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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Pedestal crane is one of the offshore oil and gas production facilities that is used as a 

lifting machine to transfer offshore personnel, load equipments, tools and foods stuff 

from the supply boat to the fixed platform or vice versa. Proper design of the crane 

boom structure is important to make sure that the pedestal crane is properly operated at 

specific time when it is required. Basically there are two major considerations in the 

design of cranes [1]. The first is that the crane must be able to lift a load of a specified 

weight and the second is that the crane must remain stable and not topple over when the 

load is lifted and moved to another location [1]. 

A boom crane is distinguished from other cranes by its use of a single boom which 

pivots and rotates on a base at one end; the payload is hoisted from the other [2]. Both 

cranes in Figure 1.1 (a) and Figure 1.1 (b) are pedestal crane boom. Crane in Figure 1.1 

(a) uses cables to pivot the boom up and down. That motion is called luffing. Instead of 

using a cable system to luff the boom, the pedestal crane in Figure 1.1 (b) uses a 

hydraulic cylinder. Both cranes use a motor to rotate the boom about a vertical axis. 

That rotation motion is called slewing.  

    

 

 

 

 

 

Figure 1.1: Pedestal crane boom 
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Fixed offshore platform is located at the middle of the sea which is exposing to adverse 

wind condition especially during monsoon season. During monsoon season, the 

operation of pedestal crane boom is not allowed because of safety issue. Wind and 

storms can influence the entire operation of cranes and can even destroy the whole crane 

[3]. Other than that, in the crane operation; there are also limitations in the hoisting 

speed (acceleration) for picking up or down the payload to avoid excessive dynamic 

loads or deformations in the crane system. Due to the safety issue; the analysis of the 

dynamic characteristics is therefore significant for both the design and operation of such 

crane. 

 

1.2 Problem Statement 

Pedestal crane is often used as one of the offshore oil and gas production facility for 

personnel transfer, loading of equipment, tools and foods stuff from the supply boat to 

the platform and vice versa. The pedestal crane components are the operator cabin 

which is mounted on a pedestal, the crane boom structure and the lifting block. In the 

crane operation, the hoisting speed (acceleration) for picking up or lowering down the 

payload provides sustained cyclic or dynamic loads to the crane system. Thus, the 

analysis of the dynamic characteristics of the offshore crane boom structure due to 

excitation by the payload is therefore significant for both the design and operation of 

such crane. 

 

1.3 Objective 

The objective of this project is to study the dynamic characteristic of the offshore crane 

boom structure due to excitation by the payload. Dynamic analysis will be conducted on 

the crane boom structure to get the value of natural frequencies, the mode shapes of 

crane boom structure and also harmonic response of the crane due to excitation by the 

payload.  
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1.4 Scope of study 

This project is carried out to study dynamic characteristics of the offshore crane boom 

structure due to excitation by the payload; by solving using approximate solution and 

simulation in ANSYS Workbench software. This project will give more focus on the 

dynamic analysis of the crane boom structure assembly only; which consists of boom 

assembly and 16T main hook assembly. The crane boom structure will be modeled to a 

vibration model as a continuous system. The model is a solid tapered cantilever beam. 

The crane boom structure is fixed – free end and there is no slewing motion where the 

pedestal crane is fixed at one location without rotation of the base of the pedestal crane.  

Mathematical model will be developed based on eigenvalue and eigenfunction problem 

and that mathematical model will be solved by approximate solution. Dynamic analysis 

will be done first on the crane boom structure without payload at 0° angle and act as a 

baseline model. Then, simulation of the model will be done using ANSYS Workbench 

software. The result obtained from the approximate solution will be compared with the 

result obtained from the simulation in ANSYS Workbench software.  

The model then will be lifted to 55° angle lift. The hoisting speed for picking up or 

lowering down the payload provides sustained cyclic or dynamic loads to the crane 

system. The loading is only by the payload without any excitation by the wind load. The 

harmonic response analysis for crane boom structure at 55° angle will be done in 

ANSYS Workbench software. The amount of payload is varied; 4 tones, 8 tones, 12 

tones, 16 tones, 20 tones to view the effect of loading on the crane boom structure. The 

material of the crane boom structure is steel. This project will be excluding the physical 

experiment. 
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CHAPTER 2 

LITERATURE REVIEW / THEORY 

 

2.1 Vibration Analysis 

A vibration system is a dynamic system for which the response (output) depends on the 

excitations (inputs) and the characteristics of the system (e.g. mass, stiffness, and 

damping) in Figure 2.1 [4]. The excitation and response of the system are both time 

dependent. The response of the system sometimes can be viewed in frequency response. 

