

FINAL YEAR PROJECT 2

FINAL REPORT

DEVELOPMENT OF ALGORITHM FOR IMPROVED MAZE NAVIGATION

BY

FAIZ AYDIL BIN AHMAD

14682

ELECTRICAL AND ELECTRONICS ENGINEERING

SV: MR. ABU BAKAR SAYUTI B. M. SAMAN

ABSRACT

Autonomous navigation is a crucial technology that helps a mobile robot to move independently

and navigating through unknown areas that are impossible for human to venture due to limitation

of physical abilities or even danger that may threaten life. By solving a maze, the algorithms and

behaviour of the robot can be studied and improved. This paper describes the development of

algorithm for improved maze navigation and it is a continuation on a previous project. Detection

of walls and opening in the maze were accomplished using ultrasonic range-finders. The robot

will be able to learn the maze, find all possible routes and solve it using the shortest one.

TABLE OF CONTENT

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1: INTRODUCTION

Background of Study 1

Problem Statement 3

Objectives 3

Scope of Study 3

CHAPTER 2: LITERATURE REVIEW 4

CHAPTER 3: METHODOLOGY

 Research Methodology 7

 Project Activities 8

 Key Milestone and Gantt Chart 9

CHAPTER 4: RESULTS AND DISCUSSION

Introduction 10

Preliminary Design 11

 Results and Discussion 13

CHAPTER 5: CONCLUSION AND RECOMMENDATION 18

REFERENCES 19

LIST OF FIGURES:

Figure 1: Methodology of the project

Figure 2: Arduino Mega board

Figure 3: Suggested flow chart for the flood-fill algorithm

Figure 4: Mobile robot platform

Figure 5: Design of the robot

Figure 6: Actual robot

Figure 7: Ultrasonic sensor used

Figure 8: L293D, motor driver used

Figure 9: Power source for the robot; 9V battery

Figure 10: Simple maze for testing

Figure 11: Testing result from the robot

Figure 12: Result for test run with another maze design

LIST OF TABLES:

Table 1: Project flow/Gantt Chart

CHAPTER 1: INTRODUCTION

BACKGROUND

Robotic field has caught a big attention to our world as it conveniently increases efficiency of

especially monotonous work. This field does include the industrial robots and mobile robots that

is used for various purposes. As the fields become open for everyone, a lot of competition such

as MicroMouse competition started to build up as to making the best robot. In the MicroMouse

competition, it normally uses 256 square units of maze. Micromice or the robot will compete to

solve the maze without the needs of any manual assistance. In order to do so, suitable algorithm

should be use to solve the maze in the least time possible.

PROBLEM STATEMENT

The problem faced is that whether the algorithm will be using wall-following, flood-filling, A*

search algorithm and many more method possible or whether to combine two or more algorithm

in a robot. There are pro and cons for every each of the algorithm that may varies the results in

different efficiency and effectiveness in solving the maze. Other consideration is that how much

time will it take to find the destination as the robot itself will take time to process it’s

surrounding depending on the algorithm being used by the robot.

OBJECTIVES AND SCOPE OF STUDY

This study is aiming on producing a mobile robot that can solve and navigate through a maze

without making any collisions with the walls within the maze itself. It will be using PIC

microcontroller as the central processing unit for the whole robot itself. Note that this project is a

continuation to a previous project that focuses on algorithm development.

The objectives of the study is mainly:

i. To build a mobile robot capable in navigating and solving a maze.

ii. To study the best algorithm of navigating and solving the maze.

iii. To implement the maze-solving algorithm on a real maze robot.

The scope of study for this project is:

I. Software: Studying the algorithm used in maze solving robot and developing a hybrid

algorithm that will perform better in the real environment

II. Hardware: Further study in terms of fabricating the robot model which includes tuning

and synchronizing each component to ensure error free

CHAPTER 2: LITERATURE REVIEW & THEORY

The most crucial thing to be decided in this project is the algorithm that it will be using to

navigate through and solve the maze. The hardware part that is the sensor, PIC microcontroller,

motors and others can easily be determined after the algorithm is decided which is of course,

following the necessities of the algorithm in terms of those hardware requirement.

In general, the problem faced by any developer for this project is that the real mobile robot in

real environments does not work as accurate as the simulation of the mobile robot navigating

through the maze. This is due to many factor which are mostly related to the hardware

configuration of the robot itself. Sometimes errors from the sensors and, errors from the motors

and the wheels such as slipping and other kinds of hardware intrusion affects a lot in the mission

of navigating through the maze [2]. In order to reduce these kind of errors, the motor need to be

calibrated before being used in the robot itself. The sensors must be damage-free so that it will

reduce the probability of giving faulty inputs.

In determining the algorithms, the most efficient and effective method must be chosen. As each

of the method proposed has their own pros and cons, finding the method with least disadvantages

may help in making this project a successful project. As the wall-following method may took

time in determining its route, it is the convenient way of finding the destination set in the maze.

