

Turtle Robot On The Grid

By

Dadje Tchagop Nismin Valere

15686

Dissertation submitted to the department of Electrical and Electronic

Engineering in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

SEPTEMBER 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATE OF APPROVAL

Turtle Robot On The Grid

By

Dadje Tchagop Nismin Valere

15686

A project dissertation submitted to the

Department of Electrical and Electronic Engineering

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONIC)

Approved by:

Abu Bakar Sayuti Hj Mohd Saman

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2014

i

CERTIFICATION OF ORIGINALITY

This is to certified that I am responsible for the work submitted in this project, that the

original work is my own accept as specified in the references and acknowledgements, and

that the original work contained herein have not been undertaken or done by unspecified

sources or persons.

DADJE TCHAGOP NISMIN VALERE

ii

Abstract

The combination of turtle graphics and physical robot has helped in introducing

programming to kids with the aim of enhancing their comprehension and problem

solving skills in mathematics and computer science. First developed in 1966, by

Seymour Papert, turtle graphic was initially used to introduce Logo programming. More

work has been done in that sense, where the user can virtually interact with the robot

(here represented by an object on the screen) by entering the command on the screen and

the robot performs the specific task. Our current work enables us to physically interact

with the robot by sending the code wirelessly from a computer to the robot. The

limitation with this work is that during the communication with the physical robot, the

command can only be sent one line at the time (no possibility of sending multiple lines).

Also, no sensor was used to give orientation to the robot. The main focus on this project

will be to set the robot and the platform to be able to send and receive multiple line of

code at the time (set of command can be executed at the time). Also the project will

focus on how to use sensors to facilitate the movement and orientation of the robot.

iii

AKNOWLEDGEMENT

First of all I am grateful to the almighty God for giving me the strength and

wisdom during the completion of this project.

I wish to give a special thank to my family for their support throughout my

studies.

I wish to express my sincere gratitude to my project supervisor, Abu Bakar

Sayuti Bin Hj Mohd Saman for always being available to support and advice.

I place on record, my sincere gratitude to my lecturers, all the staffs who have

so much available to help, guide and advice me during my studies.

To all my classmates, friends for the great time we spend together, it has been a

great source of inspiration for me.

My sense of gratitude to all who, directly or indirectly, have lent their helpful

hand on this venture.

iv

TABLE OF CONTENTS

CERTIFICATION…………………………………………………………………….…..i

ABSTRACT ………………………………………………………………………..……..ii

ACKNOWLEGMENT…………………………………………………..…...………......iii

CHAPTER 1: INTRODUCTION……………………………………………. ..1

1.1 Background study ……………………………………….....1

1.2 Problem statement………………………………………....2

1.3 Objectives………………………………………………….4

1.4 Scope of study ……………………………………………..5

CHAPTER 2: LITTERATURE REVIEW……………………………………...6

 2.1 Evolution of Turtle Graphic…………………………………..6

 2.2 implementation of Turtle Graphic in the industry…………….7

CHAPTER 3: METHODOLOGY………………………………………………..8

3.1 Hardware-software co-design………………………………….8

3.2 Hardware-software integration………………………………...9

3.3 Radio Frequency communication protocol…………………...11

3.4 Wireless programming method………………………………13

v

CHAPTER 4: RESULTS AND DISCUSSION…………………………………14

 4.1 Robot configuration……………………………………………14

 4.1.1 Hardware settings……………………………………15

 4.1.2 Servo motor tuning…………………………………..16

 4.1.3 Turtle Graphic Interpreter……………………………17

 4.1.4 Communication between Graphic and Robot………..19

 4.1.5 Software settings……………………………………..20

 4.1.6 Python installation……………………………………20

 4.1.7 Arduino software installation………………………...20

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS …………………23

 5.1 Conclusion……………………………………………………...23

 5.2 Recommendations……………………………………………...23

REFERENCES…………………………………………………………………………….24

Appendix A………………………………………………………………………………....25

Appendix B…………………………………………………………………………………26

Appendix C…………………………………………………………………………………28

Appendix D………………………………………………………………………………....30

Appendix E………………………………………………………………………………….33

Appendix F………………………………………………………………………………….37

vi

LIST OF FIGURES

Figure 1.1: Turtle graphics…………………………………………………………1

Figure 1.2: Turtle robot ……………………………………………………………2

Figure 2.1: Tasman turtle…………………………………………………………..6

Figure 2.2: Underwater turtle robot………………………………………………...6

Figure 2.3: SAUVIM robot…………………………………………………………7

Figure 3.1: Hardware/software design………………………………………………8

Figure 3.2: System design and intergration………………………………………...10

Figure 3.3: Communication protocol between PC and robot……………………....12

Figure 3.4: Turtle robot programming………………………………………………13

Figure 4.1: Turtle robot……………………………………………………………..14

Figure 4.2: RF transmitter…………………………………………………………...15

Figure 4.3: RF receiver………………………………………………………………15

Figure 4.4: Servo motor……………………………………………………………..16

Figure 4.5: python GUI……………………………………………………………...18

Figure 4.6: python configuration…………………………………………………….20

Figure 4.7: python installation……………………………………………………….20

Figure 4.8: pyserial installation………………………………………………………21

 Figure 4.9: Instruction flow from PC to robot……………………………………….21

1

CHAPTER I

1.0 INTRODUCTION

1.1 Background Studies

Turtle graphics programming is a powerful vehicle for introducing children to

computer programming. Children combine simple graphics commands to get a display

screen cursor called a turtle, to draw designs on the display screen [1]

