
1

HANDS-FREE DRAWING USING ELECTROENCEPHALOGRAM (EEG)

SYSTEM AND EYE TRACKING

By

NURDHIYA HUSNA BINTI HUSSEIN

14434

FINAL REPORT

Submitted to the Electrical & Electronics (EE) Engineering Programme

In Partial Fulfillment of the Requirements

For the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Final Year Project II, September, 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

2

Table of Contents
Abstract .. 4

Chapter 1: Introduction .. 5

1.1 Background .. 5

1.2 Problem Statement ... 6

1.3 Objectives .. 6

1.4 Scope of Study ... 6

Chapter 2: Literature Review ... 7

2.1 Brain-Computer Interface (BCI) .. 7

2.2 Brain’s Signal from Patients and Eye Tracking using EOG .. 7

2.3 SSVEP ... 9

2.4 Open vibe ... 10

2.4.1 Classification and Feature extraction .. 11

Chapter 3: Methodology/Project Work .. 12

3.1 Research Methodology .. 12

3.2 Tools .. 12

3.2.1 Software: ... 12

3.2.2 Hardware: .. 14

3.3 Project Flowchart ... 15

3.4 Gantt Chart and Key Milestone ... 16

Chapter 4: Result and Discussions ... 17

4.1 Extracting EEG Signal from EMOTIV using OpenVibe ... 17

4.2 Training the data .. 19

4.2.1Training Acquisition .. 20

4.3 Feature Extraction .. 20

4.4 Classifier Training ... 21

4.5 Performance Results .. 22

4.6 Online Test ... 22

Chapter 5: Conclusion and Recommendations .. 23

5.1 Conclusion ... 23

5.2 Recommendations .. 23

References .. 24

Appendices ... 25

1) Coding for training acquisition controller using LUA, .. 25

2) Code for classifier training ... 30

3) Code for Shooter Classifier .. 32

3

List of Figure
Figure 1: General block diagram of an EEG-based BCI system [2] 5

Figure 2: Schematic Diagram of Essential Components in BCI System [1]. 7

Figure 3: Example of Several Frequencies .. 9

Figure 4: EEG Topography of the SSVEP Effect on visual cortex 10

Figure 5: Open vibe Graphical Interface .. 11

Figure 6: Spatial Filter Trainer... 11

Figure 7: Cognitiv Suite ... 12

Figure 8: Microsoft Visual Studio 2010 .. 13

Figure 9: Openvibe Designer ... 13

Figure 10: Acquisition Server .. 17

Figure 11: Sample of extracted EEG signal ... 17

Figure 12: OpenVibe Acquisition Server ... 18

Figure 13: Sample of OpenVibe Module ... 18

Figure 14: Environment created to train the data ... 19

Figure 15: Environment for Feature Extraction ... 20

Figure 16: Start Stimulator ... 20

Figure 17: From left (Signal acquired, Filtered Signal using CSP filter, Filtered Signal using

Low Pass Filter) ... 21

Figure 18: The performance of the trained signals .. 22

Figure 19: SSVEP Stimulator .. 22

List of Table

Table 1: Summary of Literature Review for Recording Signal ... 8

Table 2: Summary of Literature Review for Eye Movement Tracking using EEG 8

Table 3: Summary of Literature Review for Diseases Treatment using EEG 9

file:///C:/Users/Win7HPSP1/Documents/4th%202nd/fyp2/final%20report2.docx%23_Toc407048969
file:///C:/Users/Win7HPSP1/Documents/4th%202nd/fyp2/final%20report2.docx%23_Toc407048982
file:///C:/Users/Win7HPSP1/Documents/4th%202nd/fyp2/final%20report2.docx%23_Toc407048983

4

Abstract

This project aims to develop alternative way to help patient suffering with

communication disabilities that prevent them from communicating using the normal

way such as speech, body language, and etc. This project utilizes EEG and eye

movement, and translating them into a meaningful message or action. This task is

performed using EMOTIV interfaced with BCI Application.

5

Chapter 1: Introduction

1.1 Background

Electrical signals are emitted by the brain each time it conduct any activity.

However, each signal being emitted is different in frequencies for each activity that

are carried out by the brain. Recording of these signals is called

Electroencephalography (EEG). Various ways and methods have been developed to

manipulate these signals and translate them into set of commands. Eye tracking using

EEG are currently being widely explored using numerous Brain-Computer

Interfacing (BCI) technique. Figure 1 shows a basic block diagram on how the EEG

signals are retrieved and integrated with BCI application. These expected classes of

signals are being decoded into several control commands for defined external

application based on the BCI configuration [2].