The flood-fill technique also take quite amount of time as it will have to undergo four steps

before it moves for each cell it goes through that is update walls, flood maze, turn determination

and moving to the next cell [1]. The A* search algorithm uses nodes as it paths in determining

the shortest route to the destination. However, this method are mostly not suitable for maze

navigation as it took time to determining every each path for every each cells in the maze.

CHAPTER 3: METHODOLOGY/PROJECT WORK

Research Methodology:

Figure 1: Methodology of the project

Project Activities:

Preliminary Research

In the progress of completing the prototype for the maze robot after purchasing all equipment

that are required for the project. All calibration is executed including sensor calibration, motor

calibration and most importantly the development of the software code including the improved

flood-fill algorithm for the maze solving robot.

Experimental Procedure

Tuning and calibration of the motor, sensor along with the coding are conducted to ensure

synchronization of all the equipment needed for the robot. Basic algorithm are used to test the

robot to ensure it worked well. Then only after being ensured of its functionality, the improved

flood-fill algorithm is included in the codes.

Data and Analysis

Collect results from the simulation of RobotBasic and Arduino Compiler. The simulation result

is analyses on the range of effectiveness of the ultrasonic sensor and also how the robot

movement as it go through the maze based on the coding. Then real testing is executed to

compare simulation and the prototype.

Testing and Finalized Design

All of the tested sensors are codes are being improved for maximum effectiveness of wall

detection and maze solving. Results from the simulation and measurement will be compared.

Robot are then being tested of its capability of detecting obstacles in the maze and avoided them.

Conclusion and Recommendation

The overall design parameters and result will be described and highlighted according to the

results obtained from the testing.

 PROJECT FLOW/GANTT CHARTT

Table 1: Project Flow/Gantt Chart

CHAPTER 4: RESULTS AND DISCUSSION

This chapter will explain about the findings and discussion of the project itself including the

testing of the sensors used in the maze robot solver.

Microcontroller programming

There are many options of microcontroller that can be used in this project. Although, we will

only be comparing the most used microcontroller that is Arduino and PIC. The best

microcontroller must be choose so that it meet the programming code that may use quite a lot

of memory and RAM. In comparison, PIC is only a chip whereas Arduino is a platform itself.

So in terms of saving time and work, Arduino provides a very convenient function as the

platform itself has all what it needs in doing the project whereas PIC might need a PCB board

and any other component to make it as complete as a platform like Arduino. However, PIC is

much cheaper and in terms of data storage and RAM, some of the PIC does exceed the

specification of the Arduino. Also, PIC might be the best option if the mobile robot platform

itself uses PIC as its main microcontroller where the platform will be equipped with PIC

itself. It fully depends on what mobile robot platform that will be used in this project. But as

the platform of mobile robot does not include the microcontroller, it is decided that Arduino

Uno will be used as it is the best option for this condition.

Figure 2: Arduino Uno board

Sensors

The suitable sensor that can be used in this project is ultrasonic. This due some of the

ultrasonic sensor’s advantages which are;

i. Able to measures and detects distances to moving objects.

ii. Impervious to target materials, surface and colour.

iii. Solid-state units have virtually unlimited, maintenance-free lifespan.

iv. Detects small objects over long operating distances.

v. Resistant to external disturbances such as vibration, infrared radiation, ambient

noise and EMI radiation.

vi. Ultrasonic sensors are not affected by dust, dirt or high-moisture environments.

vii. Discrete distances to moving objects can be detected and measured.

viii. Less affected by target materials and surfaces, and not affected by colour. Solid-

state units have virtually unlimited, maintenance free life. Can detect small objects

over long operating distances.

Flood-fill algorithm

This algorithm will assign values to every each of the cell inside the maze whereas the values

will represent the distance from any cell on a maze to the destination [4]. It is considered as

the best algorithm in maze solving. It involves in assigning values to each of cells of maze

where the values represent the distance from any cell on a maze to destination cell. The

algorithm contain of four parts:

 Update walls

 Flood maze

 Turn determination

 Move to next cell

This will be the main algorithm that will be combine with other feasible algorithm to make

the maze solving algorithm much more efficient by saving time in deciding.

Figure 3: Suggested flow chart for the flood-fill algorithm

Mobile robot platform

Figure 4: Mobile robot platform

The image above shows the platform that will be used in this project. We decided to choose

this platform as it is much more suitable in moving and navigating through narrow maze as it

is much more compact in terms of the design. Also, considering the time factor, buying a

ready-made platform instead of building itself helps reduce the time spent and more time can

be used to develop the algorithm as it has the bigger priority.

Software

As the platform itself uses Arduino Mega as the microcontroller, the software that will be

used is Arduino C Compiler itself for the programming part. For simulation of the robot,

RobotBasic will be used to determine the effectiveness of the algorithm used for this project.

