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ABSTRACT 
 

 The Handwriting Recognition using Webcam for Data Entry project has its 

primary purpose to develop a system or algorithm that is robust enough to recognize 

numerical handwritings.  A web camera is to be utilized to capture images of handwritten 

scores and question numbers on the examination score sheet in real time. It is then 

preprocessed and all the features are being fed into a neural network that is already been 

trained by various test samples. The outcome of the project should be able to obtain a 

system that is able to recognize handwritten numerical data with the lowest overshoot and 

errors. Several distinctive feature from each character is extracted using a few feature 

extraction methods, in which a comparison between three types of feature extraction 

modules were used. The first test was done with a neural network trained with only the 

Character Vector Module as its feature extraction method. A result that is far below the 

set point of the recognition accuracy was achieved, a mere average of 64.67% accuracy. 

However, the testing were later enhanced with another feature extraction module, which 

consists of the combination of Character Vector Module, Kirsch Edge Detection Module, 

Alphabet Profile Feature Extraction Module, Modified Character Module and Image 

Compression Module. The modules have its distinct characteristics which is trained using 

the Back-Propagation algorithm to cluster the pattern recognition capabilities among 

different samples of handwriting. Several untrained samples of numerical handwritten 

data were obtained at random from various people to be tested with the program. The 

second tests shows far greater results compared to the first test, have yielded an average 

of 84.52% accuracy. As the recognition results have not reached the target of 90%, further 

feature extraction modules are being recommended and an additional feature extraction 

module was added for the third test, which successfully yields 90.67%. With the time-

frame target achieved, a robust data entry system was developed using web camera 

together with a user-friendly GUI (Graphical User Interface). 
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CHAPTER 1: INTRODUCTION 
 

1.1  BACKGROUND 

Teachers and lecturers of various academia fields have been given the authority for many 

years to carry out data entry of student’s academic results into computers. There is a need 

to reduce the burden of these educators with the enhancement of science and technology, 

which sees the advancements and implementations of artificial intelligence (A.I.) in 

various industries. Handwriting recognition systems have worked its way into the 

scientific era of modern technology but has yet to achieve a prime solution for various 

handwriting trends. Applications such as passport number recognition, signature 

identification and plate number scanning are the examples of optical character 

recognitions (OCR). 

 

In Malaysia, general or public examinations are mandatory to be taken by all students, 

with educators responsible in conveying information such as marks and total scores from 

the examination score sheet to be computerized. Human errors are prone to arise, with 

data often entered incorrectly causing the student victim to be given undeserved grades 

for the particular examination. Thus, it is oblique to have a handwriting recognition system 

for current or future data entry into online systems, which will also facilitates the transfer 

of data across web link systems in the education industry. 

 

Throughout the years, various efficient techniques have been deployed by researchers 

to recognize various numeric handwritten characters, but still remains a sturdy hurdle with 

thousands of different shaped handwriting trends. This project has high similarities from 

a previous thesis by Poo entitled, “Handwriting Recognition for Data Entry (HandRec)” 

[1], which in this project, the goal is to achieve a more robust output. 
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1.2  PROBLEM STATEMENT 

Humans have unique handwriting styles which proves to be an obstacle for handwriting 

recognition algorithms. To date, multiple researches have been done to recognize these 

different handwriting styles, most notable using the artificial neural network (ANN) with 

back propagation algorithms [2], which has also been proven to give adequately high 

accuracies. By using real time process image capturing, this system and algorithm can be 

implemented to apply multiple handwritten entry data for schools and universities, where 

the handwritten data of a standard score sheet from different individuals can be transferred 

to a spreadsheet. 

 

1.3  OBJECTIVES 

The prime purpose of the project is to utilize a web camera to capture images of 

handwritten scores and question numbers on the examination score sheet, with an 

algorithm that has the capability to recognize handwritings and computerized numerals in 

real time. In short, an intelligent neural network has to be developed for robust 

handwriting recognition of the numbers from the webcam to be able to be input into a 

database. The neural network method will be deeply explored to obtain the optimal 

solution with the lowest overshoot and errors. Other methods of handwriting recognition 

includes Fuzzy Logic [3], Hidden Markov Model [4], Principal Component Analysis 

(PCA) [5], Local Affine Transformation (LAT) [6], Wavelet Transform [7] and Curvature 

Coefficient Method [8].  
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1.4  SCOPE OF STUDY 

The current range of study of the project is limited to only Universiti Teknologi 

PETRONAS (UTP) score sheet handwriting recognitions. Handwriting trend subjects will 

only be concentrated on various lecturers and students within UTP, in which a flexible 

image will be captured by a webcam and a robust neural network will be trained based on 

the samples obtained. The handwritten data of question number written by students and 

examination scores written by lecturers will only be taken into consideration for data entry 

into an online database system. Further studies and future researches would include 

handwritings by various people of various professions on different applications. 
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CHAPTER 2: LITERATURE REVIEW AND THEORY 
 

2.1 BACK PROPAGATION NEURAL NETWORK 
 

Researchers have used different approaches towards solving the handwriting recognition 

problems, with some trying to fuse multiple recognition algorithms to overcome the weak 

points of another algorithm. Nonetheless, neural network as a single algorithm is robust 

enough to recognize handwriting samples and produce high recognition rate. Neural 

network has self-learning, self-adapt and self-process capabilities which make it robust 

for handwritten recognition systems [9]. There are three layers in the typical neural 

network, which are the input layer, output layer and the hidden layer. These layers 

correspond with each other to train training sets for recognition algorithms. 

 

 During handwritten recognition process, the pre-processed image is interpreted in 

the form of an input signal which is then propagated through the network of the three 

layers in forward direction. The neural network is sometimes referred as multilayer 

perceptron (MLP). One advantage of using neural network is that it can be trained to 

perform the error-correction learning rule [10].  

 

Most of the research that is based on neural network have achieved ultimately high 

recognition accuracy of more than 95%. Even with this high accuracy, the correct learning 

rate (𝜇) has to be chosen to ensure the recognition results obtained in optimal. The learning 

rate is the rate of which the number of training sample sets used to train the neural network. 

If a low value of 𝜇 is chosen, the result obtained will be slow and inaccurate. However, if 

a high value of 𝜇 is chosen, the algorithm will memorize the training sets and exceed the 

threshold consistency of recognition [11]. 
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Throughout the years, neural network has been recognized as the key for future 

computer processing improvisations, as it has proven to be very successful solving 

numerous problem domains, particularly in diverse areas of science and technology [1]. 

Neural network has been able to counter problems which requires the computer processor 

to predict and classify a control problem, instead of just following programming 

algorithms [1]. Some of the key factors which has contributed to the sweeping success of 

this systems are:  

 Computing capabilities: Neural networks consists of extremely complex functions 

and various sophisticated modeling techniques. As its modeling is non-linear, as 

compared to various linear modeling techniques, it has the advantage of simulating 

functions to predict an outcome given an input that has already been trained 

throughout its neurons. One advantage of using neural network is that it could 

handle large amount of computing command and still perform optimally. 

 

 Ease of use: Neural network is an intelligent system whereby it learns by training 

samples. It has the ability to gather input data and produce complex functions to 

automatically learn the set of data, as well as interpreting the outcomes. Neural 

network learn by various examples and does not require the user to select 

distinctive features of the training data set, as the system has the ability to produce 

analysis itself. Hence, it is highly regarded for this reason that the neural network 

is used to encounter the problem in this handwritten recognition project. 

 

 Convenience: The neural network system also has now been widely used on 

different platforms. One such common platform is MATLAB, which already has 

a pre-installed Neural Network Toolbox for the convenience of the user. The 

neural network need not to be implemented using long and hefty coding, but only 

requires the user to understand the amount of training iterations and parameters to 

be used to train the given input data. 
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2.2 IMAGE PREPROCESSING & FEATURE EXTRACTION 
 

Before the numeric character is being trained in the neural network, the sample of data 

must first be pre-processed to extract the relevant data and information to be trained. 

Among the common pre-processing and feature extraction used in general, is by 

binarization of a digitized image of handwritten samples and forming an array of data 

pixels [12].  

 

There are several features of the handwritten in which must be considered to be 

trained and in this paper [13], it focused on a few features namely the Gradient Based 

Wavelet Features, MAT based Directional Features, Complex Wavelet Features, Binary 

Gradient Directional Features, Median Filter Gradient Features, Image Thinning Distance 

Feature and Geometrical Features. It is in contrast with the feature extraction module with 

[1], who uses the Horizontal, Vertical and Diagonal Alphabet Regions Encoder Features, 

Kirsch Edge Detector Feature, Image Compression Features and Profiling Alphabet 

Smoothness, Width and Height Features. Both these feature extraction methods can be 

compared based on the recognition accuracy. In fact, there are many other extraction 

feature models that are used by various researchers. 

 

Through feature extraction modules, the important elements of the handwritten 

data can be trained to achieve the highest recognition rate. If some of the character written 

to be recognized has missing features, the neural network has the ability to respond to the 

error and discriminate patterns [14]. Researchers have also tried using multilayer feed 

forward neural network (MLFFNN) [15] and auto associative neural network [16], both 

which are upgraded versions of back propagation neural network and achieved a slightly 

higher percentage of accuracy. These methods differ by the number of input layers, hidden 

layers and output layers used. Despite insignificant differences shown, the accuracy of 

recognition increased slightly. 
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2.2.1 MODIFIED ALPHABETS ENCODER MODULE 
 

This feature extraction module uses 15 different regions to map out the number of 

bits of the particular handwritten number. In order to achieve equal and identical marked 

bit regions, the image is rescaled first onto 32 x 32 bitmap, which is then divided into 15 

different regions, consisting 8 vertical regions (V1, V2, V3, V4, V5, V6, V7 and V8), 4 

diagonal regions (D1, D2, D3 and D4) and 3 horizontal regions (H1, H2 and H3) as shown 

in Figure 1.  

