalized neural network system is trained with 15 sets of handwritten

numerals.

Table 2: Neural Network Training Parameters

Training Parameters Definition

Performance function = Sum squared Error Total of squared errors from the training

predictions

Goal = 0.01 Minimum error achieved before the training

stops

Epochs = 5000 Maximum number of iterations before

training stops

Momentum = 0.95 Fraction of weight among the neurons in the

network layers

Activation Function = Logsig A transfer function to calculate the output

based on its input values

Training Functions = traingdx Updates weights and biases during training

according to momentum values

28

3.6 IMAGE ACQUISITION MODULE

This Handwriting Recognition using Webcam for Data Entry project is designed to use

two web cameras to capture the Region of Interest data on the Universiti Teknologi

PETRONAS examination score sheet paper, which includes Table Number, Examination

Index Number, Students’ filled Question No, Examiners’ filled Question No, Marks and

Total Marks.

 MATLAB has its own Webcam Image Acquisition Toolbox which allows users to

acquire images from a webcam using it’s built in webcam functions. The above toolbox

have provided an adequate platform for the webcams to be interfaced with MATLAB

software, hence, users are able to capture the image and do image processing via

MATLAB itself.

 Two cameras were used to capture different Region of Interest (ROI), with the first

focused on the Table Number and Examination Index Number, as shown in Figure 18,

while the second being focused on the Students’ filled Question No, Examiners’ filled

Question No, Marks and Total Marks, as shown in Figure 19.

Figure 18: Output from first camera

29

Figure 19: Output from second camera

3.6.1 PROTOTYPE

A simple prototype was built to simple capture the two important regions of the

examination score sheet as shown in Figure 20. The two cameras which was used were 12

Megapixel Driverless Night Vision Webcam PC USB CMOS Camera, which however

only gives approximately 0.3 Megapixel video recording images. Since the camera

module is driverless, it is compatible with MATLAB software and can be easily accessible

through its internal built-in functions.

The 12 Megapixel Driverless Night Vision Webcam PC USB CMOS Camera has the

following specifications as stated by its manufacturer:

 Default resolution: 640 x 480 = 307200 pixel

 Focus range: Manual focus from 3cm

 White balance: Auto

 Exposure control: Auto

 Interface: USB 1.1/2.0

 Working temperature: 0 °C to 40 °C

30

Figure 20: Location of the camera and the prototype

However, there are limitations of using this camera as the default pixel count is only about

0.3 Megapixel. Thus, the image captured by the camera might not have enough number

of bits or pixels to be pre-process and fed into the artificial neural network system. This

is also the reason why two cameras were being built onto the prototype instead of one, as

one camera could not capture the whole image and still give a good amount of pixels for

the recognition system to process its data.

31

3.6.2 ACQUIRING THE REGION OF INTEREST

The region of interest of each number is predefined as shown in Figure 21, whereby each

box is cropped by adjusting manually the vertical and horizontal axis values. Once each

number is being cropped, it will undergo pre-processing and feature extraction modules,

before being fed onto the neural network for recognition purposes.

Figure 21: Defining the region of interest

32

3.7 GRAPHICAL USER INTERFACE MODULE

Graphical User Interface (GUI) is a user interactive system which enhances the usability

and purpose of the program. It allows users to get access and key in data, as well as

obtaining the output from its layout. In short, the GUI system is a system that will be used

by a user to determine the appropriate function or command to be called to execute the

output. A GUI layout was designed as shown in Figure 22.

Figure 22: Graphical User Interface Layout for Handwriting Recognition System using

Webcam for Data Entry

33

3.7.1 GRAPHICAL USER INTERFACE COMMAND STEPS

The following command steps, as shown in Figure 23 were designed to execute the output.

Start

User click on ‘Start Webcam 1’

Calls the function to start Webcam 1

User click on ‘Capture Image’

Calls the function to capture image
from Webcam 1

User click on ‘Extract Numbers’

Calls the function to pre-process,
extract the features and recognize the

numbers using Neural Network

Display recognize value on GUI

User click on ‘Start Webcam 2’

Calls the function to start Webcam 2

User click on ‘Capture Image’

Calls the function to capture image
from Webcam 2

User click on ‘Extract Numbers’

Calls the function to pre-process,
extract the features and recognize the

numbers using Neural Network

Display recognize value on GUI

User identify and edit errors

User click on ‘Verify’

Calls the function to
check validity of data

No

User click on ‘Export to Database’

Calls the function to export data to excel
and html website

End

Figure 23: GUI Command Steps

34

 In order for the current data entry system to function, the user must follow the

following steps stated on the GUI Command Steps. The user first clicks ‘Start Webcam

1’ and the video preview from the first webcam is shown. Next, the user clicks on ‘Capture

Image’ in which the current video preview image from Webcam 1 is taken and displayed

on the GUI. When the user clicks on ‘Extract Numbers’, pre-processing, feature extraction

and feeding the image onto the trained neural network is being carried out, and the output

will be displayed on the Table number and Examination ID column. The user can

recalibrate the data if necessary (Figure 24).

Figure 24: Extracting data from Webcam 1 onto the GUI

 Following that, the same process is being carried out for Webcam 2, in which the

user clicks ‘Start Webcam 2’ and the video preview from the second webcam is shown.

Next, the user clicks on ‘Capture Image’ in which the current video preview image from

Webcam 2 is taken and displayed on the GUI. When the user clicks on ‘Extract Numbers’,

pre-processing, feature extraction and feeding the image onto the trained neural network

is being carried out, and the output will be displayed on the Candidate Ques No., Examiner

Ques No., Examiner Marks and Total Marks column. The user can again recalibrate the

data if necessary (Figure 25).

35

Figure 25: Extracting data from Webcam 2 onto the GUI

Once extracting the data from the Webcams is complete, user could click on the

‘Compare’ button on the GUI, which calculates the Total Examiner Marks and match the

data with the total marks recorded (Figure 26).

Figure 26: Comparing the total marks with sub marks on GUI

36

 Subsequently, the user have to click on the ‘Verify’ button to ensure all the data

extracted are correct and ready to be exported onto the database. Since the scope is focused

on UTP examination score sheet, it is typical that examiner marks does not exceed 20

marks and total question numbers does not exceed 5. Hence, this gives flexibility to the

students and examiners to write data on the score section of the score sheet. However, this

system function can be altered accordingly to give more flexibility and freedom to the

user depending on the number of questions and total marks for each question in the

particular examination course. The ‘Verify’ button also ensures that the user does not key

in more than 5 inputs and the data of question number and marks should be on the same

row. Since there are two examiner and student question number which could be valid, the

examiner question number is taken priority onto the database. However, if the examiner

question number column is empty, the student question number is taken into priority to be

keyed onto the database (Figure 27).

