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ABSTRACT 

In this paper, 3D reconstruction is done by using fringe projection profilometry (FPP).  

Fringe pattern is analyzed by using inverse function analysis (IFA) that is mathematically 

prove to improve accuracy compare to traditional methods. However, it known that IFA 

applied polynomial fittings which suffer from Runge phenomenon due to high degree 

polynomial used. Thus, this paper will introduce spline fitting in IFA method for 3D 

reconstruction to avoid Runge phenomenon. Thus, simulation by using MATLAB will be 

done to prove the ability of this method to produce 3D reconstruction with better accuracy 

compare to normal IFA. 
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CHAPTER 1 
INTRODUCTION 

1.1 BACKGROUND  

 

Recent years, gaining precision and accuracy in 3D reconstruction had become 

great interest for many researchers.  

 

Figure 1.1 – 3D Acquisition Method 

 

There are a few method to acquire 3D information of an object. The first method is Laser 

Ranging System which applied the principle of reflected laser from the surface of an object 

and calculate the depth using the different time for the laser to project from transmitter and 

return to the receiver. The second method is Structured Light Method, where a pattern is 

projected on the object, by using deformation on the pattern, the depth can be calculated.  

The third method is Shading Method where shading employ photometric stereo technique 

is applied to acquire depth measurements. The last method is Stereoscopic Method where 
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two cameras are used to capture the same point at different angle and the depth is calculated 

by using triangulation. 

In this project, fringe projection profilometry (FPP) is implemented which is 

categorized under structured light method. A basic fringe projection profilometry usually 

consists of 5 steps in constructing 3D images as shown in Figure 1.2.  The first is setup and 

projection where all the equipment including camera and projector is set up as shown in 

Figure 3 and calibrates. Fringe pattern is generates and projects on the reference plain and 

the objects.  The second step is acquisition where the two images are capture. The first 

image is the reference pattern and the second image is the deformed pattern due to object 

presence. Next step is fringe analysis, where the phase is deduced by using one of the fringe 

analysis methods on the fringe images captured. The fourth step is phase unwrapping, 

where the continuous phase distribution from the wrapped phase map is attained. The last 

one is conversion, where the unwrapped phase map is convert to absolute height map. 

 

Figure 1.2 – Basic Fringe Projection Profilometry 

 

 

 

1.2 PROBLEM STATEMENT 

Previous methods in 3D reconstruction were able to be done but with higher errors 

and affected the accuracy. This is cause by polynomial fitting that causes Runge 

phenomenon. 
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1.3 OBJECTIVES  

• To develop a sub-pixel 3D reconstruction algorithm 

• To apply spline fitting in IFA 

1.4 SCOPE OF STUDY 

In this paper, the author will explain about the implementation of gamma distortion 

compensation, empirical mode decomposition, and inverse function analysis in fringe 

projection profilometry. Simulation in this paper is done by using MATLAB.  
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CHAPTER 2 
LITERATURE REVIEW AND THEORY 

 

In recent years, the research on 3D reconstruction methods were conducted mostly 

by using fringe projection profilometry [1]. Mostly due to the fact that the technique is able 

to capture high-resolution 3D images of the objects [1]. However, the presence of non-

sinusoidal factors in the fringe projection cause the pattern projected on the object to be 

deformed and causing phase measurement errors[1, 2]. It has been identified that the causes 

of the non-sinusoidal waveform appearance are due to the non-linearity gamma distortion 

from the projector and also non-linearity of the CCD camera response [2, 3].  

Based on Zhang et al. [4], gamma distortion is a dominant error source if phases 

measuring profilomtery. Zhang and Huang introduce look-up table (LUT) to compensate 

the non-linearity in fringe projection [5]. Phase error is calculated and stored in the LUT.  

The pattern will be almost sinusoidal even though not perfect.  

After compensation of the gamma distortion, the fringe is projected on the reference 

plane and also on the object. Both reference pattern and deformed pattern are captured by 

camera. They will be noise present in the images and denoising method need to be applied. 