 

Figure 1: Modified Alphabet Encoder Classified Regions 

 

Once the featured region has been divided, the number of marked bits is taken into 

account and computed using Equation 1, where the region feature is the sum of marked 

bits divided by the region size.  

region feature =
sum of marked bits

region size
   (Equation 1) 
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2.2.2 EDGE DETECTION METHOD 
 

This feature extraction module involved the detection of the other edge of each 

number character from four different corner views, namely from the top, right, bottom and 

left direction. As depicted in Figure 2, the number of bits from each direction is taken into 

consideration with the program running through from each specific direction. Once a bit 

change is detected, the edge of the number character from each direction is computed and 

the extraction of features from the number is completed. 

 

Figure 2: Edge Detection Method Classified Regions 

 

2.2.3 KIRSCH EDGE DETECTION MODULE 
 

This feature extraction module is able to distinguish the unique features of each of 

the 10 numerical digits. 8 predefined masks or filters were first determined as shown in 

Figure 3, which is then used to detect the horizontal, vertical, right – diagonal and left – 

diagonal edge of the number. Next, convolution between the 8 defined masks and the 

binary alphabet image takes place to produce 8 Kirsch Edge Detection Module images, 2 

of each direction each. 
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Figure 3: Predefined masks of Kirsch Edge Detection Module 

 

All the 8 Kirsch Edge Detection Module images will be divided into pairs and will 

undertake a process of determining the highest number of bit values from each of the pair 

images. The output of the module as shown as an example in Figure 4 is that there will be 

one image from each defined direction, namely horizontal, vertical, right – diagonal and 

left – diagonal. The images will be compressed before being future processed. 

 

Figure 4: Example of Kirsch Edge Detection Module output 
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2.2.4 IMAGE COMPRESSION MODULE 
 

 The purpose of this feature extraction module is to reduce the computing power 

needed for image processing, as well as obtaining the features from a compressed image. 

The size of the image cropped from pre-processing of the raw image is reduced by 16 

times using Equation 2 which will give a different result of feature extraction module. 

4
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2.2.5 CHARACTER VECTOR MODULE 
 

 This feature extraction module is the most simple extraction module of image 

processing of characters. The single character is simply segmented into 35 equal areas of 

5 x 7. The matrix of each element will represent the ratio of marked bits area over the 

ration of unmarked bits area in these 35 areas, as shown in Figure 5. 

 

Figure 5: Character Vector Module Elements 

 

2.2.6 CURVATURE VECTOR MODULE 
 

This feature extraction module is another method to extract important data out 

from numerical handwritten data, in which the numbers can be differentiated through 

curves or circles. The module calculates the number of bits which forms a curve or circle 

at two different regions, top half and bottom half of the number. 
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2.3 CHARACTER RECOGNITION 
 

Character recognition has not much difference compared to word recognition, but easier 

to be classified and need not to be segmented into individual characters. In this paper, 

character recognition is only focused towards producing a robust individual numerical 

handwritten numbers recognition system instead of grouped numbers, due to its 

complexity and time constraint. 

 

 Various researches have been carried out to distinguish handwritten data into 

digital form. One such method is through determining the distinctiveness and similarities 

which are present in the handwritten numerals as being carried out by [17]. This paper 

highly emphasized on the consideration of placing crucial parts into crucial combinations 

of numeral handwritten data features to exploit better recognition rate. This method was 

highly regarded as success, as various handwritten data patterns are being considered. The 

paper considered 29 patterns of 10 numerals with each giving a different but above 89% 

of mean percentage accuracy. 

 

 As compared to [18], the paper has carried out several experiments and proposed 

a few different methods to recognize unconstrained handwritten numerals. It is mentioned 

that a good feature extraction method should represent the numbers 0 to 9, and are able to 

distinguish the unique feature in each of them. Kirsch masks were proposed as being used 

in [1] recognition system as well, and are able to obtain an average of 97% accuracy based 

on the training set used. 

 

 From the above research papers, it is found that by occupying and combining a 

few methods to extract information from each handwritten numerals could greatly 

improve the handwritten recognition accuracy rate. Another method that could be 

considered in improving handwritten recognition accuracy is through statistical method 

which involves knowing the distinct features of the numbers such as circles, nodes and 

intersections in between the handwritten numbers.  
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CHAPTER 3: METHODOLOGY 
 

3.1 METHODOLOGY 
 

Based on the reviews of various handwriting recognition techniques from literature 

reviews, artificial neural network is the choice of implementation for this project, in which 

MATLAB software will be used. Neural network is seen to be the best and wisest choice, 

as it has been proven to give the best results and accuracy.  

 

Figure 6 shows the process flow identification and implementations for the 

handwritten recognition project using neural network.  

Start

Handwriting 
Trend Sample 

Collection

Webcam 
Image 

Capture

Noise 
Reduction

Focused on 
Region of 

Interest (ROI)

Pre-
processing

Feature 
Extraction 
Modules

Neural 
Network 
designs

Train Neural 
Network

Test Neural 
Network

Performance 
Evaluation
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> 90%

Re-design 
Neural Network 

architecture
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Training Set

Test Set

Real time 
Image input

Output for 
database 

entry
End

Yes

 

Figure 6: Process flow identification and implementations for the handwritten 

recognition project 
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3.2 SOFTWARE & HARDWARE TOOLS 
 

In this early stages of implementation, a scanner will be used to entry handwritten data 

onto MATLAB to be trained and tested for its accuracy. Once the neural network 

handwritten recognition system has been developed maturely, a web camera will be used 

for real time image input and algorithms have to be implemented to capture the data in the 

region of interest (ROI). The information captured, as well as the recognized handwritten 

data will be stored in a database which can easily be accessed through a Graphical User 

Interface (GUI). 

 

3.3 IMAGE PRE-PROCESSING 
 

When an image is fed into the MATLAB handwriting recognition system, either from a 

scanner or a web camera, it is vital to process the image using standard signal-processing 

techniques for easy and appropriate data acquisitions. Noises are the most common 

portion of the image that have to be discriminated and removed. There are two types of 

noises defined in this project. One of it is insignificant, and could disorientate the 

recognition accuracy, usually small dots, ticks or particles which does need to be 

recognized as handwritten data. The other is scratches of handwritten data which should 

be discounted, which usually forms a larger number of bits compared to normal 

handwritten data. The following pre-processing techniques are used to remove noise and 

extract individual numerical handwritten data in MATLAB (Figure 7). 

  

 The MATLAB software has already the Image Processing Toolbox which has the 

capabilities to perform ideal image processing using the matrix data structure [19]. 

Various functions within the toolbox has been explored by researchers such as [11], 

together with MATLAB’s Neural Network Toolbox on the basis of training data for 

handwriting recognition programs. Yet, the methods used varies with different 

programmers.   
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Figure 7: Process flow of pre-processing raw image using MATLAB’s Image Processing 

Toolbox 
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3.3.1 IMAGE NOISE REDUCTION 
 

In this first phase of a robust handwriting algorithm implementation, scanned images were 

used, which would later be turned into binary format images. It is known that little 

distortions such as unwanted markings or paper cripple can cause noise to the image 

processing module to detect the noise as one of its individual object (Figure 8). These 

noises have to be removed from the system before being transferred into the Feature 

Extraction Modules for further processing.  

  

Figure 8: Image after object plotting which detects the unwanted noise 

 

A simple method was implemented by summing all the binary bits of the noise 

image and comparing it with the important image data with the least number of binary bits 

was implemented. Once the least number of binary bits of the important image data is 

known usually from the numerical number ‘1’, all images with the summation of binary 

bit lesser than that will be termed as noise (Figure 9).  

 

Cropped binary image

Sum all the bits of each array matrix 
column 

Sum all the bits of each array matrix row 

Sum of bits < Least 
sum of important bits

Noise
Remove from the binary 

image array matrix
Neural Network / Image 

Recogntion

Yes No

 

Figure 9: Process Flow Image Noise Reduction 
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3.3.2 SCRATCHES REMOVAL 
 

Scratches removal is almost similar to noise removal from the previous sub-section. 

However, scratches removal uses the threshold of the highest number of bit of a regular 

handwritten number to remove invalid handwritten data which have already been 

scratched out (Figure 10).  

 

Figure 10: Scratches removal 

 

Several tests have been carried out and it has proven that ‘/’, which is one stroke scratches 

gives the best results in terms of determining the threshold.  
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3.3.3 SLANT CORRECTION 
 

This phase of image pre-processing is to reduce the variations of handwriting by different 

humans. There is a tendency that different types of handwritings which are written slanted. 

However, when the slant is corrected, the handwritten number appears the same as most 

of the non-slanted handwritten data (Figure 11). 

 

 

Figure 11: Numbers before and after slant correction 

 

The slant of a handwritten number can be corrected by calculating the angle of 

slant of the handwritten data and readjust it based on the angle of slant obtained. This is 

done by considering two points from each side of the handwritten number and obtaining 

a straight line before calculating its angle. 
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3.4 FEATURE EXTRACTION MODULES 
 

Table 1 shows three tests were conducted using distinctive feature extraction modules. 