First developed in 1966 by the two pioneers Wally Feurzeig[1] and Seymour

Papert[2], turtle graphic will very soon been recognized as an easy and popular way of

introducing Logo Programming [3] to children or teenagers. In order to support his

version of turtle robot, Seymour Papert added support for turtle graphic to Logo. The

idea was to have a simple robot which is controlled by a user from the user‟s workstation

and is able to carry out specific tasks (design or drawing) using a pen attached to its

body.

 Conventionally, the robot is virtually

represented as an object using computer

program and the user or programmer

can just write a set of command on the

screen in his work station to control the

movement of the object (robot). There

are several ways of communicating

(programming) with the robot including

wired communication (data is sent from

terminal to robot via cable) and wireless communication (data is sent using air).

Figure 1.1: Turtle graphics [4]

2

Seymour Papert once said: “The role of the teacher is to create condition for

inventions rather than providing ready-made knowledge”. That statement suggests that

teachers should always bring learners to question themselves in order to give the best of

them. Seymour Papert is recognized as one of the pioneer of Logo and Turtle graphic.

Born in February 1928, he dedicated his life on searching how to improve children

comprehension and sense of analogy using mathematics and science.

Developed mostly by Seymour Papert, Turtle graphics is an expression used in

computer graphics for a method of programming vector graphic using a relative cursor

upon a Cartesian plane; it is a software program. The cursor displayed on the screen

represents the “turtle” and using the code, instructions or orientation are sent to the

turtle. To move to turtle from one position to another or to design a specific pattern,

instructions must be sent to the turtle (robot) using set of commands such as

FORWARD, BACKWARD, LEFT or RIGHT following the distance or angle that the

robot should move. By its simplicity and efficiency, the program attracts kids and by

then introduces them to programming and computer science.

This text reports on parts of the ongoing work on "Over-the-air Programming of

Tutle Robot" at the Electrical and Electronic Engineering Department of UTP.

Specifically this report describes the project of enhancement of data formatting and

transfer over wireless communication between a programming terminal and a turtle

robot.

Figure 1.2: Turtle robot [5]

3

1.2 Problem Statement

Turtle graphic is a subset of the Logo programming language. It is a computer

graphic system which allows the user to communicate with the robot through command

instructions. Research have been conducted on both turtle graphic software which uses Logo

programming and a physical turtle robot. Nowadays, different types of communication are

been established between the computer and the robot including wired communication (using

cable) or wireless communication (over the air). Previous work has allowed commands to be

sent to the robot from a remote position, but the instruction could only be sent one line at the

time. Enhancing this communication protocol will allow the robot to receive and execute

multiple line statements at a time and therefore give more flexibility to the robot. Also

previous work does not take into consideration the positioning and orientation of the robot.

While moving, the robot cannot accurately evaluate the total displacement (distance covered)

or does not follow a given direction accurately. An approach on line following technique (for

orientation) or compass will help to overcome those limitations.

4

1.3 Objective

The main objective of this project is to enhance the wireless programming feature of

the current turtle robot so that a complete logo programming consisting of multiple lines of

instructions can be sent at once.

For example, instead of:

FORWARD 10 <send>

LEFT 90 <send>

 FORWARD 20 <send>

The aim is to send all three instructions above as:

FORWARD 10

LEFT 90

FORWARD 20

<send>

The secondary objective is to provide the robot with more features to overcome the

limitations in positioning and orientation. The robot will be equipped with Infrared sensors.

Used for line following techniques and (or) junction count, those sensors will help in

accurately moving the robot. The robot must be able to accurately follow a specific direction

without deflection.

5

1.4 Scope of study

The focus points of this research are:

 Understand turtle graphic programming

A better understanding of the turtle graphic software will help enhancing our

approach in getting better results.

 Understand python programming language

Python programming language is well spread programming tool, it enables us to

easily communicate with the robot or any other hardware.

 Use sensors and line following technique to direct the robot.

Line following technique is popular in autonomous vehicles, understanding how

sensors work is crucial in obtaining an optimum result from their usage. Sensors

enable the robots to sense their environment and send back the result which is then

use to control the robot.

6

CHAPTER II

2.0 LITERATURE REVIEW

2.1 Evolution of Turtle Graphic

Going back in the years 80s, computers were still in the early stage. No one could at

that time imagine that computer could play a bigger role in assisting humans in their daily

activities. The increase usage of computer has been extremely remarkable over the past two

decades, beating any possible forecast. Computer and computer science has always been

consider difficult to comprehend and had to use, late in the years 70s, some researchers

started working on ways to introduce computer to kids to help them accommodate with what

will soon became indispensable for human being. In 1966, thanks to the hard work of

Seymour Papert, Turtle graphic was born. Papert foresees the importance of computer for the

future generation and to help them easily accommodate with it, he came out with turtle

graphic. The turtle graphic at that time was a simple computer system which allows kids to

interact with a virtual robot by sending command codes.