Figure 27: Verifying data entry on GUI

The following Figure 28, shows a completed step of the executed Graphical User Interface

on recognizing handwritten data from the UTP examination score sheet. Once the ‘Export

37

to Database’ button is clicked by the user. The system will rearrange and gather the

appropriate data to be transferred to the Excel Database (Figure 29) and HTML website

(Figure 30).

Figure 28: Completed GUI

As for the data entry system, it doesn’t matter how the data is arranged as the system is

able to rearrange the data, even if it is not in order. If any of the extracted data is empty,

the outcome of will be recorded as 0.

38

Figure 29: Exported data to the Excel Database

Figure 30: Exported data to the Excel Database

39

3.8 GANTT CHART & KEY MILESTONES

The following tables, Table 3 and Table 4 depict a detailed timeline of the work involved

within the 14 weeks of FYP I and FYP II respectively.

Table 3: Gantt Chart and Key Milestones for FYP I

Details/Week FYP I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Literature

Review

Extended

Proposal

System

Identification

& Modeling

Proposal

Defense

Development

of algorithm

Interim

Report

 Key milestone

 Process

40

Table 4: Gantt Chart and Key Milestones for FYP II

Details/Week FYP II

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Development of

algorithm

Samples

gathering,

simulation and

implementations

Progress report

Comparative

analysis

Pre-SEDEX

Draft final

report

Dissertation

Technical paper

Project viva

 Key milestone

 Process

41

CHAPTER 4: RESULTS AND DISCUSSION

4.1 HANDWRITING RECOGNITION TESTS

4.1.1 TEST 1

Test 1 Handwriting Recognition System only includes Character Vector Module as its

feature extraction module. Hence, the system is being tested with 2 types of samples

(Appendix G):

 Sample 1: The training set

 Sample 2: A test set by 3 random people who wrote 5 sets each

Both the sample sets are scanned using a scanner and ran into the system to determine

its accuracy. All the important information from Test 1, such as mistakes, occurrences and

percentage of accuracy are tabulated with each handwritten number data in Table 5.

Table 5: Percentage of accuracy of Test 1

Type of samples Sample 1 Sample 2

Handwritten

Numbers

Occurrences Mistakes Percentage of

Accuracy

Mistakes Percentage of

Accuracy

1 15 0 100% 6 60.00%

2 15 0 100% 8 46.67%

3 15 0 100% 13 13.33%

4 15 0 100% 7 53.33%

5 15 0 100% 1 93.33%

6 15 0 100% 1 93.33%

7 15 0 100% 3 80.00%

8 15 0 100% 10 33.33%

9 15 0 100% 4 73.33%

0 15 0 100% 0 100.00%

Total 150 Average 100% Average 64.67%

42

Figure 31: Mistakes and occurrences of each number in Test 1

Figure 32: Percentage of accuracy of each number in Test 1

Based on Table 5, it is known that handwriting recognition using neural network has no

issues recognizing and distinguishing the numbers in the original training set. However,

the results shows reduction in accuracy when tested with a test set which has not been

analyzed before by the neural network. From 100% accuracy in Sample 1, the results

plunged to an average of 64.67% accuracy.

6

8

13

7

1 1

3

10

4

0

15 15 15 15 15 15 15 15 15 15

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 0

M
is

ta
ke

s
an

d
 O

cc
u

ra
n

ce
s

Handwritten Number

Mistakes and occurrences of each number from preset
amount handwritten numbers recognition by 3 different

test individual for Test 1

Mistakes

Occurrences

60

46.67

13.33

53.33

93.33 93.33

80

33.33

73.33

100

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 0

P
e

rc
e

n
ta

ge
 o

f
A

cc
u

ra
cy

 (
%

)

Handwritten Number

Percentage of accuracy of each number from preset
amount handwritten numbers recognition by 3 different

test individual for Test 1

Percentage of
accuracy

43

 Figure 31 and Figure 32, shows the information of mistakes, occurrences and

percentage of accuracy of each number tested using the neural network. In this Test 1, the

number with the highest failure rate seems to be ‘3’ followed by ‘8’. Other numbers such

as ‘1’, ‘2’, ‘4’, ‘7’ and ‘9’ have unacceptable percentage of accuracy as well. To clarify

this situation, it can be seen that the Character Vector feature extraction alone is not able

to extract the best features from each region of the handwritten number. The numbers ‘3’

and ‘8’ appears to have high failure rate because both these numbers can be written at a

very similar way whereby, most of the regions of the feature extraction module might

have similar or close enough number of bits especially the right side region, which the

neural network system could not distinguish. The other numbers as mentioned which are,

‘1’, ‘2’, ‘4’, ‘7’ and ‘9’ could possibly be facing the same issue as some of the regions

might have similar number of bits in it, causing confusion to the trained neural network

system. From this test, it is concluded that training a neural network using only a simple

Feature Extraction method, which is Character Vector Module is insufficient to produce

a robust handwriting recognition system for data entry. The system is further improved in

Test 2.

4.1.2 TEST 2

Test 2 Handwriting Recognition System includes the combination of several Feature

Extraction method to enhance the recognition accuracy, namely Character Vector Module,

Kirsch Edge Detection Module, Alphabet Profile Feature Extraction Module, Modified

Character Module and Image Compression Module. Since we have known that the system

has no issues identifying handwritten data in the training set, the system is being tested

with 2 different types of samples (Appendix H):

 Sample 3: A test set by 15 random people who wrote 1 set each

 Sample 4: A test set by 1 random people who wrote 15 sets, but with random

arrangement of numbers

44

Both the sample sets are again scanned using a scanner and ran into the system to

determine its accuracy. All the important information from Test 2, such as mistakes,

occurrences and percentage of accuracy are tabulated with each handwritten number data

in Table 6.

