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ABSTRACT

This studywas conducted to evaluate the field characteristics, mineralogical, physical

and geochemical properties of the Early to Late Miocene Belait Formation in Marudi

and the Early to Middle Miocene Lambir Formation in Miri, Sarawak at various

scales of observations and to provide a key differentiation between these two

formations. Representative samples were collected at Marudi, Northern Sarawak

(Belait Formation) and nearby Miri, Sarawak (Lambir Formation). Field observations

suggested that there are at least four differentiating characteristics between these

Formations. The four major differentiating characteristics are; microfabric analysis

revealed that the Belait Formation consists of angular to sub-angular grains whereas

the Lambir Formation has sub-rounded grains. Presence of mudclasts in the Belait

Formation suggests deposition in a low energy, muddy environment with short

transportation. Extensive fracturing of the quartz grains in the Belait Formation

suggests variations in the degree of compaction resulting from differences in

thickness or rates of diagenesis. This suggests the presence of geopressure anomalies

in the Belait Formation; a feature that is probably absent in the Lambir Formation.

Tremendous spatial and temporal variability of hydrocarbons was detected in both

formations. Mineralo-chemical observation indicates a dominance of aliphatic

components in the Lambir Formation whereas Belait Formation is dominated by

aromatic components. Both intra- and inter-formation variations in hydrocarbon

components exist in the formations evaluated. Aryl-olefins (C=C) aromatic

compounds were present in all samples with peaks occurring at around the 400-

600cm"1 region. This compound was frequently detected and with transmittance as

low as 30% in the Belait Formation samples. Aliphatic compounds such as CH, CH2

and CH3 were found more frequent in the Lambir Formation samples with varying

transmittance values. Heterogeneity in the distributions of hydrocarbon between both

formations suggests that different rates ofmigration might occur within the reservoir

quality rocks of both formations. This indicates differences in show type between

both formations. The qualities of the hydrocarbon shown in the Lambir Formation
vii



samples are comparable to a Type-I or Type-II class reservoir rocks while the

hydrocarbon in the Belait Formation samples are comparable to a Type-Ill. A

differentiation key that could distinguish the Belait and Lambir Formation is proposed
at the end ofthe study to aid future researchs.
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ABSTRAK

Formasi Belait yang berusia awal sehingga lewat Miosen di Marudi, Sarawak terdiri

daripada selang lapis heterolitik di antara lapisan pasir dan lumpur manakala Formasi

Lambir (awal ke pertengahan Miosen) di Miri, Sarawak terdiri daripada selang lapis

di antara batu pasir masif yang berbutir halus hingga sangat halus dengan syal kelabu.

Persamaan jelas kedua-dua Formasi dapat dilihat bukan sahaja pada rentasan seismik

malah di lapangan. Walaupun perbezaan sekitaran pengenapan telah dinyatakan

dalam terbitan-terbitan utama namun, kedua-dua Formasi tetap sukar untuk

dibezakan. Eksplorasi semasa untuk pencarian minyak dan atau gas di blok SK333

yang melibatkan kedua-dua Formasi telah mengembalikan perhatian untuk mengkaji
semula geologi formasi-formasi ini. Sehubungan dengan itu, kajian ini telah di

laksanakan bagi menilai ciri-ciri lapangan, mineralogi, fizikal dan sifat-sifat geokimia

kedua-dua Formasi pada pelbagai skala dan pemerhatian bertujuan untuk

menyenaraikan sifat-sifat utama bagi membezakan formasi-formasi ini. Persampelan
untuk Formasi Belait telah dilakukan di Marudi yang terletak di Sarawak utara.

Manakala sampel Formasi Lambir telah dikutip di sekitar bandar Miri, Sarawak.

Pemerhatian di lapangan menunjukkan bahawa terdapt sekurang-kurangnya empat

perbezaan utama di antara kedua-dua Formasi. Analisis mikrofabrik menunjukkan
Formasi Belait mempunyai tekstur butiran bersegi ke separa-bersegi manakala

Formasi Lambir mempunyai butiran berbentuk separa-bundar. Kehadiran klas-klas

lumpur di dalam Formasi Belait mencadangkan kemungkinan pengendapan formasi
ini di pengaruhi oleh sekitaran yang berlumpur dengan tenaga rendah serta mengalami

proses pengangkutan singkat. Rekahan butiran quarza secara ekstensifpada batu pasir
Formasi Belait mencadangkan kemungkinan terdapatnya variasi semasa proses

pemampatan disebabkan oleh perbezaan di antara jumlah ketebalan batuan atau

perbezaan kadar diagenesis yang di alami kedua-dua Formasi. Sifat-sifat ini
mencadangkan kehadiran anomali geopressure yang mungkin hanya dialami oleh
batuan Formasi Belait. Variasi ruang dan masa yang luas di dalam kandugan

hidrokarbon juga dapat di lihat pada sampel kedua-dua Formasi. Walaupun Formasi
Belait pernah dianggap sebagai formasi yang tandus namun kajian yang dilakukan
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menunjukkan bahawa hidrokarbon dilihat dapat hadir dalam pelbagai keadaan.

Pemerhatian terhadap sifat-sifat mineral-kimia menunjukkan bahawa Formasi Lambir

didominasi oleh hidrokarbon jenis alifatik bertentangan dengan Formasi Belait yang
didominasi oleh hidrokarbon jenis aromatik. Perbezaan kandungan hidrokarbon ini

bukan sahaja dapat dilihat di antara kedua-dua Formasi, malah dalam setiap formasi
yang dikaji. Kehadiran sebatian aromatik olefin (C=C) dapat dilihat pada

kebanyakkan sampel pada puncak di sekitar rantau FTIR 400-600cm"1. Sebatian ini

kerap dikesan pada sampel Formasi Belait dan dilihat mempunyai transmitans

serendah 30%. Sebatian alifatik seperti CH, CH2 dan CH3 pula lebih kerap dijumpai
di dalam sampel Formasi Lambir dengan kadar transmitans yang berbeza-beza.

Kepelbagaian dalam kualiti hidrokarbon antara kedua-dua Formasi ini mencadangkan
bahawa masa dan kadar penghijrahan hidrokarbon di dalam batuan kualiti reservoir

kedua-dua Formasi adalah berlainan. Kualiti hidrokarbon dalam sampel Formasi

Lambir adalah setanding dengan batuan reservoir jenis-I atau jenis-II manakala

hidrokarbon dalam sampel Formasi Belait boleh dibandingkan dengan batuan

reservoir jenis-III. Senarai perbezaan utama bagi membezakan antara Formasi Belait

dan Lambir telah dicadangkan di akhir kajian ini bagi membantu pengkaji-pengkaji
yang berminat untuk meneruskan kajian terhadap Fonnasi-Formasi ini dimasa
hadapan.
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CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

This chapter will provide the general overview for the entire work. It includes the

study background, problem statement and the objectives to generally give

clarifications regarding this research.

1.2 Background of Study

Rock characterization study has been performed widely for different purposes in the

oil and gas industry. Much of the rock characterization studies rely heavily on the

rock properties itself in order to distinguish one rock from other rocks. Properties such

as carbon contents, porosity, permeability, thermal properties, and mineralogical

properties of a rock are of particular interest in the industry especially during the

exploration and production level. Rock typings, reservoir properties, reservoir

predictions, source rock characterization are some of the areas which benefited from

the rock characterization studies [1, 2].

The region of Borneo has been producing oil and gas since 1903, the first

exploration well in Malaysia, Miri 1 was drilled around Miri Hills area in 1910 [3, 4].

Complexity in the geology of Sarawak has been highlighted by Liechti et. al. [4] in

detailed. The authors stated that the investigation of the area stratigraphy presents

special problems. These problems arise due to either rapid lateral changes of

lithofacies and observations of lithological uniformity over great distances and

thickness between the rocks. Other stratigraphic complexities are due to structural

control of deposition, the almost complete absence of macro-fossils, the comparative



scarcity of paleontological and lithological markers, and extensive reworking of

microfossils. On regional scale, Murphy [5] in Hutchison [3] has concluded that the

evolution of Southeast Asia has not been satisfactorily handled.

Petroleum system is a natural system which consists all of the geologic

elements and processes (source rocks, migration, reservoir rocks, trap and seal) that

are essential for a hydrocarbon accumulation to exist [6]. The reservoir rocks are

defined as a body of rock having sufficient porosity and permeability to store and

transmit fluids [7]. Sandstones are the most common being a reservoir as they have

more porosity than other types of rocks and form at temperature conditions at which

hydrocarbon is preserved [7].

It has been estimated that about half of the world's available reservoir for oil

and gas occurred in clastic sediments. Understanding the properties ofthese rocks will

yield great knowledge in contributing to as how theirproperties strongly influence the

reservoir qualities [8]. The sandstone reservoir primary properties (texture,

composition, sedimentary structures, morphology and stratigraphy heterogeneity) are

mainly controlled by the source materials, weathering, transporting agents, and its

depositional environments. These primary properties can be directly linked to the

production performance ofa reservoir [8, 9].

In a petroleum system, the source rock provides the oil and gas. The source

rock has substantial amounts of fossilized organic matter incorporated into the

sediment during deposition [2, 10, 11]. The organic matter is mainly derived from

algal, bacterial and higher plant tissues. A rock can be termed as a source rock,

provided that its organic matter content is least 1-2% by weight ofthe rock.

1.3 Problem Statement

Lambir Formation (Early to Mid Miocene) and the Early to Late Miocene Belait

Formation are time-equivalent geological formations in northern Sarawak. Although

the depositional environments of these two Formations are known to be different [3,

4], distinguishing both formations is challenging. Current exploration in the SK333



block for oil and / or gas [12] that represents both formations has revived the interests

on the geology ofthe formations.

Therefore this research aims to distinguish both formations at various scales of

observation. As a consequence of this characterization work, an enhanced

understanding of the nature, properties and behaviour of the reservoir rocks would be

obtained.

1.4 Research Objectives

The purpose of studying the characteristics of sedimentary rocks from North-eastern

Sarawak, East Malaysia is to investigate the properties of these rocks as part of the

area petroleum system. Therefore, the objectives of this study are as follows:

i. To observe the sedimentary features ofboth formations in the field.

ii. To further evaluate both formations based on their physical, mineralogical and

geochemical properties in order to characterise the properties of these

reservoir rocks,

iii. To develop a differentiation key that will assist in distinguishing the two

formations from each other.

To achieve the objectives of this study, two main methods of investigations have been

employed. These are:

i. Field observation / study of selected outcrops in these two formations,

ii. Laboratory petrophysical analysis, mineralogy and geochemical analysis.

1.5 Research area

The study was conducted on onshore sedimentary rock outcrops in Marudi and Miri,

Sarawak (Fig. 1.1). The study areas in Marudi include the town itself and the area

near Sarawak-Brunei border. The study was also conducted in Miri at Tusan Beach



(in between Bakam and Bekenu), Kampung Kuala Masjid beach and on outcrops

along Jalan Miri - Bintulu.

1.6 Scope ofWork

This study aims to differentiate both formations at various scales and attempts to

characterize the Formations based on their nature, behaviour and properties as

reservoir rocks. The scope of the study is as follows:

1.6.1 Fieidwork and Sample Collection

Fieidwork was conducted for the Belait Formation in Marudi and the Lambir

Formation in Miri. Both Formations were identified at the field based on the

geological maps and literatures from previous researchers [3, 4, 13-15]. The field

characteristics of these outcrops will be the first basis of characterisation work for

these two formations. Fresh, indurated samples were collected in order to further

characterize the formations.

1.6.2 Characterization Works

Laboratory analysis was performed to study the properties of rocks from both

formations, including petrophysical, mineralogical and petrographical as well as

geochemical characterization.

1.6.3 Records and Documentation

The results from this comprehensive study will be analyzed and documented and as to

satisfy the objectives, a characterisation key to differentiate these formations would be

developed and their characteristics as reservoir qualities will be examined.



1.7 Organization of Thesis

This dissertation is subdivided into five chapters. The introduction chapter describes

the research background related to the two Formations and highlights the differences

between these two formations and the need to distinguish them. Problem statement of

this research, the objectives of the work and scope of study were also clarified in this

introductory chapter.

Chapter two contains the literature review for this this dissertation. Brief

explanations and theoretical concept related to this study is discussed here. Critical

issues and important related research works done in the past is also evaluated here.

Chapter three presents the general methodology and the list of samples used

for the study. The features of each outcrop and characterisation techniques performed

on each category are also discussed throughout the chapter.

Chapter four discusses the findings of this study. It is divided according to the

various types of characterization starting with the field description to the geochemical

characterization of the formations. The last section of this chapter evaluates the

properties ofthe two formations as a reservoir quality rocks.

Each section from this chapter was either presented in local or international

conferences, including the International Petroleum Technology Conference (IPTC)

2011 or journal. The final section of this chapter (section 4.7) has been submitted to a

journal. The detail of this is as follows:

• Section 4.2 - Some Field Differentiating Characteristics between the Belait

and Lambir Formations, North Sarawak - Presented at Petroleum Geology

Conference and Exhibition (PGCE) 2011.

• Section 4.3 - Differentiation of the Microfabrics of Sediments in a

Fluviatile Grading to Shallow Marine Setting in North-eastern Sarawak - In

preparationfor submission in ajournal.



• Section 4.4 - Spatial and Temporal Variability of the Hydrocarbon
Distributions in the Belait Formation, North Sarawak - Presented at
National Geoscience Conference (NGC) 2010.

• Section 4.5 - Spatial and Temporal Variability of the Hydrocarbon
Distributions in the Lambir Formation, North Sarawak. -Submitted to

International Conference on Integrated Petroleum Engineering and
Geosciences (ICIPEG) 2012

• Section 4.6 - Heterogeneity of Hydrocarbon Distribution in Tertiary
Sediments of North-eastern Sarawak - Presented at International

Petroleum Technology Conference (IPTC) 2011.

• Section 4.7 - Differentiating between aFluviatile-Shallow Marine Settings
in the Tertiary Sediments from North-eastern Sarawak - Submitted to

Journal ofPetroleum Geology (JPG), UK.

The final chapter provides conclusions gained from this research works. The

major outcomes, which answer the objectives are summarized to create a

differentiation key in order to distinguish between the Lambir and Belait Formation in
the field. Recommendations for future works are also proposed.
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CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

This chapter will review the literature materials pertinent to this study. It is divided

into four sections mainly; geological background of the area, physical

characterization, mineralogical characterization and geochemical characterization.

2.2 Geological Background

Sarawak is located on the Borneo Island, East Malaysia. The continental margin of

Sarawak forms part of the Sunda Shelf which structurally connects Borneo with the

western part of Malaysia and the rest of continental South East Asia [3]. Earlier

knowledge regarding the Sarawak geological background was mainly interpreted in

terms of the geosynclinal theory [4, 16] before currently being replaced by recent

concept relating to the understanding of the plate tectonic. Tectonic association of

Borneo Island began with the compilation of Hamilton [17] from his analysis and

access to unpublished data from oil companies and has been further studied by

various authors [18-28].

The Sundaland foreland buried beneath the South China Sea [3, 26, 29],

which is a requirement for a geosynclinal theory to work, does provide us the

organizational pattern of the Sarawak geological concept. Hutchison [3] also stated

that the four-fold division as proposed by Haile [16, 30] remained valid.

Haile [16, 30] divided Sarawak into four different zones. Namely The Miri

Zone, The Sibu Zone, Kuching Zone and West Borneo Basement (WBB). The last



zone (WBB) was later renamed in Hutchison [29] as the Pontianak Zone based on the

area it occupies. The last subdivision, Pontianak Zone is the southernmost part of the

division. It is dominated by Cretaceous volcanic and plutonic rocks that constitute the

Schwarner Mountains [31] as well as outcrops from Carboniferous - Permian

basement rocks [3, 30]. A more recent map of the geological pattern of Sarawak (Fig.

2.1) has been produced by Hutchison [3].

The most northerly Miri Zone was described by Haile [30] as miogeosynclinal

(shelfal part) and molasse (late- or post orogenic) strata deposited upon older

continental crusts. The second division which is seperated by the Tatau-Mersing line

(Hutchison, 1989) from the first division is known as the Sibu Zone. It is dominated

by eugeosynclinal flysch, or thick monotonous sequence of shale/sandstone turbidites

which has been deposited upon oceanic crusts [30]. The turbidites flysch was uplifted

during Late Eocene [3] which also resulted in several other uplifts ^(Sarawak

Orogeny) during the collision between the Luconia Block with the Sarawak margin.
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Fig. 2.1 - The structural zones of Borneo (from Hutchison [3]).

2.3 General Stratigraphy

The Miri Zone (Fig. 2.2) is divided into the central part and northern part of Sarawak.

It is separated from the Sibu Zone by the Tatau - Mersing line which is a structurally

complex zone consisting of Paleocene and Eocene ophiolitic rocks, including spilite,

basalt, tuff and radiolarian chert [23].

10



c
Holocene

a Pleistocene

V

0) Upper

o

1

_ ^-^

•pfca&f*/
g- Zjp-5'
jkgM*
fe^^Si
8*3*Wf-^
tM? . ',"r

s?v •• -
*j

%l ..»

*Y
41 Upper

ft
o

Lower

—

o «f Upper

0.
Lower

Difficulty

"Correlation between

onshore and offshore

"Lateral variation in

Lithostratigraphy

Northern Sarawak

Onshore Lithostratigraphy

Liang

Fig. 2.2 - Generalized stratigraphic columns for the onshore structural provinces of
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2.3.1 The Belait Formation

The Belait Formation which is found in North Sarawak represents the Lower-Upper

Miocene age in the northern sector of the Miri Zone. Thickness of the formation is

estimated to be around 20,000 feet (6096 meters) thick [33]. In most area, the Belait

Formation overlies the Setap Shale Formation conformably, or with slight

unconformity [4, 33]. The relationship between the Belait Formation and Setap Shale

Formation is somehow highly diachronous as the junctions between both formations

rise towards the northby means of lateral wedging out of basal Belait Formation beds

and intergrading to the Setap ShaleFormations [4, 33]

The formation consists of conglomerate and pebbly sandstone at the base,

passing upwards into alternating sandstone, shale and coal [3,4, 33]. Haile [34]
suggested that Belait Formation was deposited in littoral to deltaic conditions in local

isolated basins.
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The sandstones have been described as mostly fluviatile [3, 4]. The lignites,

cross-bedding and ripple marks, in combination with some foraminiferal micro-faunas

(alternating with mostly barren strata) in some area, indicate clearly a paralic

environment temporarily and locally developing into shallow marine i.e. littoral

conditions [4]. Towards the coast the environment changes into fully marine, the

Belait Formation merges gradually into the more marine Lambir or Miri Formation or

the uppermost part of the Setap Shale Formation [4].