The concept of turtle graphic has since then been enhance and a new concept been

introduced. In 1991, John A. Fulcher conducted a research project on the turtle robot using a

Motorola 68KECB, the project will have some limitations because the robot is attached to the

computer by cable and the movement is reduced [6].

Figure 2.2: Underwater turtle robot [8] Figure 2.1: Tasman turtle [7]

7

2.2 Implementation of Turtle Graphic in the Industry

In the years 2000s, turtle robot will begin to expand into industrial applications. Using

wireless data transmission, many projects involving autonomous and semi-autonomous

robots will be developed. Researches will induce the development amphibious robots with

the capability of carrying underwater monitoring and recovery operations (AUV). Robots

will be used to access removed and hazardous areas. The semi-autonomous underwater

vehicle SAUVIM was design base on the turtle graphic.

Figure 2.3: SAUVIM Robot [9]

8

CHAPTER III

3.0 METHODOLOGY

 3.1 Hardware-Software co-design

Hardware and software co-design represent the layout of the sequences in which the data

are being written, interpreted, compiled and executed. The hardware consists of computer

hardware (PC hardware) and the robot hardware (PIC microcontroller, servo motors and

LCD screen). The software has the turtle graphic on the PC and Logo interpreter on the

robot. Data are sent wirelessly (over the air). Using the user interface in the turtle graphic

(Python environment), the user enters the set of command to be executed; the command is

translated and sent to the robot via Radio Frequency (RF) transmitter. The data received

by the robot are interpreted by the logo interpreter and executed by the microcontroller.

Sensors are used to sense the environment and ensure the operation runs smoothly. Servo

motor and LCD screen will perform the instruction from the microcontroller. The diagram

below gives the flow chart of the system.

Figure 3.1: hardware/software design

W
ireless

tran
sm

issio
n

Feed
b

ack

PC platform

Robot

Python

programming

language

User

interface

(LOGO)

PC operating

System

PC

Hardware

RF

Transmitter

DC

motor

PIC

microcontroller

Logo

interpreter

RF

Receiver

LCD

screen

Sensors

9

3.2 hardware- Software integration

Integrating software and hardware is a key element of the project. By integrating both

software and hardware, we increase the possibility of interaction between both. It is part of

the system design requirement. The idea is to keep hardware and software unified all the

time as much as possible. The system integration is mainly consists of four phases: System

Requirement, Software & Hardware Design, System integration and Testing. [10]

System Requirement: here we specify the elements needed to develop the prototype. The

procedure chosen is base on constraint of the availability of the materials and the time.

Using the finite state machine (FSM), we modeled hardware and software.

Software and Hardware Design: here we design software and hardware separately. The

design of the software includes designing the interface using python programming

language, developing the transmission protocol. The hardware design includes the design

and fabrication of the robot‟s structure, the design of the circuit and set the hardware. The

choice of hardware such as controller and Radio Frequency module must take in

consideration the time, cost and availability of the materials. After the design, the software

and hardware are tested separately.

System integration: hardware, software and interface implementation are synthesized

using FSM. The system is integrated and tested for compatibility.

Co-simulation: all the components are executed; they all function together at real time.

10

Figure 3.2: system design and integration

flow diagram

System

Requirement

Analysis

Hardware

Requirement

Analysis

Software

requirement

Analysis

System Integration

and Testing

Design

 Implementation

(Coding)

Testing

Design

Implementation

(Hardware Design)

Testing

11

3.3 Radio Frequency (RF) communication protocol

 The development of factory automation in the past decades has contributed on the

increase of research in the areas such as communication, automation, computer, sensors

and control. Focusing specially on communication, we identify Bluetooth, Ultra Wideband

(UWB), ZigBee, Radio Frequency (RF) and WiFi as five standards for short range

communication. Those communication standards have the advantage of being low power

consumption. In term of application, Bluetooth is design for cordless mouse, keyboard and

hands-free headset. UWB is toward high-bandwidth multimedia links, ZigBee is design

for wireless network monitoring and diagnosis, WiFi is mostly for computer to computer

connection and Radio Frequency (RF) signal refers to wireless broadcasting. In this case,

the signal is created by alternating AC current having the characteristic such as if the

current is an input to an antenna electromagnetic (EM) is created, suitable for wireless

communication.

 For the purpose of this project, the better understanding of the Radio Frequency

communication protocol will enable us to efficiently communicate with the robot.

12

 Wireless communication technology

– RF is an alternating current which, when an antenna is supplied with an

alternating current, an electromagnetic field is generated and propagates

through space.

– Cheap and widely used

Nowadays, over 40 millions systems manufactured each year utilizing low-

power wireless (RF) technology for data links, telemetry, control and

security.

– Wide range of applications

Cordless and cellular telephones, radio and television broadcast stations,

hand-held computer and PDA data links, wireless bar-code readers,

wireless keyboards for PCs, wireless security systems, consumer electronic

remote control, etc.