The first test utilizes only Character Vector Module as its feature extraction module to be 

used as neural network test samples [11]. The second test was later enhanced with a 

combination of several feature extraction modules namely the Character Vector Module, 

Kirsch Edge Detection Module, Alphabet Profile Feature Extraction Module, Modified 

Character Module and Image Compression Module [1]. With results known that the 

feature extraction methods used in [1] could not achieve up to 90% time frame accuracy, 

another feature extraction module was added to the existing modules of Test 3, which is 

Curvature Vector Module. Each of these modules have its distinct characteristics and has 

to be known before being trained in the neural network to recognize handwritten data. 

Test 1 and Test 2 were conducted as control tests and simulation results to validate 

previous researches with different sets of handwriting collections. 

  

 The input that will be used to be fed into the neural network system is the 

summation of each individual feature extraction matrixes. In test 1, there will be only 35 

input elements (Appendix A), while in test 2 there will be 380 input elements (Appendix 

B). In test 3, there are a total of 388 input elements (Appendix C). 
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Table 1: Comparison between matrix sizes of two tests 

Test 1 Test 2 Test 3 

No Feature 

Extraction 

Module 

Matrix 

Size 

No Feature 

Extraction 

Module 

Matrix 

Size 

No Feature 

Extraction 

Module 

Matrix 

Size 

1 Character 

Vector 

Module 

5 x 7  1 Character 

Vector Module 

5 x 7  1 Character 

Vector Module 

5 x 7  

2 Kirsch Edge 

Detection 

Module 

4 x 8 x 8 

2 Kirsch Edge 

Detection 

Module 

4 x 8 x 8 3 Alphabet 

Profile Feature 

Extraction 

Module 

1 x 10 

3 Alphabet 

Profile Feature 

Extraction 

Module 

1 x 10 4 Modified 

Character 

Module 

1 x 15 

4 Modified 

Character 

Module 

1 x 15 5 Image 

Compression 

Module 

8 x 8 

5 Image 

Compression 

Module 

8 x 8 6 Curvature 

Vector Module 

1 x 8 

Total size 1 x 35 Total size 1 x 380 Total size 1 x 388 
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3.4.1 CHARACTER VECTOR MODULE 
 

This module is the most basic module in the image processing feature extraction elements. 

A character vector, with the weight of shaded bits within a region of 5 x 7 matrix is 

produced and stored in an array matrix (Figure 12). 

Cropped binary image

Image resized into 5 x 7 matrix

Weight of each pixel from 0 to 1 is known

Character vector matrix is obtained

Neural Network / Image 
Recognition

 

Figure 12: Process Flow of Character Vector Module Algorithm 

 

3.4.2 KIRSCH EDGE DETECTION MODULE 
 

This module involves convolution of predefined masks to detect horizontal, vertical, right 

diagonal and left diagonal edges. The outcome of the module gives the maximum edge 

strength of each mask in the form of 4 x 8 x 8 matrix, which is then stored in an array 

matrix (Figure 13). 
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Cropped binary image

2 of each horizontal, vertical, right diagonal 
and left diagonal masks are defined

Image undergoes convolution with the 
defined masks

Maximum values of the pair images is 
determined

Neural Network / Image 
Recogntion

Image is compressed into 4 x 8 x 8 array 
matrix

 

Figure 13: Process Flow of Kirsch Edge Detection Module Algorithm 

 

 3.4.3 ALPHABET PROFILE EXTRACTION MODULE 
 

This is the module which detects the smoothness of the cropped image numerical 

handwritten data and also the edge profile by interpreting the image line by line. It also 

detects the size, in the form of width and height of the cropped image data. As this module 

highlights only the global feature of the data, the output of the module only generates 1 x 

10 floating point matrix (Figure 14). 
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Cropped binary image

Scan the image line by line vertically and 
horizontally

Detects the left, right, top and bottom 
edges

Differentiate the image edges to smoothen 
the cropped image

Neural Network / Image 
Recogntion

Maximum values of all the edges of the 
differentiated image is determined 

Width and height of the differentiated 
image is determined from maximum values

 

Figure 14: Process Flow of Alphabet Profile Feature Extraction Module Algorithm 

 

3.4.4 MODIFIED CHARACTER MODULE 
  

In this module, the input binary image must first be resized into 32 x 32 matrix. Predefined 

3 horizontal, 8 vertical and 4 diagonal regions are mapped onto the resized input binary 

image. The number of bits in the specific region of the data is calculated and divided with 

the size of the region to obtain an outcome of 1 x 15 floating point matrix. In this method, 

it is clearly seen that the important feature of each handwritten number is extracted before 

being fed into neural network or undergo image recognition (Figure 15).  
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Cropped binary image

Resize into a 32 x 32 matrix binary image

Predefine horizontal, vertical and diagonal 
regions

Mask the image into the predefined 
regions

Neural Network / Image 
Recogntion

Extract important information from the 
region by calculating the number of bits

Divide the number of bits in the region 
with the size of the region

 

Figure 15: Process Flow of Modified Character Module Algorithm 

 

3.4.5 IMAGE COMPRESSION MODULE 
 

This module is used to reduce the size of the neural network input by 16 times so that less 

processing units is needed to train the neural network or for image recognition. The input 

of the module will have to be resized into 32 x 32 matrix array, and the output will be 

compressed into an 8 x 8 floating point matrix (Figure 16).  



24 

 

Cropped binary image

Resize into a 32 x 32 pixel binary image

4 x 4 regions are selected

Sum the binary bits in each of the regions 
and divide by 16

Neural Network / Image 
Recogntion

 

Figure 16: Process Flow of Image Compression Module Algorithm 

 

3.4.6 CURVATURE VECTOR MODULE 
 

This module is used to determine the number of bits that forms a curve based on particular 

regions on the handwritten character. There are 4 regions each on the top half and bottom 

half of the number which will later form an output of 1 x 8 floating point matrix. This 

method is important to know which number of the handwritten data has curves and circles 

which will form a distinctive feature to differentiate the numbers (Figure 17). 
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Cropped binary image

Resize into a 32 x 32 pixel binary image

4 top half and 4 bottom half regions are 
defined

Compare the top and bottom bit of the 
each row and sum the bit if they are 

different

Neural Network / Image 
Recogntion

 

Figure 17: Process Flow of Curvature Vector Module Algorithm 
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3.5 NEURAL NETWORK 
 

The neural network system is the core architecture of this numeric handwritten recognition 

systems project. Its architecture, including its number of input layer neurons, hidden layer 

neurons, output layer neurons and training parameters have to be well defined before 

training begins. The number of input layer neurons is equivalent to the number of input 

elements extracted from the feature extraction modules. The number of output layer 

neurons is meanwhile, equivalent to the number of handwritten numerals that is targeted, 

which is 0 to 9. Thus, there will be 10 output layer neurons. The hidden layers of the neural 

network system cannot be observed or predicted through the output nor input behavior of 

the system. Hence, suitable number of neurons in the hidden layer can be obtained 

heuristically. It is known that complex pattern recognition such as handwriting recognition 

cannot be trained using little amount of hidden neurons; as the accuracy will be very low. 

However, if the number of hidden neurons appear to be too large, the system 

computational burden will increase dramatically and the network might just memorize all 

the training data input. Therefore, a suitable amount of hidden layer neurons have to be 

defined, as it is known that the greater amount of hidden neurons present in the layer, the 

higher the accuracy of the handwritten recognition system capabilities. This is due to the 

fact that the artificial neural network system has limited capacity in terms of computing 

large amount of input data. Hence, the more input data and hidden neuron supplied to the 

system will actually complicate and confuse the network to generate the function to 

compute the output. In order to achieve better recognition results and the need to balance 

computational load, there are certain rules to select the amount of hidden neurons to be 

used to predict the output based on all the input data; which is that the amount of hidden 

neurons must be between the number of input neurons and output neurons, as well as 

choosing the best parameters which gives the lowest validation error. 

 

 Table 2 shows the training parameters used to train the Multilayer Feed Forward 

Back Propagation Neural Network systems. These are the standardize parameters to obtain 

the optimum network performance for numeric handwriting recognition system. In test 1, 

the system is trained with 5 sets of handwritten numerals (Appendix D), while in test 2, 
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the system is trained with 30 sets of handwritten numerals (Appendix E). However, both 

test 1 and test 2 are only used as a control set and verification of previous work. In test 3 

(Appendix F), a finalized neural network system is trained with 15 sets of handwritten 

numerals. 

 

Table 2: Neural Network Training Parameters 

Training Parameters Definition 

Performance function = Sum squared Error Total of squared errors from the training 

predictions 

Goal = 0.01 Minimum error achieved before the training 

stops 

Epochs = 5000 Maximum number of iterations before 

training stops 

Momentum = 0.95 Fraction of weight among the neurons in the 

network layers 

Activation Function = Logsig A transfer function to calculate the output 

based on its input values 

Training Functions = traingdx Updates weights and biases during training 

according to momentum values 
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3.6 IMAGE ACQUISITION MODULE 
 

This Handwriting Recognition using Webcam for Data Entry project is designed to use 

two web cameras to capture the Region of Interest data on the Universiti Teknologi 

PETRONAS examination score sheet paper, which includes Table Number, Examination 

Index Number, Students’ filled Question No, Examiners’ filled Question No, Marks and 

Total Marks. 