Vibration analysis of a given system involves determination of the response for the 

excitation specified. The analysis usually involves mathematical modeling, derivation of 

the governing equations of motion, solution of the equations of motion, and 

interpretation of the results [5]. 

 

 

 

 

Figure 2.1: Input – output relationship of a vibratory system [4] 

 

Different mathematical model requires different approaches (e.g. D‟Alembert‟s 

principle, Newton‟s second law of motion, and Hamilton‟s principle) to be used in 

deriving the equations of motion of the system. Then, the equations of motion can be 

solved using variety of techniques to obtain analytical (closed-form) or numerical 

solutions, depending on the complexity of the equations involved. The solution of the 

equations of motion provides the displacement, velocity and acceleration responses of 

the system [6]. 
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2.2 Vibration of Continuous System  

In dealing with discrete system, mass, damping and elasticity were assumed to be 

present only at certain discrete points in the system. However, it is not possible to 

identify discrete masses, dampers or springs in dealing with distributed or continuous 

systems. Continuous systems such as beams, rods (bars), cables and strings where 

elasticity and mass are considered to be distributed parameters are distributed systems 

[6]. We consider the continuous distribution of elasticity, mass and damping and assume 

each of the infinite number of elements of the system can vibrate [6]. 

 

2.3 Eigenvalue Problem 

The equations of motion of many continuous systems are in the form of non 

homogeneous linear partial differential equations of order two or higher subject to 

boundary and initial conditions. The boundary conditions may be homogeneous or non 

homogeneous. The initial conditions are usually stated in terms of the values of the field 

variable and its time derivative at time zero.  

The solution procedure basically involves two steps. In the first step, the non 

homogeneous part of the equation of motion is neglected and the homogeneous equation 

is solved using the separation of variables technique. This leads to an eigenvalue 

problem whose solution yields an infinite set of eigenvalues and the corresponding 

eigenfunctions. The eigenfunction are orthogonal and form a complete set in the sense 

that any function  that satisfies the boundary conditions of the problem can be 

represented by a linear combination of the eigenfunctions.   

The equation of motion of an undamped continuous system is in the form of a partial 

differential equation which can be expressed as [5]: 

 

),                     (2.1) 
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Where: 

 is a typical point in the domain of the system (V), 

 is the mass distribution, 

 is the field variable or displacement of the system that depends on 

spatial variable ) and (t), 

 is the stiffness distribution of the system, 

 is the distributed force acting on the system, 

 is the concentrated force acting at the point  of the system,  

 is the number of concentrated forces acting on the system, and 

 is the Dirac delta function. 

 

In the case of free vibration, f and all  will be zero and Eqn. (2.1) reduces to the 

homogeneous form 

                     ,                                                 (2.2) 

For the natural frequencies of vibration, we assume the displacement  to be a 

harmonic function as 

                                                        (2.3) 

Where: 

  denotes the mode shape (also called eigenfunction or normal mode), and 

 indicates the natural frequency of vibration. 
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Using Eqn. (2.3), Eqn. (2.2) can be represented as 

                                                                                                         (2.4) 

Where: 

 is also called the eigenvalue of the system. 

Eqn. (2.4) along with the boundary condition defines the eigenvalue problem of the 

system. The solution of the eigenvalue problem yields an infinite number of eigenvalues 

 and the corresponding eigenfunction . The 

eigenvalue problem is said to be homogeneous, and the amplitudes of the eigenfunctions 

, are arbitrary. Thus, only the shapes of the eigenfunctions can be 

determined uniquely.   

By solving eigenvalue problem, we can get an infinite number of eigenvalues which will 

be solved to get the natural frequencies of the system and also corresponding 

eigenfunctions which is the mode shapes of the systems. 

 

2.4 Natural Frequency 

Natural frequency is the frequency or frequencies at which a system will undergo free 

vibration [7] In the other words, natural frequency is the number of times where a 

system will oscillate (move back and forth) between its original position and its 

displaced position after an initial disturbance and left to vibrate on its own without any 

external forces.  For example, we can consider a simple beam fixed at one end and 

having a mass attached to its free end, as shown in Figure 2.2. If the beam tip is pulled 

downward, then released, the beam will oscillate at its natural frequency. 



8 
 

 

Figure 2.2: Natural frequency of simple fixed beam with free end [8] 

 

For lateral vibration of the uniform beam, we can derive the equation of motion of the 

beam and then solve the equation of motion by considering the initial conditions and 

four boundary conditions for finding a total response of the beam. The natural frequency 

of the beam is  

     [9] 

Where: 

  is natural frequency, 

  is elasticity of the beam, 

  is moment of inertia, 

  is density of the beam, 

  is cross section area, 

  is length of the beam, and 

  is constant value that can be determined from the boundary conditions of the 

beam as indicated in the Appendix 1. 