Table 6: Percentage of accuracy of Test 2

Figure 33: Mistakes and occurrences of each number in Sample 3 of Test 2

2
3 3

2

7

1
0

5

2 2

15 15 15 15 15 15 15 15 15 15

0

5

10

15

20

1 2 3 4 5 6 7 8 9 0

M
is

ta
ke

s
an

d
 O

cc
u

ra
n

ce
s

Handwritten Number

Mistakes and occurrences each number from preset
amount handwritten numbers recognition by 15

different test individual for Test 2

Mistakes

Occurrences

Type of

samples

Sample 3 Sample 4

Handwritten

Numbers

Occurrences Mistakes Percentage

of

Accuracy

Occurrences Mistakes Percentage

of

Accuracy

Average

1 15 2 86.67% 26 7 73.08% 79.88%

2 15 3 80.00% 15 0 100.00% 90.00%

3 15 3 80.00% 17 0 100.00% 90.00%

4 15 2 86.67% 10 0 100.00% 93.34%

5 15 7 53.33% 9 7 22.22% 37.78%

6 15 1 93.33% 12 1 91.67% 92.50%

7 15 0 100% 12 2 83.33% 91.67%

8 15 5 66.67% 12 0 100.00% 83.34%

9 15 2 86.67% 19 0 100.00% 93.34%

0 15 2 86.67% 18 0 100.00% 93.34%

Total 150 Average 82% 150 Average 87.03%

 Average 84.52%

45

Figure 34: Percentage of accuracy of each number in Sample 3 of Test 2

Figure 35: Mistakes and occurrences of each number in Sample 4 of Test 2

86.67
80 80

86.67

53.33

93.33
100

66.67

86.67 86.67

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 0

P
e

rc
e

n
ta

ge
 o

f
A

cc
u

ra
cy

 (
%

)

Handwritten Number

Percentage of accuracy of each number from preset
amount handwritten numbers recognition by 15

different test individual for Test 2

Percentage of
accuracy

7

0 0 0

7

1 2
0 0 0

26

15
17

10 9
12 12 12

19 18

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 0

M
is

ta
ke

s
an

d
 O

cc
u

ra
n

ce
s

Handwritten Number

Mistakes and occurrences of each number from random
amount handwritten numbers recognition by same test

individual for Test 2

Mistakes

Occurrences

46

Figure 36: Percentage of accuracy of each number in Sample 4 of Test 2

Based on Table 6, it is known that handwriting recognition using neural network with

multiple feature extraction modules of Character Vector Module, Kirsch Edge Detection

Module, Alphabet Profile Feature Extraction Module, Modified Character Module and

Image Compression Module have increased the accuracy rate of recognition. This shows

improvements to the recognition system as the test sets are all new and yet to be analyzed

before by the neural network. In this Test 2, the percentage of accuracy among the 2

samples are 82% and 87.04% respectively.

 Figure 33 and Figure 34, shows the information of mistakes, occurrences and

percentage of accuracy of each number written by 15 random people who wrote 1 set each

tested using the new neural network. In this sample 3 of Test 2, the number with the

highest failure rate seems to be ‘5’ followed by ‘8’. Other numbers have relatively good

recognition accuracy, but can be improved further. Figure 35 and Figure 36, shows the

information of mistakes, occurrences and percentage of accuracy of each number written

by 1 random people who wrote 15 sets, but with random arrangement of numbers tested

using the new neural network. In this sample 4 of Test 2, the number with the highest

failure rate still seems to be ‘5’, but followed by ‘1’. Other numbers have again relatively

73.08

100 100 100

22.22

91.67
83.33

100 100 100

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 0

P
e

rc
e

n
ta

ge
 o

f
A

cc
u

ra
cy

 (
%

)

Handwritten Number

Percentage of accuracy of each number from random
amount handwritten numbers recognition by same test

individual for Test 2

Percentage of
accuracy

47

good recognition accuracy, but can be improved further. These feature extraction methods

still lacks the ability to distinguish curved features as appeared in both number ‘5’ and ‘8’.

4.1.3 TEST 3

As of Test 3 Handwriting Recognition System, a combination of 6 Feature Extraction

methods were used to improve the accuracy of the handwriting recognition system,

namely Character Vector Module, Kirsch Edge Detection Module, Alphabet Profile

Feature Extraction Module, Modified Character Module, Image Compression Module and

last but not least, Curvature Vector Module. Other than that, Test 3 Handwriting

Recognition Systems also consist of an additional pre-processing method in which Test 1

and Test 2 does not undergo, which is slant correction, in order to reduce the variations in

handwriting of the same number.

 In this test, a total of 60 sets of training data were obtained from random people

and were used to train the neural network. 8 cases of neural network testing were

conducted with each having different training sizes, hidden neurons and training

parameters and results were tabulated in Table 7 (Appendix I).

Table 7: Neural Network Training Accuracy

Case Training

Size

Hidden

Neurons

Minimum

error

Best Results (%) Avg.

Accuracy

(%)
Trained

Data

Untrained

Data

1 5 sets 30 0.01 83.33 86.33 84.83

2 10 sets 25 0.001 78.33 83.00 80.67

3 15 sets 15 0.00001 91.00 90.33 90.67

4 20 sets 15 0.00001 66.67 74.00 70.34

5 30 sets 10 0.0001 65.33 72.33 68.83

6 40 sets 10 0.0001 55.33 51.67 53.50

7 50 sets 10 0.0001 35.33 37.67 36.50

8 60 sets 10 0.0001 10.00 10.00 10.00

48

Figure 37: Graph of Number of Training Sets vs Avg. Accuracy

From the Table 7 above, it is known that the accuracy of the training sets peaked

at case 3, in which later, the accuracy starts to decline. From Figure 37, it can be deduced

that the relationship between training parameters and training sizes were known. In neural

network system architecture, it is proven that the increment of various training sets will

actually decrease the accuracy of the recognition output. This phenomenon is being

rectified here in this test and for the time being, the time-frame target of achieving 90%

accuracy on handwriting recognition is achieved, which is by using 15 sets of handwritten

training data.

To achieved the accuracy as stated in Table 7, all the tested neural network systems

were tested with 30 sets of controlled data from trained data and untrained data each. As

stated below:

 Sample 5: Trained data represents the data, in which the handwriting is familiar

with the training data and was written by the same person who wrote the training

data

5

10

15

20

30

40

50

6084.83

80.67

90.67

70.34

68.83

53.5 36.5

10

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

A
vg

 A
cc

u
ra

cy
 (

%
)

Axis Title

N
u

m
b

er
 o

f
Tr

ai
n

in
g

Se
ts

Graph of Number of Training Sets vs Avg. Accuracy

Number of Training Sets Avg Accuracy (%)

49

 Sample 6: Untrained data represents the data, in which the handwriting is not

familiar with the training data and that the training data was written by other random

people.

 The major problem encountered when training neural network is that, most of the

training stops abruptly before the epochs or goals is achieved. Multiple times of training

is being carried out again to obtain the highest achievable accuracy before the particular

set of neural network system is used to be tested onto the controlled set of testing data. A

considerably large amount of time was spend on training this data and by far, the highest

accuracy achieved was by using case 3, which the stated parameters and yielded 90.67%

of handwriting accuracy (Table 8).