Noise presence will also introduce phase measurement errors. Boudraa et al introduce 

denoising technique by using empirical mode decomposition (EMD) [6]. Firstly, the signal 

is decomposed into intrinsic mode functions (IMF) which an oscillatory components 

through a process called sifting. One of the two effect of sifting is to remove riding waves 

and the other one is to smooth uneven amplitude [6]. IMFs must fulfill two requirements 

[6]: 

I. Extremas’ and zero crossings’ number must be equal or at least differ by 

one 

II. Envelope filter’s mean value define by local maxima and envelope defined 

by local minima must be zero at any point 
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EMD algorithm is introduced based on producing smooth envelopes define by local 

minima and maxima of a sequence, then a subsequent subtraction of the mean of these 

envelopes from the initial sequence. Figure 2.1 show the procedure of plotting envelope.  

 

Figure 2.1 – Envelopes plotting and their mean 

All the local maxima are connected by using cubic spline lines to produce upper envelope. The 

same goes with local minima to produce lower envelope. The blue line represent the data and the 

local maxima and minima is dotted red and blue respectively. The dashed line represent calculated 

mean of the two envelopes. The calculated mean value then is subtracted from the initial sequence 

which is the data. The result of the subtraction is the first approximation of the empirical function. 

The final IMF is obtained by repeating this method replacing the data with the subtraction result as 

the next sequence. This repeated process is called sifting [6]. This sifting process is stopped after a 

certain given stoppage criterion is met.  

The result of the successful sifting process is the first IMF. The first IMF is subtracted from the 

original signal and the sifting process is repeated to obtain the next IMF until all IMFs is extracted. 

It can be known when all the IMFs is extracted when the residue contains no more than two 

extremas. EMD algorithm will be applied on both reference pattern and deformed pattern to denoise 

them.  
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After the first sequence which is projection and acquisition, here comes the fringe 

analysis which is a very complex part. As mentioned beforehand, there are several methods 

on fringe analysis done by previous researchers. Takeda and Mutoh [7] introduce Fourier 

transform profilometry (FTP) which is a computer-based technique that automatically 

measure 3D shape.  FTP obtained the wrapped phase map by applying fast Fourier 

transform (FFT). The method obtained the spectrum of modulated fringe pattern by 

applying discrete FFT, then implementing inverse Fourier transfrom (FT) after the 

fundamental spectrum is extracted. Finally, the phase measurement of the object is 

retrieved. However FTP cannot obtained the correct phase measurement due to spectral 

leakage in the region of discontinuities or the around the large surface slope areas. 

Therefore, by windowing the fringe pattern before FT is applied can reduce the leakage [8]. 

Windowed Fourier Transform is introduce to as an upgrade for the FTP [9, 10]. A 

local window function is introduced into FTP [10]. The general idea of WFT is: dividing 

the fringe pattern into number of local fringe patterns; each local fringe pattern is then 

applied with FT; superimposed is applied to all the local fringe pattern to get the whole 

fringe pattern’s spectrum; inverse FT is applied after extracting the fundamental spectrum 

and the phase measurement is retrieved [8]. The precision is increase by taking larger 

windows on the signal. However the choice of windows size is crucial and very difficult to 

determine.  

Wavelet Transform (WT) applied the demodulation of the deformed fringe pattern 

capture by the camera and extract the phase and calculate the height of the object [11]. WT 

perform local filtering operations on a signal by using scaled and shifted version of a 

mother wavelet. After the mother wavelet is chosen, correct phase measurement can be 

extracted by adapting the mother wavelet to the fringe pattern. The phase distribution is 

obtained at ridge point of the wavelet transform [14, 18]. WT method avoid the choosing 

of windows size which is important in WFT method. Thus, the error is less propagated.  

The resultant phase function is wrapped phase map where unwrapping is required 

before the conversion to real height can be done [12]. Phase unwrapping can be difficult 

task due to the occurrence of shadows, low fringe demodulation, non-uniforms reflectivity, 

noise and more in real time [1]. Thus it is very important to properly remove unrelated 
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phase from the shaped-related phase so that the conversion from phase distribution to real 

height exhibit less errors, hence achieving higher accuracy.  

Hu et al introduced Inverse Function Analysis (IFA) method to be used on FPP [13].  

This method is a straightforward method to calculate the shift distribution [13, 14]. Same 

as previous method, this method require two image of the fringe pattern, which is a 

reference pattern where the pattern is projected on the reference plane, and a deformed 

pattern, which is the pattern that is projected on the object [15]. The method reconstruct 

3D images by applying computed inverse function on the deformed pattern. Determination 

of deformed pattern is done by using polynomial fitting. Nonetheless, Runge phenomenon 

will occur for high degree polynomial fitting [16]. Thus, Hani et al applied spline fitting 

instead of polynomial fitting to avoid Runge phenomenon [14] and introduce Spline 

Inverse Function Analysis (SIFA).  