 

For non uniform beam, cross section area  and moment of inertia  vary along  

axis. Natural frequencies depend on the geometry, the boundary conditions (method of 

support or attachment), the masses of the components, and the strength of the restoring 

forces or moments. 
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2.5 Mode shape 

Mode shape is the relationship between the amplitudes (one per DOF) of the 

independent motions of a system in free vibration [7]. There is one mode shape for each 

natural frequency, and it depends on the value of that natural frequency [7]. To 

determine the vibration of a system, the mode shape is multiplied by a function that 

varies with time, thus the mode shape always describes the curvature of vibration at all 

points in time, but the magnitude of the curvature will change. The mode shape is 

dependent on the shape of the surface as well as the boundary conditions of that surface 

[10]. The value of natural frequency and mode shape will be different for different type 

of structure, supports and boundary condition applied during the analysis. 

 

2.6 Harmonic Response Analysis 

The vibration analysis can be viewed as input/output relation where the force is the input 

while the vibration is the output. In a structural system, any sustained cyclic load will 

produce a sustained cyclic or harmonic response. Harmonic analysis results are used to 

determine the steady state response of a linear structure to loads that vary sinusoidally 

(harmonically) with time, thus enabling us to overcome resonance, fatigue and other 

harmful effects of forced vibrations. Harmonic response analysis is a linear analysis. 

Some nonlinearity, such as plasticity will be ignored, even if they are defined. All loads 

and displacements vary sinusoidally at the same known frequency (although not 

necessarily in phase) [11].  

This analysis technique calculates only the steady-state, forced vibrations of a structure. 

The transient vibrations, which occur at the beginning of the excitation, are not 

encountered for in a harmonic response analysis. In this harmonic response analysis, all 

loads as well as the structure‟s response of the structure to cyclic loads over a frequency 

range and obtain a graph of some response quantity (usually displacements or 

accelerations) versus frequency. “Peak” responses are identified from the graphs of 

response versus frequency and stresses are the reviewed at those peak frequencies [11].  
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2.7 Resonance 

Resonance is the buildup of large vibration amplitude that occurs when a structure or an 

object is excited at its natural frequency [8]. Resonance can be either desirable or 

undesirable [8]. Acoustic resonance, a desirable resonance, occurs in many different 

musical instruments. It also occurs in auditoriums. Undesirable mechanical resonance 

can cause bridges to collapse, aircraft wings to break, and machinery to break or 

malfunction [8]. The example of undesirable resonance is the collapse of Tacoma 

Narrows Bridge. Dynamic analysis of a crane boom structure purposely done to get the 

value of natural frequencies of the crane boom structure and its‟ mode shapes to assure 

that the design is not in resonance condition to avoid the collapse of crane boom 

structure. Harmonic response results will show the “peak” frequency where the 

maximum amplitude will occur.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

CHAPTER 3 

METHODOLOGY / PROJECT WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Methodology of the project
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3.1 Literature Review 

The literature review was firstly done by studying on the fundamental of vibration of 

continuous system. The study provides the information of behaviour and response of the 

continuous system (e.g. bar, beam, plate) under the transverse and longitudinal vibration 

forces. Besides, the study also can provide the method of finding the natural frequency, 

mode shape and total response of a continuous system.  

 

Datta and Sill [12] have determined the natural frequencies of undamped transverse 

vibrations of cantilevered beams of constant width with linearly varying depth. Besides, 

Zhou and Cheung [13] have investigated the free vibration of a wide range of tapered 

Timoshenko beams. The Rayleigh Ritz method is used to derive the eigenfrequency 

equation of the beam. Other than that, Mohamed Hussein Taha and Samir Abohadima 

[14] also have developed mathematical model for free vibrations of non uniform flexural 

beams. The resulted equations are solved by transformation to the Bessel equations to 

obtain mode shapes and natural frequencies.   

 

3.2 Modeling 

The design of the crane boom structure was analysed. The crane boom structure was 

modeled to a vibration model as a continuous system. The model is a solid tapered 

cantilever beam. The crane boom structure is fixed – free end and there is no slewing 

motion where the pedestal crane is fixed at one location without rotation of the base of 

the pedestal crane. The solid tapered cantilever beam at rest (0° angle) is analyzed first, 

to be as a baseline model for further analysis. Then, the solid tapered cantilever beam is 

raised to 55° angle for harmonic response analysis.  