Host

Computer

(PC)

Transmitter Turtle

Robot
Receiver

Figure 3.3 Communication protocol between PC and Robot

13

3.4 Wireless programming method

The communication is establishes between the computer and the robot using RF

communication. The type of communication is a two way communication; the computer

send instructions to the robot and after executing the robot send the feedback. This method

is call hybrid type of communication. Data are processed by both computer and the robot

and thus required less memory. The user uses logo interface on the turtle graphic software

to enter the command. The command is then sent wirelessly (via RF) to the robot, the logo

interpreter on the robot will translate the code and sent to the microcontroller which will

compile and run the code.

FORWARD 10

LEFT 90

FORWARD 20

<Send>

LCD display

FORWARD 10

LEFT 90

FORWARD 20

-Left motor turn

CW (10 seconds)

-Right motor turn

CCW (10 seconds)

Then

-Left motor stop

-Right motor turn

CCW (90 degree)

 Then

-Left motor turn

CW (20 seconds)

-Right motor turn

CCW (20 seconds)

Feedback

Instruction sent

Complete

Figure 3.4: turtle robot programming

process

14

CHAPTER IV

4.0 RESULTS AND DISCUSSION

4. 1 Robot configuration

During the designing phase in FYP I, the hardware chosen was the MC40 from the

Educational Mobile Robot 2.0 from Cytron [13], the hardware is changed to arduino Maga

2560 main board. Arduino is a powerful dynamic programming that uses a wide variety of

application and also have library module included for specific functions such as lcd

display, servo, and many more. It offers digital and analog input/output.

The design includes two main parts:

- The Turtle Robot

- The Turtle Graphic

- The communication between turtle Robot and Turtle graphic

The chassis of the robot is made of aluminum plate; the wheels are connected to a 360

degree servo motor. The robot is designed to have a low gravity in order to reduce the

interference during line following, the robot uses LSS05 infra-red sensors for line

following. A RF module is added on the robot for communication.

Figure 4.1: Turtle Robot

15

4.1.1 Hardware Settings

- RF description

The Radio Frequency communication module consists of transmitter-receiver pair. It is

used in a variety of applications. They can operate on a supply voltage range from 3V to

5V. The transmitter has a transmission power of 1 watt, providing a range of nearly 100

meters.

It is to be noted that this transmitter-receiver pair cannot be used to transmit and receive

analog signal, rather it can only be used to transmit and receive serial digital data streams

with maximum 20 Kbps baud rate.

Notice also that one-transmitter-to-many-receivers can be implemented, while many

transmitters cannot be used together in vicinity to avoid interference problems.

Consequently, this pair can only be used for half duplex, one-way communications (i.e.

the transmitter is in one side and one or multiple receivers only on the other side. The

other side cannot reply back on the transmitting side, only listens to it).

Figure 4.3: RF Receiver

Figure 4.2: RF Transmitter

16

4.1.2 Servo Motor Tuning

Servo motors are generally known to be accurate. They are widely used in precise and

accurate systems. They generally rotate up to 180 degrees, but for the project we are using

two 360 degrees free rotation servos. Servos come with three wires for the connection,

power, ground and the signal. In clockwise rotation, servos operate full speed at zero (0),

and zero speed at ninety (90), in counter clockwise full speed is at hundred thirty (130)

while zero speed is at ninety (90). They generally need to be tuned before they can

accurately respond to a specific parameter.

Figure 4.4: Servo motor

The logo interpreter is created and loaded in the hardware, the interpreter contains five (5)

main functions: FORWARD, BACKWARD, LEFT, RIGHT and LINE FOLLOWING.

For every function, groups of specific command are set, different from other functions

these command allow the robot to execute the task. The input is filtered and assorted by

the interpreter function, which passes to the respective five functions.

The figure bellow shows on the left hand side the command to move the robot and on the

right hand side the line following command.

17

There are three version of coding for Turtle Graphic: TKinter, Mark1 and Mark2. Focus

will be given mostly on TKinter, Mark1 and Mark2 having fixe delay function. The code

will be developed using arduino first and later using Python programming language.

4.1.3 Turtle Graphic Interpreter

One version of suitable turtle graphic is created (TKinter) using Python programming

language in Python IDLE 3.4 shell, on Window 7 OS. Python is a powerful dynamic

programming language that used in a wide variety of application domains and it is also

have many library modules which carry out specific functions.

EasyGui is used to designed simple interface that is easy to understand. The use of

easyGui do not always required prior knowledge on tkinter, frames, widgets or callbacks.

With easyGui, all interactions are invoked by a simple function calls.

The caption above shows how to import easygui and tkinter in python programming

language.

The python GUI is designed using tkinter, the button designed is linked to different

function (Up, Down, Right, and Left); the function will be interpreted using the interpreter

function in the arduino, respectively („f‟, „b‟, „r‟, „l‟) for („Up‟, „Down‟, „Right‟, „Left‟).

18

In other word, when “Up” is sent, the character „f‟ is coded in ISCII and sent wirelessly

(RF) to the robot which will interpret it and execute the forward function.