2.3.2 The Lambir Formation

The Lambir Formation (Middle-Upper Miocene) occupies about 220 square miles in

the Lambir Hills, Bakong area, Teraja area and south-east of Marudi [27, 33, 34]. The

formation is believed to be the more marine time-equivalent of the Belait Formation

as they resemble nearly similar lithology [3, 4, 33]. Thickness of this Formation at

Lambir Hill is estimated to be around 7000 feet [4, 33]. The Formation consists

predominantly of sandstones and alternating shales with minor limestone and marl in

some places [4, 27, 33, 34].

In the Lambir Hills, the base of the formation consists of sandstone and shale

with locally abundant limestone lenses. Overlying this are shale, marl, thin limestone

lenses, calcareous sandstone and sandstone, passing upwards into sandstone and shale

[34]. The sandstones are fine to medium grained and lignitic with thin beds and are

increasingly less consolidated towards the upper part of the formation, which consists

of sandstones alternating with shales and clays, partly coarse grained or gritty, with

quartz pebbles only [3, 4, 33, 34]. In the Ridan area northeast of Marudi, the Lambir

Formation consists ofregular alternations of sandstone and sandy clay, the sandstones

are generally cross-bedded, medium-grained to coarse-grained and contain lenses with

small quartz grains [3, 4, 34].

Depositional environment of the formation was more marine than during the

deposition of the Belait Formation. Biohermal limestones indicate inner neritic to

littoral conditions which towards the top became entirely littoral, as indicated by an

12



increase in sandiness and lignites. The present of microfauna also indicates shallow

marine conditions [4].

2.4 Physical Characterization

The physical characterization involved characterizing both Formations in terms of

their physical properties. In this section, the porosity —permeability concept is

explained along with the surface area and thermal conductivity of the rocks.

2.4.1 Porosity

Sandstones can easily act as a reservoir rock if the porosity inherited during

deposition and throughout the diagenesis process was retained. Porosity (0) is defined

as the ratio of pore space volume, which is not occupied by the solid constituents, to

the total volume [35]. Porosity can be expressed either as a decimal fraction or as a

percentage.

Porosity(0) = [(Pore Volume) / (TotalVolume)] X 100

(Equation I)

A sedimentary rock is considered porous when the rock consists of empty

spaces located between the varying shapes of grains which are more or less cemented.

Effective porosity is the amount of mutually interconnected pore spaces present in a

rock [35, 36]. Presence of effective porosity creates permeability [35].

Generally for a reservoir rock, the most important factors that are affecting

porosity are its depth of deposition and diagenesis of the rocks. This is mainly due to

compaction [35-37]. It has been observed that porosity of a rock decreases with

increasing depth, whereas porosity increases with better grain sorting, increasing grain

size and decreasing clay minerals content [35].
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Mercury porosimetry is an extremely useful characterization technique for

porous materials as pores between 500/mi to 3.5nm can be investigated [38]. Mercury

porosimetry also provides a wide range of information, e.g. the pore size distribution,

the total pore volume or porosity and specific surface area of the pores [39]. The

principle of mercury porosimetry is based on the physical principle that a non-

reactive, non-wetting liquid will not penetrate pores until sufficient pressure is applied

to force its entrance [38]. Mercury is a non-wetting liquid for almost all substances

and consequently it has to be forced into pores of the interested materials. Pore size

and volume quantification are accomplished by submerging the sample into a

confined quantity of mercury and then increasing the pressure of the mercury forcing

it into the samples.

2.4.2 Permeability

Permeability is the ease of flow of fluids through rocks (by means of its void). It is a

function of the pore size and shape, pore throat and/or channel diameter, grain size

and shape, grain packing density, tortuosity, sorting, cementing, fracturing, and

residual fluid saturation.

For a reservoir, the voids must be able to contain economically interested fluid

or gas and allowing them to circulate and permeability in this case can be defined as

the ability of the rocks to transmit fluid. Fine sediments such as clay exhibit low

permeability compared to sedimentary rocks with larger grain sizes due to lack of

connection between the clay particle fragments which are very tightly arrange.

Beside other petrophysics properties of a rock (i.e. bulk volume), permeability

and porosity are used extensively as part of the rock characterization process during

reservoir analysis studies in order to decide whether a prospect is economically viable

to proceed.
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2.4.3 Thermal Conductivity

Successful reconstruction of the paleotemperature in sedimentary basins requires

detailed knowledge of the rock thennal properties, especially the thermal conductivity

[40]. Paleotemperature regime of sedimentary basin is important to petroleum

prospectivity for a number of reasons: (i) it controls the generation, expulsion and

migration of hydrocarbons; (ii) it affects the viscosity of the hydrocarbons through

time; (iii) it governs the rate of diagenetic reactions that is important to the physical

properties of rocks in the basin [41]; and (iv) it influences the basin subsidence [42].

Heat flow data tell whether or not the rock has been buried to sufficient depth to have

been in the "oil generation" window long enough for breakdown of organic materials

and convert to become petroleum. In other words, if the rocks in a basin do not exhibit

the properties expected for sufficient thermal maturity to have been reached, no

petroleum can be expected to have been generated by source rocks in the basin.

Thermal conductivity of rocks can be determined based on Fourier's Law of

conductivity (Equation II). It isusually expressed in Wra^K" .

AQ/At = [kA (Ti -T2)] / 1

(Equation II)

Where by:

AQ = Heat flow

At = Time taken

K = Thermal Conductivity

A = Cross sectional area of the object

T1-T2 = Difference in temperatures between the two ends

1 = Distance between the two ends

Thermal conductivity of sedimentary rocks is controlled by porosity;

mineralogy and texture [43]. Of the most important factors, the later is the most

difficult to measure because of its complexity with grain size and grain-size

distributions [43].

15



Thermal conductivity can be measured in the laboratory on rock samples with

the most prominent methods being the "divided bar" and "needled probe" [44]. The

controlling factors of thermal conductivity in sedimentary rocks are porosity and its

provenance [45]. Chemical sedimentary rocks formed by precipitation of dissolved

materials or compaction of organic matter, and low porosity (less than 30 percent)

physical sedimentary rocks formed by compaction and cementation of clastic

materials have nearly similar thermal conductivity value ranges [45].

Similarly to other rock properties, thermal conductivity is characterized by a

broad range of values within one rock type [45]. This range is primarily controlled by

variations in mineral content, pores and cracks, their thermal properties and their

volume fractions and spatial distributions within the rock [36]. Generally, the thermal

conductivity increases with decreasing porosity [36, 45], increasing water content and

improvement of grain bonds or cementation. Decreasing grain size increases the

number of grain contacts per unit volume and thus, decreases thermal conductivity.

Study by Masnan et. al. [46] on thermal conductivity of shale and sandstone

samples from Belait Formation suggested that thermal conductivity values drop in

great values with increasing porosity of up to 10% and subsequently increases fairly

after that point of porosity. These variations are attributed to porosity reductions and

overburden pressure experienced by these samples. The thermal conductivity values

also decreased at the clay-silt grain size range and continued to decrease until particle

size approached range of fine sand. The thermal conductivity values then remained

constant with particle size larger than very fine-grained sand. The authors then

concluded that there is an inverse relationship between the thermal conductivity and

porosity and particle size of the studied samples. These relationships are attributed to

variations in the internal fabrics.
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2.4.4 Surface Area Analysis

Surface area determines many physical and chemical properties of a material. Clays,

soils and sediments varywidely in theirreactive surface areabecause of mineralogical

and organic composition and in particle size distribution. Such properties as water

retention and movement, cation exchange capacity are closely related to the surface

area [47]. Surface area is usually expressed in square meters per gram (m /g).

Substantial specific surface area in clay minerals has made this analysis very

useful in characterizing the type of clay present. Nonswelling minerals, such as

kaoiinite, have only external surface, whereas swelling minerals like momnorilonite

have a great deal of internal as well as external surface [47]. Natural claydeposits can

have a wide range of total surface area since the combination of external and internal

surface areas may vary simply because of the mixed layer minerals that may exist and

the variations found in clay mineralogy of a sample.

Characterization of sedimentary rocks based on their clay minerals contents

using the Ethylene Glycol Monoethyl Ether (EGME) method [47-49] can be proved

useful because of the extreme differences in surface area properties between the

nonexpanding and expanding silicates. Nonexpanding layer silicates such as kaoiinite

and some micas have only external surfaces [47]. Specific surfaces of these minerals

range from 10 to 70 m2/g [47]. Whereas expanding layer clay minerals such as

monmorilonite, other smectites and vermiculites have extensive internal as well as

external surfaces, recording surfaces up to 810 m2/g [47]. It has also been reported

that deep sea sediments possess a much higher values of surface area thenother types

of reservoir rocks due to their high clay and silt content [50].

Reliability of EGME method has been stated by Arnepalli et. al., [51] in their

paper when they compared it with several other well established methods that are

commonly used such as the Methylene Blue (MB) Absorption Technique, Nitrogen

(N2) Gas Adsorption Technique, Mercury Intrusion Porosimetry and Air-adsorption

method. The authors also stated that the EGME method is also economical in terms of

time and costs.
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2.5 Mineralogical Characterization

Mineralogical and petrographical properties of a rock have been long used as part of

the rock characterization. Knowledge on the mineral distributions and micro-features

of a particular rock can be observed by making a thin section of the interested rock.

The type of rock, textural features such as grain size, grain shape and its

morphological fabric can also be observed and determined.

In addition to using petrographical thin section analysis, scanning electron

microscope (SEM) is another versatile analytical analysis, capable of providing

several different types of images, quantitative data relating to porosity and rock

composition and the crystallographic structure of individual minerals [52].

Morphological identifications using SEM can further provide better information

regarding the types of porosity in a rock. SEM is an extended analysis of

petrographical image. It can be used to support the analysis using conventional

polarized microscope as SEM allows large depth of field, which enables a large

amount of the sample to be in focus at one time, and also the ability to obtain images

in high resolution, which means that closely spaced features can be examined at a

high magnification. X-ray diffraction analysis, on the other hand, is the most direct

and accurate analytical method for determining the presence and absolute amounts of

mineral species in a sample [53].

Previous mineralogical and petrographical observations available for the

Belait Formation in Sarawak were conducted by Azimah Ali [13]. The study was

conducted on several samples consisting of sandstone, siltstone and shale from the

formation. The study revealed that the sandstone consists predominantly of quartz

with clay matrix, and is texturally immature. The siltstone consists of angular to sub-

angular quartz grains and sub-rounded to rounded rock fragments in matrix of clay

mineral, mica flakes and sericite. Thin laminated and irregular cracks with burrows

were also observed in the thin sections of siltstone from the Belait Formation. XRD

analysis on the clay fractions revealed that they are composed of Kaoiinite at 7A,

Illite/Muscovite at 10A, Monmorilonite at 12-15A and Chlorite / Vermiculite detected at 14A.



2.6 Geochemical Characterization

Organic geochemistry techniques can be used to discover why, when and where

petroleum is formed, how it migrates and, when used with other geosciences major,

where it can be found [2, 54]. Petroleum geochemistry has been part of the major

components and tools used in petroleum exploration. Advances in this field have led

to a better understanding of exploration domain, mainly the hydrocarbon migration.

Much of the geochemical analysis during hydrocarbon exploration accounts for the

source rock evaluation during prospect maturation study.

The extend of hydrocarbons in the Belait Formation and Lambir Formation in

the study area is unknown as much ofthe research and literature regarding this subject

are unpublished or concentrated mainly on the offshore part. Occurrences of oil seeps

at the Marudi area have been reported by Wilson [33] and Sandal [55] in their report.

Drilling around the area however, yielded a dry well. Map of the early oil exploration

in Sarawak compiled by Wilson [33] also indicated a few other drilling sites for the

oil exploration which encompasses the study area in Miri and Marudi (Fig. 2.3).

In Miri, oil was first discovered at Miri 1 well which produced 88 barrels oil

per day (BBOD) from sand at TD (total depth) of just 138 meters. Upon its

completion in 1910, it produced from the marine counterpart of both formations, the

Miri Formation.

2.6.1 Total Organic Carbon (TOC) Content

The amount and type of the organic matter preserved in sedimentary rocks are a

function of several geological and biological processes such as organic productivity,

level of anoxia and sedimentary processes of the depositional environment [56].

Quantity of the organic matter in a sediment / rock can be determined by Total

Organic Carbon (TOC) analysis. TOC is measured in weight percent and indicates the

organic richness of the rock [57]. TOC value of 0.5 % by weight is a good minimum

estimate to identify a source rock [58]. Classification of TOC can be found in Peters

[59] and Tissot and Welte [10].
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This value reveals the amount of the organic matter present in the rock, but not

the hydrocarbon potential, which depends on the type of organic matter, its thermal

maturation, and its volume. TOC for the two studied Formations is also unknown due

to similar reason that the literatures were not easily available and usually labeled as

classified. However in a study conducted by Curiale et. al [60] which comprised of

samples from the Belait Formationcollected at Berakas Syncline, Brunei reported that

the studied shales have TOC ranging from 0.84 - 6.23 percent [60].

2.6.2 Ultraviolet - Visible Light (UV-Vis) Spectroscopy

Ultraviolet spectroscopy is a well known and widely used tool for both quantitative

and qualitative determination as well as characterization of changes in structures of

humified components. Absorption of humic acids in the ultraviolet range is based on

the aromatic groups that contribute to the molecular structure. Ultraviolet range is

found at around lOnm till 400nm which continues with the visible light spectrumuntil

720nm. As with any other absorption spectroscopy, the goal of this method is to see

how well the material can absorb the electromagnetic waves from each spectrum.

Schnitzer & Khan [61] stated that the light absorption of humic substances

appears to increase when there is an increase in degree of condensation of the

aromatic rings that these substances contain [62], the ratio of C in aromatic "nuclei"

to C in aliphatic side chains [63], the total C content; and also molecular weight.

Absorbance at 465nm and 665nm is widely used by soil scientists for

differentiating between Humic and Fulvic acids [61]. The ratio is usually referred to

as E4/E6. This ratio has been reported to be independent of humic materials

concentration extracted from different soil types [61, 62]. The E4/E6 is related to the

degree of condensation of the aromatic C network Kononva [62]. The author

furthermore added that low ratio of E4/E6 indicates a high degree of condensation of

aromatic humic constituents whereas the high E4/E6 ratio reflects a low degree of

aromatic condensation.
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Schnitzer & Khan [61] do not agree with this conclusion and stated the E4/E6

ratio is directly related to molecular weight. He suggested that sample with high ratio

of E4/E6 have higher molecular weight i.e. aromatic dominated compounds. It has

also been stated that the UV-Vis adsorption spectroscopy for evaluation of petroleum

has been strongly underestimated [64] as E4/E6 ratio from the UV-Vis, has been used

widely as a measure of aromacity or humification [65].

OIL EXPLORATION IN SARAWAK

GS TO OHE INCH

Dmtioral Bounoo**

Rights held by Sarowak Shell Oilfields Limiled
p 1 occupy the 10,9 50 sq.miles of land shown, and
I —I oboul 55,000 sq. miles of the offshore

continental shelf (not shown)

Exploration wells drilled by compa nies of the
Royal Dutch Shell Group

Fig. 2.3 - Map of previous oil exploration in Sarawak as compiled in Wilford [33]. It
can be seen from this map that the area activities studied is also explored. Here the
location of the current study areas is roughly represented by the red boxes on the map.

2.6.3 Fourier Transform Infrared (FTIR) Spectroscopy

Infrared spectroscopy has beenused since post World War II period by several major

chemical manufacturing companies as part of their quality control. It was later that the

technology evolved for the quantitative measurements of components in polymeric

and petroleum products [66]. With development of recent technologies, much of the

published works using FTIR focused on the identification and characterization of

materials and the development between the measured spectrum and molecular

structure and chemical functionality [66].
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In infrared spectroscopy, IR radiation is passed through a sample. Some of the

infrared radiation is absorbed by the sample and some of it passes through

(transmitted). The resulting spectrum represents the molecular absorption and

transmission, creating a molecular fingerprint of the sample. Like a fingerprint, no

two unique molecular structures produce the same infrared spectrum something that

made infrared spectroscopy useful for several types of analysis [67].

Soil scientists have long been using the FTIR as part of the characterization of

organic matter particularly the humic substances. Schnitzer and Khan [61] stated that

although infrared spectroscopy tells little regarding the chemical structure of humic

nuclei, infrared spectroscopy does provide worthwhile information on the distribution

of the functional groups. Schnitzer and Khan [61] also stated that, infrared

spectroscopy is nevertheless useful for the gross characterization of complex humic

materials of diverse origin.

In the context of rock characterizations, a study by Ganz and Kalkreuth [68]

discusses the potentiality of infrared spectroscopy particularly the FTIR to classify

source rocks and oil shales as an additional tool along the arrays of conventional

geochemical analysis (rock-eval pyrolysis, vitrinite reflectance measurements etc.).

Ganz and Kalkreuth [68] also compared the classification of conventional O-C and H-

C ratio of Van Krevelen diagram method with a new set of parameters found using

the FTIR. The parameters which are known as the A Factor (aliphatic) and C Factor

(carboxylic) represents the peak changes in the aliphatic groups of measured

intensities and changes in the peak of measured intensities for the carboxyl/carbonyl

groups respectively. These formulas were based on the knowledge regarding the

increasing and decreasing ratio of aliphatic and carboxyl/carbonyl ratio during

migration [10]. Similar method was performed by Ballice et. al., [69] to classify

kerogen types and Boukir et. al., [70] to characterize crude oil asphaltenes with the

aid ofUV-Vis spectroscopy.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Chapter Overview

This chapter is divided into two parts whereby the first part will elaborate and answers

some of the questions regarding where and how the samples were collected and what

materials were involved. This is followed by brief information regarding the

experimental techniques performed for the samples in order to characterize the

studied formations.

3.2 Fieidwork

Fieidwork was conducted for one week on both Formations in Northern Sarawak

around late April until early May of 2010. The rocks from both formations were

sampled for lab analysis. All Belait Formation samples were collected within Marudi

district while samples representing Lambir Formation were collected around Miri

Town.

3.3 Sampling and Samples

Systematic sampling was conducted in-situ and collected rocks were ensured to be

fresh. Rock samples were break using geological hammer to ensure that samples

taken at the field are indurated. The selected section of the outcrops that contained

fossils or possessed any structures that can assist this study was hammered to obtain a

hand size rock samples that weight approxunately 1kg. Rock samples obtained were

labelled, stored and sealed in hard containers. These samples were then subjected to

further lab analysis.
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Sampling was conducted based on the map prepared by previous researchers

[3, 4, 14, 15, 71, 72] and geological map prepared by the Mineral and Geoscience

Department Malaysia [73] (Fig. 3.1). Explanations regarding the samples collected

during the fieidwork and the features it possessed in the outcrop scale will be

discussed in this section.