Table 8: Percentage of accuracy of Test 3

Type of

samples

Sample 5

Trained Data

Sample 6

Untrained Data

Handwritten

Numbers

Occurrences Mistakes Percentage

of

Accuracy

Occurrences Mistakes Percentage

of

Accuracy

Average

1 30 0 100% 30 1 96.67% 98.34%

2 30 5 83.33% 30 2 93.33% 88.33%

3 30 2 93.33% 30 2 93.33% 93.33%

4 30 0 100% 30 1 96.67% 98.34%

5 30 7 76.67% 30 7 76.67% 76.67%

6 30 1 96.67% 30 3 90% 93.34%

7 30 9 70% 30 8 73.33% 71.67%

8 30 1 96.67% 30 2 93.33% 95%

9 30 1 96.67% 30 2 93.33% 95%

0 30 1 96.67% 30 2 93.33% 95%

Total 300 Average 91% 300 Average 90.33%

 Average 90.67%

50

4.1.4 COMPARISON AMONG ALL THREE TESTS

Figure 38: Comparison between the percentages of accuracy between 3 tests

From this test, it is concluded that the newly trained neural network have greatly improved

the percentage of accuracy in recognizing handwritten numerical numbers, through

increasing the number of feature extraction modules, by 19.85% for Test 2 and 26.00%

for Test 3 (Figure 38). As the time-frame target of this project of 90% is achieved, the

recognition rate can further be improved, but has to be stopped due to time constraint of

the timeline of final year project. The trained neural network was used to implement a full

data entry system with GUI (Graphical User Interface).

Test 1 Test 2 Test 3

Percentage 64.67 84.52 90.67

64.67

84.52
90.67

0

10

20

30

40

50

60

70

80

90

100

Comparison between the accuracy of three tests

51

4.1.5 COMPARISON AMONGST FEATURE EXTRACTION

MODULES

For each feature extraction module, a basic neural network is trained and the accuracy is

tested to determine the degree of discrimination among different classes of feature

extraction modules. From this test, it is known that which feature extraction module gives

the highest possible accuracy to distinguish one digit from another.

Table 9: Comparison test with each feature extraction module

Input Feature Extraction Module Total features Accuracy Rank

Training Sets

15 x 10

numerals

Character Vector Module 35 x 150 64.67% 2

Kirsch Edge Detection

Module

256 x 150 54.00% 3

Alphabet Profile Feature

Extraction Module

10 x 150 28.67% 5

Modified Character

Module

15 x 150 52.00% 4

Image Compression

Module

64 x 150 70.67% 1

Curvature Vector Module 8 x 150 19.00% 6

From Table 9, it is known that Image Compression Module alone gives the highest

recognition accuracy followed by Character Vector Module. However, it is known that by

using single feature extraction modules, the accuracy could not reach the target of 90%.

52

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

The handwriting recognition algorithm has long existed and researched, but have yet to

achieve a module which is able to produce 100% accuracy due to different handwriting

samples and languages. This project not only focused on improving handwritten

recognition algorithms by the previous research done by Poo [1], it also implants the

concept into an application which is to enhance data entry of examination scores in

Universiti Teknologi PETRONAS.

 As discussed in the literature review of this progress report, neural network is easy

to be used and has proven to give reliable and relevant high accuracy results. Hence, by

continuing the previous research, neural network is an avenue to tackle this problem.

Sample sets have to be obtained from both students and lecturers as the program has to be

robust enough to identify two different trends of handwriting on a single score sheet.

 Three tests have been carried out using different feature extraction data to train the

neural network. Results have proven as vast amount of improvement of 19.85% in

recognition accuracy between the first and second tests. However, with the aim to achieve

above 90% accuracy rate, which is 5.48% short, one more feature extraction module,

which is Curvature Vector module is added on the third test. The recognition accuracy has

finally exceeded the target to 90.67% and a robust data entry system for UTP examination

score sheet is being developed

 Further progress into this project would include tuning the recognition system to

be more robust and accurate can be carried out. Several other feature extraction modules

such as data symmetry can be tested to achieve a higher accuracy. A better quality web

camera, with higher pixel count should also be used to capture the whole image and

overcome the limitations of the current camera. This can help to improve the results of the

recognition system as higher pixel count web cameras are able to give much more precise

and higher number of bits when the image is being captured and for the system to process.

53

REFERENCES

[1] H. N. Poo, "Handwriting Recognition for Data Entry (HandRec)," University

Teknologi PETRONAS, University Teknologi PETRONAS2006.

[2] W. L. Goh, D. P. Mital, and H. A. Babri, "An artificial neural network approach

to handwriting recognition," in Knowledge-Based Intelligent Electronic Systems,

1997. KES '97. Proceedings., 1997 First International Conference on, 1997, pp.

132-136 vol.1.

[3] K. Pyeoung Kee, "Improving handwritten numeral recognition using fuzzy logic,"

in TENCON '97. IEEE Region 10 Annual Conference. Speech and Image

Technologies for Computing and Telecommunications., Proceedings of IEEE,

1997, pp. 539-542 vol.2.

[4] M. Y. Chen, A. Kundu, and J. Zhou, "Off-line handwritten word recognition

(HWR) using a single contextual hidden Markov model," in Computer Vision and

Pattern Recognition, 1992. Proceedings CVPR '92., 1992 IEEE Computer Society

Conference on, 1992, pp. 669-672.

[5] J. Wan, Y. Huang, G. Zhang, and C. Wan, "Offline Handwritten Numeral

Recognition Based on Principal Component Analysis," in Electronic

Measurement and Instruments, 2007. ICEMI '07. 8th International Conference on,

2007, pp. 1-298-1-302.

[6] T. Wakahara, "Shape matching using LAT and its application to handwritten

numeral recognition," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 16, pp. 618-629, 1994.

[7] C. Zili and W. Zuxue, "A Handwriting Numeral Character Recognition System,"

in Multimedia Technology (ICMT), 2010 International Conference on, 2010, pp.

1-5.

[8] Y. Fujisawa, S. Meng, T. Wakabayashi, and F. Kimura, "Handwritten numeral

recognition using gradient and curvature of gray scale image," in Document

Analysis and Recognition, 1999. ICDAR '99. Proceedings of the Fifth

International Conference on, 1999, pp. 277-280.

54

[9] Y. Tai-Shan, T. Yong-Qing, and C. Du-wu, "Research on handwritten numeral

recognition method based on improved genetic algorithm and neural network," in

Wavelet Analysis and Pattern Recognition, 2007. ICWAPR '07. International

Conference on, 2007, pp. 1271-1276.