 

 MATLAB has its own Webcam Image Acquisition Toolbox which allows users to 

acquire images from a webcam using it’s built in webcam functions. The above toolbox 

have provided an adequate platform for the webcams to be interfaced with MATLAB 

software, hence, users are able to capture the image and do image processing via 

MATLAB itself. 

 

 Two cameras were used to capture different Region of Interest (ROI), with the first 

focused on the Table Number and Examination Index Number, as shown in Figure 18, 

while the second being focused on the Students’ filled Question No, Examiners’ filled 

Question No, Marks and Total Marks, as shown in Figure 19. 

 

 

Figure 18: Output from first camera 
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Figure 19: Output from second camera 

 

3.6.1 PROTOTYPE 
 

A simple prototype was built to simple capture the two important regions of the 

examination score sheet as shown in Figure 20. The two cameras which was used were 12 

Megapixel Driverless Night Vision Webcam PC USB CMOS Camera, which however 

only gives approximately 0.3 Megapixel video recording images. Since the camera 

module is driverless, it is compatible with MATLAB software and can be easily accessible 

through its internal built-in functions. 

 

The 12 Megapixel Driverless Night Vision Webcam PC USB CMOS Camera has the 

following specifications as stated by its manufacturer: 

 Default resolution: 640 x 480 = 307200 pixel 

 Focus range: Manual focus from 3cm 

 White balance: Auto 

 Exposure control: Auto 

 Interface: USB 1.1/2.0 

 Working temperature: 0 °C to 40 °C 
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Figure 20: Location of the camera and the prototype 

 

However, there are limitations of using this camera as the default pixel count is only about 

0.3 Megapixel. Thus, the image captured by the camera might not have enough number 

of bits or pixels to be pre-process and fed into the artificial neural network system. This 

is also the reason why two cameras were being built onto the prototype instead of one, as 

one camera could not capture the whole image and still give a good amount of pixels for 

the recognition system to process its data. 
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3.6.2 ACQUIRING THE REGION OF INTEREST 
 

The region of interest of each number is predefined as shown in Figure 21, whereby each 

box is cropped by adjusting manually the vertical and horizontal axis values. Once each 

number is being cropped, it will undergo pre-processing and feature extraction modules, 

before being fed onto the neural network for recognition purposes. 

 

Figure 21: Defining the region of interest 
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3.7 GRAPHICAL USER INTERFACE MODULE 
 

Graphical User Interface (GUI) is a user interactive system which enhances the usability 

and purpose of the program. It allows users to get access and key in data, as well as 

obtaining the output from its layout. In short, the GUI system is a system that will be used 

by a user to determine the appropriate function or command to be called to execute the 

output. A GUI layout was designed as shown in Figure 22. 

 

 

Figure 22: Graphical User Interface Layout for Handwriting Recognition System using 

Webcam for Data Entry 
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3.7.1 GRAPHICAL USER INTERFACE COMMAND STEPS 
 

The following command steps, as shown in Figure 23 were designed to execute the output. 

Start

User click on ‘Start Webcam 1’

Calls the function to start Webcam 1

User click on ‘Capture Image’

Calls the function to capture image 
from Webcam 1

User click on ‘Extract Numbers’

Calls the function to pre-process, 
extract the features and recognize the 

numbers using Neural Network

Display recognize value on GUI

User click on ‘Start Webcam 2’

Calls the function to start Webcam 2

User click on ‘Capture Image’

Calls the function to capture image 
from Webcam 2

User click on ‘Extract Numbers’

Calls the function to pre-process, 
extract the features and recognize the 

numbers using Neural Network

Display recognize value on GUI

User identify and edit errors

User click on ‘Verify’

Calls the function to 
check validity of data

No

User click on ‘Export to Database’

Calls the function to export data to excel 
and html website

End

 

Figure 23: GUI Command Steps 
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 In order for the current data entry system to function, the user must follow the 

following steps stated on the GUI Command Steps. The user first clicks ‘Start Webcam 

1’ and the video preview from the first webcam is shown. Next, the user clicks on ‘Capture 

Image’ in which the current video preview image from Webcam 1 is taken and displayed 

on the GUI. When the user clicks on ‘Extract Numbers’, pre-processing, feature extraction 

and feeding the image onto the trained neural network is being carried out, and the output 

will be displayed on the Table number and Examination ID column. The user can 

recalibrate the data if necessary (Figure 24). 

 

Figure 24: Extracting data from Webcam 1 onto the GUI 

 

 Following that, the same process is being carried out for Webcam 2, in which the 

user clicks ‘Start Webcam 2’ and the video preview from the second webcam is shown. 

Next, the user clicks on ‘Capture Image’ in which the current video preview image from 

Webcam 2 is taken and displayed on the GUI. When the user clicks on ‘Extract Numbers’, 

pre-processing, feature extraction and feeding the image onto the trained neural network 

is being carried out, and the output will be displayed on the Candidate Ques No., Examiner 

Ques No., Examiner Marks and Total Marks column. The user can again recalibrate the 

data if necessary (Figure 25). 
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Figure 25: Extracting data from Webcam 2 onto the GUI 

 

Once extracting the data from the Webcams is complete, user could click on the 

‘Compare’ button on the GUI, which calculates the Total Examiner Marks and match the 

data with the total marks recorded (Figure 26). 

 

Figure 26: Comparing the total marks with sub marks on GUI 
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 Subsequently, the user have to click on the ‘Verify’ button to ensure all the data 

extracted are correct and ready to be exported onto the database. Since the scope is focused 

on UTP examination score sheet, it is typical that examiner marks does not exceed 20 

marks and total question numbers does not exceed 5. Hence, this gives flexibility to the 

students and examiners to write data on the score section of the score sheet. However, this 

system function can be altered accordingly to give more flexibility and freedom to the 

user depending on the number of questions and total marks for each question in the 

particular examination course. The ‘Verify’ button also ensures that the user does not key 

in more than 5 inputs and the data of question number and marks should be on the same 

row. Since there are two examiner and student question number which could be valid, the 

examiner question number is taken priority onto the database. However, if the examiner 

question number column is empty, the student question number is taken into priority to be 

keyed onto the database (Figure 27). 

 

 

Figure 27: Verifying data entry on GUI 

 

The following Figure 28, shows a completed step of the executed Graphical User Interface 

on recognizing handwritten data from the UTP examination score sheet. Once the ‘Export 
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to Database’ button is clicked by the user. The system will rearrange and gather the 

appropriate data to be transferred to the Excel Database (Figure 29) and HTML website 

(Figure 30). 

 

 

Figure 28: Completed GUI 

 

As for the data entry system, it doesn’t matter how the data is arranged as the system is 

able to rearrange the data, even if it is not in order. If any of the extracted data is empty, 

the outcome of will be recorded as 0. 
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Figure 29: Exported data to the Excel Database 

 

 

Figure 30: Exported data to the Excel Database 
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3.8 GANTT CHART & KEY MILESTONES 
 

The following tables, Table 3 and Table 4 depict a detailed timeline of the work involved 

within the 14 weeks of FYP I and FYP II respectively. 

 

Table 3: Gantt Chart and Key Milestones for FYP I 

Details/Week FYP I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Literature 

Review 

              

Extended 

Proposal 

              

System 

Identification 

& Modeling 

              

Proposal 

Defense 

              

Development 

of algorithm 

              

Interim 

Report 

              

 

        Key milestone 

        Process 
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Table 4: Gantt Chart and Key Milestones for FYP II 

Details/Week FYP II 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Development of 

algorithm 

              

Samples 

gathering, 

simulation and 

implementations 

              

Progress report               

Comparative 

analysis 

              

Pre-SEDEX               

Draft final 

report 

              

Dissertation               

Technical paper               

Project viva               

 

        Key milestone 

        Process 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 HANDWRITING RECOGNITION TESTS 
 

4.1.1 TEST 1 
 

Test 1 Handwriting Recognition System only includes Character Vector Module as its 

feature extraction module. Hence, the system is being tested with 2 types of samples 

(Appendix G): 

 Sample 1: The training set 

 Sample 2: A test set by 3 random people who wrote 5 sets each 

 

Both the sample sets are scanned using a scanner and ran into the system to determine 

its accuracy. All the important information from Test 1, such as mistakes, occurrences and 

percentage of accuracy are tabulated with each handwritten number data in Table 5. 

 

Table 5: Percentage of accuracy of Test 1 

Type of samples Sample 1 Sample 2 

Handwritten 

Numbers 

Occurrences Mistakes Percentage of 

Accuracy 

Mistakes Percentage of 

Accuracy 

1 15 0 100% 6 60.00% 

2 15 0 100% 8 46.67% 

3 15 0 100% 13 13.33% 

4 15 0 100% 7 53.33% 

5 15 0 100% 1 93.33% 

6 15 0 100% 1 93.33% 

7 15 0 100% 3 80.00% 

8 15 0 100% 10 33.33% 

9 15 0 100% 4 73.33% 

0 15 0 100% 0 100.00% 

Total 150 Average 100% Average 64.67% 
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Figure 31: Mistakes and occurrences of each number in Test 1 

 

Figure 32: Percentage of accuracy of each number in Test 1 

 

Based on Table 5, it is known that handwriting recognition using neural network has no 

issues recognizing and distinguishing the numbers in the original training set. However, 

the results shows reduction in accuracy when tested with a test set which has not been 

analyzed before by the neural network. From 100% accuracy in Sample 1, the results 

plunged to an average of 64.67% accuracy.  
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 Figure 31 and Figure 32, shows the information of mistakes, occurrences and 

percentage of accuracy of each number tested using the neural network. In this Test 1, the 

number with the highest failure rate seems to be ‘3’ followed by ‘8’. Other numbers such 

as ‘1’, ‘2’, ‘4’, ‘7’ and ‘9’ have unacceptable percentage of accuracy as well. To clarify 

this situation, it can be seen that the Character Vector feature extraction alone is not able 

to extract the best features from each region of the handwritten number. The numbers ‘3’ 

and ‘8’ appears to have high failure rate because both these numbers can be written at a 

very similar way whereby, most of the regions of the feature extraction module might 

have similar or close enough number of bits especially the right side region, which the 

neural network system could not distinguish. The other numbers as mentioned which are, 

‘1’, ‘2’, ‘4’, ‘7’ and ‘9’ could possibly be facing the same issue as some of the regions 

might have similar number of bits in it, causing confusion to the trained neural network 

system.  From this test, it is concluded that training a neural network using only a simple 

Feature Extraction method, which is Character Vector Module is insufficient to produce 

a robust handwriting recognition system for data entry. The system is further improved in 

Test 2.  