 

 

Figure 2.2 – Basic Fringe Projection Profilometry [14] 

  

Figure 2.2 show a basic configuration for fringe projection profilometry. At point R, the 

axis of both camera and projector crossed at angle θ. Entrance pupil of the camera is 

represented by 𝐸𝐸𝑐𝑐  and exit pupil of the projector is represented by 𝐸𝐸𝑝𝑝 . 𝑙𝑙 represents the 

distance of the camera parallel with projector to the reference plane and 𝑑𝑑0 represents the 
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distance between camera and projector.  A ray projected from 𝐸𝐸𝑝𝑝 onto point A will be 

reflected into the camera from the same point, however, if an object present, the ray will 

be reflect from point C to the camera.   

Then, by performing Thales Theorem operation, the height of the object, 𝐷𝐷(ℎ) can be 

computed as: 

ℎ(𝑥𝑥) = 𝑙𝑙.𝑢𝑢(𝑥𝑥)
𝑑𝑑0+𝑢𝑢(𝑥𝑥)

     (1) 

where 𝑢𝑢(𝑥𝑥) represent the displacement rays due to object presence  

 The value of 𝑢𝑢(𝑥𝑥) denotes by: 

𝑢𝑢(𝑥𝑥) = 𝑥𝑥 − 𝑠𝑠−1(𝑑𝑑(𝑥𝑥))    (2) 

  where 𝑠𝑠(𝑥𝑥) represent the original signal 

Then, monotonic parts of signal 𝑠𝑠(𝑥𝑥) is extracted. After performing the extraction of each 

of monotonic parts, spline fitting is applied. The inverse of the fitted function is applied as 

in equation (2) to the intensity value of the deformed signal to obtain the shift function 𝑢𝑢(𝑥𝑥). 

The object height can obtain by using equation (1) and value of 𝑢𝑢(𝑥𝑥). 

In this paper, a different implementation of spline fitting is proposed. This method 

is called Global Spline Inverse Function Analysis (GSIFA). GSIFA applied same method 

as SIFA and IFA only without the monotonic part. 
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CHAPTER 3 

METHODOLOGY / PROJECT WORK 

1.1  FLOW CHART 

Figure 3.1 – Project Flow Chart

Project 
Selection

• Short briefing about the project by supervisor
• Receive a few research paper related the the project

Research on 
Project

• Study on fringe projection profilometry
• Study on fringe analysis

Tools and 
Equipments

• Meets post graduate student to receive all the equipments needed for the 
project

• Set up the tools and equipments in the lab

Familiarize 
with 

MATLAB

• Study on how to create fringe pattern in MATLAB
• Develop an algorithm for calculting height of object using 1-D sinusoidal 

signal

Fringe 
Projection

•Developed fringe pattern as reference patter
•Developed artificial object to obtain deformed pattern
•Developed IFA algorithm to obtained height from deformed and reference pattern

Data Collection 
and 

Documentation

•All result is documented for dissertation
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1.2  GANTT CHART 

 

Table 3.1 – Project Gantt chart 

 

 

 

 

 

Activity/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Project 
Selection 

                            

Research on 
project 

                            

Tools and 
Equipment 

                            

Familiarize 
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MATLAB 

                            

Fringe 
projection 

                            

Data 
Collection 

                            

Documentation                             
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Figure 3.3 – Key Milestone 

Week 1:
Project Selection

Week 6:
Submission of 

Extended Proposal

Week 9:
Proposal Defence

Week 14:
Submission of 
Interim Report

Week 22:
Submission of 

Progress Report

Week 25:
ELECTREX

Week 27:
Submission of Draft 

Final Report

Week 28;
Submission of Final 

and Technical Report

Week 29:
VIVA and Final 

Report Submission
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1.3 EXPERIMENTAL METHODOLOGY 

 

Part 1: Generating of 1-D deformed signal in MATLAB by using artificial object 

For familiarization with MATLAB, I did an exercise to generate deformed signal in 