 

 

 

 



13 
 

3.2.1 Modeling vibration model 

Variable cross section beams are widely used as structural elements in engineering. This 

is because they help designers to improve the strength characteristics and overcome 

weight and geometrical restrictions. Figure 3.2 below shows the schematic diagram of 

the system. The crane boom structure is modeled as a solid tapered cantilever beam with 

linearly varying width, and depth, . 

 

 

 

 

 

 

 

 

Figure 3.2: Front view of the schematic diagram of the system 

Where: 

l is the length of the beam, 

 is the cross section area of the beam, 

 is the width of the beam, and 

 is the thickness of the beam. 

Variation of cross section area of the solid tapered cantilever beam is as follows: 

          (3.1) 

                                                      (3.2) 

            (3.3) 

           (3.4) 

x 
 

l 
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Then, variation of moment of inertia of the solid tapered cantilever beam is as follows: 

         (3.5) 

        (3.6) 

         (3.7)

        (3.8) 

         (3.9)

        (3.10)  

 

3.2.2 Geometry modeling in CATIA V5R16 

The solid tapered cantilever beam was modeled using CATIA V5R16 for simulation 

using ANSYS Workbench software. Figure 3.3 (a) shows the geometry model/structure 

of solid tapered cantilever beam at rest (0° angle) while figure 3.3 (b) shows the system 

at 55° angle. The properties of the geometry model are stated in Table 3.1. 

 

Table 3.1: Mechanical properties of the geometry 

PROPERTIES DETAILS 

Material type Steel 

Density 7850 kg/m
3 

Modulus of Elasticity 200 GPa 

Mass 11500 kg 

Length 20 m 
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Figure 3.3 (a): Geometry model of the solid tapered cantilever beam at rest (0° angle) 

 

 

Figure 3.3 (b): Geometry model of the solid tapered cantilever beam at lift (55° angle) 
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3.2.3 Method used for Solving Continuous System 

Several methods are used for solving the continuous system models which are exact 

solutions and approximate solutions. The exact solution consists of Newtonion method 

and energy method. Exact solutions are possible only in relatively few simple cases of 

continuous systems. The exact solutions are particularly difficult to find for two- and 

three-dimensional problems. Exact solutions are often desirable because they provide 

valuable insight into the behaviour of the system through ready access to the natural 

frequencies and mode shapes.  

 

Most of the continuous system consider in several reference books have uniform mass 

and stiffness distribution and simple boundary conditions. However, some vibration 

problem may pose insurmountable difficulties either because the governing differential 

equation is difficult to solve or the boundary condition may be extremely difficult or 

impossible to satisfy. In such cases we may be satisfied with an approximate solution of 

the vibration problems. 

 

The approximate methods can be classified into two categories. The first category is 

based on the expansion of the solution in the form of a finite series consisting of known 

functions multiplied by unknown function. The second category of methods is based on 

a simple lumping of system properties. All the approximate methods basically convert a 

problem described by partial differential equations into a problem described by a set of 

ordinary differential equations. There are two classes of methods that are based on series 

expansions: Rayleigh –Ritz methods and weighted residual methods.  

 

3.2.4  Method used in this project 

In this dynamic study, the crane boom structure is simplified to a solid tapered cantilever 

beam. Approximate solutions is more satisfied compared to exact solutions because of 

non uniform stiffness and mass distribution of the solid tapered cantilever beam. There 

are a lot of approximate methods that can be used. Rayleigh - Ritz method is chosen to 

be used in solving this dynamic analysis of the solid tapered cantilever beam. 
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Rayleigh – Ritz method is considered as an extension of Rayleigh‟s method [7]. The 

method is based on the fact that Rayleigh‟s quotient gives an upper bound for the first 

eigenvalue,  

                                                                 (3.11) 

In the Rayleigh – Ritz method, the shape of deformation of the continuous system, , 

is approximated using trial family of admissible functions that satisfy the geometric 

boundary conditions of the problem: 

 

                                                  (3.12) 

Where  are unknown (constant) coefficients, also called Ritz coefficients, 

and are the known trial family of admissible functions. The 

function  can be a set of assumed mode shapes, polynomials, or even 

eigenfunctions.  

 

When eqn. (3.12) is substituted into the expression for Rayleigh‟s quotient, R, 

Rayleigh‟s quotient becomes a function of the unknown coefficients : 

                                                        (3.13) 

The coefficients  are selected to minimize Rayleigh‟s quotient using 

necessary conditions: 

                                                 (3.14) 

Eqn. (3.14) denotes a system of n algebraic homogeneous linear equations in the 

unknown . For the coefficients to have a nontrivial solution, the 

determinant of the coefficient matrix is set equal to zero. This yields the frequency 

equation in the form of a polynomial in  of order n. The roots of the frequency 

equation provide the approximate natural frequencies of the system . 