 

4.1.2 TEST 2 
 

Test 2 Handwriting Recognition System includes the combination of several Feature 

Extraction method to enhance the recognition accuracy, namely Character Vector Module, 

Kirsch Edge Detection Module, Alphabet Profile Feature Extraction Module, Modified 

Character Module and Image Compression Module. Since we have known that the system 

has no issues identifying handwritten data in the training set, the system is being tested 

with 2 different types of samples (Appendix H): 

 Sample 3: A test set by 15 random people who wrote 1 set each  

 Sample 4: A test set by 1 random people who wrote 15 sets, but with random 

arrangement of numbers 
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Both the sample sets are again scanned using a scanner and ran into the system to 

determine its accuracy. All the important information from Test 2, such as mistakes, 

occurrences and percentage of accuracy are tabulated with each handwritten number data 

in Table 6. 

Table 6: Percentage of accuracy of Test 2 

 

 

Figure 33: Mistakes and occurrences of each number in Sample 3 of Test 2 
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Handwritten Number

Mistakes and occurrences each number from preset 
amount handwritten numbers recognition by 15 

different test individual for Test 2

Mistakes

Occurrences

Type of 

samples 

Sample 3 Sample 4  

Handwritten 

Numbers 

Occurrences Mistakes Percentage 

of 

Accuracy 

Occurrences Mistakes Percentage 

of 

Accuracy 

Average 

1 15 2 86.67% 26 7 73.08% 79.88% 

2 15 3 80.00% 15 0 100.00% 90.00% 

3 15 3 80.00% 17 0 100.00% 90.00% 

4 15 2 86.67% 10 0 100.00% 93.34% 

5 15 7 53.33% 9 7 22.22% 37.78% 

6 15 1 93.33% 12 1 91.67% 92.50% 

7 15 0 100% 12 2 83.33% 91.67% 

8 15 5 66.67% 12 0 100.00% 83.34% 

9 15 2 86.67% 19 0 100.00% 93.34% 

0 15 2 86.67% 18 0 100.00% 93.34% 

Total 150 Average 82% 150 Average 87.03%  

  Average 84.52% 
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Figure 34: Percentage of accuracy of each number in Sample 3 of Test 2 

 

 

Figure 35: Mistakes and occurrences of each number in Sample 4 of Test 2 
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Figure 36: Percentage of accuracy of each number in Sample 4 of Test 2 

 

Based on Table 6, it is known that handwriting recognition using neural network with 

multiple feature extraction modules of Character Vector Module, Kirsch Edge Detection 

Module, Alphabet Profile Feature Extraction Module, Modified Character Module and 

Image Compression Module have increased the accuracy rate of recognition. This shows 

improvements to the recognition system as the test sets are all new and yet to be analyzed 

before by the neural network. In this Test 2, the percentage of accuracy among the 2 

samples are 82% and 87.04% respectively.  
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tested using the new neural network. In this sample 3 of Test 2, the number with the 

highest failure rate seems to be ‘5’ followed by ‘8’. Other numbers have relatively good 

recognition accuracy, but can be improved further. Figure 35 and Figure 36, shows the 

information of mistakes, occurrences and percentage of accuracy of each number written 

by 1 random people who wrote 15 sets, but with random arrangement of numbers tested 

using the new neural network. In this sample 4 of Test 2, the number with the highest 
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good recognition accuracy, but can be improved further. These feature extraction methods 

still lacks the ability to distinguish curved features as appeared in both number ‘5’ and ‘8’. 

 

4.1.3 TEST 3 
 

As of Test 3 Handwriting Recognition System, a combination of 6 Feature Extraction 

methods were used to improve the accuracy of the handwriting recognition system, 

namely Character Vector Module, Kirsch Edge Detection Module, Alphabet Profile 

Feature Extraction Module, Modified Character Module, Image Compression Module and 

last but not least, Curvature Vector Module. Other than that, Test 3 Handwriting 

Recognition Systems also consist of an additional pre-processing method in which Test 1 

and Test 2 does not undergo, which is slant correction, in order to reduce the variations in 

handwriting of the same number. 

 

 In this test, a total of 60 sets of training data were obtained from random people 

and were used to train the neural network. 8 cases of neural network testing were 

conducted with each having different training sizes, hidden neurons and training 

parameters and results were tabulated in Table 7 (Appendix I). 

 

Table 7: Neural Network Training Accuracy 

Case Training 

Size 

Hidden 

Neurons 

Minimum 

error 

Best Results (%) Avg. 

Accuracy 

(%) 
Trained 

Data 

Untrained 

Data 

1 5 sets 30 0.01 83.33 86.33 84.83 

2 10 sets 25 0.001 78.33 83.00 80.67 

3 15 sets 15 0.00001 91.00 90.33 90.67 

4 20 sets 15 0.00001 66.67 74.00 70.34 

5 30 sets 10 0.0001 65.33 72.33 68.83 

6 40 sets 10 0.0001 55.33 51.67 53.50 

7 50 sets 10 0.0001 35.33 37.67 36.50 

8 60 sets 10 0.0001 10.00 10.00 10.00 
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Figure 37: Graph of Number of Training Sets vs Avg. Accuracy 

 

From the Table 7 above, it is known that the accuracy of the training sets peaked 

at case 3, in which later, the accuracy starts to decline. From Figure 37, it can be deduced 

that the relationship between training parameters and training sizes were known. In neural 

network system architecture, it is proven that the increment of various training sets will 

actually decrease the accuracy of the recognition output. This phenomenon is being 

rectified here in this test and for the time being, the time-frame target of achieving 90% 

accuracy on handwriting recognition is achieved, which is by using 15 sets of handwritten 

training data. 

  

To achieved the accuracy as stated in Table 7, all the tested neural network systems 

were tested with 30 sets of controlled data from trained data and untrained data each. As 

stated below: 

 Sample 5: Trained data represents the data, in which the handwriting is familiar 

with the training data and was written by the same person who wrote the training 

data  
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 Sample 6: Untrained data represents the data, in which the handwriting is not 

familiar with the training data and that the training data was written by other random 

people. 

 The major problem encountered when training neural network is that, most of the 

training stops abruptly before the epochs or goals is achieved. Multiple times of training 

is being carried out again to obtain the highest achievable accuracy before the particular 

set of neural network system is used to be tested onto the controlled set of testing data. A 

considerably large amount of time was spend on training this data and by far, the highest 

accuracy achieved was by using case 3, which the stated parameters and yielded 90.67% 

of handwriting accuracy (Table 8). 

 

Table 8: Percentage of accuracy of Test 3 

 

 

 

 

Type of 

samples 

Sample 5 

Trained Data 

Sample 6 

Untrained Data 

 

Handwritten 

Numbers 

Occurrences Mistakes Percentage 

of 

Accuracy 

Occurrences Mistakes Percentage 

of 

Accuracy 

Average 

1 30 0 100% 30 1 96.67% 98.34% 

2 30 5 83.33% 30 2 93.33% 88.33% 

3 30 2 93.33% 30 2 93.33% 93.33% 

4 30 0 100% 30 1 96.67% 98.34% 

5 30 7 76.67% 30 7 76.67% 76.67% 

6 30 1 96.67% 30 3 90% 93.34% 

7 30 9 70% 30 8 73.33% 71.67% 

8 30 1 96.67% 30 2 93.33% 95% 

9 30 1 96.67% 30 2 93.33% 95% 

0 30 1 96.67% 30 2 93.33% 95% 

Total 300 Average 91% 300 Average 90.33%  

  Average 90.67% 
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4.1.4 COMPARISON AMONG ALL THREE TESTS 
 

 

Figure 38: Comparison between the percentages of accuracy between 3 tests 

 

From this test, it is concluded that the newly trained neural network have greatly improved 

the percentage of accuracy in recognizing handwritten numerical numbers, through 

increasing the number of feature extraction modules, by 19.85% for Test 2 and 26.00% 

for Test 3 (Figure 38). As the time-frame target of this project of 90% is achieved, the 

recognition rate can further be improved, but has to be stopped due to time constraint of 

the timeline of final year project. The trained neural network was used to implement a full 

data entry system with GUI (Graphical User Interface). 
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4.1.5 COMPARISON AMONGST FEATURE EXTRACTION 

MODULES 

  

For each feature extraction module, a basic neural network is trained and the accuracy is 

tested to determine the degree of discrimination among different classes of feature 

extraction modules. From this test, it is known that which feature extraction module gives 

the highest possible accuracy to distinguish one digit from another. 