Fig. 3.1 - Geological map of the area based on the Mineral and Geoscience
Department Malaysia [73].

A total of nine samples were collected during the fieidwork with five samples

(Bl - B5) representing the Belait Formation and four samples (L1-L4) from the

Lambir Formation (Table 3.1). Samples B6 - B9 were given by Dr. Padmanabhan in

powdered forms. These samples were collected during one of his field visits around

Marudi area. Due to hazard and time constraints, rock samples for these samples

could not be collected during the fieidwork. As these samples are available in limited

quantity, only FTIR analysis could be performed on the samples. The Belait

Formation samples were collected from Marudi area of Northern Sarawak (Fig. 3.2)

and the Lambir Formation samples were collected at from the onshore outcrop

bordering the Miri coastal area to the South China Sea (Fig. 3.3).
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Table 3.1 - List of samples used for the study.

Sample Label Formation
Lithology

[74]

Bl Belait Formation Mudrock

B2 Belait Formation Mudrock

B3 Belait Formation Mudrock

B4 Belait Formation Sandstone

B5 Belait Formation Sandstone

B6 Belait Formation Sandstone

B7 Belait Formation Shale

B8 Belait Formation Sandstone

B9 Belait Formation Shale

LI Lambir Formation Sandstone

L2 Lambir Formation Sandstone

L3 Lambir Formation Sandstone

L4 Lambir Formation Sandstone
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114°18'0" 114°20'0" 114°22'0" 114o24'0" 114°26'0" 114*28,0"

114"18'0"

Fig. 3.2 - Sampling map for the Marudi area. Samples that are collected here
represent the Belait Formation as mapped by previous researchers [4, 14, 15, 71, 72,
75].

113°48'0' 114°0'0"

113°48'tr IIS^D'O"

Fig. 3.3 - Sampling map for the Lambir Formation at Miri, Sarawak. Sampling was
conducted based on availability of outcrops and map produced by previous
researchers [4, 71, 76].
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Sample Bl and B2 were collected at the same area located in the interior of

Marudi, Sarawak fringing the border to Brunei. The outcrop is an example of a typical

heterolithics sequence belonging to the Belait Formation (Fig. 3.4). The heterolithics

sequence consists of-26 meters in vertical height of sand and shale interval. Presence

of coal in the form of clasts and laminations can be seen along the shale sections of

this heterolithics sequence.

Similar to the heterolithics sequence of the first outcrop, B4 was collected at

15 meters height in Belait Formation outcrop that consists of sand and shale

heterolithics sequence, alternating with orange-whitish coloured medium-grained

sandstone (Fig. 3.5). Cross laminations can be observed in the sandstone section (Fig.

3.6A). The whole outcrop was logged. Sample for this outcrop was collected at one of

the sandstone sections. Soft-style deformation features can be found in the shale and

sand of the heterolithics part of this outcrop with thinning upward trends (Fig. 3.6B)

between the grains. Coal in the form of clasts and laminations was also detected

within the shaly sections of the heterolithics sequence.

The last sandstone from the Belait Formation is represented by sample B5 that

was collected at an exposed roadside outcrop at Jalan Marudi - Rumah Gadong (Fig.

3.7). The outcrop was logged and studied. Similar to all other Belait Formation

outcrops, the heterolithics sequence in this outcrop recorded 1:1 ratio of sand and

shales. Presence of bioturbated mud in the heterolithics sequence could also be

observed at the outcrop (Fig. 3.8). The sequence then continues with massive

medium-grained white pinkish sandstones where sample for this outcrop was

collected. The sandstone is featureless with presence of vertical burrows in the mid

section. Cross bedding structures could be seen clearly at the basal section of this

outcrop (Fig. 3.8). On the beds where these channels are present, thin laminations of

carbonaceous materials with thickness of around 1cm and coal dusts could also be

found (Fig. 3.8).
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Fig. 3.4 - Bl and B2 outcrop pictures. A - The bottom part of the picture showed
where the seepage location (approx. 2m in height) and the upper section which
consists of heterolithics with mud to sand ratio of 2:1. B - Ophiomorpha Nodosa
(circled) that have been detected nearby the studied sequence. C - Presence of coal in
forms of thin laminations (average of l-5cm in length) and clasts are marked by the
red arrows.

Fig. 3.5 - The outcrop for sample B4 from the Belait Formation. The outcrop is
located in the interior ofMarudi, North Sarawak. The outcrop consists of sand - shale
heterolithics sequence alternating with orange - whitish sandstones.
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Fig. 3.6 - B4 outcrop sedimentary structure pictures. A- Cross lamination (shown in
the red box) and parallel lamination (pointed by the red arrows) are found in the sand
sections of the Belait Formation B4 outcrop. B - Soft-style deformation as seenin the
B4 outcrop of the Belait Formation. Ball and pillow structures as pointed by the red
arrow. Syn-depositional features such as convolute laminations and contorted
laminations can also be seen (orange arrows). The sequence is also noticed to be
coarsening upward (white arrows).

Fig. 3.7 - The B5 outcrop ofthe Belait Formation. Trough cross bedding which is a
fluviatile feature can be found in the outcrop. The individual through are overlapping
each other as seen here and it was measured (red lines) having just less than 5 meters
laterally, whereas the total height ofthe outcrop is around 2.1 meters vertically.
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Fig. 3.8 - The sedimentary features in B5 outcrop. A - Bioturbated mud can be found
in the heterolithics sequence of the Belait Formation B5 outcrop. Much of the
replaced materials are reddish in colour (red arrows). B - Fine cross laminations in
the medium-grained sandstone beds of the outcrop (blue dotted line). Here, thin
laminations of carbonaceous materials (thickness around 1cm) can also be observed
(red arrows).

Much of Lambir Formation outcrops were sampled along the Miri coastal area

and consisted of very fine grained sandstone samples. Occurrences of massive

sandstones bedding is also common within the Lambir Formation outcrops [77]. The

heterolithics of the Lambir Formation although look the same compared to the Belait

Formation outcrop is quite different on closer looks. One clear example is that the

individual thickness of the sand to shale ratio in the Lambir Formation heterolithics in

most cases is sandier, having ratio ofmore than 1:1 (sand : mud) [77],

Sampling was conducted at one of the Tusan Beach sandstone outcrop, the

sample is represented by LI (Fig. 3.9). The second sample was collected in an outcrop

at the beach of. Kampung Masjid (L2) which is the continuation from the Tusan

Beach outcrop. Although sampling was conducted to all of the outcrops visited but

due to time and unpredictable weather conditions, only the last outcrop, L3 which is a

brownish orange sandstone outcrop alternating with 1:1 sand and shale heterolithics

sequence at an exposed outcrop near Jalan Miri - Bintulu (Fig. 3.9) was sampled.

Sample from this outcrop was collected on the top section which is a brownish-orange

massive sandstone. L4 outcrop is located alongside the same road of the previous L3

outcrop but furthering more to the direction towards Bintulu.
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Fig. 3.9 - Example of Lambir Formation outcrops. A —The massive sandstone
outcrop at Tusan Beach (Sample LI). B - Sample L3 outcrop. The sandstone can be
considered as part of the massive bedding because there is no structure present. This
feature is very common in Lambir Formation.

3.4 Mineralogical and Petrographical Analysis

Thin sections were made for all of the collected samples and examined for

petrographical analysis. Petrographical analysis includes; thin section analysis and X-

ray diffraction (XRD).

3.4.1 Thin Section Analysis

Petrographical and mineralogical analysis was conducted in order to characterize the

rock samples from its mineralogical point of view. Hand samples brought from the

field were first treated using mixture of epoxy and hardener to ease cutting the rock

samples into smaller fragment. The latter were then placed in a plastic cup where a

mixture of epoxy and hardener in 2: 1 by parts ratio was poured into the cup leaving a

2 cm height space. The cup was then placed under vacuum for 30 minutes and left for

up to a week for hardening.

Hardened fragments were cut using METKON Geocut into billet sized of-30

mm to approximately 50 mm length, 25 mm wide and 5 mm thick. METKON

Micracut 175 Precision Cutter was used for trimming the billet samples to as thin as

possible (possibly -50 urn). Sample lapping and polishing to 35 um thick were made

by METKON Forcipol 300-lV attached to Forcimat-TS head. At this thickness, the
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thin section will easily transmit light for further petrographical analysis.
Petrographical and mineralogical observation was conducted on the thin sections

viewed with OLYMPUS BX51-P polarizing microscope at Microscopy Division,
Mineral and Geoscience Department, Ipoh, Perak. Thin sections of these rock were

samples viewed under polarizing microscope with both plane polarized light (PPL)
and cross-polarized light conditions (XPL). VIS Plus version 3.0 software was used to
capture the images viewed in the microscope. Thin sections were made based on. the

procedures from Tucker [78] with descriptions from the aid ofillustrations given by
Adams et. al, [79] and MacKenzie &Adams [80].

3.4.2 XRD Analysis

XRD was performed using slide oriented specimens whereby the rock samples were
crushed into powder and water was added to form a slurry mixture. This mixture was

then transferred to a glass slides (size of5cm x2cm) using a dropper and air drier for

a day. The dried slide representing the sample was then attached to a slide holder for

its XRD mineral compositions. The XRD was performed using aPhilips Xpert X-ray
Diffractometer at Universiti Pertanian Malaysia (UPM), Serdang with CuKce radiation
at scanning speed of 0.047s. Slide oriented experiment was then conducted on these

rock fractions with smear-glass techniques based on the methods described by Gibbs
[81], Drever [82] and Hardy & Tucker [83]. Peaks obtained were identified from the

database provided by International Centre for Diffraction Database (ICDD) and
descriptions from Brindley [84].

3.5 Physical Analysis

Physical analysis was performed in order to characterize the physical properties ofthe
samples. Among the analysis and lab works performed are the mercury porosimetry
analysis, thermal conductivity analysis and EGME retention.

3.5.1 MercuryPorosimetry Analysis

Mercury (Hg) porosimetry techniques were also used to determine porosity and mean
pore sizes of the studied rocks. Air- then oven-dried samples were cut using a small-

32



sized bow saw into a known dimension of 1cm x 1cm x 1cm before being analyzed

with Pascal 240 Thermo Fischer Mercury Intrusion Porosimeter. Samples were first

degassed and then intruded by Hg. Apparent density, bulk density, porosity and open

pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample were

computed using the PASCAL (Pressurization with Automatic Speed-up by

Continuous Adjustment Logic) method and the Washburn equation. This equation

assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a

surface tension of mercury vacuum of 0.480 N/m and mercury density equal to 13.5

g/cm3.

3.5.2 Thermal Conductivity Analysis

Samples were air dried for one week and then dried in the oven (60°C) for one day

before being cut into small blocks with varied dimensions depending on the samples

availability. Thermal conductivity estimation was carried out by supplying constant

heat to the rock sample at 40W and 30°C room temperature until thermal equilibrium

had been achieved. Measurements were taken using Omega steel probe connected to

Omega HH506RA thermal-logger based on descriptions given by Somerton [85] and

Clauser & Huenges [45]. Measurements were performed at Universiti Teknologi

Petronas (UTP) Geochemistry Lab. The coefficient of thermal conductivity, k

[W/(m-K)], is a measure ofthe rate q (W) at which heat flows through a material. It is

the coefficient of heat transfer across a steady-state temperature difference (T2 - T\)

over a distance. These differences between the readings were referred and measured

as AT. The distances between the positions of the two readings were measured as L.

The area (A) of the rock when heated is also measured (Fig. 3.10).

Heat

Fig. 3.10 - Equipment setup and the parameters involved when measuring the thermal
conductivity of a rock sample.

33



Thermal conductivity of the rock sample was calculated using the formula
shown below (Equation I). Thermal conductivity is denoted as k with measurement

units of Wm'K'1 and represents the measure of heat flow per unit temperature
gradient.

£=Q*L/(A*AT)

(Equation III)

Q = Heat flow across the material

k = Thermal conductivity of the material

L = Length / Distance

A = Cross-sectional area ofthe material where heat is supplied
AT =Temperature differences between the point measured (T2 - T,)

3.5.3 Specific Surface Area - Ethylene Glycol Monoethyl Ether (EGME)
Retention Method

Specific surface area (SSA) analysis was conducted on dime-sized rock chips broken
from collected rocks to further characterize the presence of clay minerals within the
studied samples. Specific surface of a porous material is defined as the interstitial

surface area of the pores per unit of bulk volume ofporous materials [86]. EGME
Retention method was used to determine the total surface area for the clay portion of
samples [47, 49] based on the EGME method proposed by Carter et. al [47, 48]. In
this analysis, samples dried over Phosphorous Pentoxide (P205) were then saturated
with EGME. Amonomolecular layer ofEGME was then established by desorbing the
EGME by vacuum over EGME-saturated CaCl2. The weight of a monomolecular

layer ofEGME on the sample is determined by weighing the dried sample. EGME is
determined by weighing the sample and sample plus EGME.

Retention ofEGME (mg g'1) - (Wtj - Wt2) X(1000/Wt3)

(Equation IV)

Where:

Wti - Sample weight with monomolecular layer ofEGME +tare weight ofbottle
Wt2 = Sample weight after drying with P205 + tare weight ofbottle

34



Wt3 = Sample weight after drying with P205 - tare weight ofbottle

1000 = conversion factor (mg g"1)

The surface area in units of EGME per g of samples is converted to m2g_1; the

conversion is as follows (Equation V):

Surface area (m2g_1) = EGME Retention (mg g"1) / 0.286

(Equation V)

Where:

0.286 = Conversion factor (mg EGME m"2), the constant, 0.286, is the amount of

EGME (mg) that is required to cover a m of clay.

3.6 Geochemical Analysis

Organic characterizations of the studied rocks were determined from powdered rock

samples by a series of geochemical methods. In addition to determining the total

organic carbon contents (TOC), Ultraviolet- Visible Light (UV-Vis) spectroscopy was

performed to study the ratio of optical densities or absorbance of the solutions at

465nm and 665nm. Fourier Transform Infrared (FTIR) spectroscopy was performed

to determine types of functional group present in the studied samples. X-ray

Fluorescence (XRF) was also performed to determine the elemental compositions of

the studied samples.

Hydrocarbon interpretations of these samples is explained in its chemical

terms. It is therefore considerate to enlighten some of the terms that will be

encountered in the text. Aliphatic generally represents straight chain bonded / single

bonded compounds (C-C) known as paraffins; the double bonded (C-C) compounds

known as olefins. Hydrocarbons can also be present as cyclic (ring shaped)

compounds that are available in two conditions. The aliphatics equivalents of cyclic

compound are also known as naphthenes. Another important cyclic compound is the

aromatic compound. Aromatics (Aryl) are cyclic hydrocarbons which begin with

benzene ring and contain carbon-carbon double bonds. Aromatic is also known to be
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denser than the aliphatic (lipid-like) compound [87]. Just for comparison purposes,
the density ofwater is known to be lg/cm3. Hydrocarbons however are generally less
denser than water but aromatic in its simplest forms is much denser than the longer
chain aliphatics counterparts. A triacontane (C30H62) straight chain aliphatic has
density of 0.81g/cm3; an aliphatic cyclic, cyclo-octane (C8H16), has density of
0.83g/cm3; an olefin, 1-decane (CH3(CH2)7-C=CH2), has density of 0.74g/cm3.
Aromatic compounds however, abenzene (C6H6), has density of0.88g/cm3.

3.6.1 Total Organic Carbon (TOC) Analysis

Due to the unavailability ofpyrolysis method (Rock Eval), TOC was carried out as an

approximate indicator of source rock potential in the argillaceous rock. The TOC was

also done on the sandstone in order to link with the FTIR and UV-Vis results so that

some inference can be made regarding the migration of hydrocarbon in the reservoir
quality rocks.

Powdered samples of 100-200mg were weighed and placed in an inert (porcelain)
boat before being analyzed for their TOC contents at 1200°C using O.I Analytical
1030S Solids TOC Module. TOC values were then obtained from IR detector at

different temperature interval and displayed through WinTOC interface for data

acquisition ofanalyzed samples. Further details on the TOC procedure is explained
elsewhere [59, 88]. Classifications oforganic carbon content were made based on the

descriptions given byTissot &Welte [10]. The experiment was conducted at the Civil

Engineering Environmental Lab Universiti Teknologi Petronas (UTP).

3.6.2 X-ray Fluorescence (XRF) Analysis

X-ray fluorescent (XRF) can be complimented with the results obtained in the XRD

analysis as XRF provides highly accurate information about the elemental

composition of a sample. Samples were crushed and then air- and oven-dried before

analyzed using Bruker S4 Pioneer X-ray fluorescence spectrophotometer for their
elemental compositions.
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3.6.3 UV- Vis Spectroscopy

This method is used to determine the degree of condensation of aromatic network of

humic structures based on the E4/E6 ratio which is used to evaluate the nature of the

humic substances. E4 is the absorbance measured at 465 nm and Ee, the absorbance at

665 nm of the UV-VIS Spectrum. This method uses UVIKON 923 UV-VIS

Spectrophotometer. Fine resolution of UV-VIS Spectroscopy allows the study of the

spectral behaviour observed in the humic substances. The loss of aromatic structures

of humic acid results in significant changes in the UV-VIS spectrum for these

substances. This behaviour is monitored through the extinction value, which is the

measure of electronic radiation absorbed at a particular wavelength and peak maxima

which is the highest point at the peak of absorption.

Powdered rocks were diluted in test tubes with 0.5M hydrogen peroxides

(H202) and put to rest for one night before extraction. The extracted water-powdered

samples were then placed in a quartz cuvette of 10mm thickness and analyzed using

Shimadzu UV-3150 UV-VIS spectrophotometer.

The spectrophotometer was set to acquire spectra in the range of 200-800nm

with scanning interval of 0.5nm at medium scan speed. The data acquired by the

spectrophotometer was then viewed in Shimadzu UV Probe 2000 software to identify

the spectral at E4 (465nm) and E6 (665nm). The values obtained at these spectra were

then compared to established literature [61, 65]. The UV-Vis analysis was performed

at the Chemical Engineering Department Lab, Universiti Teknologi Petronas (UTP).

3.6.4 Fourier Transform Infrared (FTIR) Spectroscopy

Samples for FTIR were prepared by pressing homogenous mixture of powdered

samples (2mg) and KBr (lOOmg) into micro-disc pallet. These micro-disc pallets were

then analyzed using a Shimadzu 8400S Fourier Transform Infrared (FTIR)

Spectroscope to determine the types of stretching bonds presence. The spectroscope

was set to Happ-Ganzel apodisation with resolution of 4.0 and the wavelength

acquired was inthe range of400-4000cm"'.
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Shimadzu IRsolution version 1.1 software was used to view the acquired
spectra from the spectroscope. The spectral data were then re-plotted back by DPlot
software ver. 2.2.9.8 [89] and peaks from the spectra were assigned manually.
Interpretations of the FTIR spectra were made by comparing to the values from
available literature [61, 66, 68, 90-93]. The analysis was performed at the Chemical
Engineering Department Lab, Universiti Teknologi Petronas (UTP).