Using the approximate natural frequency  in eqn. (3.4), corresponding approximate 

mode shape  can be determined (for ). 



18 
 

3.3 Modal / Dynamic Analysis 

From research and study of fundamental studies and journal, several sets of vibration 

analysis method were developed for solving the dynamic mathematical relations. During 

modeling process, the suitable method of finding all dynamic characteristic of harmonic 

response of the offshore crane boom structure was determined.  

Approximate approach is chosen for solving this problem as the exact solution of 

eigenvalue problems of many continuous systems is difficult, sometimes impossible, 

either because of non uniform stiffness and mass distribution or because of complex 

boundary conditions. Rayleigh – Ritz method is used for solving dynamic analysis of the 

solid tapered cantilever beam. Solid tapered cantilever beam at rest (0° angle) is 

analyzed first, to be as a baseline model for further analysis. 

 

3.3.1 Dynamic analysis of the tapered solid cantilevered beam at rest (0° angle) 

using Rayleigh Ritz Method 

Variation of cross section area of the tapered solid cantilevered beam is: 

          (3.15) 

Variation of moment of inertia of the tapered solid cantilevered beam is: 

         (3.16) 

By using Rayleigh – Ritz method, following functions are used as trial functions: 

                         (3.17)      

At free end beam, the boundary conditions are as follows: 

           (3.18)

          (3.19) 



19 
 

The system is subjected to the initial conditions: 

          (3.20)

         (3.21) 

The maximum kinetic energy can be found by assuming the transverse deflection 

function,  to be harmonic as: 

        (3.22)

        (3.23) 

Since the maximum value of , the maximum value of V is given by:

        (3.24) 

By equating  to the Rayleigh quotient of the beam can be expressed as: 

         (3.25) 

Therefore: 

       (3.26) 

Using: 

     (3.27) 

                                 (3.28) 

     (3.29) 
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Therefore: 

                                                         (3.30) 

 (3.31) 

           (3.32) 

 

        (3.33) 

    (3.34) 

         (3.35) 

 

Rayleigh‟s quotient is given by: 

         (3.36) 

The necessary conditions for the minimization of R are given by: 

                                                     (3.37) 

Or   

    (3.38) 
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Using: 

        (3.39) 

        (3.40) 

                                         (3.41) 

 

     (3.42) 

      (3.43) 

                                       (3.44) 

 

Eqn. 3.38 can be expressed as 

 

      (3.45) 
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Or 

                                                                (3.46) 

Where: 

   (3.47) 

        (3.48) 

 

           (3.49) 

Where: 
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         (3.50) 

 

       (3.51)

  

Solving governing equation of motion above will get the value of eigenvalues, natural 

frequencies and Ritz coefficients as follow: 

                                                          (3.52) 

                                                         (3.53) 

                                                       (3.54) 

                                                        (3.55) 

                                                        (3.56) 
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The transverse deflection function,  is to be harmonic as 

        (3.57) 

Where: 

    (3.58) 

 

Therefore: 

For ; 

  (3.59) 

For ; 

  (3.60) 

For ; 

   (3.61) 
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3.3.2 Modal analysis of the solid tapered cantilever beam at rest (0° angle) using 

Simulation in ANSYS Workbench software 

ANSYS is a general purpose finite element modeling package for numerically solving a 

wide variety of mechanical problems. The problems include: static or dynamic structural 

analysis (linear and non – linear), heat transfer and fluid problems, as well as acoustic 

and electromagnetic problems. It permits an evaluation or simulation of design without 

having to build and destroy multiple prototypes in testing. The ANSYS software is 

capable of simulating modal analysis and harmonic response analysis of the solid 

tapered cantilever beam. There are several stages involved during the process of 

simulating the structure. The stages and description are stated as below: 

i. Beginning of the Analysis 

The analysis was started by importing the geometry model/structure that was 

developed using CATIA V5R16 into ANSYS Workbench. Figure 3.4 shows the 

beginning interface of ANSYS workbench.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4: The beginning interface of ANSYS Workbench 
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ii. Meshing the geometry 

The geometry of the solid tapered cantilevered beam was meshed first before 

proceeding to modal analysis. Meshing the structure allows the actual structure 

to be divided into several pieces elements, each of which is assumed to behave as 

continuous structural member called a finite element. Figure 3.5 shows the 

complete meshing of the geometry model. 