[10] W. Xin, T.-l. Huang, and X.-y. Liu, "Handwritten Character Recognition Based

on BP Neural Network," in Genetic and Evolutionary Computing, 2009. WGEC

'09. 3rd International Conference on, 2009, pp. 520-524.

[11] R. Arnold and P. Miklos, "Character recognition using neural networks," in

Computational Intelligence and Informatics (CINTI), 2010 11th International

Symposium on, 2010, pp. 311-314.

[12] C. Halder, J. Paul, and K. Roy, "Comparison of the classifiers in Bangla

handwritten numeral recognition," in Radar, Communication and Computing

(ICRCC), 2012 International Conference on, 2012, pp. 272-276.

[13] P. Zhang, T. D. Bui, and C. Y. Suen, "Hybrid feature extraction and feature

selection for improving recognition accuracy of handwritten numerals," in

Document Analysis and Recognition, 2005. Proceedings. Eighth International

Conference on, 2005, pp. 136-140 Vol. 1.

[14] K. Yamada, H. Kami, J. Tsukumo, and T. Temma, "Handwritten numeral

recognition by multilayered neural network with improved learning algorithm," in

Neural Networks, 1989. IJCNN., International Joint Conference on, 1989, pp.

259-266 vol.2.

[15] B. V. S. Murthy, "Handwriting recognition using supervised neural networks," in

Neural Networks, 1999. IJCNN '99. International Joint Conference on, 1999, pp.

2899-2902 vol.4.

[16] F. Kimura, S. Inoue, T. Wakabayashi, S. Tsuruoka, and Y. Miyake, "Handwritten

numeral recognition using autoassociative neural networks," in Pattern

Recognition, 1998. Proceedings. Fourteenth International Conference on, 1998,

pp. 166-171 vol.1.

[17] Z. Li and C. Suen, "Distinctiveness and Similarities of Handwritten Numerals,"

SERIES IN MACHINE PERCEPTION AND ARTIFICIAL INTELLIGENCE, vol.

34, pp. 387-396, 2000.

55

[18] Y. G. Song, S. Y. Lee, and J. J. Park, "Recognition of Handwritten Numerals Using

Multiple Features and Multiple Classifiers," SERIES IN MACHINE

PERCEPTION AND ARTIFICIAL INTELLIGENCE, vol. 34, pp. 397-405, 2000.

[19] S. L. Eddins and M. T. Orchard, "Using MATLAB and C in an image processing

lab course," in Image Processing, 1994. Proceedings. ICIP-94., IEEE

International Conference, 1994, pp. 515-519 vol.1.

56

APPENDICES

APPENDIX A: TEST 1 MATLAB CODES

a. training_nn.m

%Input: 5 sets of sample handwritten numerals to be tested

%Output: A trained neural network system

%Process: Character vector feature extraction

I = imread('sample.bmp');

img = edu_imgpreprocess(I);
for cnt = 1:50
 bw2 = edu_imgcrop(img{cnt});
 charvec = edu_imgresize(bw2);
 out(:,cnt) = charvec;
end

P = out(:,1:50);
T = [eye(10) eye(10) eye(10) eye(10) eye(10)];
Ptest = out(:,1:50);

net = edu_createnn(P,T);

b. edu_imgpreprocess.m

%Input: Scanned image of handwritten numerals

%Output: Preprocessed binary image

%Process: Converting and plotting the location of objects

function img = edu_imgpreprocess(I)

Igray = rgb2gray(I);
Ibw = im2bw(Igray,graythresh(Igray));
Iedge = edge(uint8(Ibw));
se = strel('square',3);
Iedge2 = imdilate(Iedge, se);
Ifill= imfill(Iedge2,'holes');
[Ilabel num] = bwlabel(Ifill);
Iprops = regionprops(Ilabel);
Ibox = [Iprops.BoundingBox];
Ibox = reshape(Ibox,[4 50]);

Ic = [Iprops.Centroid];
Ic = reshape(Ic,[2 50]);
Ic = Ic';
Ic(:,3) = (mean(Ic.^2,2)).^(1/2);
Ic(:,4) = [1:50];

Ic2 = sortrows(Ic,2);

57

for cnt = 1:5
 Ic2((cnt-1)*10+1:cnt*10,:) = sortrows(Ic2((cnt-1)*10+1:cnt*10,:),4);
end

Ic3 = Ic2(:,1:2);
ind = Ic2(:,4);

for cnt = 1:50
 img{cnt} = imcrop(Ibw,Ibox(:,ind(cnt)));
end

c. edu_imgcrop.m

%Input: Preprocessed binary image

%Output: Cropped image to the edge

%Process: Removing the white

function bw2 = edu_imgcrop(bw)

[y2temp x2temp] = size(bw);
x1=1;
y1=1;
x2=x2temp;
y2=y2temp;

cntB=1;
while (sum(bw(:,cntB))==y2temp)
 x1=x1+1;
 cntB=cntB+1;
end

cntB=1;
while (sum(bw(cntB,:))==x2temp)
 y1=y1+1;
 cntB=cntB+1;
end

cntB=x2temp;
while (sum(bw(:,cntB))==y2temp)
 x2=x2-1;
 cntB=cntB-1;
end

cntB=y2temp;
while (sum(bw(cntB,:))==x2temp)
 y2=y2-1;
 cntB=cntB-1;
end

bw2=imcrop(bw,[x1,y1,(x2-x1),(y2-y1)]);

58

d. edu_imgresize.m

%Input: Cropped image to the edge

%Output: Image with matrix 5 x 7

%Process: Resizing the binary image

function lett = edu_imgresize(bw2)

bw_7050=imresize(bw2,[70,50]);
for cnt=1:7
 for cnt2=1:5
 Atemp=sum(bw_7050((cnt*10-9:cnt*10),(cnt2*10-9:cnt2*10)));
 lett((cnt-1)*5+cnt2)=sum(Atemp);
 end
end

lett=((100-lett)/100);
lett=lett';

e. edu_createnn.m

%Input: Image with matrix 5 x 7

%Output: A trained neural network system

%Process: Training the neural network

function net = edu_createnn(P,T)

alphabet = P;
targets = T;