 

Table 9: Comparison test with each feature extraction module 

Input Feature Extraction Module Total features Accuracy Rank 

Training Sets 

15 x 10 

numerals 

Character Vector Module 35 x 150 64.67% 2 

Kirsch Edge Detection 

Module 

256 x 150 54.00% 3 

Alphabet Profile Feature 

Extraction Module 

10 x 150 28.67% 5 

Modified Character 

Module 

15 x 150 52.00% 4 

Image Compression 

Module 

64 x 150 70.67% 1 

Curvature Vector Module 8 x 150 19.00% 6 

 

From Table 9, it is known that Image Compression Module alone gives the highest 

recognition accuracy followed by Character Vector Module. However, it is known that by 

using single feature extraction modules, the accuracy could not reach the target of 90%. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 
 

The handwriting recognition algorithm has long existed and researched, but have yet to 

achieve a module which is able to produce 100% accuracy due to different handwriting 

samples and languages. This project not only focused on improving handwritten 

recognition algorithms by the previous research done by Poo [1], it also implants the 

concept into an application which is to enhance data entry of examination scores in 

Universiti Teknologi PETRONAS. 

 

 As discussed in the literature review of this progress report, neural network is easy 

to be used and has proven to give reliable and relevant high accuracy results. Hence, by 

continuing the previous research, neural network is an avenue to tackle this problem. 

Sample sets have to be obtained from both students and lecturers as the program has to be 

robust enough to identify two different trends of handwriting on a single score sheet. 

 

 Three tests have been carried out using different feature extraction data to train the 

neural network. Results have proven as vast amount of improvement of 19.85% in 

recognition accuracy between the first and second tests. However, with the aim to achieve 

above 90% accuracy rate, which is 5.48% short, one more feature extraction module, 

which is Curvature Vector module is added on the third test. The recognition accuracy has 

finally exceeded the target to 90.67% and a robust data entry system for UTP examination 

score sheet is being developed 

 

 Further progress into this project would include tuning the recognition system to 

be more robust and accurate can be carried out. Several other feature extraction modules 

such as data symmetry can be tested to achieve a higher accuracy. A better quality web 

camera, with higher pixel count should also be used to capture the whole image and 

overcome the limitations of the current camera. This can help to improve the results of the 

recognition system as higher pixel count web cameras are able to give much more precise 

and higher number of bits when the image is being captured and for the system to process. 
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APPENDICES 
 

APPENDIX A: TEST 1 MATLAB CODES 

a. training_nn.m 

%Input: 5 sets of sample handwritten numerals to be tested 

%Output: A trained neural network system 

%Process: Character vector feature extraction 

 

I = imread('sample.bmp'); 

 
img = edu_imgpreprocess(I); 
for cnt = 1:50 
    bw2 = edu_imgcrop(img{cnt}); 
     charvec = edu_imgresize(bw2); 
   out(:,cnt) = charvec; 
end 

 

P = out(:,1:50);  
T = [eye(10) eye(10) eye(10) eye(10) eye(10)]; 
Ptest = out(:,1:50); 

 

net = edu_createnn(P,T); 

 

b. edu_imgpreprocess.m 

 
%Input: Scanned image of handwritten numerals  

%Output: Preprocessed binary image  

%Process: Converting and plotting the location of objects 

 

function img = edu_imgpreprocess(I) 

  
Igray = rgb2gray(I); 
Ibw = im2bw(Igray,graythresh(Igray)); 
Iedge = edge(uint8(Ibw)); 
se = strel('square',3); 
Iedge2 = imdilate(Iedge, se);  
Ifill= imfill(Iedge2,'holes'); 
[Ilabel num] = bwlabel(Ifill); 
Iprops = regionprops(Ilabel); 
Ibox = [Iprops.BoundingBox]; 
Ibox = reshape(Ibox,[4 50]); 

  
Ic = [Iprops.Centroid]; 
Ic = reshape(Ic,[2 50]); 
Ic = Ic'; 
Ic(:,3) = (mean(Ic.^2,2)).^(1/2); 
Ic(:,4) = [1:50]; 

  
Ic2 = sortrows(Ic,2); 
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for cnt = 1:5 
   Ic2((cnt-1)*10+1:cnt*10,:) = sortrows(Ic2((cnt-1)*10+1:cnt*10,:),4); 
end 

  
Ic3 = Ic2(:,1:2); 
ind = Ic2(:,4); 

  
for cnt = 1:50 
    img{cnt} = imcrop(Ibw,Ibox(:,ind(cnt))); 
end 

 

c. edu_imgcrop.m 

%Input: Preprocessed binary image 

%Output: Cropped image to the edge 

%Process: Removing the white  

 

function bw2 = edu_imgcrop(bw) 

  
[y2temp x2temp] = size(bw); 
x1=1; 
y1=1; 
x2=x2temp; 
y2=y2temp; 

  
cntB=1; 
while (sum(bw(:,cntB))==y2temp) 
   x1=x1+1; 
   cntB=cntB+1; 
end 

  
cntB=1; 
while (sum(bw(cntB,:))==x2temp) 
    y1=y1+1; 
    cntB=cntB+1; 
end 

  
cntB=x2temp; 
while (sum(bw(:,cntB))==y2temp) 
    x2=x2-1; 
    cntB=cntB-1; 
end 

  
cntB=y2temp; 
while (sum(bw(cntB,:))==x2temp) 
    y2=y2-1; 
    cntB=cntB-1; 
end 

  
bw2=imcrop(bw,[x1,y1,(x2-x1),(y2-y1)]);  

 



58 

 

d. edu_imgresize.m 

%Input: Cropped image to the edge  

%Output: Image with matrix 5 x 7  

%Process: Resizing the binary image 

 

function lett = edu_imgresize(bw2) 

 
bw_7050=imresize(bw2,[70,50]); 
for cnt=1:7 
   for cnt2=1:5 
       Atemp=sum(bw_7050((cnt*10-9:cnt*10),(cnt2*10-9:cnt2*10))); 
       lett((cnt-1)*5+cnt2)=sum(Atemp); 
   end 
end 

  
lett=((100-lett)/100); 
lett=lett'; 

 

e. edu_createnn.m 

%Input: Image with matrix 5 x 7 

%Output: A trained neural network system 

%Process: Training the neural network 

 

function net = edu_createnn(P,T) 

  
alphabet = P; 
targets = T; 

  
[R,Q] = size(alphabet); 
[S2,Q] = size(targets); 
S1 = 10; 
net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx'); 
net.LW{2,1} = net.LW{2,1}*0.01; 
net.b{2} = net.b{2}*0.01; 
net.performFcn = 'sse';          
net.trainParam.goal = 0.1;     
net.trainParam.show = 20;       
net.trainParam.epochs = 5000;   
net.trainParam.mc = 0.95;       
P = alphabet; 
T = targets; 
[net,tr] = train(net,P,T); 

 

 

 

f. testing_nn.m 

%Input: Image with matrix 5 x 7 
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%Output: A trained neural network system 

%Process: Training the neural network 

 

I = imread('KK.bmp'); 

  
img = edu_imgpreprocess(I); 
for cnt = 1:50 

bw2 = edu_imgcrop(img{cnt}); 
charvec = edu_imgresize(bw2); 
out(:,cnt) = charvec; 

end 

 
Ptest = out(:,1:50); 
[a,b]=max(sim(net,Ptest)); 

  
for cnt = 1:50 

if (b(cnt)==10) 
    b(cnt)=0; 
end 

end 

  
b = reshape(b,10,[]); 
b = b' 
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APPENDIX B: TEST 2 MATLAB CODES 

a. trainnumeral.m 

%Input: 30 sets of preprocessed image with matrix 1 x 380 

%Output: A trained neural network system 

%Process: Training the neural network 

 

trainsize = 300; 

P = p(:,1:trainsize); 

 

trainsize2=(trainsize/10); 

for (eyesize=1:trainsize2) 

T(:,(eyesize-1)*10+1:eyesize*10)=eye(10); 

end 

 

net = createnn_2(P,T); 

 

b. createnn_2.m 

%Input: Image with matrix 1 x 380 

%Output: A trained neural network system 

%Process: Training the neural network 

 

function net = createnn_2(P,T) 

 

alphabet = P; 

targets = T; 

 

[R,Q] = size(alphabet);   

[S2,Q] = size(targets);   

S1 = 15; 

 

net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx'); 

 

net.LW{2,1} = net.LW{2,1}*0.001; 

net.b{2} = net.b{2}*0.001; 

net.performFcn = 'sse';          

net.trainParam.goal = 0.0001;     

net.trainParam.show = 20;       

net.trainParam.epochs = 8000;   

net.trainParam.mc = 0.95;       

P = alphabet; 

T = targets; 

[net,tr] = train(net,P,T); 
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c. testing_nn_1.m 

%Input: Testing samples of numerical handwritings 

%Output: Recognized numbers from trained neural network 

%Process: Testing the neural network 

 

I = imread('vincent_13.jpg'); 

 
Igray = rgb2gray(I); 
Ibw = im2bw(Igray,graythresh(Igray)); 
Iedge = edge(uint8(Ibw)); 

 
se = strel('square',2); 
Idil=imdilate(Iedge,se); 

 
Ifill = imfill(Idil,'holes'); 