MATLAB. Steps for computing the deformed signal are as follows: 

i. A sinusoidal signal is created to act as reference signal. 

a. t=0:1000; 

b. N=length(t); 
c. f0=10; 

d. x=127.5+127.5*cos(2*pi*f0*t/N)  
ii. Artificial object height is created using parabolic equation. 

a. parabobj=-10*(t-501).^2; 
b. all the negative value of the parabolic equation is change to zero 

iii. The length between camera and projector, length between reference plane 

and camera-projector is set. 

a. 𝑑𝑑0 = 300mm 

b. 𝑙𝑙 = 800 mm 

iv. By using equation below, the phase modulation can be measured. 

a. Phase=parabobj*2*pi*f0*d0./(parabobj-l0) 
v. Deformed pattern is then computed using calculated phase modulation 

a. y = 127.5+127.5*cos((2*pi*f0*t-Phase)/N); 

Part 2: Generating of 2-D deformed pattern in MATLAB by using artificial object 

After completed in generating 1-D deformed signal, I proceed with working in 2-D signal. 

Steps for computing the 2-D deformed pattern are as follows: 

i. Artificial objects is created first in 3-D coordinates. There are three shape of 

objects which are: 

a. Cube 

b. Parabola 

c. Cylinder 
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ii. The length between camera and projector, length between reference plane and 

camera-projector is set. 

a. 𝑑𝑑0 = 2000 mm 

b. 𝑙𝑙0 = 5000 mm 

iii. Phase is calculated by using artificial objects data, Z inside the equation: 

a.  Phi = 2*pi*f0*d0*Z./(Z-l0); 
iv. The reference pattern is generated as follows: 

a. S(i,:) = 128+pixmidrange*cos((2*pi*f0*y(:)'/yrange)); 

v. Deformed pattern is then computed using calculated phase modulation 
a. D(i,:) = 128+pixmidrange*cos((2*pi*f0*y(:)'+Phi(i,:))/ 

yrange); 

Part 3: Inverse Function Analysis of 1-D signal 

 In Part 3, by using the same signal in Part 1, the object is reconstructed by using IFA method. 

i. The local extrema is located on both reference and deformed signal 
a. [xmax,ixmax,xmin,ixmin] = extrema_x(x_main); 
b. [ymax,iymax,ymin,iymin] = extrema_y(y_main); 

ii. Divide both signal into numbers of monotonic parts based on number of 

extrema points. 
a. x{i} = 127.5+127.5*cos(2*pi*f0*nx{i}/N);  
b. y{i}=127.5+127.5*cos((2*pi*f0*ny{i}-Phase)/N); 

iii. Spline interpolation is done on each inverted reference signal’s monotonic part 

and obtain the X values of the signal for each monotonic part. 
a. spl_ref{i} = csapi (x{i},nx{i}); 

b. xx_ref{i} = fnval (spl_ref{i},x{i}); 

iv. Step (iii) is repeated for deformed signal. 
a. spl_def{i} = csapi (y{i},ny{i});    
b. xx_def{i}= fnval (spl_def{i},y{i}); 

v. Find the difference of X values for reference and deformed signal at each 

monotonic part.  
a. delta_x{i} = xx_ref{i} - xx_def{i}; 

b. dx = cell2mat(delta_x); 
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Part 4: Inverse Function Analysis of 2-D fringe pattern 

 In Part 3, by using the same signal in Part 2, the object is reconstructed by using IFA method. 

i. Reference and deformed pattern is loaded into MATLAB. 

a. Ref=load('SGamma2.2Parabola.mat','-mat','S'); 
b. Ref=load('DGamma2.2Parabola.mat','-mat','D'); 

ii. Performed spline on reference pattern for monotonic parts detection. 

a. pp=spline(x,[0 w 0]); 
b. dpp=fnder(pp,1); 

iii. Performed spline on deformed pattern for monotonic parts detection. 

a. pp2=spline(x,[0 wdef 0]); 
b. dpp2=fnder(pp2,1); 

iv. Find roots to locate the maximum and minimum point of both pattern. 

a. zercross=roots(dpp.coefs(k-1,:)); 
b. zercross=roots(dpp2.coefs(k-1,:)); 

v. Monotonic parts detection. 

a. xf1=w(coordx(k-1):coordx(k)); 
b. f1=x(coordx(k-1):coordx(k)); 

vi. Performed polynomials fitting to obtain the curve for each monotonic parts of 

reference pattern. 