The FTIR spectra can be interpreted based on the mentioned literature [61, 66,
90-93] alone but confusion in certain peaks in different literatures has led this

research to look at new ways of translating the peaks represented in the complex
region. Complex region is a region where many ofthe assigned peaks are located and
provide confusions.

38



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Chapter Overview

This chapter discusses the overall results regarding the characterization of the Belait

and Lambir Formations. Important debates regarding the overall studies are also

discussed in this particular chapter.

4.2 Some Field Differentiating Characteristics between the Belait and Lambir
Formations, North Sarawak

Similarities between the general appearances of the Belait and Lambir Formation in

the field have led to difficulties in distinguishing one from the other. This

differentiation is important as there is an ongoing exploration for oil and / or gas in

this part of Sarawak. Selected outcrops from the northern and central Sarawak have

been inspected in the field to evaluate the difference between these formations. Field

observations suggest that there are at least five differentiating characteristics between

these formations.

4.2.1 Field Observations

Most of the Belait Formation outcrops contain iron stains which are reddish in colour

(10R6 6) due to the presence of Fe-oxyhydroxides (Fig. 4.1). The heterolithics facies

of the Belait Formation have larger proportions of clay compared to the Lambir

Formation. The heterolithic sections are also thicker than what is observed in Lambir

Formation reaching up to 5m in some outcrops.
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At the field level, all sandstones from the Lambir Formation look similar.

These rocks are yellowish grey in colour (5Y7 2) and do not have any common
sedimentary features as expected in near-shore sediments.

Fig. 4.1 - Some examples ofiron staining presence in the Belait Formation outcrops!
A and B - The colour of these iron staining ranges from reddish to oranges and is
very commonly found in the outcrops of Belait Formation, Northern Sarawak.

Field observations from the selected outcrops suggest that there are some

differentiating characteristics between the two Formations (Table 4.1).
Characterizations of these formations were based on the differentiation of their

sedimentological aspects. This is because sedimentary structures are very important in
interpreting the depositional environment of a facies [94]. These differentiating
characteristics are described inthe following paragraphs;

4.2.1.1 Sedimentary Features

Pre-depositional sedimentary structures occurred on surfaces between beds, formed
before the deposition ofthe overlying bed and these structures are mostly oferosional
origin [35]. Examples of these structures include ripple marks, flutes and channels

[35]. In this subtopic, the types of ripple marks observed in both formations are
discussed.

Ripple marks are quite common as sedimentary features in the Belait

Formation [15]. Asymmetrical ripple marks (Fig. 4.2) as found in the Belait

Formation characterize fluviatile environment as they are commonly generated by
both unidirectional current [95-97]. The symmetrical shape ripple marks, on the other
hand (Fig. 4.1), which indicate near-shore environment (marine) is a characteristic of
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the Lambir Formation [15] as it is usually generated by diagnostic of oscillatory flow

[35, 95-97].

Presences of cross-beddings/strata are also commonly found within the

Lambir Formations and rarely in the Belait Formation[14]. Cross-beddings form when

particles settled on the inclined surfaces of the depositional bedforms while they

migratebeneath currents [14, 95, 98]. Presence of this feature in Lambir Formationis

believed to be an indicator of a near-shore type of depositional environment.

__ iL^^pjjrJE?.
Fig. 4.2 - Ripple mark styles in both formations. A - Asymmetrical ripple marks
found in the Belait Fm. is characteristic of fluviatile environment [15]. B - The
symmetrical shape ripple marks in the Lambir Fm. is characteristic of a more marine
environment.

--J*:

4.2.1.2 Fossils

Fossils are important components of many sedimentary rocks and even when present

in small numbers, they can provide useful, often critical, information [78]. Majority of

the fossils found on both formations during the field visit are in the form of trace

fossils. Trace fossils are the tracks, trails and burrows that are common in so many

sedimentary rocks [35, 97]. Trace fossils can provide information on both

palaeoecology and envfromnent (Fig. 4.3) and is especially valuable where body

fossils are limited or absent [78].

Burrows represent the activity of an organism within the sediment, after the

sediment has been deposited. Because of this temporal relationship, burrows normally

cross-cut other deposition-related sedimentary structures like bedding and

laminations. The type of burrows usually yields information on the depositional
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environments, water depth of the sediments as well as markers for environmental

change [99].

'iicky coast abyssal zone

Fig. 4.3 - Palaeoecology and environmental depositions of trace fossils (from Stow
[99] after Frey & Pemberton, in Walker [100]). Trace fossils are as follows: 1-
Skolithos; 2- Ophiomorpha; 3- Thalassinoides; 4- Rhizocorallium; 5- Zoophycus.

In the case of the studied area, burrows of Ophiomorpha Nodosa (Fig. 4.4)

are abundant in the Lambir Formation [3] but occurred lesser in the Belait Formation.

Other forms of burrows mentioned in here from previous studies could not be found

during the field visit. Abundances of this burrow in Lambir Formation mdicate that it

is a much more marine formation than Belait Formation.

Fig. 4.4- Trace fossils found in the studied formations. A- Burrows of Ophiomorpha
Nodosa (O) in the Lambir Formation at Tusan Beach outcrop, Miri, Sarawak. Burrow
is measured to be having length of 5 - 7 cm in this picture. B - Sediments mixing
with the fecal of Ophiomorpha Nodosa (O) forming burrow-like shaped found at the
outcrop ofBelait Formation in the interior ofMarudi, North Sarawak.
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4.2.1.3 Flow Pattern

Channels are the largest pre-depositional inter-bed structure which range from

kilometers wide and hundreds of meters deep, it can also occur in diverse

environments as well (i.e. alluvial plains to submarine continental margins) and are

indicated by localized linear erosion by fluid flow added by erosive bed load [35].

Some of the factors that determine the type of channels include improved sorting and

fining grain size as they go seawards [35, 99].

Features such as mud- and/or sand-filled channels are also found within the

studied Belait Formation outcrops where occurrences of this feature are pretty much

rare to none in the Lambir Formation outcrops [14].

Coarse-grained gravelly / conglomeratic deposits are found within vast ranges

of environments but usually more commonly associated with types of fluvial (or of

high energy) characteristic deposits. In the Belait Formation conglomerates deposits

are found much more in southern part of Sarawak. It was first classified as a terrace

[4] but reclassified as conglomerate [14]. All these flow patterns derived features

which are found in the Belait Formation suggest a fluviatile / high energy

environment.

4.2.1.4 Bedding / Stratigraphy

Due to the differences in the environment that these two formations possessed,

heterolithics sequences as a result of changing environment are generally found

within the Belait Formation outcrop. This structure, also known as tidal flats are

sandy-muddy depositional system along marine and estuarine shores periodically

submerged and exposed in the course of the rise and fall of the tide [101]. It is

believed based on the feature, Belait Formation has been deposited as an isolated

infilling basin oscillating between littoral and deltaic-paralic (i.e. lagoon, protected

inlet) [4, 14].
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Observation on the proportions of sand and mud in these heterolithic

sequences (Fig. 4.5 and Fig. 4.6) between the two formations suggests that the Belait

Formation possesses a much sandier sequence than the Lambir Formation. These

proportions of sand and mud are attributed to the types energy of the environment

possesses during deposition with sandier composition representing a high energy

environments and muddy compositions caused by low-energy environment setting
[101].

Fig. 4.5 - Heterolithics sequence in both formations. A - Sand-dominated heterolithics
sequence from the Lambir Formation outcrop at Kampung Masjid in Miri, Sarawak. B
- Mud-dominated heterolithics sequence / flaser bedding in the Belait Formation
outcrop.

Occurrences of massive sandstone facies (Fig. 4.5) are much more common in

the Lambir Formation rather than in theBelait Formation [14]. Deposition of massive

sand beds results from sudden failure of capacity and competence of flow and also as

a product of rapid deposition from high concentration sandy suspension flows as its

particles are prevented from being reworked after reaching the depositional surface

due to process ofquick burial [95, 96].

Carbonaceous sandstone (Fig. 4.5) more commonly hi the Belait Formation as

opposed to the Lambir Formation. Carbonaceous materials deposition, is a result of

partial anaerobic decay of organic matter in a reducing setting in which water

circulation is restricted and deposition is slow [102]. Coals, thoughpresent in various

extend in both Formations cannot be used as a differentiating factor simply because

they are found in both Formations as well as they formed in an environment alienated

and older to these Formations.
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Fig. 4.6 - The bedding and stratigraphy features of both Formations. A - Massive
sandstone outcrops are quite common features ofthe Lambir Formation. Height of the
model in this figure is 1.80 meter. B - Medium fine-grained carbonaceous laminations
in the sandstone from the Belait Formation outcrop, Marudi, Northern Sarawak.

4.2.2 Summary

Based on these observations, it is concluded that despite identifying some

differentiating characteristics between both formations, there still remains some

outcrops where such characteristics are absent. Linking such outcrops to the two

formations will remain a challenge.
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Table 4.1 - Field characteristics summary table between the Belait and Lambfr
Formations (NB ***** = More/ Common; * - Less / Rare.

Type/
Characteristics

Sedimentary
Features

Trace Fossils

Flow pattern

Bedding/
Stratigraphy

Coals

Feature

Ripple mark

Cross-bedding

Ophiomorpha

Rhizocorallium

Skolithos

Thalassinoides

Channels

Conglomerate

Heterolithics

sequence

Carbonaceous

shale

Massive SST

Laminations

Fragments

Belait Formation

Asymmetrical [14]
NIL

[14]

[26]
*

[26]
***

[26]
(Basal of the
Formation)

[26]
(Brunei)

[14,72,1161
****

[14, 26, 72]

Mud-dominated

sequence [14, 77]

[77]
**

[77]

[77]
****

[77]

Lambir

Formation

Symmetrical [14]

[14]
*****

[26]

[26]

***

[26]

Not detected

[26]

[14,72,771
NIL

[14, 26, 72]
***

Sand-dominated

sequence[14, 77]
***

[77]

[77]
***

[77]
***

[77]

4.3 Differentiation ofthe Microfabrics ofSediments inaFluviatile Grading to
Shallow Marine Setting in North-eastern Sarawak

Rock microfabric refers to the mineralogy, orientation, arrangement, packing and the
nature of contact of the minerals at a micro-scale [103-105]. Observations on this

internal architecture allow us to make inferences and statements on the makeup ofthe

sediments [106]. As a result, microfabric analysis can provide us a better

understanding of the process involved in a sedimentary environment and the process
occurring during deposition, deformation and/or emplacement [107, 108].
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The Lambir Formation (Early to Mid Miocene) and the Belait Formation

(Early to Late Miocene) are seismic-time equivalent. The difficulty in distinguishing

between these two formations can be encountered in the field too. Thickness of the

Lambir Formation at Bakong Valley, Northern Sarawak has been estimated to be

around 2000 meters whereas the total thickness of the Belait Formation is estimated to

be in excess of 6000 meters. Although the environment of deposition for these two

Formations are different [3, 4], distinguishing both formations remain a challenge.

Variations between the formations have been demonstrated earlier [14, 15, 72, 77,

109]. However there are lacks of comparison studies on the microfabric

characteristics between the two formations.

4.3.1 Microfabric ofthe Belait Formation

Most of the sandstones and mudrocks from the Belait Formation showed dominance

of quartz while the shales have dominance of clay minerals. Sample Bl showed

quartz as the predominant mineral at 70% of the total mineralogy whereas clay and

iron oxides acquired 25% percent as the matrix counterpart of this thin section. The

rest of percentage is dominated by the sample porosity. Quartz grains are generally

sub-angular to sub-rounded in shape. In terms of grain sizes, the grains are mostly

measured to be around 0.25 mm in diameter or lesser in size (medium to fine-sand)

Grains are poorly distributed and in random orientation.

Althoughsome of the quartzgrains did not show any signs of strain there are a

few fractures detected within the grains (Fig 4.8A). Fracturing of sand grains has been

recognized by many researchers for a variety of naturally and experimentally

deformed quartzose sedimentary rocks [110, 111]. Fractures occur as a result of

overloading pressure during diagenesis, particularly at the mep8sogenesis stage [112,

113] resulting in the subsequent fracturing of bigger grains. This produces fragments

ofquartz grains ofhigh degree ofangularity.

On the other hand, sample B2 showed that the majority of the quartz grains

observed are relatively small. Thediameter of this secondary quartz is measured to be

at around 0.1-0.5 mm in size. The big grains show clustering effects of which
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individual clusters form quartz aggregates of around 0.3- 0.4mm in size. These

aggregates are cemented by either clay or iron. Sample B2 consists of 50 % quartz

with an estimated 5-10 percent of void and pores. Iron staining within the matrix can

also be observed within the thin sections. Mudclasts (Fig. 4.8B) were also detected

indicating that the deposition of the Belait Formation in a medium consisting of
mixed materials (sand-sized grains with clay-sized grains). Fine laminations occurred

made ofcarbonaceous materials (Fig. 4.8C) can be observed in these rocks indicating
deposition ofterriginious materials.

It can be seen in sample B3 that the arrangements between the mineral grains

are more compact than the previous Belait Formation samples. Although orientations

ofthe mineral are in random order, individual grains were also finer than the previous

samples (Fig. 4.8D). The main mineralogy of the coarse fragments are still quartz
which occupies 5-10 percent of the overall mineralogy with 1 percent opaque
minerals.

In sample B4, the grains are well sorted and have grain sizes around 0.5-lmm,

medium sand. Porosity can be described as good to very good, represented by micro

pores (Fig. 4.9A). The grains are angular to sub-rounded grain in shape without any

signs of strain within the viewed sections. Fine interstitial pores filled with opaque
minerals (iron oxides) could be observed in the thin sections.

Sample B5 showed lesser porosity, estimated to about 5 percent from the thin

section. The quartz grains of the sample are sub-rounded and much similar with the

previous sandstones (B4), there are no sign of strains presence or fracturing detected

on the quartz grains. The quartz grains consist of 95 percent of the entire slides

mineralogy having largest grain size than of all the previous Belait Formation thin

sections measuring at 1.5mmin diameter (Fig. 4.9B).
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_ _ ^ ^ JS£M&^ • —Mill—I—I——•III—IIIIIMMI II— • Ml
Fig. 4.8 - The thin sections of the Belait Formation sample '̂BTTB^andBS^-
Fracturmg in the quartz grains in sample Bl. Magnification 40X, XPL. B- Mudclasts
at the central part of this picture consists of finer grain materials, viewed at 40X
magnification, XPL. C - Fine striations / laminations ofcarbonates found in the Bl
thin section, viewed at magnification of 40X, PPL. D- The silt - clay matrix part of
B3 outcrop with presence of micro-pores (red arrow) measured to be in the range of
0.1-0.3mm in average diameter. Magnification at 100X, XPL.

Fig 4.9 - The thm sections ofthe Belait Formation samples B4 and B5. A- Picture
showing connected pores (red arrows) in the B4 thin section although abit reduced by
the compact grain arrangement. B- The quartz grains ofB5 sample from the Belait
Formation showmg random distributions with compact grain arrangement Shape of
the grams is much similar to B4 outcrop where here it is sub-rounded although there
are presence of angular grain-shaped but in lesser extends, viewed at 40X
magnification in PPL.
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Abundance of quartz grains and the lack of metastable grains (feldspar) in some

samples of the Belait Formations samples indicates mineralogical maturity. However,

high contents of clay of up to 25% in other samples of the Belait Formation suggest

mineralogical immaturity [114, 115]. As such, mineralogical maturity in Belait

Formation is complicated.

4.3.2 Microfabric ofthe Lambir Formation

Three sandstones from the Lambir Formation were collected near Miri. The first two

sandstones (LI and L2) were collected at the beach along the Miri coastal road. The

third sample (L3) was collected at Jalan Miri- Bintulu. At the field level, these

samples were similar in appearances and texture. All the Lambir Formations rocks are

yellowish grey in colour (5Y7 2).

Microfabric analysis shows that all the sandstones are very fine- to fine

grained. Quartz dominates the mineralogy. In sample LI, the quartz grains are 0.1mm

in average size with estimated porosity at around 2-3 percent. Quartz content is

estimated to be 95% set in a matrix of finer grained minerals consisting of iron and

phyllosilicates. The quartz grains are sub-rounded in shape (Fig. 4.10A) with medium

sorting between the grain sizes although orientation is still random. Much of the

quartz grains show signs of strains and fracturing within the samples. In area where

grains are loose and packed, stains and fracturing are generally absent.

In L2 sample, the quartz grains are in the range of 0.1 to 0.2 millimeter in

average diameter. Sorting of the grain is moderate. Quartz grains are sub-angular to

rounded in shape. Porosity is estimated at 5 percent. Grains of less than 0.1 millimeter

in average diameter occupy 5 percent of the entire thin section. Sub-parallel

arrangement of the quartz grain can also be observed within the sample (Fig. 4.10B).

Sample L3 thin section analysis showed the composition of the sample

consisted of mixture between fine sands and silt sizes grains (Fig. 4.11A). Porosity of

the sample is similar to the two previous samples from the Lambir Formation. The

grains are also sub-angular in shape and with medium sorting (Fig. 4.1 IB).
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Similar to the sandstones of Belait Formation, sandstones of the Lambir

Formation are also mineralogically matured. Clay minerals account for less than 5%

of these sandstones. The sandstones have grains that are more rounded compared to
the Belait Formation suggesting the grains may have been transported over long
distances prior to deposition. Fracturing in the quartz grains was also observed in

some samples but the strains in the Lambir Formation sandstones were not as

extensive as in the Belait Formation.

Fig. 4.10 - The thin section of Lambir Formation sample LI and L2. A - The sub-
rounded quartz grains in the Lambir Formation LI thin section viewed in XPL at
magnification of40X. B - Sub-parallel arrangement observed in the thin section of L2
outcrop (red lines across thepictures) viewed at 40X magnification in XPL.

\ —

Fig. 4.11 - ine inin section or Lambir Formation sample L3. A - Mixture of fine
sands and silt-grained mineralogy as observed in the L3 thin section. Viewed at 40X
magnification (PPL). B- Sub-angular grain shape and medium sorting ofthe grains in
the L3 sample as observed in XPL with 40Xmagnification.
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4.3.3 Summary

The presence of sub-rounded grains in the Lambir Formation suggests that the

Formation was probably deposited in a high energy setting environment whereas the

Belait was deposited in a predominantly much lower energy as indicated by then

presence of mudclasts. The high degrees of angularity of the sand grains of Belait

Formation suggest a short transportation and fast depositional setting, which is a

characteristic for fluvial deposits. Variations in the degree of fracturing of quartz in

both formations were probably caused by high compaction experienced during

diagenesis of Belait Formation. This suggests that the Belait Formation comprises

areas where geopressure anomalies may be present.