 

Figure 3.5: Geometry model with complete meshing 

 

iii. Modal Analysis 

After meshing process, the geometry model/structure was converted to 

simulation and modal analysis was done on the geometry/structure. There are 

several types of analysis in the ANSYS Workbench software; Static Structural, 

Flexible Dynamic, Rigid Dynamic, Harmonic Response, Modal, Linear 

Buckling, Random Vibration and Shape Optimization. Modal analysis was 

selected to be simulated to solve eigenvalue problem to get the natural 

frequencies and mode shapes of the model/structure.   Boundary conditions and 

initial conditions were determined before solving the modal analysis.  Result of 

natural frequencies and mode shapes obtained from the modal analysis will be 

compared with the result obtained from the approximate solution. This modal 

analysis was done on the solid tapered cantilevered beam at rest (0° angle) which 

will be act as baseline model for modal analysis and harmonic response analysis 

of the solid tapered cantilevered beam at lift (55° angle). 
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3.4 Validation 

The modal/dynamic analysis of the solid tapered cantilevered beam at rest (0° angle) 

was be done in two ways; approximate solution and simulation in ANSYS Workbench. 

The data and result of natural frequencies and mode shapes of the model/structure was 

evaluated and compared. Then, the solid tapered cantilevered beam at rest (0° angle) 

was act as a baseline model for further analysis and harmonic response analysis.  

 

3.5 Harmonic Response Analysis 

In a structural system, any sustained cyclic load will produce a sustained cyclic or 

harmonic response. During the real operation of the pedestal crane, the crane boom 

structure will be lifted to a certain angle to lift payloads from a boat to a fixed platform 

or vice versa.  In this analysis, the crane boom structure is lifted to 55° angle lift and 

static at that angle lift without any further luffing motion (the crane boom move up and 

down) and slewing (rotation) motion. The hoisting speed for picking up or lowering 

down the payload provides sustained cyclic or dynamic loads to the crane system. The 

loading is only by the payload without any excitation by the wind load.  

Modal analysis was simulated first on the solid tapered cantilever beam at 55° lift angle 

to find the natural frequencies and mode shape of the crane boom structure at certain lift 

angle. Then, harmonic response analysis was simulated to find the harmonic response of 

the crane boom structure and also to find maximum amplitude of deformation and 

acceleration of the crane boom structure when exposed to a harmonic load. The amount 

of payload is varied; 4 tones, 8 tones, 12 tones, 16 tones, 20 tones to view the effect of 

loading on the crane boom structure. 

 

3.6 Final Report 

Lastly, all result obtained from the approximate solution and simulation using ANSYS 

were evaluated. Discussion on the result will show the important of studying dynamic 

characteristics of the crane boom structure under excitation by the payload. 
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CHAPTER 4 

RESULT & DISCUSSION 

 

4.1 Natural Frequencies and Mode Shapes 

One of the important considerations for crane design and operation is the dynamic 

characteristics of the crane structure without payload which is the free vibration of the 

crane boom structure. Table 4.1 shows the natural frequencies for three different mode 

of the crane boom structure at rest (0° angle). 

Table 4.1: Natural frequencies of the crane boom structure at rest (0° angle) 

Mode 
Frequency (Hz): 

Approximate solution 

Frequency (Hz): Simulation 

in ANSYS Workbench 

Error 

percentage (%) 

1 3.7438 5.3543 30.1 

2 19.2627 22.162 13.1 

3 52.5231 53.232 1.3 

 

The natural frequency is different for associated mode. As mode, N is increased, the 

frequency will be increased. Figure 4.1 shows the mode shapes of the crane boom 

structure at rest (0° angle) using simulation in ANSYS Workbench. A mode shape is a 

specific pattern of vibration executed by a mechanical system at a specific frequency 

[15]. Mark H. Richardson stated that the conceptual conclusions that we can make 

regarding modes are [16]: 

1. Modes are unique and inherent to any structure.  

2. No external loads or forces are required to define modes. 

3. Modes will only change if the mass, damping, or stiffness properties of the 

structure are changed. Changes in boundary are also reflected by changes in the 

mass matrix [M], damping matrix [C] and stiffness matrix, so modes will also 

change if the boundary conditions change. 
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Figure 4.1: Mode shape of the crane boom structure at rest (0° angle); (a) Mode shape 1, 

(b) Mode shape 2, (c) Mode Shape 3 

 

The results of mode shapes are unique and there are no external loads or forces to define 

those modes. For solid tapered cantilever beam, cross section area A(x) and moment of 

inertia I(x) is varied along x axis. The mode shapes that resulted are different with the 

mode shapes for uniform cantilever beam. Basically, natural frequencies depend on the 

geometry, the boundary conditions (method of support or attachment), and the masses of 

the components and the strength of the restoring forces or moments. 

(a) (b) 

(c) 
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Before simulating harmonic response analysis, modal analysis was done on the crane 

boom structure at certain angle lift (55° angle). Table 4.2 shows the difference between 

natural frequencies for crane boom structure at rest (0° angle) and at 55° angle lift.  