a. [f1inv,S,mu]=polyfit(xf1,f1,deg(k-1)); 
b. OSf1inv(k-1,1:deg(k-1)+1)=f1inv; 
c. OSSf1inv(k-1)=S; 
d. OSmuf1inv(k-1,:)=mu; 

vii. Performed reconstruction with partials polynomials for reference pattern 

a. approx1=polyval(OSf1inv(k-1,1:deg(k-
1)+1),wdef(coordxdef(k-1):coordxdef(k)),OSSf1inv(k-

1),OSmuf1inv(k-1,:)); 

b. Udefrec1=x-Xdefrec1; 
c. Hdefrec1(k)=(l0*Udefrec1(k)/(Udefrec1(k)+d0)); 

 
 

 

 

14 
 



 
 

Part 5: Spline Inverse Function Analysis of 2-D fringe pattern 

 In Part 3, by using the same signal in Part 2, the object is reconstructed by using IFA method. 

i. Reference and deformed pattern is loaded into MATLAB. 

a. Ref=load('SGamma2.2Parabola.mat','-mat','S'); 
b. Ref=load('DGamma2.2Parabola.mat','-mat','D'); 

ii. Performed spline on reference pattern for monotonic parts detection. 

a. pp=spline(x,[0 w 0]); 
b. dpp=fnder(pp,1); 

iii. Performed spline on deformed pattern for monotonic parts detection. 

a. pp2=spline(x,[0 wdef 0]); 
b. dpp2=fnder(pp2,1); 

iv. Find roots to locate the maximum and minimum point of both pattern. 

a. zercross=roots(dpp.coefs(k-1,:)); 
b. zercross=roots(dpp2.coefs(k-1,:)); 

v. Added extra point to both ends of each monotonic parts for both pattern. 

a. dpproots=[0 dpproots]; dpproots=[dpproots x(end)]; 
b. dpproots2=[0 dpproots2]; dpproots2=[dpproots2 x(end)]; 

vi. Monotonic parts detection. 

a. xf1=w(coordx(k-1):coordx(k)); 
b. f1=x(coordx(k-1):coordx(k)); 

vii. Obtain X points from the reference pattern. 
a. Ff1inv(k-1)=spline(xf1,[ppval(dpp,coordx(k-1)) f1 

ppval(dpp,coordx(k))]); 
viii. X values is fitted to monotonics part of deformed pattern to obtain the phase 

shift. 

a. approx2=ppval(Ff1inv(k-1),wdef(coordxdef(k-
1):coordxdef(k))); 

b. Xdefrec2=[Xdefrec2 approx2(1:end)]; 
c. Udefrec2=x-Xdefrec2; 

ix. Reconstruction is perform by measuring the height of the objects. 

a. Hdefrec2(k)=(l0*Udefrec2(k)/(Udefrec2(k)+d0)); 
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Part 6: Global Spline Inverse Function Analysis of 2-D fringe pattern 

 In Part 3, by using the same signal in Part 2, the object is reconstructed by using IFA method. 

i. Reference and deformed pattern is loaded into MATLAB. 

a. Ref=load('SGamma2.2Parabola.mat','-mat','S'); 
b. Ref=load('DGamma2.2Parabola.mat','-mat','D'); 

ii. Performed spline on reference pattern for monotonic parts detection. 

a. pp=spline(x,[0 w 0]); 
b. dpp=fnder(pp,1); 

iii. Performed spline on deformed pattern for monotonic parts detection. 

a. pp2=spline(x,[0 wdef 0]); 
b. dpp2=fnder(pp2,1); 

iv. Find roots to locate the maximum and minimum point of both pattern. 

a. zercross=roots(dpp.coefs(k-1,:)); 
b. zercross=roots(dpp2.coefs(k-1,:)); 

v. The last point is added to both ends of each monotonic parts for both pattern. 

a. dpproots=[0 dpproots]; dpproots=[dpproots x(end)]; 
b. dpproots2=[0 dpproots2]; dpproots2=[dpproots2 x(end)]; 

vi. Obtain X points from the reference pattern. 
a. ppinv(k-1)=spline(ppval(pp,linspace(dpproots(k-