Both formations may have also experienced differences in the rate of

diagenesis and different compaction rates. This study shows that despite both

formations are seismicly equivalent, there may be differences at the field up to

microfabric level of observation. In addition to this, differences in geopressure

anomaly also warrant a strict differentiation factor for the two formations.

4.4 Spatial and TemporalVariability of the Hydrocarbon Distribution in the
Northern Sector of the Belait Formation

Traditionally the Belait Formation has been accepted as barren. However it has been

discovered recently that hydrocarbons can be present in various forms in the

Formation [109]. The purpose of this study is to investigate further the occurrence of

hydrocarbon and to characterize this aromatic hydrocarbon in the northern sector of

the Belait Formation in Sarawak.

Four representative samples were selected from an outcrop that had a

stratigraphic height of about 100m. These samples were subjected to a full range of
mineralo-chemical and petrographical analyse. There is currently insufficient

information on the mineralo-chemical variations within this Formation [15]. This

information is very important as there is an ongoing exploration and production at

SK333 for oil and or gas.
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4.4.1 Field Characteristicsofthe Belait Formation

The outcrop (280m) comprises five facies (Table 4.2), the heterolithics facies, (fj),
sandstone with mud-draped facies (f2), sandstone with closely spaced channels facies

(f3), massive sandstone facies (ft) and dark grey shales facies (f5). According to
Padmanabhan [15] sandstones with mud-draped facies, f2 (at 230m) exhibits literally
continuous and discontinuous mud-drapes, with varying degrees ofthickness, lengths
and density per square metre while another facies comprising sandstone showing
coarsening upward sequence, f3 with closely spaced migrating channels with fills of

sand and high carbon contents occurs in high geomorphic positions. Top stratigraphic

position facies (f5), revealed presence ofsome medium-grained sandstones [15].

Samples studied represent the f2 sequence of the outcrop. This part consists of

sandstone with mud-draped alternating with shales and shows no presence of trace

fossils. The coarsening upward sequence was the result of theperiod where sea level

rises [3] and resulted in delta prograding (Fig. 4.12). The alluvial Belait Formation is

believed to bepart ofa deltaic setting [14] with braided river network system.

' I 11

12-

10-jll10'

M

8-

7-

6-

5-

4-

3-

2-

LJ Q.

Fig. 4.12 - Paleoenvironment reconstruction of the inferred prograding delta in the
northern-sector of theBelait Formation. The fining upwards of the sequence is as seen
in the outcrop. N.B. litholog is not in scale.
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In this study, two carbonaceous shale and two sandstone layers were selected

for sampling from anoutcrop located at the Northern-Sector ofBelait Formation (Fig

4.13). The samples were labelled respectively as B6 and B8 for carbonaceous shales,

B7 and B9 for sandstone. The outcrop studiedextends from 4° 15.94' N; 114° 26.271'

E to 4° 15.855' N; 114° 26.268' E and comprises five facies (Table 4.2). The selected

rock samples were then subjected to a full range ofmineralo-chemistry analysis.

Table 4.2 - Thestudied outcrop facies and its descriptions, (based on Mokhtar [116]).

rarS
e,<

;sc mn'
Heterolithics sequence (with lemnants ofbouldeis)
Sandstones with mud-drapes and shales

f3 Sandstones with closely spaced channels and shales

ft Massive sandstones

Massive dark grey shales

iSS^^S

Fig. 4.13 - Features ofsome ofthe Belait Formation outcrops A- Field pictures of
the outcrop with sand filled laminations (L) and mud drape (m) (0.5m - 1.5m from
the section). B - Heterolithics sequence (ranging from 0-0.5m of the log section).

4.4.2 Mineralo-chemical Analysis ofthe Belait Formation

XRF analysis of sandstones (B7 and B9) and shales (sample B6 and B8) showed that

Al element in shales is four times higher than in sandstones (Table4.3). This indicates

the presence of clay minerals Kaoiinite in these shales. Silicate contents are slightly
high in sandstones samples which indicates the higher contents ofQuartz, Si02. Irons
in these samples most probably occur as Goethite FeOOH as confirmed by XRF and

FTIR data.
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The UV-Vis scans of all samples from 200 - 800nm showed low ratio values

around 1.43 to 1.52 (Table 4.3). A low E4/E6 value reflects the pre-dominance of
aliphatic structures while a high E4/E6 indicates the pre-dominance of aromatic

constituents (Stevenson, 1982). E4/E6 ratio of sandstones showed that the Arenite

possesses the E4/E6 value of 1.56 while the ferruginous sandstone E4/E6 is valued at

1.49. The carbonaceous shales ofB6 and B8 possess E4/E6 value of 1.41 and 1.48,
respectively. From the E4/E6 ratio it can be said that the carbonaceous shales possess
a slight pre-dominance ofaliphatic structures than the sandstone samples.

Results from FTIR (Table 4.3, Fig. 4.14 and Fig. 4.15) showed that both

sandstones and shales contained mixture of aromatic and aliphatic compounds which
are acquired by the IR range at around 400-4000cm"1. Various aromatic structures

were detected in both samples prominently displayed by the Aryl C=C and Aryl-H at
different intensity and throughout the ranges of 400-625cm-1 and 900-1100 cm"1

respectively. The pre-dominance of aliphatic structures which contributes to the low

E4/E6 samples in carbonaceous shales is well represented by paraffin group CH/CH2
in the samples. Sample B6 also showed aliphatic olefin compound that is found at

1606.59 cm'1 which further proves the low E4/E6 ratio of the sample itself. The
aliphatic on sample B8 are represented by the shared peaks of CH / Aryl-CH at
694.33cm-1, 775.33cm-1 and 796.55cm-1.
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FTIRof Belait Formation Carbonaceous Shales

4500 4300 4100 3900 3700 3500 3300 3100 2S00 2700 2500 2300 2100 1900 1700 1500 1300 1100 W ' 700 ' 500 ' 300
Wavelength (cm"1)

Fig. 4.14 - FTIR spectra for the Belait Formation carbonaceous shales for sample B6
andB8.

The sandstone sample B9 possess much of the aliphatic compounds found in
the carbonaceous shales such as the paraffin CH as well as CH / CH2 compounds
which are well represented at 2852.52 cm-1 and 2921.95cm"1. The arenite (B7)
aliphatic components were only represented by peaks shared between the CH / Aryl-
CH and CH / Aryl-CH / Aryl-H at 690.47cm-1 and 777.26cm"1, 796.55cm-1
respectively resulting in slightly high E4/E6 value. Carbonyl compound was also

detected throughout the whole samples which ranges at 1680 - 1900cm-1. Arenite and

ferruginous sandstones showed presence of oxygen and hydrogen bond. While the
free-OH bonds, at 3600-3200cm"1 frequency in these samples indicate presence of
goethite.
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Fig. 4.15 ~ FTIR spectra for the Belait Formation sandstones for samples B7 and B9.

4.4.3 Summary

FTIR has shown that there are spatial and temporal variability which accounts for the

differences in the same sections for different temporal succession within the studied

samples. It can then be concluded that there is a spatial and temporal variability of

appreciable sense of the hydrocarbon distribution in the samples studied from the

northern sector of the Belait Formation.

Presence of hydrocarbon as indicated by the FTIR and UV studies reaffirms

the current strong belief that the reservoir potential of the Belait Formation, contrary

to the earlier interpretations of the formation as being barren [4], may have been

underestimated. It is also worth mentioning that the study shows that the northern

sector of the Belait Fonnation appears to contain mixture of aromatic and aliphatic

components.
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4.5 Spatial Temporal Variability of the Hydrocarbon Distribution within the
Lambir Formation

The Lambir Formation which is the time-seismic equivalents of the Belait Formation

has been a proven reservoir for oil and gas inthe past. Characterization between these

two formations has been performed by various researchers [14, 15, 46, 71, 72, 76, 77,
116]. As most of these characterizations were proposed based on the sedimentary
features ofthese two formations, the current knowledge regarding these formations is
restricted to their differences inorigin and depositional settings.

Current oil and gas exploration in the SK333 which comprises of the two

formations has revived the interests to take a look in the mineralo-chemical contents

of these two sedimentary sequences. This is in addition to the presence of aliphatic
and aromatics mixture as detected in previous studies conducted on the Belait

Formation [14, 109]. This current study aims to further characterize the hydrocarbon

distribution in the Lambir Formation and its mineralo-chemical variations as

performed on the Belait Formation.

4.5.1 Field Characteristics ofthe Lambir Formation

Three sandstones from three outcrops (LI - L3) were collected from the Middle to

Late Miocene Lambir Formation around Miri area. The first outcrop (LI) which

records a stratigraphic height of around 20 meters was collected from a massive

sandstone outcrop facies at Tusan Beach. No structural features were present within

the outcrop although occurrences of Ophiomorpha could be seen.

The second outcrop collected at the Kampung Masjid Beach is part of the

Lambir Formation that stretched out from the outcrop at Tusan Beach. Sample L2 was

collected from the sandstone facies at this outcrop. The outcrop which is around 5

meters in stratigraphic height consists of sand and clay heterolithics sequence facies
alternating with sandstone facies.

Sample L3 was collected from an outcrop located at Jalan Miri - Bintulu. The

outcrop which is about 6 meters in stratigraphic height consists of two facies, the sand
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dominance heterolithics facies and massive yellowish sandstone facies. The

heterolithics facies was measured to be having thickness which ranges from 1-1.5

meters. It comprises sand sequences of 1- 5 cm thickness alternating with grey shales

of less than 1.5 cm thick. The massive sandstones sequence is measured to be no less

than 1 meter in height from the total outcrop thickness.

4.5.2 Mineralo-chemical Variations ofthe Lambir Formation

There is a high percentage of Al, Mg, Si and Ca in all the studied samples (Table 4.4).

This might represent clay minerals presence but variations in the amount might

suggest a specific clay mineral presents in the samples. Sample LI contains a high

amount of Al and Si with low Ca that might represent kaoiinite. While presences of

Mg, Al, and Si with Ca might indicate presence of both kaoiinite and monmorilonite

types of clay in sample L2 and L3.

In the UV-Vis, the three samples recorded variation with sample LI projected

a value that represents aliphatic and aromatic mixtures but with slight aromatic pre

dominance at E4/E6 value of 1.16. Samples L2 and L3 showed E4/E6 ratio of 0.21

and 0.65 respectively. The high E4/E6 value (more than 1.00) in sample LI indicates

pre-dominance of aromatic compounds whereas the low E4/E6 value (less than 1.00)

indicates pre-dominance of aliphatic compounds.

The findings on E4/E6 ratios of the studied samples are also supported by the

FTIR spectra recorded at 400 - 4000cm"1 (Fig. 4.16). Sample LI recorded presence of

aliphatic components such as the CH compound at 2945.01 cm"1, CH3 compound at
1317.30cm"1, 1342.36cm-1, 1361.65cm"1 and 2881.45cm"1 region. Shared peaks of CH

/ Aryl-CH / Aryl-H were detected at 692.40 cm-1, 779.19cm-1 and 784.97cm-1. Aryl
C=C (Olefins) bonds were also detected in a shared peak with carbonyl compound at

1508.23cm'1 and 1604.67cm-1.
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Aromatic compounds were detected in all studied samples represented by the

Aryl C=C bonds occurring at 400 - 600cm-1 region in the Infrared (IR) spectra.

Mixtures of aliphatic / aromatic peaks (CH / Aryl C-H) compounds were also

observed in all samples in the IR spectra region around 690-850cm-1. Low E4/E6

values from L2 and L3 were caused by the pre-dominance of aliphatic components

found throughout the samples. These aliphatic dominance samples (L2 and L3) were

observed on the IR spectra to be having higher intensity in terms of their aliphatic

compounds than sample LI.

IR Spectra of Lambir Formation
—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i— -i—i—i—r

_ 110

4500 4300 4100 3900 3700 3500 3300 3100 2900 2700 2500 2300 2100 1900 1700 1500 1300 1100 900 700 500 300

Wavelength (cm1)

Fig. 4.16 - The Lambir Formation Infrared spectra for the studied sample (LI, L2 and
L3).

In sample L2, aliphatic groups such as the CH2 compounds were detected at

1342.36cm-1 whereas the CH3 compounds were detected at 1176.78cm-1, 1396.37 cm"

1and 1450.37cm-1, respectively. Shared peaks of CH / CH2 were also detected within

the L2 sample at 2845.45cm-1 and 2923.88cm-1.

Similarly in sample L3, aliphatic compounds could also be observed within

the sample IR spectra at 1473.51cm-1 for CH2 and 2923.88cm-1 for the CH / CH2
compounds. Presence of high intensity sharp wagging structures of CH3 observed at

-11317.30cm-1, 1342.36cm-1, 1361.65cm-1, 1396.37cm-1 and stretching at 2881.45cm
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might be the cause of low E4/E6 ratio ofthis sample. Summary of molecular bonds
presence from the FTIR ofthese samples is displayed in Table 1.1. The C=0 peaks
detected in samples LI and L2 at 1508.23cm-1, 1604.67 cm-1, 1681.88cm-1 is
attributed to the presence ofcoal. Coals in the forms oflaminations, boulders as well
as forming part of beds were observed in the Lambir Formation outcrop during field
visit (Fig. 4.17). This further suggests deposition of Lambir Formation in an

environment where presences of terriginious materials are greatly available within
anoxic conditions.

:. a

Fig. 4.17 - Coal (red arrows) in the Lambir Formation outcrops can be seen occurrim
in various forms.

4.5.3 Summary

It can be concluded that the presence of aliphatic compounds in all sample is
attributes to the low E4/E6 ratio observed in the samples. Differences in the intensities

ofthe compounds cause variations in the distributions of the hydrocarbons within the
samples which suggest the possibility of differential migration in the reservoir of

Lambir Formation. Presence ofcoals in various forms indicate deposition ofLambir
Formation in a setting where in-flux ofterriginious materials is greatly available and
in constant supply with a high energy and slow depositions (i.e. estuarine, littoral
setting) with anoxic conditions which are in favor of the deposition of carbonaceous
materials.
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4.6 Heterogeneity of Hydrocarbon Distribution in Tertiary Sediments of
North East Sarawak.

As mentioned earlier in the text, tremendous spatial and temporal variability has been

detected within the sedimentary rocks of the Belait and Lambir Formations. Also it

has to be mentioned again that the renewed interests for oil and / or gas exploration in

this part of Malaysia have been responsible for initiating more research work in this

area. Therefore, evaluating the distribution of hydrocarbon resources of both Lambir

and Belait Formations will be of valuable interests for the industry.

The primary focus of this study is to observe the quality and the hydrocarbon

distributions in both the Belait and Lambir Formations. This study will makes use of

geochemical characterization method coupled with some physical properties analysis

of the rocks in order to characterize the hydrocarbon distribution in these rocks.

4.6.1 TOC Content

The samples show similar quantitative values for TOC (Table 4.5). Samples Bl, B2,

and B3 (Belait Formation) have TOC values of 3.48, 3.12 and 2.80% respectively. It

can, therefore, be interpreted as a possible source rock material in terms of its TOC

contents [1]. The Belait Formation sandstones (B4 and B5) with a TOC ranging from

2.25 - 2.76% and Lambir Formation sandstones (LI - L4) with a TOC ranging from

2.26 - 2.82% indicating a good organic matter content.

4.6.2 Hg-Porosity and Pore Size

Porosity in the studied samples from the Belait Formationmudrocks (Bl, B2 and B3)

can be ranged from good to excellent with values of 15, 28 and 17 respectively. In the

Belait sandstones, sample B4 and B5 porosity values were recorded at 35 and 37

respectively. Lambir Formation sandstones (L1-L4) porosity values were observed at

values around 15-36.

Variations were also observed within the pore sizes between both formations.

Mudrocks from Belait Formation were observed to have the smallest modal pore sizes
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which ranges around 30-60nm. The Lambir Formation sandstones (sample LI, L2, L3
and L4) on the other hand were observed to have modal pore sizes of155nm, 138nm,
146nm, and 144nm respectively. Sandstones samples from the Belait Formation (B4
and B5) recorded the highest modal pore sizes among all samples with values of
165nmand 276nm, respectively.

Table 4.5 - TOC, E4/E6, Porosity and Pore Size ofthe studied samples.

"Mlll|lli l<>( MM

Bl 3.48 15

B2 3.12 28

B3 2.80 17

B4 2.76 35

B5 2.25 37

LI 2.34 36

L2 2.26 36

L3 2.82 24

L4 2.76 15

\WI.I»i I'.iu

*m/i I mil i

51

61

30

165

276

155

138

146

144

I 4 I ixi.ili

1.58

1.79

1.70

2.13

2.69

1.16

0.21

0.65

0.89

4.6.3 UV-VisAnalysis

On the E4/ E6 ratio (Table 4.5), the Belait Formation showed that there is a pre
dominance ofaromatic components within the samples. Less aliphatic components in
the results also indicates that migration ofaliphatics might have occurred, Samples B4
and B5 appeared to have retained the aromatics behind during a past migration event
as both E4/E6 values for these samples are much higher compared to the rest of the

samples. Secondary migration ofaliphatics might account for the disappearance ofthe
aliphatics. However migration of aliphatics might have not been extensive in the

shales (mudrocks) of the Belait Formation.

Pre-dominance of aliphatic compounds can be seen in the L2, L3 and L4

samples with E4/E6 ratio values of 0.21, 0.65 and 0.89 respectively [61, 65, 93]. Of
all the Lambir Formation samples only LI yielded dominant aromatics based on its

E4/E6 ratio values. This heterogeneity as observed within samples in the same
formation suggests that different rates of migration from the source may have
occurred within the samples in the formation.
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4.6.4 Relation ofE4/E6 ratio with Porosity and Pore Sizes

It can be observed that with increasing E4/E6 in the Belait Formation samples, the

median pore sizes andporosity of the samples also increases. Similar trends were also

observed within the Lambir Formation samples E4/E6 ratio with both parameters

(porosity and pore size). Trends of these parameters with E4/E6 ratio canbe observed

in Fig. 4.18A and Fig. 4.18B for the Belait Fonnation. Lambir Formation samples,

however, showed a much lower gradient relationship between these parameters with

its E4/E6 ratio (Fig. 4.18C and Fig. 4.18D).

The variations in gradient between these parameters among samples from both

Formations couldpossibly relate withthe variations in E4/E6 ratio. This suggests the

disappearance of aliphatic components in certain samples with bigger pores which are

more likely to have migrated out from the samples during diagenesis resulting in

higher values in E4/E6 (valuemore than 1.0).