 

Table 4.2: Difference between natural frequencies for crane boom structure at rest (0° 

angle) and at 55° angle lift 

Mode 
Natural Frequencies (Hz) at 

0° angle 

Natural Frequencies (Hz) at 

55° angle 

1 5.3543 5.3549 

2 22.162 22.165 

3 53.232 53.240 

 

 

The result in Table 4.2 shows a little bit changes of natural frequencies of the offshore 

crane boom structure at different lift angle. From the point of view of dynamics, lift 

angle changes both the stiffness and inertia distribution of the whole structure and thus 

its effect on the dynamic properties mode-dependent.  
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Figure 4.2 shows the mode shapes of the crane boom structure at 55° lift angle using 

simulation in ANSYS Workbench. 

 

   

 

 

 

Figure 4.2: Mode shape of the crane boom structure at lift (55° angle); (a) Mode shape 

1, (b) Mode shape 2, (c) Mode Shape 3 

 

 

 

 

(a) (b) 

(c) 
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4.2 Harmonic Response 

Any excitation or impulse of acceleration is fundamental important both in spectral 

analysis of the dynamic system and in dynamic responses in structures. In this harmonic 

response analysis using ANSYS Workbench, all loads as well as the structure‟s response 

varies sinusoidally at the same frequency. This typical harmonic analysis have 

calculated the response of the crane boom structure to cyclic loads over a frequency 

range and obtained a graph of response quantities (Displacement or deformation and 

acceleration) versus frequency.  

4.2.1 Deformation of the Structure 

In crane operations, the hoisting speed for picking up or lowering down the payload 

provides sustained cyclic or dynamic loads to the crane system. Figure 4.3 shows the 

frequency response of the amplitude of the crane deformation at different amount of 

payload. From the result, it shows that the maximum deformations are at three „peak‟ 

frequencies which are same with the natural frequencies; 5.3549 Hz, 22.165 Hz and 

53.240 Hz. 

 

 

 
Figure 4.3 (a): Deformation amplitude of the structure excited by 4 Tones payload 
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Figure 4.3 (b): Deformation amplitude of the structure excited by 8 Tones payload 

 

Figure 4.3 (d): Deformation amplitude of the structure excited by 16 Tones payload 

Figure 4.3 (c): Deformation amplitude of the structure excited by 12 Tones payload 
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The result shows the effect of payload on the dynamic characteristics of the crane boom 

structure. As the amount of payload increases, the maximum amplitude will also be 

increased. The harmonic load was expressed as  

          (4.1) 

Where: 

F is the amount of payload,  

 is the frequency of hoisting speed, and  

t is time.  

Therefore, as amount of force increase, the amount of harmonic load will increase and it 

will affect the total frequency response of the crane boom structure. The graph of the 

amplitude of the structure‟s deformation represented the dynamic characteristics of the 

crane boom structure that was excited by the varying amounts of payload. The graph 

also represented the characteristics of the three first mode shapes. Three „peak‟ 

frequencies represented the maximum amplitude of deformation at the natural 

frequencies. Based on resonance concept, resonance is the buildup of large vibration 

amplitude that occurs when a structure or an object is excited at its natural frequency 

[8]. The result satisfied the theory. 

Figure 4.3 (e): Deformation amplitude of the structure excited by 20 Tones payload 
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From the result, we can view that the amplitude of deformation at the first 

mode/frequency is higher compared to the amplitude of deformation at second and third 

mode. This can be explained by the description of the unique mode shapes. For the first 

mode shape, the deformation is based on one loop only while for second and third mode, 

the maximum amplitude is shared by 2 or more loop. That is why we can see that there 

are two or more amplitude of deflection (loop) for second and third mode. This can be 

viewed in figure 4.4 below: 

 

 

Figure 4.4: The mode shape for a cantilever beam 

 

 

For the mode shape, when the time is varied; all particles along the solid tapered 

cantilever beam are oscillating in the same frequency and in phase (reaching the 

equilibrium point together) but each has different amplitude. 
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4.2.2 Acceleration of the Structure 

Based on theory stated by Rao [17], by using complex number representation, a 

harmonic response can be represented as  

          (4.2) 

Where: 

 is the amplitude, 

 is circular frequency (rad/sec), and 

 is time. 

The differentiation of the harmonic response with respect to time gives 

       (4.3) 

      (4.4) 

 

From the equation 4.4, we can see that the acceleration is dependent on the quadratic 

value of frequency. As frequency increase by quadratic value, the acceleration of the 

structure will accelerate at high acceleration. The result of structure‟s acceleration shows 

that the „peak‟ acceleration are at three „peak‟ frequencies which are same with the 

natural frequencies; 5.3549 Hz, 22.165 Hz and 53.240 Hz. The results also satisfied the 

resonance concept.  