1),dpproots(k),newsamp*nbechmonotonicparts+1)),[0 
linspace(dpproots(k-
1),dpproots(k),newsamp*nbechmonotonicparts+1) 0]); 

 
vii. X values is fitted to deformed pattern to obtain the phase shift. 

a. Xdefrec3=[Xdefrec3 approx3]; 
b. Udefrec3=x-Xdefrec3; 

viii. Reconstruction is perform by measuring the height of the objects. 

a. Hdefrec3(k)=(l0*Udefrec3(k)/(Udefrec3(k)+d0)); 
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CHAPTER 4 

RESULT AND DISCUSSION 

 In this chapter, I will be discussing on the result for all three parts I have done in 
the methodology which are: 

i) Generating of 1-D deformed signal in MATLAB by using artificial object 
ii) Generating of 2-D deformed pattern in MATLAB by using artificial object 
iii) Inverse Function Analysis of 1-D signal 
iv) Inverse Function Analysis of 2-D fringe pattern 
v) Spline Inverse Function Analysis of 2-D fringe pattern 
vi) Global Spline Inverse Function Analysis of 2-D fringe pattern 

Part 1: Generating of 1-D deformed signal in MATLAB by using artificial object 

For the first part, the signal generated is ideal signal where noise is neglected. The 
reference signal is a perfect sinusoidal with constant frequency at 10 Hz.  

 

 

Figure 4.1 – Reference Signal 
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Figure 4.2 – Artificial object height 

 

 

 

 

Figure 4.3 – Computed deformed signal 
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Figure 4.4 – Reference signal and Computed deformed signal comparison 

 

Figure 4.1 show the reference signal with 0 at minima and 255 at maxima. This 

signal represent 8-bit greyscale.  Figure 4.2 show the artificial object height with length 

ranging from 250mm to 750mm denoting that the object length is 500mm. Phase-shift due 

to the object presence can be measured by using modified equation (1): 

𝑢𝑢(𝑥𝑥) = 𝑑𝑑0.ℎ(𝑥𝑥)
𝑙𝑙−ℎ(𝑥𝑥)

                (3) 

Figure 4.3 display the computed deformed signal resulted by adding the phase shift 

into the reference signal. It can be seen in Figure 4.4 where the signal started to deform at 

250s until 750s the same as the object length. The maximum phase shift occur at the middle 

peaks denoting the maximum height of the object. The frequency of the signal is shifted 

causing the deformation of the signal.  
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Part 2: Generating of 2-D deformed pattern in MATLAB by using artificial object 

 In part 2, almost the same thing is simulated as in part 1 but instead of using 1-D 

signal, the simulation is done in 2-D signal which include the generation of fringe pattern. 

The simulation is done for three object shapes which are cube, parabola and cylinder. 

 

Figure 4.5 – Reference Pattern 
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Figure 4.6 – Cube shape generated using MATLAB 
 

   

Figure 4.7 – Deformed pattern of a cube shape 
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Figure 4.8 – Parabola shape generated using MATLAB 
 

 
Figure 4.9 – Deformed pattern of a parabola  
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Figure 4.10 – Cylinder shape generated using MATLAB 
 

 

Figure 4.11 – Deformed pattern of a cylinder 
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In part 2, Figure 4.5 shows the reference pattern. When cube as in Figure 4.6 is used, the 
deformed pattern generated is as Figure 4.7.  Figure 4.8 and Figure 4.9 show artificial 
parabola is used as object. Figure 4.10 and Figure 4.11 show an artificial is used as an 
object. The deformation of the pattern is different for different object shape. Thus, by 
measuring the phase shift of the deformed pattern compared to the reference pattern, the 
height of the shape can be determined. 

 

Part 3: Inverse Function Analysis of 1-D signal 

As described in methodology, Part 3 used the same reference signal and deformed signal 
generated at Part 1.  

 

Figure 4.12 – Reference and Deformed Pattern with Detected Local Extrema  
 

Figure 4.12 shown the comparison of reference and deformed pattern. The local extrema 
is detected and mark. The green dot represent the maximum and minimum point of the 
reference signal while the red dot represent the maximum and minimum point of deformed 
signal. 
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Figure 4.13 – A Monotonic Part of the Reference and Deformed Pattern  

 
Figure 4.13 shows an inverted monotonic part of the reference and deformed pattern. Blue 
colored signal represent the reference signal and red colored signal represent the deformed 
signal. The phase difference between each monotonic is calculated and each part is 
superimpose to obtain the overall phase difference.  