4.6.5 FTIR

Differences between the FTIR spectra of the Belait Formations (Fig. 4.19) can be

observed within the mudrocks and sandstone samples. In the mudrocks samples, (Bl,

B2 and B3) it can be observed that although all three samples have similar peaks,

differences were observed in terms of the peak intensity.

Carbonyl compounds (C=0) were detected in both formations at the range of

1500 - 1900cm-1. Strong intensity peaks of free-OH compound were also detected in

both formations at 3618.21cm-1, 3620.14cm-1, 3705.00cm-1 and 3697.27cm-1. These

peaks are often associated with presence of either water or oxide minerals in the

samples. Sharp prominent peaks were observed around the ranges of 2339.49cm" -

2376.71cm-1. This represents the presence of multiple bond compounds in both

formations.

As indicated by the UV-Vis from E4/E6 ratio, most of the samples from the

Belait Formations are aromatic dominated compounds. In the Belait Formation
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samples (Table 4.6), aromatics hydrogen bond / aromatics group (Aryl-H) were
observed to dominate most of the FTIR spectra peaks occurring at the range of 900 -
1250cm-1. Peaks in this region are also attributed to the presence of silicate
compounds (900 - 1100cm-1). In terms ofhydrocarbon, generally, most ofthe Belait
Formation samples were observed to contain the mixture of aliphatic and aromatic
with various proportions. Aliphatic compounds in the mudrock samples (Bl, B2 and
B3) are well represented by CH peaks at 665.40cm-1 and 2925.81cm-1 and CH / CH2
peaks at 2854.45cm-l. Shared peaks ofCH / Aryl C-H / Aryl-H were observed in all
Belait Formation samples with peaks occurring at 772.26cm"1 and 796.55cm-1 in all
samples except B4. CH / Aryl H peaks were present in all samples except B2
occurring at 694.33cm-1. Aseries ofwagging peaks was also observed in most ofthe
samples except in B2 at 1442.66cm-1 and 1454.23cm-1 representing the CH2 / CH3
compound.

From the Lambir Formation FTIR spectra (Fig. 4.20, Table 4.7), it is observed
that there are greater presence ofaliphatic compounds throughout the samples (LI, L2,
L3 and L4). Aryl C=C (olefins) groups can be observed within the samples stretching
at around the 400-600cm-1 region. Other occurring regions of aromatic compounds
can also be observed together with aliphatic paraffin (CH) and Aryl-H at the region
around 690 - 900cm"1 as well as within the shared peaks with carbonyl group (C=0)
around 1480-1680cm-1.
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IR Spectra of Belait Formation
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Fig. 4.19 - FTIR spectra for the Belait Formation samples.

Presences of CH3 (methyl functional group) can be observed in all samples at

wavelengths around 1370 - 1390cm-1 and 2880 - 2890cm-1 regions. Other aliphatic
paraffin compounds such as CH were also detected in all samples occurring either

independently at 2945.01cm-1 or sharing peaks with ethyl (CH2) at regions around
2840 - 2870cm-1 and 2910 - 2940cm-1.

* 100

IR Spectra of Lambir Formation
"i i i i—i—i—i—i—i—i—i—i—i—i—i—r
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Fig. 4.20- FTIRspectra for the Lambir Formation samples.
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4.6.6 Summary

These findings from the FTIR, UV-Vis and E4/E6 ratio suggest that samples B1-B5

are possibly type-I reservoir rocks, with B1-B3 being possibly good source rock

materials and B4 and B5 being possibly good reservoir quality rocks. Ll is probably

comparable to a type-I reservoir quality rock. Due to low E4/E6 ratios, L2, L3 and L4

are probably comparable with a type-I or type-II reservoir quality rocks.

4.7 Comparison between Fluviatile - Shallow Marine Settings in the Tertiary
Sediments of North-eastern Sarawak, Borneo.

Earlier interpretation of Sarawak geology (Fig. 4.21) has been extensively compiled

mainly for the purpose of oil exploration and its mineral resources. Geological maps

have been published [3, 4, 33] and these provide a general framework of the

distributions of the main rock types. However, the Lambir Formation (Early to Mid

Miocene) and the Belait Formation (Early to Late Miocene) are indistinguishable in

seismic sections (Fig. 2.2). The difficulty in distinguishing between these two

formations can be encountered in the field too. Although the environment of

deposition for these two formations were known to be different [3, 4], equal grain

distributions, lack of paleontological data and structural features have further

complicated the effort ofdistinguishing them.

It is the aim of this work is to examine both Formations in terms of their

sedimentary structures and a series of lab analysis involving microfabrics

observations, petrophysical and geochemical analysis of these rocks with the aim to

produce a list of differentiating characteristics. The list produced is hoped to help

future works to distinguish both formations. A total of twelve samples were collected

(Fig. 4.22; Table 4.8) and subjected to a number of analysis to achievethis objective.
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Fig, 4.21 - Sarawak in its regional context [from 117].

113*50' 114°0' 114°10' 114°20' 114°30'

113°50'

Kilometers

Fig. 4.22 - Map of the study area. Inlets (on top corner left indicates the current area
for oil exploration block SK333 in the proximity ofboth Formations).
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Table 4.8 - Sample label, Formation, Lithology [74] and coordinates for the samples
collected.

^mi|ili I ilul I<.iiiiiii«ii I nh.il.i»\ |"4| <,,,,,ll lN
Bl Belait Formation Mudrock N 4° 16.265% b 114" Z0.4Z0'
B2 Belait Formation Mudrock N 4° 16.265', E 114° 26.426'
B3 Belait Formation Mudrock N 4° 16.209', E 114 26.311'
B4 Belait Formation Quartz Arenite N 4° 15.701', E 114° 26.267'
B5 Belait Formation Quartz Arenite N 4° 11.581', E 114° 22.118'
B6 Belait Formation Quartz Arenite N 4° 14.977', E 114° 25.112'
B7 Belait Formation Mudrock N 4° 14.977', E 114° 25.112'
B8 Belait Formation Quartz Arenite N 4° 14.977', E 114° 25.112'
Ll Lambir Formation Quartz Arenite N 4° 7.304', E 113° 49.114'
L2 Lambir Formation Quartz Arenite N 4° 11.086', E 113° 52.497'
L3 Lambir Formation Quartz Arenite N 4° 21.6167', E 114° 0.550'
L4 Lambir Formation Quartz Arenite N 4° 24.6167% E 114° 1.480'

4.7.1 Discussion on the Field Characteristics ofthe Belait and Lambir Formation

Based on the discussion in section 4.2, it is evident that both formations cannot be

really distinguished from each other in the field. In addition, the following subtopics

will discuss the differentiating characteristics of these two formations.

This study shows that based on the sand to mud ratio that the Belait Formation is

fluviatile (Fig. 4.23) whereas the Lambir Formation is shallow marine (Fig. 4.24). In

principle, both Formations should show different sedimentary features [95, 96, 192,

115, 118-120].

In this respect, it is noted that the conglomerate is found in scattered locations in the
Belait Formation. However this may not be totally suitable as a universal field

distinguishing characteristics since many part of the Belait Formation do not have
basal conglomerate. As noted earlier, the presence and type of ripple marks could
assist in differentiating between these Formations. However the occurrence of such

feature is again limited in some exposure only.
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The preceding discussion indicates that the field observations from selected

outcrops can be summarized as key differentiating characteristics to distinguish

between these two formations. Ten features could be observed and are proposed as to

aid in differentiating the two formations in the field (Table 4.1).

4.7.2 Microfabric Characteristics

Microfabric observation on both formations revealed that all samples are dominated

by presence of quartz and clay minerals. Abundance of quartz grains and lack of

metastable grains suggest that these formations are mineralogically mature [74, 115].

The Belait Fonnation sandstones are made of fine to medium grains of quartz.

Grains are poorly distributed and in random order. Quartz grains are generally sub-

angular to sub-round in shape (Fig. 4.25A). This suggests a very short distant

transportation. Similarly, quartz dominates the mineralogy of the Lambir Formation.

Contrarily, these grains are generally sub-rounded in shape having fine-grained size

(Fig. 4.25B). This is as opposed to the short transportation suggested for the

sediments of Belait Formation. These grains also possess medium sorting although

their orientation within the whole microfabric structure remains random. Mudrocks of

Belait Formation were observed to have more compact anangements. Grain size of

these mudrocks was measured to be less than 0.625mm. Fine striations of

carbonaceous materials could also be observed within the mudrocks fabric.

Another important feature from microfabric observation of both formations is

the fracturing of quartz grains. The effect of quartz fracturing was observed to be

more extensive in the Belait Formation samples rather than the Lambir Formation

(Fig. 4.25C and Fig. 4.25D). Fracturing of quartz grains have been recognized by

many researchers for a variety of naturally and experimentally deformed quartzose

sedimentary rocks [110, 111]. Quartz fracturing occuned as a result of overloading

pressure during diagenesis, particularly during the mesogenesis stage [112, 113]

resulting in the subsequent fracturing of bigger grains. This produces fragment of

quartz grains of high degree of angularity, as has been observed in the Belait

Formation. The variations in the degree of fracturing between both formations

possibly point to high compaction experienced by Belait Formation due to differences
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in thickness between the two fonnations. This also suggests that the Belait Formation

possibly comprises areas with geopressure anomalies.

Fig. 4.25 - The microfabric features of bothFormations. A - Medium- to fine-grained
sub-angular quartz in the Belait Formation sandstone sample B4. B - Sub-rounded
shaped grains in the Lambir Formation sandstone sample Ll. C - Fracturing ofquartz
grains in a sandstone from the Belait Formation (sample B3). D - Fracturing ofquartz
grains in a sandstone from the LambirFormation (sample L2).

4.7.2.1 Mineralogy

XRD analysis from both formations revealed that all samples are composed

dominantly ofquartz. Occurrences ofquartz were detected at 0.424 - 0.428nm for the

medium intensity peaks. The maximum intensity peaks occuned at around 0.333 -

0.336nm. The peaks position and values obtained from quartz peaks of both

formations were very similar to each other. This suggests that the source materials of

both formations could be from the same origin but experienced different depositional

setting.

The Belait Formation contains clay minerals such as Kaoiinite and probably

Illite (Fig. 4.26). These phyllosilicates groups were detected in all samples except B5,
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which showed only presence of quartz. Likewise, the Lambir Formation contains

Kaoiinite and probably Illite as well (Fig. 4.27). Presence of kaoiinite in all the

samples from both formations generally suggests a continental deposition [114, 115].

This is since kaoiinite is stable at continental conditions, fresh water deposits and in

soils undergoing weathering [115]; whereas presence of illite and kaoiinite together

indicates shallow level of burial stage experienced by both formations [115]. Most

samples in both formations have well developed peaks of phyllosilicates and

tectosihcates. This shows that there has been minimum to nil alteration of the

phyllosilicates.

4.7.2.2 Clay Mineralsfrom EGMESpecificSurfaceArea

Sandstones from both formations displayed surface area values varying around 23 -

29 m /g (Table 4.5). Higher values for surface area were recorded from the mudrock

samples (Bl, B2 and B3) of the Belait Formation which ranges around 32 - 37 m2/g.

These values suggest presences of micas and / or kaoiinite group of phyllosilicates

[47] in the samples. Similar values in the surface area from sandstone of both

formations suggest similar presence ofphyllosilicates within the samples.

4.73 Petrophysical Properties

4.7.3.1 Hg-Porosity and Pore Size

Porosity greater than 25% is considered to be good to excellent; 15-25% porosity is

considered tobe fair to good and less than 15% porosity is considered poor. Sample

B4 and B5 from the Belait Formation recorded porosity values of 35% and 37%

respectively (Table 4.5). Lambir Formation sandstones (sample L1-L4) were observed

of having porosity values varying from 15% to 36%. This means that Belait

Formation sandstone have porosity that can be considered as excellent while Lambir

Formation sandstones have porosity that ranges from fair to excellent rating. Lambir

Formation sandstones (sample L1-L4) were also observed to have smaller range in

average pore sizes comparing to the Belait Formation sandstones (sample B4 and B5).

The Lambir Formation sandstone pore sizes have values of 155nm, 138nm, 146nm,
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and 144nm, respectively. Sandstones samples from the Belait Fonnation (B4 and B5)

have higher pore size with values of 165nm and 276nm.

These variations suggest possibilities of higher trends in geopressure

anomalies experienced by the thicker Belait Formation with bigger grains size than

the Lambir Formation. Alteration of porosity with increased geopressure anomalies

could cause extensive mineral dissolution. Combined reaction by the sediments and

connate water may have dissolved unstable grains of the Belait Formation to yield

higher porosity. Higher initial porosities and permeability due to poorly sorted

sediments in Belait Formation may have also provided rapid movement of the

interstitial water and resulting in a greater chance for the dissolution of unstable

grains.

Mudrocks from Belait Formation (sample B1-B3) were observed to account

for smallest values in both pore sizes and porosities (Table 4.5). Higher porosity

however was observed for sample B2 at 28% than the 15% and 17% in sample Bl and

B3 respectively. This varies greatly from poor to excellent in rating. Variations

between the porosity and pore sizes in these mudrocks possibly suggest differential

compaction trends experienced by Belait Formation. Reduction of porosity in the

mudrocks could also be possibly caused by dissolutions of unstable minerals. The

Belait Formation which contains substantial amount of compacted mud/shales section

would discharge a large volume of water. This water with increases in geopressure

anomalies could possibly cause the dissolution of unstable framework in the

mudrocks.

4.7.3.2 Thermal Conductivity Estimations

Thermal conductivity values between the sandstone samples from both formations are

very similar (Table 4.5 and Table 4.9). Sandstones from the Belait Formation showed

a range of values from 2.2 to 4.2Wm"1k-1. Sandstones from the Lambir Formation

showed a nanower range around 2.4 to S^Wm'k"1. The Belait Formation mudrock

samples however seem to possess higher range ofvalues in thermal conductivity.



This suggests that samples which have a much more compact anangement in

their fabric tend to have higher conductivity. This can be explained by good grain

contacts incompact samples (i.e. mudrocks), which create a better conductance bridge

forheat to transfer thansamples which have looser grain anangement. It could also be

observed that mono-mineral sample (B5) possesses lesser thermal conductivity than

samples which have multi-minerals content. The lowest thermal conductivity value

however was recorded by sample has multi-minerals content but possesses highest

porosity. Presence of porosity / void between the grains reduces grain to grain contact

resulting in lower thermal conductivity. The subsequent subtopic discusses the

relation of thermal conductivity and porosity among the samples.

4.7.3.3 Thermal Conductivity versusPorosity

This trend observed between the two parameters implies that samples with lower

porosity have higher conductivity. The porosity and thermal conductivity values of

these samples can be observed in Table 4.9. A graph was plotted using these

parameters, and a best-fit line was drawn to justify the relationship between the

thermal conductivity and porosity values (Fig. 4.28). The graphsuggested that there is

an inverse relationship between the porosity and thermal conductivity of the studied

samples. This relationship is expressed by y = 4.8402x2 -42.946x^109.62.

82



400-

200-

0.

400-

200-

B1

2:1 M K M

Q-
K

$Q
M

Q

^2
A ?

^•*"'-F'**-»-'>&**^^ •W^VWV.f^V iy^^yfUV^J^.r!ff^*

B2

2:1 M K M
-Q-

K m M Q-

to S

OJ
U,**^>^,'*^i^V-*u^^ '•*»s^,»^Mf*>^*>*«aiS^

400-

200-

B3
2:1 M K M

M

-Q-

'^T^S***1"

Q\
K

I

'WM^-f^^Hf^^Vvw^*1

B5 Q

'J**i^*^^^-ft%yHtf-Mw-

3Q

3Q

M Q

t»-r. •••-" i-Hfr-syy^^X^+^uA^A

M
Q

Q

CM tf)
CM CM

< CM

0

400

200

0

400

200

0 -t—i—i—i—r -T—i—i—r"-r
WUNrrt*tfiw***<*y W*rt*tf *W? ^Mt-*.

I '' '(•••'•;••—i—i—i—i—r

in ?n sn

Fig. 4.26 - The XRD results of oriented specimens from the Belait Formation (K= Kaoiinite, M=
Illite and Q=Quartz.

L1 Qi

K

jn

Q
400

200

0

M K M

,^'*#r*f^<£^rr^^ W

M

%ti*if^*tll4mfr+*l***>fi^

iQ

1 <N CM

400

200 H

0-.

400

200 H

L2

M

L3

M

K
Q;

M
K

-(H

K M
K

0
^iMVV^wWlff^uf^^N^i^rifc-tiM^oM^

400-

200-

Q

L4

2:1 M

—t—i—i i i I—i—i—r*T—i" i "i—i—i I i i i—i—i—i I i i—I—i—i i i i—i—i—f

10

-Q-
K M

20

-Q-

M

\kji.
t i

SQ
-Q-

M

I 1 A °§ 3

M -Q-

tNN N

30 40

Fig. 4.27- TheXRD results oforiented specimens from theLambir Formation (K= Kaoiinite, M=
Illite and Q=Quartz.

83



£

o

ffl

y = 4.8402X5- 42.946X+ 109.62
R2 = 0.946

Thermal Conductivity (W m-lk-1)

Fig. 4.28 - The thermal conductivity vs. porosity relationship for samples from the
Belait and Lambir Formations.

4.7.4 Variations in Hydrocarbon in terms of the Total Organic Carbon (TOC) and
Ultraviolet-Visible Light (UV-Vis) E4/E6 ratio

Amount and type of the organic matter preserved in sedimentary rocks are a function

of several geological and biological processes. Primarily preservation of organic

matter depends on the level of organic productivity, anoxia and sedimentary processes

of the depositional environment [56]. Quantity of organic matter in a sedimentary

rock can be determined by its Total Organic Carbon. TOC is measured in weight

percent and indicates theorganic richness of a rock [10, 57, 59]. As been addressed by

Tissot & Welte [10], a rock with TOC which less than 0.5% is not considered as

source rock; 0.5-1.0% is considered as poor; 1.0-2.0% is considered fair; 2.0-4.0% is

considered as good and more than 4.0% TOC is considered excellent. The result of

this study indicated that the Lambir Formation has provided a pathway for the

hydrocarbons to migrate. This reference is supported by the findings in FTIRand UV-

Vis.
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Table 4.9 - Total SpecificSurface Area and Thermal Conductivity (K), for the
samples studied.