Figure 1: General block diagram of an EEG-based BCI system [2] .

 Based on these set of signals, this project focused on translating these brain

signals with the aid of eye movement tracking, into drawings.

6

1.2 Problem Statement

For a patient that suffers any kind of disabilities that restricted them from

communicating with other person using the normal ways (speech, body language,

etc.), this paper aim to develop a new method to deliver the patient’s intention and

translate it into drawing via eye movement using manipulation of EEG signals.

1.3 Objectives

 To establish interface that can track the eye movement and convert into

desired shape/drawing.

1.4 Scope of Study

 Scope of study for this project is to have deep understanding on how the

signals and activities from the brains are recorded using EEG system. Thus, by using

devices develop from EMOTIV EEG Headset, it is easier to observe the patterns,

cognitive abilities, and also record each activity carried out by the brain.

 Researches on EEG have been rapidly increases during these past few years.

Thus, it is crucial to read and keep an update about the latest technologies and

interfaces used by other researchers for more accurate results for this project paper.

7

Chapter 2: Literature Review

2.1 Brain-Computer Interface (BCI)

Over the last 2 decades, mankind has

developed a neurotechnology that link brain’s

activity with devices and control or command it

without using external neuromuscular pathway

(such as hands or legs). Such interfaces are

called brain–computer interface (BCI). Figure 2

shows the essential part in a BCI system [1]:

2.2 Brain’s Signal from Patients and Eye Tracking using EOG

 Major parts of the worlds are suffering from chronic neurological disorder.

According to [3] , almost 80% of people in developing countries suffers from

epilepsy which is one of the worrisome neurological disorder and this statement also

are agreed by [4] which state that almost 60 million people across the globe are

affected by this disease making it second most chronic neurological disorder after

stroke. Methods to treat these diseases using EEG are being developed. As

mentioned by [4], they are extracting the EEG signal to detect potential epilepsy

brain tissue using High Frequency Epileptiform Oscillation from a few potential

patients. Therefore, to help patients or potential patients that suffers from diseases by

using EEG. However, for people with physical disabilities and also speech skills

problem such as paralyzed patient, communicating with people the normal way

might be troublesome. Thus, eye tracking movement might be one of the solutions.

In some research conducted by [5], the EOG (electrooculography), which are the

signals emitted from the eye, are extracted and remove from EEG signals to avoid

interference with the actual EEG signals. But, a research carried out by [6] make use

of these EOG signals and perform a simulation in BCI application that follows the

same eye movement perform by the subject. Though the eye movement simulation

can be perform by the BCI, but the movement only restricted to left and right only.

Figure 2: Schematic Diagram of Essential Components in
BCI System [1].

8

Table 1: Summary of Literature Review for Recording Signal

Table 2: Summary of Literature Review for Eye Movement Tracking using

EEG

9

Table 3: Summary of Literature Review for Diseases Treatment using EEG

2.3 SSVEP

Steady State Visually Evoked Potentials (SSVEP) is signals that will be

produced when the visual stimulation of the brain are exposed to

specific frequencies. The brain will produce electrical signals that contain the same

frequencies with the one the retina is being exposed to. The retina will be excited

usually by a visual stimulus ranging from 3.5 Hz to 75 Hz,[7]. Thus, when our eyes

are watching a visual with 3.5Hz frequency, our brain will produce the same

electrical signal with the same frequency which is 3.5Hz.

Electroencephalographic researches regarding vision are usually

manipulating this type of signal in their studies. It is useful in research because of the

signal-to-noise ratio efficiency and comparative invulnerability to artifacts [7].

Figure 3: Example of Several Frequencies

http://en.wikipedia.org/wiki/Stimulation
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Retina
http://en.wikipedia.org/wiki/EEG
http://en.wikipedia.org/wiki/Signal-to-noise

10

By using SSVEP based BCI application, visual stimulus with different

frequencies is simultaneously shown to the subject. The subject will focus his

attention into a screen that display certain patterns of visual and the matching

stimulating frequencies will appear in the recording of the EEG signal’s spectral.

After the EEG signal are analyzed and processed, it will then be turned into desired

action or output.