 
Figure 4.14– Comparison of Calculated and Reference Object Height  
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Figure 4.13 show the calculated object height compared to the reference object height. 
Calculated height show slight distortions due to inaccuracy of MATLAB calculations. The 
written MATLAB code is not 100% perfect and causing the distortions. 

 

Part 4: Inverse Function Analysis of 2-D Fringe Pattern 

For part 4, the reconstruction is done first on parabola object as in part 2.  

 

Figure 4.15– Artificial parabola object 
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Figure 4.16– Reconstructed Parabola using IFA 

 

 
Figure 4.17– Reconstruction Error for Parabola using IFA 
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Figure 4.18– Absolute Reconstruction Error for Parabola using IFA 

 

 Figure 4.16 shows the reconstructed parabola using IFA method.  Figure 4.17 shows 

the reconstruction error for parabola while Figure 4.18 shows the absolute reconstruction 

error of parabola using IFA.  

 The mean error of IFA method is 0.3149mm. The standard deviation error for IFA 

method is 0.3655mm. 
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Part 4: Spline Inverse Function Analysis of 2-D Fringe Pattern 

  
Figure 4.19– Reconstructed Parabola using SIFA 

 

 

Figure 4.20– Reconstruction Error for Parabola using SIFA 
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Figure 4.21– Absolute Reconstruction Error for Parabola using SIFA 

 

Figure 4.19 shows the reconstructed parabola using SIFA method.  Figure 4.20 

shows the reconstruction error for parabola while Figure 4.21 shows the absolute 

reconstruction error of parabola using SIFA.  

 The mean error of IFA method is 0.039mm. The standard deviation error for IFA 

method is 0.1577mm. 
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Part 5: Global Spline Inverse Function Analysis of 2-D Fringe Pattern 

 

Figure 4.22– Reconstructed Parabola using GSIFA 
 

 

Figure 4.23– Reconstruction Error for Parabola using GSIFA 
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Figure 4.24– Absolute Reconstruction Error for Parabola using GSIFA 

 

Figure 4.22 shows the reconstructed parabola using GSIFA method.  Figure 4.23 

shows the reconstruction error for parabola while Figure 4.24 shows the absolute 

reconstruction error of parabola using GSIFA.  

 The mean error of IFA method is 0.0023mm. The standard deviation error for IFA 

method is 0.0188mm. 

Table 4.1 – Reconstruction errors on all three methods 

 

 

 

 

 Table 4.1 shows all the reconstruction errors for all methods. It can be seen that 

GSIFA has the lowest errors for both mean and standard deviation errors.  

 

Reconstruction Method Mean Reconstruction Error 
(mm) 

Standard Deviation Error 
(mm) 

IFA 0.3149 0.3655 
SIFA 0.0390 0.1577 

GSIFA 0.0023 0.0188 
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Figure 4.24–Reconstruction Error for all three methods 

 

Figure 4.25– Absolute Reconstruction Error for all three methods 
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 Figure 4.24 and 4.25 shows that the reconstruction error is the lowest for GSIFA. 

IFA method uses polynomial fitting with high degrees that causes periodic oscillation or 

Runge Phenomenon at the interval of monotonic parts. However, SIFA and GSIFA use 

cubic spline fitting which is very low in degree and will not causes periodic oscillation.  

 By using mean reconstruction error, it can deduce that GSIFA is 16 times better 

than SIFA and 137 times better than IFA.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34 
 



 
 

CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 Spline Inverse Function Analysis (SIFA) method applied in this paper has shown 

improvement over normal IFA by 8 times. Moreover, Global Spline Inverse Function 

Analysis (GSIFA) is 16 times better than SIFA and 137 times better than IFA. GSIFA 

method introduced in this paper provide more reliable method for 3D reconstruction 

compared to previous method. Oscillation occur in the reconstruction is very small thus the 

errors is reduced significantly.  

The simulation is done on based on ideal case where noise and non-sinusoidal factor 

are neglected. In real case, there will be noise and non-sinusoidal factor such as gamma 

distortion present during the projection of fringe. Thus, 3D reconstruction using real objects 

should be done in the future to further study the accuracy of this method.   
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