[R,Q] = size(alphabet);
[S2,Q] = size(targets);
S1 = 10;
net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx');
net.LW{2,1} = net.LW{2,1}*0.01;
net.b{2} = net.b{2}*0.01;
net.performFcn = 'sse';
net.trainParam.goal = 0.1;
net.trainParam.show = 20;
net.trainParam.epochs = 5000;
net.trainParam.mc = 0.95;
P = alphabet;
T = targets;
[net,tr] = train(net,P,T);

f. testing_nn.m

%Input: Image with matrix 5 x 7

59

%Output: A trained neural network system

%Process: Training the neural network

I = imread('KK.bmp');

img = edu_imgpreprocess(I);
for cnt = 1:50

bw2 = edu_imgcrop(img{cnt});
charvec = edu_imgresize(bw2);
out(:,cnt) = charvec;

end

Ptest = out(:,1:50);
[a,b]=max(sim(net,Ptest));

for cnt = 1:50

if (b(cnt)==10)
 b(cnt)=0;
end

end

b = reshape(b,10,[]);
b = b'

60

APPENDIX B: TEST 2 MATLAB CODES

a. trainnumeral.m

%Input: 30 sets of preprocessed image with matrix 1 x 380

%Output: A trained neural network system

%Process: Training the neural network

trainsize = 300;

P = p(:,1:trainsize);

trainsize2=(trainsize/10);

for (eyesize=1:trainsize2)

T(:,(eyesize-1)*10+1:eyesize*10)=eye(10);

end

net = createnn_2(P,T);

b. createnn_2.m

%Input: Image with matrix 1 x 380

%Output: A trained neural network system

%Process: Training the neural network

function net = createnn_2(P,T)

alphabet = P;

targets = T;

[R,Q] = size(alphabet);

[S2,Q] = size(targets);

S1 = 15;

net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx');

net.LW{2,1} = net.LW{2,1}*0.001;

net.b{2} = net.b{2}*0.001;

net.performFcn = 'sse';

net.trainParam.goal = 0.0001;

net.trainParam.show = 20;

net.trainParam.epochs = 8000;

net.trainParam.mc = 0.95;

P = alphabet;

T = targets;

[net,tr] = train(net,P,T);

61

c. testing_nn_1.m

%Input: Testing samples of numerical handwritings

%Output: Recognized numbers from trained neural network

%Process: Testing the neural network

I = imread('vincent_13.jpg');

Igray = rgb2gray(I);
Ibw = im2bw(Igray,graythresh(Igray));
Iedge = edge(uint8(Ibw));

se = strel('square',2);
Idil=imdilate(Iedge,se);

Ifill = imfill(Idil,'holes');

[Ilabel num] = bwlabel(Ifill);
Iprops = regionprops(Ilabel);
Ibox = [Iprops.BoundingBox];
Ibox = reshape(Ibox,[4 num]);

for cnt = 1:num
img_crop{cnt} = imcrop(I,Ibox(:,cnt));

end

for cnt = 1:num

Igray2{cnt} = rgb2gray(img_crop{cnt});
Ibw2{cnt} = im2bw(Igray2{cnt},graythresh(Igray2{cnt}));

end

noise = 0;
for cnt = 1:num

 if (sum(sum(Ibw2{cnt})) <= 55)
 Ibw2(:,cnt)=[];
 noise = noise + 1;
 num = num - 1;
 end

 if(cnt == num)
 break;
 end

end

for cnt = 1:num

 bw2 = imgcrop_1(Ibw2{cnt}); %crop ROI
 bw3=bw2;
 alpha=imresize(bw3,[32 32],'nearest'); %resize image to 32x32
 p1= featext_1(alpha); %call feature extraction matrix
 out1(:,cnt)= p1; %temporarily save matrixes in out1
 charvec = imgresize_1(bw2); %call character segmentation module
 out(:,cnt) = charvec;

end

p = [out;out1]; %final 380x1 feature matrix

62

Ptest = p(:,1:num);
[a,b_ID]=max(sim(net,Ptest));

for cnt = 1:num

 if (b_ID(cnt)==10)
 b_ID(cnt)=0;
 end

end

b_ID

d. imgcrop_1.m

%Input: Preprocessed binary image

%Output: Cropped image to the edge

%Process: Removing the white

function bw2 = imgcrop_1(bw)

[y2temp x2temp] = size(bw);
x1=1;
y1=1;
x2=x2temp;
y2=y2temp;

cntB=1;
while (sum(bw(:,cntB))==y2temp)
 x1=x1+1;
 cntB=cntB+1;
end

cntB=1;
while (sum(bw(cntB,:))==x2temp)
 y1=y1+1;
 cntB=cntB+1;
end

cntB=x2temp;
while (sum(bw(:,cntB))==y2temp)
 x2=x2-1;
 cntB=cntB-1;
end

cntB=y2temp;
while (sum(bw(cntB,:))==x2temp)
 y2=y2-1;
 cntB=cntB-1;
end

bw2=imcrop(bw,[x1,y1,(x2-x1),(y2-y1)]);

63

e. imgresize_1.m

%Input: Cropped image to the edge

%Output: Image with matrix 5 x 7

%Process: Resizing the binary image

function lett = imgresize_1(bw2)

bw_7050=imresize(bw2,[70,50]);
for cnt=1:7

 for cnt2=1:5
 Atemp=sum(bw_7050((cnt*10-9:cnt*10),(cnt2*10-9:cnt2*10)));
 lett((cnt-1)*5+cnt2)=sum(Atemp);
 end

end

lett=((100-lett)/100);
lett=lett';

f. featext_1.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction of the cropped binary handwritten numbers

function p1 = featext_1(alpha)

h = horin_1(alpha);
v = verti_1(alpha);
d = diagonal_1(alpha);

pro = profiles_1(alpha);

img = imgcomp(alpha);
img = im2col(img,[8 8],'distinct');
[hd,vd,rdd,ldd] = kirsch_1(alpha);
p1 = [h,v,d,hd,vd,rdd,ldd,img',pro]';

g. horin_1.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction using horizontal modified alphabet module

function h = horin_1(alpha)

h1 = [];
h2 = [];
h3 = []; %initialized horinzontal matrix

h1 = alpha(1:9,:); %find the h1 region
h1 = sum(h1);