Figure 4: EEG Topography of the SSVEP Effect on visual cortex

2.4 Open vibe

OpenViBE is a platform that is established to design, test and use the brain-

computer interfaces. It is software for real-time neurosciences meaning that the

process of acquiring, filtering, processing, classifying and visualizing brain signals

are always conducted in real time. OpenViBE is also free and open source software

that works perfectly with Windows and Linux operating systems [8]. Mainly

OpenViBE application focuses on medical fields. It aims to assist disabled patients

with real time biofeedback, neurofeedback and diagnosis. It also provides function

for other application field such as multimedia for developing virtual reality program

or video games, robotics and all other fields that related [8].

Openvibe is an easy platform as all the signal processing algorithms are

denoted by blocks. Each block can be simulating with each other by just linking them

with a connector. Simulink Boxes in MATLAB also serves the same purpose but

Openvibe offers more convenient and user friendly interface especially when dealing

with real-time neurofeedback.

http://en.wikipedia.org/wiki/Brain-computer_interface
http://en.wikipedia.org/wiki/Brain-computer_interface

11

Figure 5: Open vibe Graphical Interface

2.4.1 Classification and Feature extraction

EEG signals retrieved are usually low in frequencies and it is hard to

distinguish between one signal with another signal. Thus to increase the signal

change from one another, Common Spatial Pattern (CSP) algorithm are used.

Box below that provided in Openvibe figure spatial filters according to the

CSP algorithm that helps to increase the discrimination between two types of events

that occurs simultaneously.

Figure 6: Spatial Filter Trainer

12

Chapter 3: Methodology/Project Work

3.1 Research Methodology

The methodology implemented in this project is based on responsive

development approach. It aims to find the best yet dynamic approach solutions with

operation of iterative and incremental development that promotes adaptive planning,

imaginative progress and well-organized delivery.

3.2 Tools

3.2.1 Software:

There is some software and development tools will be used to complete the project

Emotiv SDK (Software Development Kit)

EMOTIV EEG Headset provided in the lab is one of the important equipment

that needed to be use. There are 3 suites that can be used in this application. The

expressive suite, affective suite and cognitive suite. This SDK is completed with a

high resolution images and wireless neuroheadset connection. The API of this SDK

can be used with numerous programming languages such as Visual studio, java and

python that can produce numerous creative application of neuroscience.

Figure 7: Cognitiv Suite

13

Visual Studio (2010)

LUA programming language is mainly used in this project. It can be viewed

and edited using Microsoft Visual Studio (2010) . LUA programming is easy and

user-friendly. Nowadays, many developers especially the one that dealing with

neuroscience technologies prefers to write in LUA programming language because

of its simplicity and dynamic response.

Figure 8: Microsoft Visual Studio 2010

 Open Vibe:

OpenViBE is a platform that is established to design, test and use the brain-computer

interfaces. It is software for real-time neurosciences meaning that the process of

acquiring, filtering, processing, classifying and visualizing brain signals are always

conducted in real time.

Figure 9: Openvibe Designer

http://en.wikipedia.org/wiki/Brain-computer_interface
http://en.wikipedia.org/wiki/Brain-computer_interface

14

VRPN (Virtual-Reality Peripheral Network)

The Virtual-Reality Peripheral Network (VRPN) is a set of classes within a

library and a set of servers. For a virtual-reality (VR) system, VRPN are used as a

transparent network that connect the application program to external application

regardless if they are physical or within the network itself. A declared host at each

VR station controls the peripherals and VRPN provide the connection between the

application and all devices [9]. For this project, VRPN are used to connect keyboard

stimulator with the Lua Stimulator in Openvibe. It also is used to connect Openvibe

with external application which is OGRE.

 OGRE

OGRE (Object-Oriented Graphics Rendering Engine) is a platform created to

develop 3D graphics. It scene-oriented with flexible 3D engine written in C++ that is

designed to make it simpler and easier for developers to produce applications that

employ hardware-accelerated 3D graphics [10]. In this project, OGRE is used to

develop a graphic simulation of a spaceship with flickering stimulus. It is then

integrated with Openvibe that uses EEG signal as an input and perform certain action

based on the input signals.

3.2.2 Hardware:

Emotiv EPOC

The Emotiv EPOC is a 14 channels headset. It uses 14 different electrodes

that are scattered in different but specific parts around the scalp to read and retrieve

electrical signals emitted by the brain so that it can be monitored and detected the

user’s thoughts (Cognitive), feelings and expressions (expressive).[11]

Figure 10: EMOTIV EPOC Headset

15

3.3 Project Flowchart

Start

Gathering information on how EEG

signals works and also to extract the

signals.