Figure 5: Design of the robot

The above figure shows the design of the robot. The ultrasonic sensor is placed in front of the

robot for wall detection. The interface board will connect the ultrasonic sensors and the

encoder to the Arduino board. For the movement of the robot, when turning left or right, one

of the wheel will stop moving and the other will move according to the desired location. For

the robot to map the whole maze, the circumference of the wheel will be noted in order to

plan its movement using the algorithm.

Figure 6: Actual robot

Figure 7: Ultrasonic sensor used

Figure 8: L293D, motor driver used

Figure 9: Power source for the robot; 9V battery

Description for the robot development:

Three ultrasonic sensor is used for the robot; front, left and right. The position of the left and

right sensors will be placed 90 degrees as it has the function of detecting wall on each side

and ensure it does not run to near or even crash into the wall. The front sensor will be used to

ensure the robot to detect any obstacles in front of it and at the same time as an input for the

algorithm when approaching a junction to choose the path that will lead it to the end point. In

order to ensure that the sensors picks up the input that we need, a certain amount of delay

time should be given in the codes so that the results will be more accurate and the robot can

move smoothly. However, if the delay time is too long, it might cause the robot to be slow in

deciding its action thus increase the amount of time for the robot to solve the maze. Basic

code of algorithm is already applied to the robot for testing purposes. Only after being

calibrated and synchronized with the sensors and motors the improved flood-fill algorithm

will be included inside the coding. Problem faced so far is that the supply power from the

Arduino board are not enough to make the motor move. Although the code works but because

of the weak power supply, the robot can barely move. In order to solve the problem, a direct

supply from the 9V battery will be drawn to the L293D motor driver so that it will have

enough power to operate. Other problem faced is that the speed of the motor is not balanced

so it might be able not move perfectly straight. To solve this problem, tuning is needed to

make sure the motor does not have any zero error and thus enables it to move straight.

.

Test run results:

Maze design 1:

The robot is then tested to two design of maze to determine how well the robot solve the

maze. As the maze is a reconfigurable maze, it makes the building of the maze much easier

and not time consuming. The reconfigurable maze can then be used for the continuation or

other project that requires such equipment.

Figure 10: Simple maze for testing

Figure 11: Testing result from the robot

The figure above shows the result of the testing for the simple maze. No major problem

occurred while the robot is navigating through the maze. Although, sometimes the robot take

some delay in turning to the correct path due to unsynchronized coding with real test. After

being tested again with making the delay a bit shorter, the robot run smoothly through the

maze.

Maze design 2:

Figure 12: Result for test run with another maze design

The green spot indicates as the starting point for the robot while the black spot indicates the

end point. While the peach colour shows the path taken by the robot. The result from the test

run shows that the robot are able to find the end point of the maze. Although, the maze is

quite simple and not challenging enough to really know how well the algorithm works.

CHAPTER 5: CONCLUSION & RECOMMENDATION

As a conclusion, the maze-solving robot is an algorithm development project. It requires

knowledge on both hardware and software in Arduino board, DC motor, sensors as well as

motor driver circuit. The design of the robot does affect how well the robot can perform on a

real maze. Also, the tuning of both sensor and motor are very important as it determines how

smooth the robot can explore inside the maze. Therefore, the motor should be made zero-

error free and the ultrasonic should be tested and then the codes should be adjusted according

to the range of detection of the sensor. Also, the choosing of power source for the robot does

determine how the motor will efficiently move without being disturbed by lack of power or

anything related to the power source problem. If the budget for the project is high, investing

on a high quality ultrasonic sensor will highly increase the efficiency of the obstacles

detection that may help improves the time for the robot to solve the maze. In order to put this

project to a whole new level, not only the improvement of navigation algorithm need to be

developed to enhance the technology in navigation robot and push the robot to more extreme

condition, but also the improvement on used sensor in project such as GPS tracking and

image processing does make the robot much more reliable in any terrains it will be exploring.

REFERENCES

[1] H. Dang, J. Song and Q. Guo, “An Efficient Algorithm for Robot Maze-Solving,”

School of Electric and Information Engineering, Shaanxi University of Science and

Technology, China, 2010.

[2] B. H. Kazerouni, M. B. Moradi and P. H. Kazerouni, “Variable Priorities in Maze-

Solving Algorithms for Robot’s Movement,” Students of Electrical and Computer

Engineering, Shahid Behesti University, 2003.

[3] N. Yilmaz and S. Sagiroglu, “Web-Based Maze Robot Learning Using Fuzzy Motion

Control System,” Faculty of Engineering-Architecture, Selcuk University, Turkiye,

2007.

[4] Wikipedia. (2014, August 16). Flood-fill [Online]. Available:

http://en.wikipedia.org/wiki/Flood_fill

[5] J. Dixon, O. Henlich. (2014, October 16). Maze Robot Navigation [Online].

Available: http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/jmd/

APPENDICES

Figure 11: Wall Follower Maze Solution

Coding