64

h1 = h1';
h1 = sum(h1)/288; %sum all 1

h2 = alpha(10:23,:); %find the h2 region
h2 = sum(h2);
h2 = h2';
h2 = sum(h2)/448; %sum all 1

h3 = alpha(24:32,:); %find the h3 region
h3 = sum(h3);
h3 = h3';
h3 = sum(h3)/288; %sum all 1

h = [h1 h2 h3]; %horinzontal

h. verti_1.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction using vertical modified alphabet module

function v = verti_1(alpha)

v1 = [];
v2 = [];
v3 = [];
v4 = [];
v5 = [];
v6 = [];
v7 = [];
v8 = []; %initialzed vertical matrix

v1 = alpha(1:13,1:10); %find the v1 region
v1 = sum(v1);
v1 = v1';
v1 = sum(v1)/130; %sum all 1 divide region size

v2 = alpha(1:19,11:22); %find the v2 region
v2 = sum(v2);
v2 = v2';
v2 = sum(v2)/228; %sum all 1 divide region size

v3 = alpha(1:13,23:32); %find the v3 region
v3 = sum(v3);
v3 = v3';
v3 = sum(v3)/130; %sum all 1 divide region size

v4 = alpha(14:32,1:10); %find the v4 region
v4 = sum(v4);
v4 = v4';
v4 = sum(v4)/190; %sum all 1 divide region size

v5 = alpha(20:32,11:22); %find the v5 region

65

v5 = sum(v5);
v5 = v5';
v5 = sum(v5)/156; %sum all 1 divide region size

v6 = alpha(14:32,23:32); %find the v6 region
v6 = sum(v6);
v6 = v6';
v6 = sum(v6)/190; %sum all 1 divide region size

v7 = alpha(1:15,20:32); %find the v7 region
v7 = sum(v7);
v7 = v7';
v7 = sum(v7)/195; %sum all 1 divide region size

v8 = alpha(20:32,1:15); %find the v8 region
v8 = sum(v8);
v8 = v8';
v8 = sum(v8)/195; %sum all 1 divide region size

v = [v1,v2,v3,v4,v5,v6,v7,v8]; %vertical matrix

i. diagonal_1.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction using diagonal modified alphabet module

function d = diagonal_1(alpha)

d1 = [];
d2 = [];
d3 = [];
d4 = []; %initialized diagonal matrix

temp = [];
for n = 1:4
 temp = alpha(n,1:n+4);
 d1 = [d1 temp]; %find the d1 region from row 1 to 8
 temp = alpha(n,29-n:32);
 d2 = [d2 temp]; %find the d2 region from row 1 to 8
end

for n = 5:12
 temp = alpha(n,n-4:n+4);
 d1 = [d1 temp]; %find the d1 region from row 9 to 24
 temp = alpha(n,29-n:37-n);
 d2 = [d2 temp]; %find the d2 region from row 9 to 24
end

for n = 13:16
 temp = alpha(n,n-4:16);
 d1 = [d1 temp]; %find the d1 region from row 25 to 32
 temp = alpha(n,17:37-n);
 d2 = [d2 temp]; %find the d2 region from row 25 to 32

66

end

d1 = d1';
d1 = sum(d1)/size(d1,1); %sum all 1 divide d1 size
d2 = d2';
d2 = sum(d2)/size(d2,1); %sum all 1 divide d2 size

for n = 17:20
 temp = alpha(n,29-n:16);
 d3 = [d3 temp]; %find the d3 region from row 33 to 40
 temp = alpha(n,17:n+4);
 d4 = [d4 temp]; %find the d4 region from row 33 to 40
end

for n = 21:28
 temp = alpha(n,29-n:37-n);
 d3 = [d3 temp]; %find the d3 region from row 41 to 56
 temp = alpha(n,n-4:n+4);
 d4 = [d4 temp]; %find the d4 region from row 41 to 56
end

temp = [];
for n = 29:32
 temp = alpha(n,1:37-n);
 d3 = [d3 temp]; %find the d3 region from row 57 to 64
 temp = alpha(n,n-4:32);
 d4 = [d4 temp]; %find the d4 region from row 57 to 64
end

d3 = d3';
d3 = sum(d3)/size(d3,1); %sum all 1 divide d3 size
d4 = d4';
d4 = sum(d4)/size(d4,1); %sum all 1 divide d4 size

d = [d1 d2 d3 d4]; %diago

j. kirsch_1.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction using krisch edge detection module

function [hd,vd,rdd,ldd] = kirsch_1(alpha)

alpha = double(alpha);

mh1 = 1/15 * [5 5 5
 -3 0 -3
 -3 -3 -3];

mh2 = 1/15 * [-3 -3 -3
 -3 0 -3
 5 5 5];

67

mv1 = 1/15 * [-3 -3 5
 -3 0 5
 -3 -3 5];

mv2 = 1/15 * [5 -3 -3
 5 0 -3
 5 -3 -3];

mrd1 =1/15 * [-3 5 5
 -3 0 5
 -3 -3 -3];

mrd2 =1/15 * [-3 -3 -3
 5 0 -3
 5 5 -3];

mld1 =1/15 * [-3 -3 -3
 -3 0 5
 -3 5 5];

mld2 =1/15 * [5 5 -3
 5 0 -3
 -3 -3 -3];

hd1 = conv2(alpha,mh1,'same');
hd2 = conv2(alpha,mh2,'same');
vd1 = conv2(alpha,mv1,'same');
vd2 = conv2(alpha,mv2,'same');
rdd1 = conv2(alpha,mrd1,'same');
rdd2 = conv2(alpha,mrd2,'same');
ldd1 = conv2(alpha,mld1,'same');
ldd2 = conv2(alpha,mld2,'same');

hd = max(hd1,hd2);
vd = max(vd1,vd2);
rdd = max(rdd1,rdd2);
ldd = max(ldd1,ldd2);

%figure(2);
%imshow(hd);
%figure(3);
%imshow(vd);
%figure(4);
%imshow(rdd);
%figure(5);
%imshow(ldd);

hd = imgcomp(hd);
vd = imgcomp(vd);
rdd = imgcomp(rdd);
ldd = imgcomp(ldd);