Familiarize with EMOTIV

EEG Headset

Gather all the important EEG data

that useful for eye tracking movement

Interface the data with MATLAB to

eliminate noise and create algorithm

for reference signals

Test the

algorithm for the

reference signals

Finalize the design

Recommendation

End

Fail

Success

16

3.4 Gantt Chart and Key Milestone

Gantt chart and Key Milestone for FYP 1 and FYP 2:

Activities

FYP 1 FYP 2

Weeks No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Title Proposal

Preliminary

Research/ Data

Collection

Extended Proposal

Data Gathering

from EMOTIV

EEG Headset

Proposal Defend

Analyzing Data

Gathered

Interfaces with

MATLAB

Interim Report

Progress Report

Finalize algorithm

Testing Algorithm

Project

Dissertation

17

Chapter 4: Result and Discussions

4.1 Extracting EEG Signal from EMOTIV using OpenVibe

OpenVibe is one of user friendly platform especially for BCI application.

Using this tool, EEG signal can be easily extracted and manipulated according to the

desired environment.

Figure 11: Acquisition Server

Figure 12: Sample of extracted EEG signal

18

The type of the acquisition device should be carefully chosen as it will be

used and then ported to the Design framework. As Openvibe’s acquisition server is

already equipped with EMOTIV EPOC driver, user can easily select the interface

and declare the local host for this connection. It is important to declare the local host

accordingly, as the same local host is used when designing and running the scenarios

from Openvibe.

Figure 13: OpenVibe Acquisition Server

Figure 14: Sample of OpenVibe Module

19

4.2 Training the data

 Below configured environment are used to play a scenario that helps to get

the desired EEG signals.

1) VRPN client are used to control the scenario. Keyboard stimulator is

interface with Openvibe using VRPN client. The scenario will only be played

when the spacebar of the keyboard are pressed.

2) SSVEP Training Controller is used to control the scenario played. It can be

used to modify the frequency of the flickering stimulus, color of the boxes

and the delay between each box.

3) Generic Stream Writer is used to record the acquired signals after the

scenarios finish playing.

Figure 15: Environment created to train the data

1 2

3

20

4.2.1Training Acquisition

 Subject will be asked to focus their

visual to different flickering frequency object.

Each flickering frequencies are actually giving

out different SSVEP. With different SSVEP the

eye movement can be track and distinguish.

This training will take about 10 to 15 minutes

to be completed and it also required high focus

intensity from the subject.

4.3 Feature Extraction

Certain features are extracted from

the digitized EEG signal in this stage. The

desired frequency range is extracted and the

amplitude relative to some reference level

is measured. The extracted features can be

denoted as some frequency bands on the

power spectrum. It will be extremely

difficult to classify those mental tasks even

with a well-executed classifier if the feature

combinations are representing mental

overlap each other. But, if the feature sets

are not over lapping and different, most of

the classifiers can be used efficiently to

classify them.

Figure 17: Environment for Feature Extraction

Figure 16: Start Stimulator

21

4.4 Classifier Training

Figure 18: From left (Signal acquired, Filtered Signal using CSP filter, Filtered Signal using Low Pass

Filter)

The classifier training is used to classify the useful signal. Common Spatial

Pattern (CSP) filter is a filter that is developed from Common Spatial Pattern

algorithm. The goal of the algorithm is to improve the discrimination of two types of

signals. The spatial filters are constructed in a way they maximize the variance for

signals of the first condition while at the same time they minimize it for the second

condition. This can be used for discriminating the signals of two commonly used

motor-imagery tasks (e.g. left versus right hand movement). It can also be used for

two-class SSVEP experiments or any other experiment where the discriminative

information is contained in the variance (or power in a certain band) of the signal

conditions. Thus, CSP filter is used to increases the signal variance for one condition

while minimizing the variance for the other condition. This training will take around

10 minutes to complete.

22

4.5 Performance Results

Figure 19: The performance of the trained signals

 After classifier training, the performance of the signal will be displayed.

Higher percentage of the performance indicates that the signal is very useful and vice

versa. However, the highest signal can be obtained from now is around 70% which is

still lacking as 80% performance is needed.