Module in python is used to provide desirable function in the program. The turtle graphic

library is suitable to create a functional Turtle Graphic. The modules involved in this turtle

graphic are:

a) re.py: provides regular expression matching operations[16]. Used to filter input and

assorted to the functions assigned

b) serial.py: encapsulates the access for the serial port. Use to communicate to the robot

using COM port by Bluetooth devices

c) sys.py: provide access to some variables used or maintained by the interpreter and to

functions that interact strongly with the interpreter. Use to close the program and turtle

graphic‟s window.

d) turtle.py: provides turtle graphics primitives, in both object-oriented and procedure-

oriented ways[16]. Turtle.py is a basic turtle graphic in python IDLE.

Figure 4.5: python GUI

19

4.1.4 Communication Between Graphic and Robot

The communication between the graphic and the robot is done using RF module. The

choice of RF over other wireless modules (ZigBee, Wi-Fi, UWB (Ultra-Wideband)) is

mostly because it‟s a low power device, consume less energy, easy to use and is cheap.

The graphic system is simulated using python software. The advantage of python as

graphic interface is the smooth execution of the command. The RF module is easy to use

and the connection straight forward. For the project, we are using two arduino boards. One

is arduino (Uno) is connected to the computer (PC) via serial port and connected to the

transmitter. The second arduino (Mega) is connected to the receiver and the robot.

The robot can be switch from line following system. In the line following system, the

robot follows a white line using the infra-red sensor. This technique can be used to

reposition the robot automatically.

If switched to line following mode, the robot will execute the arduino line tracking

program till its call to stop the execution.

Flow of instructions from user to robot

Python GUI

Down Up Right

Buffer

Left

f b r l

Line

tracking

t

Robot

20

4.2.1 Software Settings

- Python installation

Python can be downloaded online from python website, there are different versions

of python (2.x and 3.x) and for this project we are using python 2.7. After

installation after installation of python, we need to do some settings to make sure it

runs properly. The settings consist to configure the environment variables to be

able to properly execute python command. To do so, we edit the path in the

environment variables by adding C:\Python27\ at the end.

A simple test can be done to insure that python is running properly. Open command

prompt on your computer and type “python”, the result should look like the figure below.

But you can also check from the python build-in IDE or using notepad ++ if you have it

install in your computer (if you are using notepad ++, make sure to save your code with

the extension “.py”).

Figure 4.7: python installation

Figure 4.6: python configuration

21

The programming and development of applications such as GUI require us to have

pyserial for the communication, tkinter and pygame in some cases. Python generally

comes with tkinter in its library but in case you have problem with the GUI, you can

always download pyserial, tkinter and pygame online.

The concept we are using here is to control the robot via a Python GUI which is very similar to that

of controlling it via keyboard strokes. The communication process between the two Arduinos is RF

communication.

Figure 4.8: pyserial installation

Arduino B received the

specific character and

specific tasks are

executed based on the

command

Python application

wirelessly controlled

the Robot

TX-pair wirelessly

transmits the character via

RF communication to RX-

pair connected to arduino

B

A specific character is sent

to arduino A using serial

communication with the

computer

Python application

is launched and a

specific command

button is clicked

Character is then received

by TX-pair of the RF

module connected to

arduino A

Figure 4.9: instruction flow from PC to robot

22

- Arduino software installation

Arduino is open source software; it can be directly downloaded from arduino

website or any other related website. It is easy to install and to use. The code in

arduino is generally divided into two main sections: the setup (void setup) and the

loop (void loop).

For the purpose of this project you will have to download virtualwire and add to

your arduino library if you cannot import it.

23

CHAPTER 5

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Python GUI gives an interesting and attractive platform to interact with the robot, a simple

logo interpreter was created using tkinter, capable of processing logo instruction received

from the user and send the data to the robot using radio frequency communication. This

graphic is very attractive to children and they can therefore easily learn programming. The

graphic system is user friendly.

During this project, the choice of communication was first oriented toward Bluetooth, but

due to instability of the connection, the choice was reoriented toward Radio Frequency

module.

5.2 Recommendation

There are few recommendations on the things to add on the robot to make more

autonomous: adding ultrasonic sensors for object detection will give more autonomy to

the robot in term of direction.

0

Planned

 Task/activities 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

2

3

4

5

6

Titles selection

Literature Review

Extended proposal

-Background studies

-Problem statement

-Objectives

-Literature review

-Methodology

Proposal defense and

progress evaluation

Draft report

Final report

7 Design wireless

Turtle robot

8 Design Turtle graphic

in arduino and python

9 Create interpreter for

Logo to python

10 Synchronization

between Turtle

graphic and robot

11 Testing and

adjustment

Table 1: Gantt-Chart FYP I & FYP II

Achieved

25

References

1. Diane O. Cuneo: young children and turtle graphics programming:

understanding turtle commands. University of Massachusetts, Amherst

2. Cynthia Solomon, Logo Papert: A case study of a young child doing turtle

graphics in LOGO, AFIPS ‟76 proceedings of the June 7-10, 1976, national

computer conference and exposition. P. 1049-1056

3. Wurman, R.S., et al., Information anxiety 2. 2001: Que. 308.

4. Dictionary.com, in Collins English Dictionary - Complete & Unabridged,

HarperCollins Publishers.