68

hd = im2col(hd,[8 8],'distinct');
vd = im2col(vd,[8 8],'distinct');
rdd = im2col(rdd,[8 8],'distinct');
ldd = im2col(ldd,[8 8],'distinct');

hd = hd';
vd = vd';
rdd = rdd';
ldd = ldd';

k. profiles_1.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction using alphabet profile feature extraction

function pro = profiles_1(alpha)

r = ones(1,32)*32; %initialize right, top, left , and bottom

feature matrix
t = ones(1,32)*32;
l = ones(1,32)*32;
b = ones(1,32)*32;

for n1 = 1:32
 for n2 = 1:32 %check to find the edge from right boundry
 if alpha(n1,n2) == 1
 r(n1) = n2-1;
 break; %row 3, 8, 24, 32, 40, 56, 61
 end
 end
end

for n1 = 1:32
 for n2 = 1:32 %check to find the edge from top boundry
 if alpha(n2,n1) == 1
 t(n1) = n2-1;
 break; %column 3, 8, 24, 32, 40, 56, 61
 end
 end
end

for n1 = 1:32
 for n2 = 1:32 %check to find the edge from left boundry
 if alpha(n1,33-n2) == 1
 l(n1) = n2-1;
 break; %row 3, 8, 24, 32, 40, 56, 61
 end
 end
end

for n1 = 1:32
 for n2 = 1:32
 if alpha(33-n2,n1) == 1

69

 b(n1) = n2-1;
 break; %column 3, 8, 24, 32, 40, 56, 61
 end
 end
end

wid = 32 - [l(6)+r(6) l(16)+r(16) l(26)+r(26)];
hei = 32 - [t(6)+b(6) t(16)+b(16) t(26)+b(26)];

r = diff(r);
t = diff(t);
l = diff(l);
b = diff(b);

pro = [max(r) max(t) max(l) max(b) wid hei];
pro = pro/32;

l. imgcomp.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x380 matrix
%Process: Feature extraction using image compression module

function out = imgcomp(in)

out = [];

for i = 1:8

for j = 1:8
 temp = in(4*i-3:4*i,4*j-3:4*j);
 temp = sum(temp);
 out(i,j) = sum(temp')/16;
end

end

70

APPENDIX C: TEST 3 MATLAB CODES

a. circle.m

%Input: Cropped and resized binary handwritten numbers
%Output: Features in 1x388 matrix
%Process: Feature extraction using curvature vector module

Ori = ~(slantcorrection(scan_image));
Ori = quality(Ori);

%--

---%
a=100; b=100;
[row,column]=size(Ori);
Test=imresize(Ori,[a b]);

%------------------add black cover around the image--------------------

---%
Test(:,b+1)=0;
Test(a+1,:)=0;
for i=b:-1:1
 Test(:,i+1)=Test(:,i);
end
Test(:,1)=0;
Test(:,b+2)=0;
for i=a:-1:1
 Test(i+1,:)=Test(i,:);
end
Test(1,:)=0;
Test(a+2,:)=0;
%--------------------------------Structure-----------------------------

---%

c_top=[0,0,0,0]; c_bot=[0,0,0,0];
point=[0,0,0,0,0,0,0,0,0,0,0,0];

%------------------------choose best column----------------------------

---%
oreo = regionprops(Test,'centroid');

best_column = floor(oreo(1,1).Centroid(1));

%-----------------------calculate top circle---------------------------

---%
for i=1:a+1
 if c_top(1)~=0 || c_top(2)~=0
 break;
 end
 if Test(i,best_column)==1 && Test((i+1),best_column)==0 && i<44
 point(5)=i+1;
 while Test(point(5),best_column)==1
 point(5)=point(5)+1;
 end
 point(6)=point(5);

71

 while Test(point(5),best_column)==0 && point(5)<102
 for j=best_column:b+1
 if Test(point(5),j)==1 && Test(point(5),(j+1))==1
 c_top(1)=c_top(1)+1;
 break;
 end
 end
 point(5)=point(5)+1;
 end
 if point(5)==102
 c_top(1)=0;
 else
 c_top(2)=point(5)-point(6)-c_top(1);
 end
 end
end

for i=1:a+1
 if c_top(3)~=0 || c_top(4)~=0
 break;
 end
 if Test(i,best_column)==1 && Test((i+1),best_column)==0 && i<44
 point(7)=i;
 while Test(point(7),best_column)==1
 point(7)=point(7)+1;
 end
 point(8)=point(7);
 while Test(point(7),best_column)==0 && point(7)<102
 for j=best_column:-1:1
 if Test(point(7),j)==1 && Test(point(7),(j-1))==1
 c_top(3)=c_top(3)+1;
 break;
 end
 end
 point(7)=point(7)+1;
 end
 if point(7)==102
 c_top(3)=0;
 else
 c_top(4)=point(7)-point(8)-c_top(3);
 end
 end
end

%-----------------------calculate bottom circle------------------------

---%
for i=a+2:-1:2
 if c_bot(1)~=0 || c_bot(2)~=0
 break;
 end
 if Test(i,best_column)==1 && Test((i-1),best_column)==0 && i>70 &&

i<102
 point(9)=i;
 while Test(point(9),best_column)==1
 point(9)=point(9)-1;
 end

72

 point(10)=point(9);
 while Test(point(9),best_column)==0 && point(9)>1
 for j=best_column:b+1
 if Test(point(9),j)==1 && Test(point(9),(j+1))==1
 c_bot(1)=c_bot(1)+1;
 break;
 end
 end
 point(9)=point(9)-1;
 end
 if point(9)==1
 c_bot(1)=0;
 else
 c_bot(2)=point(10)-point(9)-c_bot(1);
 end
 end
end

for i=a+2:-1:2
 if c_bot(3)~=0 || c_bot(4)~=0
 break;
 end
 if Test(i,best_column)==1 && Test((i-1),best_column)==0 && i>70 &&

i<102
 point(11)=i;
 while Test(point(11),best_column)==1
 point(11)=point(11)-1;
 end
 point(12)=point(11);
 while Test(point(11),best_column)==0 && point(11)>1
 for j=best_column:-1:1
 if Test(point(11),j)==1 && Test(point(11),(j-1))==1
 c_bot(3)=c_bot(3)+1;
 break;
 end
 end
 point(11)=point(11)-1;
 end
 if point(11)==1
 c_bot(3)=0;
 else
 c_bot(4)=point(12)-point(11)-c_bot(3);
 end
 end
end

c_top = c_top / 100;
c_bot = c_bot / 100;
circlefea = [c_top'; c_bot'];

73

APPENDIX D: TEST 1 TRAINING SET

74

APPENDIX E: TEST 2 TRAINING SET

75

APPENDIX F: TEST 3 TRAINING SET

76

APPENDIX G: TEST SET SAMPLE FOR TEST 1

TEST SET SAMPLE 1 FOR TEST 1

Results:

77

TEST SET SAMPLE 2 FOR TEST 1

Results:

78

APPENDIX H: TEST SET SAMPLE FOR TEST 2

TEST SET SAMPLE 3 FOR TEST 2

Results:

79

TEST SET SAMPLE 4 FOR TEST 2

Results:

80

APPENDIX I: TEST SET SAMPLE FOR TEST 3

TEST SET SAMPLE 5 FOR TEST 3

81

Results:

82

TEST SET SAMPLE 6 FOR TEST 3

83

Results:

84

APPENDIX J: SEDEX AWARDS

85