4.6 Online Test

Figure 20: SSVEP Stimulator

 A scenario is created to test the signal acquired from previous step. With

different flickering frequency, subject are expected to move the object accordingly

using only their focus; left square (clockwise), right square (anti-clockwise), triangle

(to shoot the white target). However, with poor training performance (<80%), it is

quite hard to move the object accordingly.

23

Chapter 5: Conclusion and Recommendations

5.1 Conclusion

 In conclusion, interfaces that can track eye movement and translate it into the

desired movement are successfully built. However, it takes more times to work on

the programming language that can create and simulate the eye movement into a

drawing.

 Also, instead of using MATLAB, new software that is user friendly, more

dynamic, cost-free, and focused only neurofeedback signals are successfully

integrated and implemented in this project.

 It is also noticed that even with the same subject, the performance of the

signal can be vary according to their state of emotion and ability to remain focused

on a long time. Thus the system is not universal and a lot of users will face issue

when using the system.

5.2 Recommendations

Future works that can be worked on in other to fulfill the objective are:

1) Develop algorithm that can complete the training acquisition data in short

time with accurate result of the EEG signals.

2) Develop another framework using OGRE that is reliable and efficiently

working for a hands-free drawing using EEG system.

3) Find a new method and algorithm that can distinguish the variation of the

signal more effectively other than Common Spatial Pattern filter.

4) Make a new programming course that focused on LUA programming that is

really useful for BCI application in the future.

24

References

[1] Y. Han and H. Bin, "Computer Interfaces Using Sensorimotor Rhythms: Current

State and Future Perspectives," Biomedical Engineering, IEEE Transactions on, vol.

61, pp. 1425-1435, 2014.

[2] Z. N. M. R.J. Huster, S. Enriquez-Geppert, C. Herrmann, "Brain-computer interfaces

for EEG neurofeedback: Peculiarities and solutions," International Journal of

Psychophysiology, , vol. 91, pp. 36–45, 2014.

[3] M. Zabihi, S. Kiranyaz, T. Ince, and M. Gabbouj, "Patient-specific epileptic seizure

detection in long-term EEG recording in paediatric patients with intractable

seizures," in Intelligent Signal Processing Conference 2013 (ISP 2013), IET, 2013,

pp. 1-7.

[4] O. L. Smart, G. A. Worrell, G. J. Vachtsevanos, and B. Litt, "Automatic detection of

high frequency epileptiform oscillations from intracranial EEG recordings of

patients with neocortical epilepsy," in Technical, Professional and Student

Development Workshop, 2005 IEEE Region 5 and IEEE Denver Section, 2005, pp.

53-58.

[5] J. Wu, J. Zhang, and L. Yao, "An automated detection and correction method of

EOG artifacts in EEG-based BCI," in Complex Medical Engineering, 2009. CME.

ICME International Conference on, 2009, pp. 1-5.

[6] A. Funase, T. Hashimoto, T. Yagi, A. K. Barros, A. Cichocki, and I. Takumi,

"Research for estimating direction of saccadic eye movements by single trial

processing," in Engineering in Medicine and Biology Society, 2007. EMBS 2007.

29th Annual International Conference of the IEEE, 2007, pp. 4723-4726.

[7] Fabrizio Beverina, Giorgio Palmas, Stefano Silvoni, Francesco Piccione, and S.

Giove, "User adaptive BCIs:SSVEP and P300 based interfaces " PsychNology vol. 1,

pp. 331-354, 2003.

[8] Openvibe.inria.fr.OpenViBE. Software for Brain Computer Interfaces and Real

TimeNeurosciences [Online]. Available: http://openvibe.inria.fr/ [

[9] V. R. P. Network. (22nd September). VRPN 07.32|Virtual Reality Peripheral

Network. Available: http://www.cs.unc.edu/Research/vrpn/

[10] OGRE. (2001, 23rd September). OGRE. Available: http://www.ogre3d.org/

[11] A. Kawala-Janik, M. Podpora, M. Pelc, P. Piatek, and J. Baranowski,

"Implementation of an inexpensive EEG headset for the pattern recognition

purpose," in Intelligent Data Acquisition and Advanced Computing Systems

(IDAACS), 2013 IEEE 7th International Conference on, 2013, pp. 399-403.

http://openvibe.inria.fr/
http://www.cs.unc.edu/Research/vrpn/
http://www.ogre3d.org/