Figure 4.5 shows the response quantities of acceleration at different amounts of payload. 

We can see that that three peak frequencies shows that the maximum acceleration of the 

crane boom structure at three different mode shape. The maximum amplitude of 

acceleration at third mode is higher that acceleration at first and second mode. This is 

because the acceleration is increasing by quadratic value of frequency. That satisfied the 

theory of equation 4.4. 
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Figure 4.5 (b): Acceleration amplitude of the structure excited by 8 Tones payload 

Figure 4.5 (a): Acceleration amplitude of the structure excited by 4 Tones payload 

Figure 4.5 (c): Acceleration amplitude of the structure excited by 12 Tones payload 
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Figure 4.5 (e): Acceleration amplitude of the structure excited by 20 Tones payload 

Figure 4.5 (d): Acceleration amplitude of the structure excited by 16 Tones payload 
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There are four main points regarding this study of harmonic response of the offshore 

crane boom structure: 

1) The natural frequency is different for associated mode. As mode, N is increased, 

the frequency will be increased. 

2) A little bit changes of natural frequencies of the offshore crane boom structure at 

different lift angle. This is because lift angle changes both the stiffness and 

inertia distribution of the whole structure and thus its effect on the dynamic 

properties mode-dependent. 

3) The varying amount of payload has affected the dynamic characteristics of the 

crane boom structure. As the amount of payload increases, the maximum 

amplitude of structure‟s deformation and acceleration will also be increased. 

4) The result of structure‟s deformation and acceleration in harmonic response 

analysis shows that the „peak‟ deformation and acceleration are at three „peak‟ 

frequencies which are same with the natural frequencies; 5.3549 Hz, 22.165 Hz 

and 53.240 Hz. The results satisfied the resonance concept.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

In a conclusion, this project is a comprehensive research study about harmonic response 

of the offshore crane boom structure. The project is related to the study on the dynamic 

characteristics of the offshore crane boom structure upon excitation by the payload. The 

hoisting speed for picking up or lowering down the payload provides sustained cyclic or 

dynamic loads to the crane system. Harmonic analysis results are used to determine the 

steady state response of a structure to loads that vary sinusoidally (harmonically) with 

time, thus enabling us to overcome resonance, fatigue and other harmful effects of 

forced vibrations. 

From the study, we could find the values of the natural frequency, the harmonic 

response on the crane boom and the mode shape under the influence of hoisting speed 

for picking up or lowering down the payload. The variation amounts of the payload have 

influenced the harmonic response of the crane boom structure. The dynamic analysis 

was done by approximate solution and simulation using ANSYS Workbench software. 

By using approximate solution, the mathematical model was developed based on 

simplified solid tapered cantilevered beam geometry using Rayleigh-Ritz method. The 

analysis was firstly done on free vibration of the structure at 0° angle where that analysis 

will be act as a baseline model. The result obtained was compared with the result 

obtained from the simulation using ANSYS Workbench software. 

Then, the dynamic analysis was done on the structure at 55° angle to view the effect of 

angle lift to the dynamic characteristics of the crane boom structure. Harmonic response 

analysis was done to the structure with varying the amount of payload. The natural 

frequencies of the crane boom structure at 55° angle are 5.3549 Hz, 22.165 Hz and 

53.240 Hz. Harmonic response result shows that the maximum amplitude of the 

deformation and acceleration of the crane boom structure are at the same frequencies 

with the natural frequencies. That conclusion satisfied the concept of resonance. This 

dynamic characteristic is really important in design and operation of the crane boom 

structure. 
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Recommendation 

This research study can be expanded to investigate the dynamic characteristics of the 

crane boom structure under following condition: 

 The swinging of the payload 

 

Increasing the amounts of payload naturally will cause the swinging of the 

payload during picking up or lowering down the payload. The swinging of the 

payload will be critical if the crane operation is exposed to adverse wind 

condition. In this project, the amounts of payload were varied with assumption 

that the payload is not swinging and without any excitation by the wind load. 

 

 Exposed to adverse wind condition 

 

The crane operation naturally exposed to the adverse wind condition. This is 

because the location of the fixed platform at the middle of the sea. Wind and 

storms can influence the entire operation of cranes and can even destroy the 

whole crane. This show the important of study on harmonic response of the 

crane boom structure due to excitation by the wind load. In this project, the 

analysis was done with assumption that there are no wind load to excite the crane 

boom structure. 
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