 
[Ilabel num] = bwlabel(Ifill); 
Iprops = regionprops(Ilabel); 
Ibox = [Iprops.BoundingBox]; 
Ibox = reshape(Ibox,[4 num]); 
 

for cnt = 1:num 
img_crop{cnt} = imcrop(I,Ibox(:,cnt)); 

end 

  
for cnt = 1:num 

Igray2{cnt} = rgb2gray(img_crop{cnt}); 
Ibw2{cnt} = im2bw(Igray2{cnt},graythresh(Igray2{cnt})); 

end  

  
noise = 0; 
for cnt = 1:num 

  if (sum(sum(Ibw2{cnt})) <= 55) 
      Ibw2(:,cnt)=[]; 
      noise = noise + 1; 
      num = num - 1; 
  end 

  
  if(cnt == num) 
      break; 
  end 

end 

  
for cnt = 1:num 

   bw2 = imgcrop_1(Ibw2{cnt}); %crop ROI 
   bw3=bw2; 
   alpha=imresize(bw3,[32 32],'nearest'); %resize image to 32x32 
   p1= featext_1(alpha); %call feature extraction matrix 
   out1(:,cnt)= p1;  %temporarily save matrixes in out1 
   charvec = imgresize_1(bw2); %call character segmentation module 
   out(:,cnt) = charvec; 

end 

  
p = [out;out1];     %final 380x1 feature matrix 
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Ptest = p(:,1:num);  
[a,b_ID]=max(sim(net,Ptest)); 

  
for cnt = 1:num 

   if (b_ID(cnt)==10) 
       b_ID(cnt)=0; 
   end 

end 

  
b_ID 

 

d. imgcrop_1.m 

%Input: Preprocessed binary image 

%Output: Cropped image to the edge 

%Process: Removing the white  

 

function bw2 = imgcrop_1(bw) 

  
[y2temp x2temp] = size(bw); 
x1=1; 
y1=1; 
x2=x2temp; 
y2=y2temp; 

  
cntB=1; 
while (sum(bw(:,cntB))==y2temp) 
    x1=x1+1; 
    cntB=cntB+1; 
end 

  
cntB=1; 
while (sum(bw(cntB,:))==x2temp) 
    y1=y1+1; 
    cntB=cntB+1; 
end 

  
cntB=x2temp; 
while (sum(bw(:,cntB))==y2temp) 
    x2=x2-1; 
    cntB=cntB-1; 
end 

  
cntB=y2temp; 
while (sum(bw(cntB,:))==x2temp) 
    y2=y2-1; 
    cntB=cntB-1; 
end 

  
bw2=imcrop(bw,[x1,y1,(x2-x1),(y2-y1)]); 
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e. imgresize_1.m 

%Input: Cropped image to the edge  

%Output: Image with matrix 5 x 7  

%Process: Resizing the binary image 

 

function lett = imgresize_1(bw2) 

 
bw_7050=imresize(bw2,[70,50]); 
for cnt=1:7 

  for cnt2=1:5 
        Atemp=sum(bw_7050((cnt*10-9:cnt*10),(cnt2*10-9:cnt2*10))); 
        lett((cnt-1)*5+cnt2)=sum(Atemp); 
  end 

end 

  
lett=((100-lett)/100); 
lett=lett'; 

 

f. featext_1.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction of the cropped binary handwritten numbers 
 

function p1 = featext_1(alpha) 

 
h = horin_1(alpha);      
v = verti_1(alpha); 
d = diagonal_1(alpha); 
 

pro = profiles_1(alpha); 
 

img = imgcomp(alpha); 
img = im2col(img,[8 8],'distinct'); 
[hd,vd,rdd,ldd] = kirsch_1(alpha); 
p1 = [h,v,d,hd,vd,rdd,ldd,img',pro]';      

 

g. horin_1.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction using horizontal modified alphabet module 
 

function h = horin_1(alpha) 

  
h1 = []; 
h2 = []; 
h3 = [];              %initialized horinzontal matrix 

  
h1 = alpha(1:9,:);     %find the h1 region 
h1 = sum(h1);            



64 

 

h1 = h1'; 
h1 = sum(h1)/288;       %sum all 1 

  
h2 = alpha(10:23,:);        %find the h2 region 
h2 = sum(h2);                
h2 = h2'; 
h2 = sum(h2)/448;       %sum all 1 

  
h3 = alpha(24:32,:);        %find the h3 region 
h3 = sum(h3);            
h3 = h3'; 
h3 = sum(h3)/288;      %sum all 1 

  
h = [h1 h2 h3];         %horinzontal  

 

h. verti_1.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction using vertical modified alphabet module 

function v = verti_1(alpha) 

  
v1 = []; 
v2 = []; 
v3 = []; 
v4 = []; 
v5 = []; 
v6 = []; 
v7 = []; 
v8 = [];                        %initialzed vertical matrix 

  
v1 = alpha(1:13,1:10);  %find the v1 region 
v1 = sum(v1);                
v1 = v1'; 
v1 = sum(v1)/130;           %sum all 1 divide region size 

  
v2 = alpha(1:19,11:22); %find the v2 region 
v2 = sum(v2); 
v2 = v2'; 
v2 = sum(v2)/228;           %sum all 1 divide region size 

  
v3 = alpha(1:13,23:32); %find the v3 region 
v3 = sum(v3); 
v3 = v3'; 
v3 = sum(v3)/130;           %sum all 1 divide region size 

  
v4 = alpha(14:32,1:10); %find the v4 region 
v4 = sum(v4); 
v4 = v4'; 
v4 = sum(v4)/190;           %sum all 1 divide region size 

  
v5 = alpha(20:32,11:22); %find the v5 region 
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v5 = sum(v5); 
v5 = v5'; 
v5 = sum(v5)/156;           %sum all 1 divide region size 

  
v6 = alpha(14:32,23:32); %find the v6 region 
v6 = sum(v6); 
v6 = v6'; 
v6 = sum(v6)/190;           %sum all 1 divide region size 

  
v7 = alpha(1:15,20:32); %find the v7 region 
v7 = sum(v7); 
v7 = v7'; 
v7 = sum(v7)/195;           %sum all 1 divide region size 

  
v8 = alpha(20:32,1:15); %find the v8 region 
v8 = sum(v8); 
v8 = v8'; 
v8 = sum(v8)/195;           %sum all 1 divide region size 

  
v = [v1,v2,v3,v4,v5,v6,v7,v8];  %vertical matrix 

 

i. diagonal_1.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction using diagonal modified alphabet module 

function d = diagonal_1(alpha) 

  
d1 = []; 
d2 = []; 
d3 = []; 
d4 = [];                                %initialized diagonal matrix 

  
temp = []; 
for n = 1:4 
   temp = alpha(n,1:n+4); 
   d1 = [d1 temp];              %find the d1 region from row 1 to 8 
   temp = alpha(n,29-n:32); 
   d2 = [d2 temp];              %find the d2 region from row 1 to 8 
end 

  
for n = 5:12 
   temp = alpha(n,n-4:n+4); 
   d1 = [d1 temp];              %find the d1 region from row 9 to 24 
   temp = alpha(n,29-n:37-n); 
   d2 = [d2 temp];              %find the d2 region from row 9 to 24 
end 

  
for n = 13:16 
   temp = alpha(n,n-4:16); 
   d1 = [d1 temp];              %find the d1 region from row 25 to 32 
   temp = alpha(n,17:37-n); 
   d2 = [d2 temp];              %find the d2 region from row 25 to 32 
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end 

  
d1 = d1'; 
d1 = sum(d1)/size(d1,1);        %sum all 1 divide d1 size 
d2 = d2'; 
d2 = sum(d2)/size(d2,1);        %sum all 1 divide d2 size 

  
for n = 17:20 
   temp = alpha(n,29-n:16);  
   d3 = [d3 temp];              %find the d3 region from row 33 to 40 
   temp = alpha(n,17:n+4); 
   d4 = [d4 temp];              %find the d4 region from row 33 to 40 
end 

  
for n = 21:28 
   temp = alpha(n,29-n:37-n);  
   d3 = [d3 temp];              %find the d3 region from row 41 to 56 
   temp = alpha(n,n-4:n+4); 
   d4 = [d4 temp];              %find the d4 region from row 41 to 56 
end 

  
temp = []; 
for n = 29:32 
   temp = alpha(n,1:37-n); 
   d3 = [d3 temp];              %find the d3 region from row 57 to 64 
   temp = alpha(n,n-4:32); 
   d4 = [d4 temp];              %find the d4 region from row 57 to 64 
end 

  
d3 = d3'; 
d3 = sum(d3)/size(d3,1);        %sum all 1 divide d3 size 
d4 = d4'; 
d4 = sum(d4)/size(d4,1);        %sum all 1 divide d4 size 

  
d = [d1 d2 d3 d4];              %diago 

 

j. kirsch_1.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction using krisch edge detection module 

function [hd,vd,rdd,ldd] = kirsch_1(alpha) 

  
alpha = double(alpha);  

  
mh1 = 1/15 * [  5  5  5  
               -3  0 -3  
               -3 -3 -3]; 

     
mh2 = 1/15 * [ -3 -3 -3 
               -3  0 -3      
                5  5  5]; 
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mv1 = 1/15 * [ -3 -3  5 
               -3  0  5 
                -3 -3  5]; 

             
mv2 = 1/15 * [ 5 -3 -3  
                    5  0 -3                
               5 -3 -3]; 

             
mrd1 =1/15 * [ -3  5  5  
               -3  0  5             
               -3 -3 -3]; 

             
mrd2 =1/15 * [ -3 -3 -3  
                5  0 -3 
                5  5 -3];                  

              
mld1 =1/15 * [ -3 -3 -3              
               -3  0  5  
               -3  5  5];            

             
mld2 =1/15 * [  5  5 -3             
                5  0 -3 
               -3 -3 -3];   