25

Appendices

1) Coding for training acquisition controller using LUA,

sequence = {}

number_of_cycles = 0

stimulation_duration = nil

break_duration = nil

flickering_delay = nil

target_width = nil

target_height = nil

target_positions = {}

number_of_targets = {}

stimulationLabels = {

 0x00008100,

 0x00008101,

 0x00008102,

 0x00008103,

 0x00008104,

 0x00008105,

 0x00008106,

 0x00008107

}

function initialize(box)

 dofile(box:get_config("${Path_Data}") .. "/plugins/stimulation/lua-stimulator-stim-

codes.lua")

26

 -- load the goal sequence

 s_sequence = box:get_setting(2)

 for target in s_sequence:gmatch("%d+") do

 table.insert(sequence, target)

 number_of_cycles = number_of_cycles + 1

 end

 box:log("Info", string.format("Number of goals in sequence: [%d]",

number_of_cycles))

 -- get the duration of a stimulation sequence

 s_stimulation_duration = box:get_setting(3)

 if (s_stimulation_duration:find("^%d+[.]?%d*$") ~= nil) then

 stimulation_duration = tonumber(s_stimulation_duration)

 box:log("Info", string.format("Stimulation Duration : [%g]",

stimulation_duration))

 else

 box:log("Error", "The parameter 'stimulation duration' must be a numeric

value\n")

 error()

 end

 -- get the duration of a break between stimulations

 s_break_duration = box:get_setting(4)

 if (s_break_duration:find("^%d+[.]?%d*$") ~= nil) then

 break_duration = tonumber(s_break_duration)

 box:log("Info", string.format("Break Duration : [%s]", s_break_duration))

 else

 box:log("Error", "The parameter 'break duration' must be a numeric

value\n")

 error()

27

 end

 -- get the delay between the appearance of the marker and the start of flickering

 s_flickering_delay = box:get_setting(5)

 if (s_flickering_delay:find("^%d+[.]?%d*$") ~= nil) then

 flickering_delay = tonumber(s_flickering_delay)

 box:log("Info", string.format("Flickering Delay : [%s]", s_flickering_delay))

 else

 box:log("Error", "The parameter 'flickering delay' must be a numeric

value\n")

 error()

 end

 -- get the target size

 s_targetSize = box:get_setting(6)

 s_width, s_height = s_targetSize:match("^(%d+[.]?%d*);(%d+[.]?%d*)$")

 target_width = tonumber(s_width)

 target_height = tonumber(s_height)

 if s_width ~= nil and s_height ~= nil then

 box:log("Info", string.format("Target dimensions : width = %g, height =

%g", target_width, target_height))

 else

 box:log("Error", "The parameter 'target size' must be in format float;float")

 error()

 end

 -- get the targets' positions

 s_targetPositions = box:get_setting(7)

 number_of_targets = 0

28

 for s_target_x, s_target_y in s_targetPositions:gmatch("(-?%d+[.]?%d*);(-

?%d+[.]?%d*)") do

 box:log("Info", string.format("Target %d : x = %g y = %g",

number_of_targets, tonumber(s_target_x), tonumber(s_target_y)))

 table.insert(target_positions, {tonumber(s_target_x), tonumber(s_target_y)})

 number_of_targets = number_of_targets + 1

 end

 -- create the configuration file for the stimulation-based-epoching

 -- this file is used during classifier training only

 cfg_file_name =

box:get_config("${Player_ScenarioDirectory}/configuration/stimulation-based-

epoching.cfg")

 cfg_file = io.open(cfg_file_name, "w")

 if cfg_file == nil then

 box:log("Error", "Cannot write to [" .. cfg_file_name .. "]")

 box:log("Error", "Please copy the scenario folder to a directory with write

access and use from there.")

 return false

 end

 cfg_file:write("<OpenViBE-SettingsOverride>\n")

 cfg_file:write(" <SettingValue>", stimulation_duration, "</SettingValue>\n")

 cfg_file:write(" <SettingValue>", flickering_delay, "</SettingValue>\n")

 cfg_file:write(" <SettingValue>OVTK_StimulationId_Target</SettingValue>\n")

 cfg_file:write("</OpenViBE-SettingsOverride>\n")

 cfg_file:close()

 -- create the configuration file for the training program

 cfg_file =

io.open(box:get_config("${CustomConfigurationPrefix${OperatingSystem}}-ssvep-demo-

training${CustomConfigurationSuffix${OperatingSystem}}"), "w")