5. Papert, S., MINDSTORM : Childern, Computers, and Powerful Ideas. 1980, New

York: Basic Books, Inc., Publishers. 230.

6. Eveland, E. win32 F/OSS development - Logo. 12/3/2008 [cited 2013 25/6/2013];

Available from: http://evelands.net/evan/fossDevel_logo.php.

Harvey, B., Beyond Programming. Computer Science Logo Style. Vol. 3. 1997.

Sheehan, R. Lower floor, lower ceiling: easily programming turtle-graphics. in Visual

Languages, 2000. Proceedings. 2000 IEEE International Symposium on. 2000.

7. Fulcher, J.A., Fun and games and microcomputer interfacing (laboratory exercises).

Micro, IEEE, 1991. 11(1): p. 18-21.

8. Robert Tinney, Tasman turtle robot; available from:

http://incolor.inetnebr.com/bill_r/tasman_turtle_page.htm

9. Megan Treacy, Technology / Gadgets, December 4, 2013; available from:

http://www.treehugger.com/gadgets/robotic-sea-turtle-will-dive-explore-ship-

wrecks.html

10. AUVAC. SAUVIM configuration. AUV System Spec Sheet [cited 2013 25/6/2013];

Available from:

http://auvac.org/uploads/configuration/SAUVIM%202008%20[Hanging].jpg.

11. Micaela Serra, Department of computer science, University of Victoria; available

from: http://webhome.cs.uvic.ca/~mserra/HScodesign.html

12. Micaela Serra, Department of computer science, University of Victoria; available

from: http://webhome.cs.uvic.ca/~mserra/HScodesign.html

13. Cytron.com. Cytron Bluetooth Module. [cited 2013 24/6/2013]; Available from:

http://www.cytron.com.my/viewProduct.php?pcode=BLUEBEE&name=Cytron%20Bl

uetooth%20Module.

14. Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen, The 33rd Annual Conference of

the IEEE Industrial Electronics Society (IECON), Nov. 5-8, 2007, Taipei, Taiwan

15. Papert, Seymour and Cynthia Solomon, Twenty Things to Do with a Computer, MIT,

AI Lab. LOGO Memo 3, July 1971. Also in Educational Technology, April 1972.

16. The Python Standard Library, 1990, Python Software Foundation.

http://evelands.net/evan/fossDevel_logo.php
http://incolor.inetnebr.com/bill_r/tasman_turtle_page.htm
http://www.treehugger.com/gadgets/robotic-sea-turtle-will-dive-explore-ship-wrecks.html
http://www.treehugger.com/gadgets/robotic-sea-turtle-will-dive-explore-ship-wrecks.html
http://auvac.org/uploads/configuration/SAUVIM%202008%20%5bHanging%5d.jpg
http://webhome.cs.uvic.ca/~mserra/HScodesign.html
http://webhome.cs.uvic.ca/~mserra/HScodesign.html
http://www.cytron.com.my/viewProduct.php?pcode=BLUEBEE&name=Cytron%20Bluetooth%20Module
http://www.cytron.com.my/viewProduct.php?pcode=BLUEBEE&name=Cytron%20Bluetooth%20Module

26

APPENDIX A

TOOLS REQUIRED

Hardware

- Arduino Mega 2560 R3-Main board

- RF module

- Servo motor

- Infra-Red Sensors

RF module’s characteristics

Transmitter:

 Operating voltage: 3V to 5V

 Operating frequency: 315Mhz to 433,92Mhz

 Operating temperature: -40C to 80C

 Transmission power: 1watt

 Modulation type: ASK

 Receiver:

 Operating voltage: 5V

 Operating frequency: 315Mhz to 433,92Mhz

 Operating current: 8mA maximum rating

 Modulation type: ASK

 Receiver sensibility: -115dB

Software

- Python v3.4

- Turtle graphic software

- Arduino software

27

APPENDIX B

Python code for GUI design

import serial

from Tkinter import *

import time
import msvcrt # import keyboard library

def Up():

 arduino.write('w')

 print 'up'

def Down():

 arduino.write('s')

 print 'down'
def Left():

 arduino.write('a')

 print 'left'
def Right():

 arduino.write('d')

 print 'right'
def Stop():

 arduino.write('e')

 print 'stop'
print 'Connecting...'

arduino = serial.Serial("COM4", 9600)

time.sleep(3)
print 'Connection established successfully'

appWindow = Tk()

appWindow.wm_title("GUI Control")

appWindow.config(bg = "#828481")