       

             
hd1 = conv2(alpha,mh1,'same');       
hd2 = conv2(alpha,mh2,'same');       
vd1 = conv2(alpha,mv1,'same');       
vd2 = conv2(alpha,mv2,'same');       
rdd1 = conv2(alpha,mrd1,'same');       
rdd2 = conv2(alpha,mrd2,'same');       
ldd1 = conv2(alpha,mld1,'same');       
ldd2 = conv2(alpha,mld2,'same');     

  
hd = max(hd1,hd2); 
vd = max(vd1,vd2); 
rdd = max(rdd1,rdd2); 
ldd = max(ldd1,ldd2); 

  
%figure(2); 
%imshow(hd); 
%figure(3); 
%imshow(vd); 
%figure(4); 
%imshow(rdd); 
%figure(5); 
%imshow(ldd); 

  
hd = imgcomp(hd); 
vd = imgcomp(vd); 
rdd = imgcomp(rdd); 
ldd = imgcomp(ldd); 
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hd = im2col(hd,[8 8],'distinct'); 
vd = im2col(vd,[8 8],'distinct'); 
rdd = im2col(rdd,[8 8],'distinct'); 
ldd = im2col(ldd,[8 8],'distinct'); 

  
hd = hd'; 
vd = vd'; 
rdd = rdd'; 
ldd = ldd'; 

 

k. profiles_1.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction using alphabet profile feature extraction 

function    pro = profiles_1(alpha) 

  
r = ones(1,32)*32;      %initialize right, top, left , and bottom 

feature matrix 
t = ones(1,32)*32; 
l = ones(1,32)*32; 
b = ones(1,32)*32; 

  
for n1 = 1:32 
    for n2 = 1:32           %check to find the edge from right boundry 
        if alpha(n1,n2) == 1     
            r(n1) = n2-1;    
            break;      %row 3, 8, 24, 32, 40, 56, 61 
        end 
      end 
end 

  
for n1 = 1:32 
    for n2 = 1:32           %check to find the edge from top boundry 
        if alpha(n2,n1) == 1         
            t(n1) = n2-1;    
            break;      %column 3, 8, 24, 32, 40, 56, 61 
         end 
      end 
end 

  
for n1 = 1:32 
    for n2 = 1:32           %check to find the edge from left boundry 
        if alpha(n1,33-n2) == 1 
            l(n1) = n2-1;    
            break;          %row 3, 8, 24, 32, 40, 56, 61 
        end 
      end 
end 

  
for n1 = 1:32 
    for n2 = 1:32            
        if alpha(33-n2,n1) == 1 
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            b(n1) = n2-1;    
            break;          %column 3, 8, 24, 32, 40, 56, 61 
        end 
      end 
end 

  
wid = 32 - [ l(6)+r(6) l(16)+r(16) l(26)+r(26) ]; 
hei = 32 - [ t(6)+b(6) t(16)+b(16) t(26)+b(26) ]; 

  
r = diff(r); 
t = diff(t); 
l = diff(l); 
b = diff(b); 

  
pro = [max(r) max(t) max(l) max(b) wid hei]; 
pro = pro/32; 

 

 

l. imgcomp.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x380 matrix  
%Process: Feature extraction using image compression module 

function out = imgcomp(in) 

  
out = []; 

  
for i = 1:8 

for j = 1:8 
   temp = in(4*i-3:4*i,4*j-3:4*j); 
   temp = sum(temp); 
   out(i,j) = sum(temp')/16; 
end 

end 
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APPENDIX C: TEST 3 MATLAB CODES 

a. circle.m 

%Input: Cropped and resized binary handwritten numbers 
%Output: Features in 1x388 matrix  
%Process: Feature extraction using curvature vector module 

Ori = ~(slantcorrection(scan_image)); 
Ori = quality(Ori); 

  
%----------------------------------------------------------------------

---% 
a=100; b=100; 
[row,column]=size(Ori); 
Test=imresize(Ori,[a b]); 

  
%------------------add black cover around the image--------------------

---% 
Test(:,b+1)=0; 
Test(a+1,:)=0; 
for i=b:-1:1 
    Test(:,i+1)=Test(:,i); 
end 
Test(:,1)=0; 
Test(:,b+2)=0; 
for i=a:-1:1 
    Test(i+1,:)=Test(i,:); 
end 
Test(1,:)=0; 
Test(a+2,:)=0; 
%--------------------------------Structure-----------------------------

---% 

  
c_top=[0,0,0,0]; c_bot=[0,0,0,0]; 
point=[0,0,0,0,0,0,0,0,0,0,0,0]; 

  
%------------------------choose best column----------------------------

---% 
oreo = regionprops(Test,'centroid'); 

  
best_column = floor(oreo(1,1).Centroid(1)); 

  
%-----------------------calculate top circle---------------------------

---% 
for i=1:a+1 
    if c_top(1)~=0 || c_top(2)~=0 
        break; 
    end 
    if Test(i,best_column)==1 && Test((i+1),best_column)==0 && i<44 
        point(5)=i+1; 
        while Test(point(5),best_column)==1 
            point(5)=point(5)+1; 
        end 
        point(6)=point(5); 
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        while Test(point(5),best_column)==0 && point(5)<102 
            for j=best_column:b+1 
                if Test(point(5),j)==1 && Test(point(5),(j+1))==1 
                    c_top(1)=c_top(1)+1; 
                    break; 
                end 
            end 
            point(5)=point(5)+1; 
        end 
        if point(5)==102 
            c_top(1)=0; 
        else 
            c_top(2)=point(5)-point(6)-c_top(1); 
        end 
    end      
end 

  
for i=1:a+1 
    if c_top(3)~=0 || c_top(4)~=0 
        break; 
    end 
    if Test(i,best_column)==1 && Test((i+1),best_column)==0 && i<44 
        point(7)=i; 
        while Test(point(7),best_column)==1 
            point(7)=point(7)+1; 
        end 
        point(8)=point(7); 
        while Test(point(7),best_column)==0 && point(7)<102 
            for j=best_column:-1:1 
                if Test(point(7),j)==1 && Test(point(7),(j-1))==1 
                    c_top(3)=c_top(3)+1; 
                    break; 
                end 
            end 
            point(7)=point(7)+1; 
        end 
        if point(7)==102 
            c_top(3)=0; 
        else 
            c_top(4)=point(7)-point(8)-c_top(3); 
        end 
    end      
end 

  
%-----------------------calculate bottom circle------------------------

---% 
for i=a+2:-1:2 
    if c_bot(1)~=0 || c_bot(2)~=0 
        break; 
    end 
    if Test(i,best_column)==1 && Test((i-1),best_column)==0 && i>70 && 

i<102 
        point(9)=i; 
        while Test(point(9),best_column)==1 
            point(9)=point(9)-1; 
        end 



72 

 

        point(10)=point(9); 
        while Test(point(9),best_column)==0 && point(9)>1 
            for j=best_column:b+1 
                if Test(point(9),j)==1 && Test(point(9),(j+1))==1 
                    c_bot(1)=c_bot(1)+1; 
                    break; 
                end 
            end 
            point(9)=point(9)-1; 
        end 
        if point(9)==1 
            c_bot(1)=0; 
        else 
            c_bot(2)=point(10)-point(9)-c_bot(1); 
        end 
    end      
end 

  
for i=a+2:-1:2 
    if c_bot(3)~=0 || c_bot(4)~=0 
        break; 
    end 
    if Test(i,best_column)==1 && Test((i-1),best_column)==0 && i>70 && 

i<102 
        point(11)=i; 
        while Test(point(11),best_column)==1 
            point(11)=point(11)-1; 
        end 
        point(12)=point(11); 
        while Test(point(11),best_column)==0 && point(11)>1 
            for j=best_column:-1:1 
                if Test(point(11),j)==1 && Test(point(11),(j-1))==1 
                    c_bot(3)=c_bot(3)+1; 
                    break; 
                end 
            end 
            point(11)=point(11)-1; 
        end 
        if point(11)==1 
            c_bot(3)=0; 
        else 
            c_bot(4)=point(12)-point(11)-c_bot(3); 
        end 
    end      
end 

  
c_top = c_top / 100; 
c_bot = c_bot / 100; 
circlefea = [c_top'; c_bot']; 
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APPENDIX D: TEST 1 TRAINING SET 
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APPENDIX E: TEST 2 TRAINING SET 
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APPENDIX F: TEST 3 TRAINING SET 
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APPENDIX G: TEST SET SAMPLE FOR TEST 1 

TEST SET SAMPLE 1 FOR TEST 1 

 

Results: 
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TEST SET SAMPLE 2 FOR TEST 1 

 

Results: 
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APPENDIX H: TEST SET SAMPLE FOR TEST 2 

TEST SET SAMPLE 3 FOR TEST 2 

 

Results: 
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TEST SET SAMPLE 4 FOR TEST 2 

 

Results: 
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APPENDIX I: TEST SET SAMPLE FOR TEST 3 

TEST SET SAMPLE 5 FOR TEST 3 
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Results: 
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TEST SET SAMPLE 6 FOR TEST 3 
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Results: 
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APPENDIX J: SEDEX AWARDS 
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