29

 cfg_file:write("# This file was automatically generated!\n\n")

 cfg_file:write("# If you want to change the SSVEP trainer configuration\n")

 cfg_file:write("# please use the box settings in the training scenario.\n\n")

 cfg_file:write("SSVEP_TargetCount = ", number_of_targets, "\n")

 cfg_file:write("SSVEP_TargetWidth = ", target_width, "\n")

 cfg_file:write("SSVEP_TargetHeight = ", target_height, "\n")

 for target_index, position in ipairs(target_positions) do

 cfg_file:write("SSVEP_Target_X_", target_index - 1, " = ", position[1],

"\n")

 cfg_file:write("SSVEP_Target_Y_", target_index - 1, " = ", position[2],

"\n")

 end

 cfg_file:close()

end

function uninitialize(box)

end

function process(box)

 while box:keep_processing() and box:get_stimulation_count(1) == 0 do

 box:sleep()

 end

 current_time = box:get_current_time() + 1

 box:send_stimulation(1, OVTK_StimulationId_ExperimentStart, current_time, 0)

30

 current_time = current_time + 2

 for i,target in ipairs(sequence) do

 box:log("Info", string.format("Goal no %d is %d at %d", i, target,

current_time))

 -- mark goal

 box:send_stimulation(2, OVTK_StimulationId_LabelStart + target,

current_time, 0)

 -- wait for Flickering_delay seconds

 current_time = current_time + flickering_delay

 -- start flickering

 box:send_stimulation(1, OVTK_StimulationId_VisualStimulationStart,

current_time, 0)

 -- wait for Stimulation_duration seconds

 current_time = current_time + stimulation_duration

 -- unmark goal and stop flickering

 box:send_stimulation(1, OVTK_StimulationId_VisualStimulationStop,

current_time, 0)

 -- wait for Break_duration seconds

 current_time = current_time + break_duration

 end

 box:send_stimulation(1, OVTK_StimulationId_ExperimentStop, current_time, 0)

 box:sleep()

end

2) Code for classifier training

targets = {}

non_targets = {}

sent_stimulation = 0

function initialize(box)

31

 dofile(box:get_config("${Path_Data}") .. "/plugins/stimulation/lua-

stimulator-stim-codes.lua")

 -- read the parameters of the box

 s_targets = box:get_setting(2)

 for t in s_targets:gmatch("%d+") do

 targets[t + 0] = true

 end

 s_non_targets = box:get_setting(3)

 for t in s_non_targets:gmatch("%d+") do

 non_targets[t + 0] = true

 end

 sent_stimulation = _G[box:get_setting(4)]

end

function uninitialize(box)

end

function process(box)

 finished = false

 while box:keep_processing() and not finished do

 time = box:get_current_time()

 while box:get_stimulation_count(1) > 0 do

32

 s_code, s_date, s_duration = box:get_stimulation(1, 1)

 box:remove_stimulation(1, 1)

 if s_code >= OVTK_StimulationId_Label_00 and s_code

<= OVTK_StimulationId_Label_1F then

 received_stimulation = s_code -

OVTK_StimulationId_Label_00

 if targets[received_stimulation] ~= nil then

 box:send_stimulation(1, sent_stimulation,

time)

 elseif non_targets[received_stimulation] ~= nil then

 box:send_stimulation(2, sent_stimulation,

time)

 end

 elseif s_code == OVTK_StimulationId_ExperimentStop

then

 finished = true

 end

 end

 box:sleep()

 end

3) Code for Shooter Classifier

class_count = 0

function initialize(box)

 dofile(box:get_config("${Path_Data}") .. "/plugins/stimulation/lua-

stimulator-stim-codes.lua")

33

 class_count = box:get_setting(2)

end

function uninitialize(box)

end

function process(box)

 while box:keep_processing() do

 time = box:get_current_time()

 while box:keep_processing() and box:get_stimulation_count(1) > 0

do

 local decision = 0

 local decided = false

 -- check each input

 for i = 1, class_count do

 -- if the frequency is considered as stimulated

 if (box:get_stimulation(i, 1) -

OVTK_StimulationId_Label_00 == 1) then

 if not decided then

 decision = i

 decided = true

 else

 decision = 0

 end

 end

 box:remove_stimulation(i, 1)

 end

34

 if decision ~= 0 then

 box:send_stimulation(1,

OVTK_StimulationId_Label_00 + decision - 1, box:get_current_time() + 0.01, 0)

 end

 end

 box:sleep()

 end

end