Control frame and its contents

controlFrame = Frame(appWindow, width=150, height = 150, bg="#037481", highlightthickness=2,

highlightbackground="#111")
controlFrame.grid()

btnFrame=Frame(controlFrame, width=150, height = 150, bg="#037481")
btnFrame.grid()

about = "TURTLE ROBOT"

name = Label(btnFrame, width=15, height=3, text=about, font="bold", justify=CENTER, bg="#037481")

name.grid(row=0, column=2)

upBtn = Button(btnFrame, text = " UP ", command=Up, bg="green",)
upBtn.grid(row=1, column=2, padx=5, pady=5)

downBtn = Button(btnFrame, text= "DOWN", command = Down, bg = "yellow")
downBtn.grid(row=5, column=2, padx=5, pady=5)

leftBtn = Button(btnFrame, text="LEFT", command = Left, bg = "orange")
leftBtn.grid(row=3, column=0, padx=5, pady=5)

rightBtn = Button(btnFrame, text="RIGHT", command = Right, bg = "blue")
rightBtn.grid(row=3, column=4, padx=5, pady=5)

stopBtn = Button(btnFrame, text="STOP", command = Stop, bg = "red")
stopBtn.grid(row=3, column=2, padx=5, pady=5)

appWindow.mainloop()

28

APPENDIX C

Transmitter code on arduino A

#include <VirtualWire.h>

void setup()

{

 int ledPin = 13;
 Serial.begin(9600);

 vw_setup(2000); //bits per second

 vw_set_tx_pin(3); //transmitter data to pin 3
}

void loop()

{
 if (Serial.available() > 0) // if there is incomming data

 {

 int sendByte = Serial.read(); // read data

 digitalWrite(13, HIGH);
 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);
 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);
 delay(1000);

 switch (sendByte)
 {

 case 'w': // if w is pressed

 {
 char *msg2 = "w";

 digitalWrite(13, HIGH); // flash the light

 vw_send((uint8_t *)msg2, strlen(msg2)); // send byte to the receiver
 vw_wait_tx(); // wait untill the whole message is gone

 // digitalWrite(13, false);

 break;
 }

 case 's': // if s is pressed
 {

 char *msg2 = "s";

 digitalWrite(13, true); // flash the light
 vw_send((uint8_t *)msg2, strlen(msg2)); // send byte to the receiver

 vw_wait_tx(); // wait untill the whole message is gone

 digitalWrite(13, false);
 break;

 }

 case 'a': // if a is pressed

 {

 char *msg2 = "a";
 digitalWrite(13, true); // flash the light

 vw_send((uint8_t *)msg2, strlen(msg2)); // send byte to the receiver

 vw_wait_tx(); // wait untill the whole message is gone
 digitalWrite(13, false);

 break;

 }

 case 'd': // if d is pressed

 {

29

 char *msg2 = "d";

 digitalWrite(13, true); // flash the light
 vw_send((uint8_t *)msg2, strlen(msg2)); // send byte to receiver

 vw_wait_tx(); // wait untill the whole message is gone

 digitalWrite(13, false);
 break;

 }

 case 'e': // if e is pressed

 {

 char *msg2 = "e";
 digitalWrite(13, true); // flash the light

 vw_send((uint8_t *)msg2, strlen(msg2)); // send byte to the receiver

 vw_wait_tx(); // wait untill the whole message is gone
 digitalWrite(13, false);

 break;

 }
 default: //if any other value entered

 {

 Serial.println("wrong entry");
 }

 }

}}

30

APPENDIX D

Receiver code on arduino B

//#include <LiquidCrystal.h>

//#include <Servo.h>
//#include <Wire.h>

#include <VirtualWire.h>

#define rightMotor 6

#define leftMotor 11

//Servo servo1;
//Servo servo2;

//int servoPin1 = 11;
//int servoPin2 = 6;

void setup()

{

 vw_setup(2000);
 vw_set_rx_pin(4); //reciever at Digital pin 4

 vw_rx_start(); //start the reciever PLL running

 pinMode(rightMotor, OUTPUT);

 pinMode(leftMotor, OUTPUT);

}

void loop()

{
 uint8_t buf[VW_MAX_MESSAGE_LEN];

 uint8_t buflen = VW_MAX_MESSAGE_LEN;

 if (vw_get_message(buf, &buflen)) // Non-blocking
 {

 int i;

 digitalWrite(13, true);
 for (i=0; i<buflen; i++)

 {

 Serial.print(buf[i]);
 if (buf[i] =='w')

 {

 forward();
 }

 if (buf[i] == 's')

 {
 backward();

 }

 if (buf[i] == 'e')
 {

 stop();

 }
 if (buf[i] == 'a')

 {

 left();
 }

 if (buf[i] == 'd')
 {

 right();

 }
 }

 }

 }

31

 void forward()

 {

 analogWrite(rightMotor, 130);

 analogWrite(leftMotor, 0);
 //Serial.println("going straight..");

 //lcd.print("FORWARD");

 }

 void backward()

 {

 analogWrite(rightMotor, 0);

 analogWrite(leftMotor, 130);
 //Serial.println("going backward..");

 //lcd.print("BACKWARD");

 }

 void right()
 {

 analogWrite(rightMotor, 130);

 analogWrite(leftMotor, 95);
 //Serial.println("going right..");

 //lcd.print("GOING RIGHT");

 }

 void left()

 {

 analogWrite(rightMotor, 130);

 analogWrite(leftMotor, 97);
 // Serial.println("going left..");

 //lcd.print("GOING LEFT..");

 }

 void stop()

 {

 analogWrite(rightMotor, 97);

 analogWrite(leftMotor, 97);