S llll|i|t

li.nl

S|mllk

^lllllii

\lt •_'•

Hi. mill

< illilllillMIt

(Win 1 '•

Bl SI ^.155

B2 37 2.525

B3 35 3.704

B4 25 2.247

B5 23 2.358

Ll 25 2.424

L2 25 2.469

L3 29 3.030

L4 27 3.921

Belait Formation E4/E6 ratio showed dominance of aromatic components

within the samples (B1-B5). It is to be noted that the samples used for this analysis

were devoid of coal dusts or laminations. Less aliphatic components in the results also

suggest that migration of aliphatics might have occuned, Samples B4 and B5

appeared to have retained the aromatics behind during a past migration event as both

E4/E6 values for these samples are higher compared to the rest of the Belait

Formation samples. Secondary migration of aliphatics might account for the absence

of the aliphatics as they are much lighter than the aromatics. Aliphatic migration in

the Belait Formation is also aided by the larger pore sizes especially in B4 and B5

samples which ease the much lighter aliphatics to migrate away. However migration

of aliphatics might have not been as extensive in the mudrocks of the Belait

Formation with their smaller pore sizes.

Dominance of aliphatic compounds could be seen in Lambir Formation

samples L2-L4 which have E4/E6 ratio values of 0.21, 0.65 and 0.89 respectively. Of

all the Lambir Formation samples only Ll recorded dominance of aromatics based on

its E4/E6 ratio values. The variation between the E4/E6 values between both

formations might possibly account for the retaining of aliphatic compound caused by

lesser geopressure anomalies experienced in Lambir Fonnation.
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4.7.5 Fourier Transform Infrared (FTIR)

Generally, most ofthe Belait Formation samples were observed ofhaving aromatic
dominated compounds in an aliphatic and aromatic mixture. Lambir Formation FTIR

spectra however were observed to have greater presence of aliphatic compounds
throughout the samples (LI, L2, L3 and L4). Breakdowns ofthese interpretations are
described in the succeeding sections. The section is divided into three main regions
from the infrared spectra ofthe acquired FTIR analysis. The discussed regions are the
420-900cm-1 region, 1370-1680cm_1 and the 2700-3000cm_1. These regions were
known as the "hydrocarbon detection" regions [61, 66, 90-93] as all the hydrocarbons
in the samples if present will be detected by the FTIR here. Some of the functional

groups were grouped together i.e. CH / Aryl-CH / Aryl-H because of the similar

ranges they possess. When grouped, the samples could be represented or interpreted
as to possess one or more functional group.

4.7.5.1 The 400 - 900cm1 FTIR region

Peaks in this range are usually associated with presence of aromatic olefins as well as

aliphatic and aromatic paraffins (Fig. 4.29). Analysis on the FTIR of this range
reveals presence of Aryl-olefins in all samples with stretched peaks occuning at
around 400-600cm"1 region. Olefin compounds were detected with much frequency
and with transmittance as low as around 30% in some Belait Formation samples
(Table 4.10). Lower transmittance on the FTIR reflects higher absorption of the
compounds by the samples. This suggests higher presence of olefins in the Belait

Formation compared to the Lambir Formation.
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Fig. 4.29 - The FTIR spectra for the 400 - 900cm"1 region. A- Belait Formation. B
Lambir Formation.

Aliphatic C-H paraffin compounds were observed in only sample Bl and B3

at 665.40cm"1. In the Lambir Formation however, similar functional groups were

detected at 646.41cm"1 for samples L2 and L4 as well as at 644.18cm"1 in sample L3.

Shared peaks between the C-H / Aryl C-H / Aryl-H compounds were observed in all

samples from the Belait Formation except in samples B2 and B4 with peaks occuning

at 777.26cm"1 and 796.55cm"1. In the Lambir Formation, this group was observed to

occur at 779.19 cm"1 in samples L2, L3 and L4, at 784.97cm"1 in all Lambir

Formation samples; and at 798.48 cm"1 in sample Ll. Shared peaks of C-H / Aryl H

meanwhile were presents in all samples of the Belait Formation at 694.33cm" . In the

Lambir Formation, similar molecular group was observed in peak of 692.40cm" .

Aromatic dominance in the Belait Formation suggests presence of heavier

hydrocarbon in the formation.
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Table 4.10 - TheBelait and Lambir Formations functional group, wavelength and
transmittance percentage from the 400-900cm"1 FTIR region.

1. 1 in 1 ii in iin ii 1 11U i Hid *Hl(li in n^inn)

Functional

group

Wavelength
(cm1)

Sample and Transmittance (%)
Bl B2 B3 B4 B5 B6 B7 B8

Aryl C=C

420.45 73 - 71 - - - -
_

432.03 - - - - - - 45 48

470.59 60 50 62 75 56 40 31 29

528.46 71 55 72 82 - - 39 39
CH 665.40 88 - 88 - - - - _

CH / Aryl-
CH

694.33 85 _ 85 - 77 62 61 65

CH / Aryl-
CH / Aryl-

H

796.55 81 61 81 - 71 54 56 59

777.26 81 61 81 88 70 55 56.5 60

^^H^MiM^^^^n^BHHilHHi
Functional

group

Wavelength
(cm"1)

Sample and Transmittance [%)
Ll L2 L3 L4

Aryl C-C

424.31 68 71 79 -

470.60 55 61 78 58

489.19 - - 83 -

532.32 60 71 83 -

CH
644.18 _

- 95 -

646.11 - 90 - 82
CH / Aryl-

CH
692.40 65 83 92 77

CH / Aryl-
CH / Aryl-

H

779.19 - 76 90 70.5

784.97 64.5 - - -

798.48 - 76 90 71

-14.7.5.2 The 1370- 1680cm'1 FTIR region

FTIR peaks in this range are represented by the aliphatic compounds (CH2 and CH3)

and shared peaks (group) between the aromatic and carbonyl compounds [68, 90-92].

Aliphatic compounds continued to dominate inthe Lambir Formation compared to the

samples fromthe Belait Formation (Fig. 4.30). Presence of aliphatic such as the CH2

and CH3 compounds especially CH3 was observed to occupy muchof the Lambir



Formation aliphatic spectra in this range. Observations of the transmittance

percentages on the aliphatics also revealed lower values in Lambir Formation

especially in samples Ll, L2 and L4 (Table 4.11). This suggests that the Lambir

Formation might be dominated with lighter hydrocarbon compounds.

~i 1 r

_i i i_ _j i i_

20QO 1S0O 1SO0 1-100 1200 1000

Wavelength (cm"')

and at 1681.61cm"1.

••t i 1 1 r

_! I 1_

2000 1SO0 1600 1J00 1200 1000

Wavelength (cm"')

Fig. 4.30 - The FTIR spectra for the 1370 - 1680cm"1 region. A- Belait Formation. B
- Lambir Formation.

Aliphatic CH2 molecular group occurs at 1436.87cm"1 in Belait Formation
samples B2, B6, B7 and B8, whereas in the Lambir Formation, CH2 was present in

sample L3 only at 1436.87cm"1 and 1473.51cm"1. CH3 molecular group can be

observed at peaks measuring 1317.30cm"1, 1342.36cm"1, 1361.65cm"1, 1436.87cm"1
and 1450.37cm"1 at various proportions in the Lambir Formation samples but not in

the Belait Formation. Shared peaks between the CH2 and CH3 molecular groups were

observed to occur in Belait Formation samples Bl, B3, B4 and B5 at peaks recorded

at 1442.66cm"1 and 1454.23cm"1. Shared peaks between the aromatic olefin (Aryl

C=C) and carbonyl compounds (0=0) were also observed in both formations

occuning in various samples (Fig. 4.30). This compound is represented by peaks

occuning at 1508.23cm"1, 1510.16cm"1, 1512.09cm"1, 1533.30cm"1, 1542.95cm"1,
1544.88cm"1, 1550.66cm-l, 1552.59cm"1, 1604.66cm"1, 1606.59cm"', 1608.52cm"1



Table 4.11 - The Belait and Lambir Formations functional group, wavelength and
transmittance percentage from the FTIR 1370-1680cm region.

lit 1 III 1 1 1 1 IK 11 "ii liiSIK ni'u.min

Functional

group

Wavelength
(cm"1)

Sample and Transmittance (%)
Bl B2 B3 B4 B5 B6 B7 B8

CH2 1436.87 - 69 - - - 65 72 76

CH2/ CH3
1442.66 89.5 - 90.5 93 - - - -

1454.23 - - - - 78 - - -

Aryl OC /
c=o

1508.23 89.5 68 90 78 61 72 79

1512.09 - - - 92.5 - - - -

1533.30 - - - - - - - 81

1542.95 91 - 89 - - - -
_

1544.88 - - - - 79 _ 75 -

1552.59 - - - - - 68 - 82

1606.59 93 - 93 - - - - 83

1608.52 - - - - - 79.5 78 -

1620.10 - - - - - 68 - _

—^•—•
Functional

group

Wavelength
(cm1)

Sample and Transmittance (%)
Ll L2 L3 L4

CH3

1317.30 66 81 93 75

1342.36 66.5 81.5 94 _

1361.65 67 - 95 75.5

1396.37 - 83 96 76

1450.37 - 83 - 76.5

CH2
1436.87 - - 97 -

1473.51 - - 97 -

Aryl C-C /
c=o

1508.23 -
- 95 -

1510.16 68 85 - 76.5

1550.66 - 78.5 - 85

1604.66 70 85 - 79

1681.81 70 85 _ 80

4.7.5.3
-iThe2700-3000cmI FTIR region

Similar to the preceeding region, this range of FTIR is useful in interpreting the

aliphatic compounds (Fig. 4.31; Table 4.12). It is only attributed to the hydrocarbon

compounds [66, 90-92]. In the Belait Formation, aliphatics were only observed by

jointpeaks between the CH and CH2 molecular group as well as CH molecular group

in sample B2 only. Peaks for the CH and CH2 joint molecular group was detected at

2854.45cm"1 and 2925.81cm"1 whereas the aliphatic CH was at 2891.10cm"1.
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However, aliphatics were detected in the Lambir Fonnation with shared peaks of CH

and CH2 in samples L2 and L4. These peaks were observed to occur at 2854.45cm"1,
2921.96cm"1 and 2927.74cm"1. CH3 molecular group was observed in sample Ll only

at 2879.52 cm"1. Similarly, CH peak of Lambir Formation at this range was only

observed again in sample Ll at 2945.01cm"1. Although these peaks were observed in

higher transmittance, this again suggests the possible presence of lighter hydrocarbons

in the Lambir Formation samples.

-i 1 1 1 r

_i i i L.

3400 3200 3000 2800 2600 2400

Wavelength {cm"')

-i 1 1 1 1 1 1 r

_i i i i i_

3400 3200 3000 2800 2SD0 2400

Wavelength (cm1)

Fig. 4.31 - The FTIR spectrafor the 2700-3000cm"' region. A - Belait Formation. B
Lambir Formation

Table 4.12 - The Belait and Lambir Formations functional group, wavelength and
transmittance percentage at 2700-3000cm" region.

. 'Belaiifdrn
Wavelength

(cm1)

ration Frn^(27gO-3X(K>cm^r1egrpn)
Sample and Transmittance (Functional

group

%)
Bl B2 B3 B4 B5 B6 B7 B8

CH 2891.10 - 78 - - - - - -

CH / CH2
2925.81 - 80 - - -

_

- -

2854 45 _ 79 _

- - - - -

Functional

group

Wavelength
(cm1)

Sample and Transmittance (%)
Ll L2 L3 L4

CH 2945.01 81 - - -

CH3 2879.52 81 - - -

CH / CH2

2854.45 - 92 - 93

2921.96 - - - 95

2927.74 - 94 - -
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4.7.6 Differences in Hydrocarbon Migration between the Fluviatile and
Shallow Marine Sedimentary Rocks

The variations between the quantity of organic matter shown by TOC, functional

group analysis from FTIR and type of dominated compounds from the UV-Vis

analysis suggest that there are differences in the hydrocarbon quality and quantity

between the samples. Differences encountered were not only in terms of the

compounds variations, but extend to the intensity and transmittance for a given

compound within the samples. These variations were not only limited in between

formations but also occuned within formation as well. It could be also observed that

samples which have higher values of E4/E6 (>1.0) tend to be aromatics dominated

whereas samples having lower E4/E6 (<1.0) tend to be aliphatic dominance.

Observations between the formations E4/E6 ratio and molecular group from these

analyses suggest that the hydrocarbons in the Belait Formation samples are dominated

by aromatic compounds while the Lambir Formation samples are dominated by the

aliphatic compounds. Comparison in the FTIR transmittance between both

Formations also reveals that Lambir Formation samples possess lower amounts of

aromatics than the Belait Formation (Table 4.10). This can be observed by higher

transmittance of the aromatic compounds detected in Lambir Fonnation. FTIR

analysis in Table 4.11 and Table 4.12 than continued to show dominance of aliphatic

compounds in allLambir Formation samples with varying transmittance percentage.

All these variations suggest possibility of different trend in migration

experienced by both formations. Different rates of migration from the source may

also occur within the same formation. Differences in the pore sizes and porosity

further extend the effect of migration. Samples which have higher pore sizes were

observed to prone towards having aromatic dominance compounds. These could

suggest the possible presence of geopressure anomalies. In the thicker Belait

Formation [26]. These alterations on the pressure and temperature experienced by the

Belait Formation might possibly drive the less dense aliphatic compounds out from

the formation while retaining the heavy /denser aromatics behind. Based on their

hydrocarbons quality, aliphatic dominated Lambir Formation could be possibly

comparable to a Type I or Type II class of kerogen while the aromatic dominated

Belait Formation is comparable to a Type-Ill class kerogen.
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4.7.7 Summary

It can be concluded that there are differences that could distinguish between the Belait

and Lambir Formation. The criteria for these differentiating characteristics were

proposed based on differences in the sedimentary features observed during field

studies, microfabric analysis conducted from samples of both formations and the

hydrocarbon molecular group interpretations from the UV-Vis and E4/E6 ratio

studies. Not every criterion from the study is compiled in the list. Selections of these

criteria were based upon the common features that should be able to distinguish the

two formations from each other. These differentiating characteristics are hoped to

provide future researchers interested with both formations some basis for

differentiating them. To summarise the findings of this study, we have prepared a

flowchart to help differentiate these formations during the field visit, microfabric

analysis and lab study (Fig. 4.32).
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Chapter Overview

This chapter provides the conclusions from this study as well as some

recommendations for future research work.

5.2 Conclusions

The first objective is achieved based on the field studies conducted with the outcrops

from Belait and Lambir Formations. Based on the study, it is concluded that there are

a few distinguishing features between the formations that may be seen in all outcrops.

In terms of sedimentary structures, it could be observed that Belait Formation

possesses asymmetrical ripple marks whereas the Lambir Formation possesses

symmetrical ripple marks. Cross-beddings are common features in the Lambir

Formation whereas channels and conglomerates are common in the Belait Formation.

Ophiomorpha Nodosa bunows are also more common in the Lambir Formation. In

tenns of facies characteristics, muddier heterolithics dominate the Belait Formation

compared to the sandier heterolithics that is common in the Lambir Formation

outcrops. Massive sandstones are common in the Lambir Formation whereas

carbonaceous shales are commonly present in the Belait Formation outcrops. In terms

of coal occunences, coal laminations were observed frequently in the Lambir

Fonnation and a bit lesser in Belait Formation. Coal fragments are easily observed in

the Belait Formation than in the Lambir Formation.

To achieve the second objective, both Formations were evaluated in terms of

their petrophysical, microfabrics and geochemical characteristics. In terms of their
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physical properties, Belait Formation sandstones have higher pore sizes than its

Lambir Formation counterpart. Hg-porosity analysis revealed Belait Formation

sandstones possess porosity that can be considered as excellent (>25%) while

sandstones from Lambir Formation recorded porosity that ranges from fair to

excellent. EGME surface area revealed that Belait Formation mudrocks possessed

higher values of surface area. Similarities in the surface area observed in both

formations sandstones revealed similar presence of phyllosilicates. Thermal

conductivity for Belait Formation sandstones hasmuch nanower range of values than

the Lambir Formation. Most of the mudrock samples however recorded thermal

conductivity values which are higher than the sandstones. Mineralogical analysis

revealed that both formations consist mainly of quartz and clay minerals. Belait

Formation has angular shaped grains compared to the sub-rounded grains found on

Lambir Formation. Fracturing of the quartz grains is more extensive in the Belait

Formation. XRD analysis revealed that most peaks of the Belait Formation have 2:1

phyllosilicates. Geochemical analyses showed samples from both formations having

TOC ranges that can be interpreted as good. E4/E6 ratio from UV-Vis analysis

suggests that Belait Formation consists of aromatic dominated compounds whereas

the Lambir Formation is dominated by aliphatic compounds. FTIR revealed that

aromatic olefins were found in all the Belait Formations with lower transmittance than

in Lambir Formation. Aliphatic compounds such as CH, CH2 and CH3 however were

found more frequent in the Lambir Formation samples with varying transmittance
values.

Combinations of these key features can be detected in a given outcrop.

Therefore in addressing the third objective of this study, the development of the keys

to differentiate between these formations takes this into consideration. In essence, it is

concluded that the keys for differentiation can be used to match a given outcrop to

either one of the two formations studied. In cases where this is not possible,

similarities to proximal outcrops that canbe identified could help in the assignment of

formation. We managed to differentiate this two formations based on the proposed

key.
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5.3 Recommendations for Future Work

Based on this study, there are a few recommendations that can be implemented. As

this study only dealt with the Belait and Lambir Formations located in Northern

Sarawak, sampling could be extended to samples of the Belait Formation from other

areas as well. Occunences of the Belait Formation extend to Brunei and up to Sabah.

The Lambir Formation outcrop used here only covers the Miri part of Sarawak but

occurrences of the formation extend to Bakong Valley.

In this study, samples were subjected to KBr micro-disc pellet method. It is

however recommended that new technology in FTIR which is the Attenuated Total

Reflectance (ATR) type of FTIR is to be used. This technique of FTIR will be a great

advantage for new studies that will involve large scale sampling as it involves no

preparation and allows samples to be examined directly. ATR-FTIR also allows liquid

to be analyzed directly which will hugely benefit the hydrocarbon analysis.

The results of the study, specifically the results of FTIR and UV-Vis, indicate

very clearlythat migration of hydrocarbon is a complicated process but can be tracked

down using these techniques. These techniques can also be used as a possible lead to

the source rocks, however this needs to be studied in a petroleum systems in this area.

The study also indicates that the petroleum industries can have enhanced information

on reservoir quality rocks. Based on the above, it is evidence that this study

contributes a methodology which should be of significance in the petroleum

exploration phase.

97



REFERENCES

[1] K. E. Peters and M. G. Fowler, "Applications of Petroleum Geochemistry to

Exploration and Reservoir Management," Organic Geochemistry, vol. 33, p.
37, 2002.

[2] D. W. Waples, Geochemistry in Petroleum Exploration. Massachusetts:

International Human Resources Developement Corp., 1985. p. 232.

[3] C. S. Hutchison, Geology ofNorth-West Borneo: Sarawak, Brunei and Sabah,
1st ed. New York: Elsevier, 2005. p. 421.