 }

32

APPENDICE E

Line following code

#include <LiquidCrystal.h>

#include <Wire.h>

//include servo library
//create servo object

#include <Servo.h>

Servo servo2;
Servo servo1;

/*

 * RS: Pin 29
 * EN: Pin 51

 * D4: Pin 22

 * D5: Pin 23
 * D6: Pin 24

 * D7: Pin 25

*/

LiquidCrystal lcd(29, 51, 22, 23, 24, 25);

//define the pins
int servoPin1 = 11;

int servoPin2 = 6;

int LeftSen = 2; //s5

int LeftMSen = 3; //s4

int MidSen = 8; //s3

int RightMSen = 9; //s2

int RightSen = 10; //s1
char cmd[10] = "t";

int x;

//function declaration

void setup()
{

 /* pinMode(RightEn, OUTPUT);

 pinMode(RightDir, OUTPUT);
 pinMode(LeftEn, OUTPUT);

 pinMode(LeftDir, OUTPUT);

 digitalWrite(RightDir,HIGH);
 digitalWrite(LeftDir, LOW); */

 lcd.begin(16,2);

 lcd.print("Turtle Graphic");

 servo1.attach(servoPin1); //can write 11 insted of servoPin1

 servo2.attach(servoPin2); //can write 12 insted of servoPin2

 Serial.begin(9600);
 Serial.println("Turtle Graphic");

}

 void straight()

 {
 if((digitalRead(LeftSen) == 0) && (digitalRead(LeftMSen) == 1) && (digitalRead(MidSen) == 1) && (digitalRead(RightMSen) ==

0) && (digitalRead(RightSen) == 0))

 {

33

 servo2.write(130);

 servo1.write(0);
 Serial.println("going straight..");

 lcd.print("FORWARD");

 }

 }

 void TurnLeft()

 {

 if((digitalRead(LeftSen) == 0) && (digitalRead(LeftMSen) == 0) && (digitalRead(MidSen) == 1) && (digitalRead(RightMSen) ==
1) && (digitalRead(RightSen) == 0))

 {

 servo2.write(110);
 servo1.write(90);

 Serial.println("going right..");

 lcd.print("GOING RIGHT..");
 }

 }

 void TurnMidLeft()

 {
 if((digitalRead(LeftSen) == 0) && (digitalRead(LeftMSen) == 0) && (digitalRead(MidSen) == 0) && (digitalRead(RightMSen) ==

1) && (digitalRead(RightSen) == 1))

 {
 servo2.write(100);

 servo1.write(90);
 Serial.println("going more right..");

 lcd.print("GOING RIGHT..");

 }

 }

 void TurnMostLeft()

 {

 if((digitalRead(LeftSen) == 0) && (digitalRead(LeftMSen) == 0) && (digitalRead(MidSen) == 0) && (digitalRead(RightMSen) ==

0) && (digitalRead(RightSen) == 1))

 {

 servo2.write(100);
 servo1.write(90);

 Serial.println("going all right..");

 lcd.print("GOING RIGHT..");
 }

 }

 void TurnRight()

 {
 if((digitalRead(LeftSen) == 1) && (digitalRead(LeftMSen) == 1) && (digitalRead(MidSen) == 0) && (digitalRead(RightMSen) ==

0) && (digitalRead(RightSen) == 0))

 {
 servo2.write(110);

 servo1.write(95);

 Serial.println("going left..");
 lcd.print("GOING LEFT");

 }

 }

 void TurnMidRight()

 {

 if((digitalRead(LeftSen) == 1) && (digitalRead(LeftMSen) == 0) && (digitalRead(MidSen) == 0) && (digitalRead(RightMSen) ==
0) && (digitalRead(RightSen) == 0))

 {

 servo2.write(130);
 servo1.write(95);

 Serial.println("going more left..");

 lcd.print("GOING LEFT ");

34

 }

 }

 void Cont()
 {

 if((digitalRead(LeftSen) == 1) && (digitalRead(LeftMSen) == 1) && (digitalRead(MidSen) == 1) && (digitalRead(RightMSen) ==

1) && (digitalRead(RightSen) == 1))
 {

 servo2.write(130);

 servo1.write(90);
 Serial.println("Junction occurs..");

 lcd.print("JUNCTION");

 }

 }

void loop()
{

 lcd.setCursor(0,1);
 case „t‟

 {
 char *msg2 = "w";

 digitalWrite(13, HIGH); // flash the light
 vw_send((uint8_t *)msg2, strlen(msg2)); // send byte to the receiver

 vw_wait_tx(); // wait untill the whole message is gone

 digitalWrite(13, false);
 straight();

 TurnLeft();

 TurnMidLeft();
 TurnMostLeft();

 TurnRight();

 TurnMidRight();

 Cont();

} }

35

APPENDIX F

ARDUINOS BOARD

Arduino Uno main board

Specifications

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage

(recommended)
7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 Ma

DC Current for 3.3V Pin 50 Ma

Flash Memory
32 KB (ATmega328) of which 0.5 KB used by

bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Length 68.6 mm

Width 53.4 mm

Weight 25 g

36

ARDUINO MEGA MAIN BOARD

Arduino Mega board

Specifications

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 14 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