[4] P. Liechti, F. W. Roe, and N. S. Haile, The Geology of Sarawak, Brunei and

the Western Part of North Borneo : Compiledfrom work of the Royal Dutch

Shell group ofcompanies in the British territories in Borneo andfrom various

published accounts, vol. 1 (text). Kuching, Sarawak Malaysia: Geological

Survey Department, Bulletin 3, 1960. p. 360.

[5] R. W. Murphy, "Southeast Asia reconstruction with a non-rotation Cenozoic

Borneo," Bulletin of the Geological Society of Malaysia, vol. 42, pp. 85-94,
1998.

[6] L. B. Magoon and W. G. Dow, "Chapter 1: The Petroleum System," in The

Petroleum System - From Source to Trap (Memoir 60), L. B. Magoon and W.

G. Dow, Eds., ed Oklahoma, USA: American Association of Petroleum

Geologists (AAPG), 1994, pp. 3-24.

[7] Schlumberger. (2010, 2010). Oilfield Glossary: Reservoir. Available:

http://www.glossary.oilfield.slb.com/Displavxfm?Term^reservoir

[8] R. R. Berg, Reservoir Sandstones. New Jersey: Prentice-Hall Inc., 1986. p.
481.

[9] D. G. Morse, "Chapter 6: Siliciclastic Reservoir Rocks," in The Petroleum

System - From Source to Trap (Memoir 60), L. B. Magoon and W. G. Dow,

Eds., ed Oklahoma, USA: American Association of Petroleum Geologists

(AAPG), 1994, pp. 121-139.

98



[10] B. P. Tissot and D. H. Welte, Petroleum Formation and Ocurrence, 2nd ed.

Berlin Heidelberg, Germany: Springer-Verlag, 1984. p. 538.

[11] A. Y. Hue, "Institut Francais du Petrole (IFP) Course Notes: Petroleum

Geochemistry," unpublished.

[12] RIGZONE. (2007). Nippon Oil &Petronas CarigaliAwarded BlockSK333 in

Sarawak. Available: http://www.rigzone.com/news/article.asp?a_id=53776

[13] Azimah Ali, "The General GeologyofMarudi, Sarawak, East Malaysia," BSc.

(Hons.) Thesis, Department ofGeology, University ofMalaya, Kuala Lumpur,

Malaysia, 1987.

[14] E. Padmanabhan, "Spatial Variability in the Belait Formation: Impact on

Reservoir Characterization and Managment Considerations.," presented at the

Petroleum Geology Conference and Exhibition (PGCE), Kuala Lumpur

Conference Center, Kuala Lumpur, Malaysia, 2010.

[15] E. Padmanabhan, "Ripple Mark Styles in the Belait Formation: Implications

on Depositional History," presented at the National Geoscience Conference

(NGC), Shah Alam, Malaysia, 2010.

[16] N. S. Haile, "Geosynclinal Theory and the organizational pattern of the North

west Borneo Geosyncline," Quart. J. Geol. Soc. London, vol. 124, pp. 171-

194, 1969.

[17] W. Hamilton, Tectonics of the Indonesian Region. VI, USA: USGS

Publications, 1979. p. 1 map; 345.

[18] Y. G. Gatinsky and C. S. Hutchison, "Cathysia, Gondwanaland and the

Paleotethys in the evolution of continental Southeast Asia.," Bulletin of the

GeologicalSociety ofMalaysia, vol. 20, pp. 179-199, 1986.

[19] R. Hall, "Reconstructing Cenozoic SE Asia," in Tectonic Evolution of

Southeast Asia. vol. 106, R. Hall and D. J. Blundell, Eds., ed London:

Geological Society ofLondon Special Publications, 1996, pp. 153-184.

99



[20] R. Hall, "Cenozoic tectonics of SE Asia and Australasia.," in IPA Petroleum

System of SE Asia and Australasia Conference, Jakarta, Indonesia, 1997, pp.

47-71.

[21] T. Hazerbroek and D. N. K. Tan, "Tertiary Evolution of NW Sabah

continantal margin," in Proceedings of the Symposium on Tectonic

Framework and Energy Reseources of the Western Margin of the Pacific

Basin, 1993, pp. 195-210.

[22] C. S. Hutchison, "Formation of marginal seas in Southeast Asia by rifting of

the Chinese and Australian continental Margins, and implications for the

Borneo region.," Bulletin of the Geological Society of Malaysia: GEOSEA

Proceedings Vol. II, vol. 20, pp. 201-220, 1986.

[23] C. S. Hutchison, "Stratigraphic-tectonic model for eastern Borneo," Bulletin of

the Geological Society ofMalaysia, vol. 22, pp. 135-151, 1988.

[24] C. S. Hutchison, "The Eocene Unconformity on Southeast and East

Sunderland," Bulletin of the Geological Society ofMalaysia, vol. 32, pp. 89-

108, 1992.

[25] C. S. Hutchison, "The "Rajang Accretionary Prism" and "Lupar Line" problem

of Borneo.," in Tectonic Evolution ofSoutheast Asia. vol. 106, R. Hall and D.

J. Blundell, Eds., ed London: Geological Society of London Special

Publications, 1996, pp. 247-261.

[26] C. S. Hutchison, Geological Evolution of South-East Asia, 2nd ed. Kuala

Lumpur, Malaysia: Geological Society of Malaysia, 2007. p. 368.

[27] R. B. Tate, "The Geology of Borneo Island (CD-ROM)," ed: Geological

Society of Malaysia, 2001.

[28] M. Publlier, C. Monnier, R. Maury, and R. Tamayo, "Plate Kinematics,

Origin, Tectonic Emplacement of Supra-Subduction Ophiolites in South East

Asia," Tectonophysics, vol. 392, pp. 9-36, 2004.

100



[29] C. S. Hutchison, C. S. Bergman, D. A. Swauger, and J. E. Graves, "A Miocene

Collisional Belt in North Borneo: Uplift Mechanism and Isostatic Adjustment

Quantified by Thermochronology," Journal of Geological Society London,

vol. 158, pp. 398-400,2000.

[30] N. S. Haile, "Borneo," in Mesozoic-Cenozoic Orogenic belts: Data for

Orogenic studies, vol. 4, A. M. Spencer, Ed., ed London: Geological Society

of London Special Publications, 1974, pp. 333-347.

[31] P. R. Williams, C. R. Johnston, R. A. Almond, and W. H. Simamora, "Late

Cretaceous to Early Tertiary Structural Elements of West Kalimantan,"

Tectonophysics, vol. 148, pp. 279-297, 1988.

[32] Geological Survey of Malaysia, "Annual Report 1995," ed. Kuala Lumpur:

Geological Survey Department, Ministry of Primary Industry, 1995.

[33] G. E. Wilford, The Geology and Mineral Resource of Brunei and Adjacent

Parts of Sarawak with Descriptions of Seria and Miri Oilfields.: British

Borneo Geological Survey, 1961. p. 319.

[34] N. S. Haile, The Geology and Mineral Resources of the Lupar and Saribas

Valleys, West Sarawak. Kuching, MY: British Borneo Geological Survey

Dept., 1957. p. 123.

[35] R. C. Selley,Applied Sedimentology. London: Academic Press, 2000. p. 523.

[36] J. H. Schon, Physical Properties of Rocks: Fundamentals and Principles of

Petrophysics. Oxford, London: Pergamon Press, 1995. p. 600.

[37] R. C. Selley, Elements ofPetroleum Geology, 2nd ed.: Academic Press, 1997.

p. 470.

[38] Thermo Scientific, "Mercury Porosimetry," ed: Thermal Scientific, 2011, p. 4.

[39] H. Giesche, "Mercury Porosimetry: a General (Practical) Overview," Particle

& Particle System Characterization, vol. 23, pp. 1-11, 2006.

101



[40] W. Fjeldskaar, O. H. J. Christine, K. MidttOmme, G. Vironvsky, N. B. Jensen,

A. Lohne, G. I. Eide, and N. Balling, "On the determination of thermal

conductivity of sedimentary rocks and the significance for basin temperature

history," Petroleum Geoscience, vol. 15,pp. 367-380, 2009.

[41] O. Walderhaug, "Kinetic modeling of quartz cementation and porosity loss in

deeplyburied sandstonereservoirs," AAPG Bull, vol. 80, pp. 731-745, 1996.

[42] O. Walderhaug, P. A. BjOrkum, P. H. Nadeau, and O. Langes, "Quantitavie

modeling of basin subsidence caused by temperature-driven silica dissolution

andreprecipitation," Petroleum Geoscience, vol. 7, pp. 107-113, 2001.

[43] O. Farouki, Thermal properties of soils, Series of Rock and Soil Mechanics

vol. 11. Durnten-Zurich, Switzerland: Trans Tech Publications, 1986. p. 136.

[44] S. Krishniah, D. H. Singh, and G. N. Jadhav, "A methodology for determining

thermal properties of rocks," Int. J. RockMech. Min. Sci, vol. 41, pp. 877-882,

2004.

[45] C. Clauser and E. Huenges, "Thermal Conductivity of Rocks and Minerals," in

Rock Physics & Phase Relations: A Handbook ofPhysical Constants, vol. 3,

T. J. Ahrens, Ed., ed Washington D.C.: American Geophysical Union, 1995,

p. 236.

[46] M. S. Masnan, E. Padmanabhan, M. A. Mokhtar, G. Rajamohan, and V.

Prasanna, "Thermal Conductivity Values of Some Sandstones and Shales

From The Belait Formation," Bulletin of the Geological Society ofMalaysia

(inpress), 2010.

[47] D. L. Carter, M. M. Mortland, and W. D. Kemper, "Chapter 16: Specific

Surface," in Methods of Soil Analysis Part 1: Physical and Mineralogical

Methods, A. Klute and G. S. Campbell, Eds., 2nd ed Wisconsin: American

Societyof Agronomy, Soil Science Societyof America(SSSA), 1986.

[48] D. L. Carter, M. D. Heilman, and C. L. Gonzalez, "Ethylene Glycol

Monoethyl Ether for Determining Surface Area of Silicate Minerals," Soil

Science, vol. 100, pp. 356 - 360, 1965.

102



[49] A. B. Cerato and A. J. Lutenegger, "Determination of Surface Area of Fine-

Grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method,"

Geotechnical Testing Journal, vol. 25, pp. 1-7, 2002.

[50] C. S. Brooks and W. R. Purcell, "Surface Area Measurements on Sedimentary

Rocks," Petroleum Transactions, American Institute ofMining, Metallurgical

and Petroleum Engineers (AIME), vol. 195, pp. 289-296, 1952.

[51] D. N. Arnepalli, S. Shanthakumar, B. Hanumantha Rao, and D. N. Singh,

"Comparison of Methods for Determining Specific-surface Area of Fine

grained Soils," Geotechnical and Geological Engineering, vol. 26, pp. 121-

132,2007.

[52] D. H. Krinsley, K. Pye, S. B. Jr., and N.K. Tovey, Backscattered Scanning

Electron Microscopy and Image Analysis of Sediments and Sedimentary

Rocks. Cambridge: Cambridge University Press, 1998. p. 204.

[53] Brucker AXS. (2010). X-ray Diffraction. Available: http://www.bruker-

axs.com/x_rav_diffraction.html

[54] B. P. Tissot, D. H. Welte, and B. Durand, "The Role of Geochemistry in

Exploration Risk Evaluation and Decision Making," presented at the 12th

World Petroleum Congress (April 26 - May 1, 1987), Houston, USA, 1987.

[55] S. T. Sandal, The Geology and Hydrocarbon Resources of Negara Brunei

Darussalam, 2nd ed. Seria, Brunei: Brunei Museum & Brunei Shell Petroleum

Co., 1996. p. 243.

[56] T. R. Pedersen and S. E. Calvert, "Anoxia vs productivity. What controls the

formation of organic-carbon-rich sediments and sedimentary rocks?,"

American Association of Petroleum Geologists (AAPG) Bulletin, vol. 74, pp.

454-466, 1990.

[57] D. M. Jarvie, "Total organic carbon (TOC) analysis," in Source and Migration

Processes and Evaluation Techniques (Treatise ofPetroleum Geology), R. K.

Menil, Ed., ed Oklahoma: American Association of Petroleum Geologists

(AAPG), 1991,pp. 113-118.

103



[58] W. G. Dow, "Kerogen Studies and Geological Interpretattions," Journal of

GeochemicalExploration, vol. 7, pp. 79-99, 1977.

[59] K. E. Peters, "Guidelines for Evaluating Petroleum Source Rock Using

Programmed Fyrolysis," AAPG Bulletin, vol. 70, pp. 318-329, 1986.

[60] J. Curiale, J. Morelos, J. Lambiase, and W. Mueller, "Brunei Darussalam:

Characteristics of Selected Petroleums and Source Rocks," Organic

Geochemistry, vol. 31, pp. 1475-1493, 2000.

[61] M. Schnitzer and S. U. Khan, Soil Organic Matter, 4th ed. Amsterdam:

Elsevier Scientific 1989. p. 319.

[62] M. M. Kononova, Soil organic matter: its nature, its role in soilformation and

in soilfertility, 2nd ed. London: Pergamon Press, 1966. p. 544.

[63] V. I. Kasatochkin, M. M. Kinoneva, N. K. Larina, and O. I. Ergova, "Spectral

and X-ray Investigations of Soil Humus Substances,," Fiz., Khim., Biol, i

Mineralog., Pochv. SSSR, Akad. Nauk. SSSR Dokl. K VHI-mu [Vos' memuj,

pp. 195-205, 1964.

[64] I. N. Evdovkimov and A. P. Losev, "Potential of UV-Visible Absorption

Spectroscopy For Characterizing Crude Petroleum Oils," Oil & Gas Business,

p. 21,2007.

[65] F. J. Stevenson, Humus Chemistry Genesis, Composition, Reactions. New

York, USA: John Wiley & Sons, 1982. p. 496.

[66] J. P. Coates, "The Interpretation of Infrared Spectra: Published Reference

Sources," AppliedSpectroscopy Reviews, vol. 31, pp. 179-192, 1996.

[67] Thermo Nicolet. (2001). Introduction to Fourier Transform Infrared

Spectroscopy. Available: http://mmrc.caltech.edu/FTIR/FTIRintro.pdf

[68] H. Ganz and W. Kalkreuth, "Application of Infrared Spectroscopy to the

Classification of Kerogen-Types and the Evaluation of Source Rock and Oil

Shales Potentials," FUEL, vol. 66, pp. 708-711, 1978.

104



[69] L. Ballice, M. Yuksel, M. Saglam, H. Schulz, and C. Hanoglu, "Application of

Infrared Spectroscopy to the Classification of Kerogen Types and the

Thermogravitically Derived Pyrolysis Kinetics of Oil Shales," FUEL, vol. 74,

pp. 1618-1623, 1995.

[70] A. Boukir, M. Guiliano, P. Doumenq, A. E. Hallaoui, and G. Mille, "Structural

Characterisation of Crude Oil Asphaltenes by Infrared Spectroscopy,"

Electrochemistryand Photochemistry, vol. l,pp. 597-602, 1998.

[71] E. Padmanabhan, G. Rajamohan, S. N. Nazor, M. A. Mokhtar, and M. V.

Prasanna, "Impact of Spatial Variabiliy in Microfabrics on Heat Transfer

Characteristics of Some Sedimentary Rocks," presented at the Integrated

Petroleum Engineering and Geosciences (ICIPEG), Kuala Lumpur Convention

Center, Kuala Lumpur, 2010.

[72] E. Padmanabhan and A. S. M. Pauzi, "Fabric Anomaly Induced by Mudclasts

Distribution In Some Cenozoic Clastics In Sarawak, Malaysia," presented at

the International Conference on Integrated Petroleum Engineering and

Geosciences (ICIPEG) 2010, Universiti Teknologi PETRONAS, 2010.

[73] Mineral and Geoscience Department Malaysia, Geological Map of Sarawak,

1: 500,000, Map published by the Mineral and Geoscience Department

Malaysia, Kuala Lumpur, Malaysia

[74] F. J. Pettijohn, P. E. Potter, and R. Siever, Sand and Sandstone. New York:

Springer-Verlag, 1987. p. 553.

[75] Intera, "Radar Geologic Interpretation of Sarawak, Malaysia," Unpublished

report: PETRONAS, 1993.

[76] E. Padmanabhan and A. S. M. Pauzi, "Fabric Anomaly in Mud Clasts

Distribution in the Lambir Fonnation (Middle to Late Miocene), Sarawak.,"

Warta Geologi, vol. 37, pp. 43-45, 2010.

[77] Mohd Syamim Ramli and E. Padmanabhan, "Some Field Differentiating

Characteristics between the Belait and Lambir Formations, North Sarawak,"

Warta Geologi, vol. 37, pp. 94-95, 2011.

105



[78] M. E. Tucker, Techniques in Sedimentology. Oxford: Blackwell Scientific

Publications, 1988. p. 394.

[79] A. E. Adams, W. S. MacKenzie, and C. Guilford, Atlas ofSedimentary Rocks

under the Microscope. Harlow: Longman, 1994. p. 104.

[80] W. S. MacKenzie and A. E. Adams, A Color Atlas ofRocks and Minerals in

Thin Section, 1sted. London: Manson Publishing, 1994. p. 192.

[81] R. J. Gibbs, "Enor Due To Segregation In Quantitative Clay Mineral X-ray

Diffraction Mounting Techniques," American Mineralogist, vol. 50, pp. 741-
751, 1965.

[82] J. I. Drever, "The Preparation of Oriented Clay Mineral Speciments for X-ray

Diffraction Analysis by a Filter-Membrane Peel Technique," American

Mineralogist, vol. 58, pp. 553-554, 1973.

[83] R. Hardy and M. E. Tucker, "X-ray diffraction," in Techniques In

Sedimentology, M. E. Tucker, Ed., ed Oxford: Blackwell Scientific

Publications, 1988, pp. 191-228.

[84] G. W. Brindley, "Identification of Clay Minerals by X-ray Diffraction

Analysis," Clays and Clay Minerals, vol. l,pp. 119-129, 1952.

[85] W. H. Somerton, Thermal Properties and Temperature-Related Behavior of
Rock /Fluid Systems. Amsterdam: Elsevier, 1992. p. 257.

[86] R. E. Collins, Flow of Fluid Through Porous Materials. New York, USA:

Reinhold Publishing Corporation, 1961. p. 270.

[87] L. G. Wade Jr., Organic Chemistry. NJ, USA: Pearson Prentice Hall, 2006. p.
1330.

[88] J. Espitale, M. Madec, B. P. Tissot, J. J. Mennig, and P. Leplat, "Source Rock

Characterization Method For Petroleum Exploration," presented at the 9th

Annual Offshore Technology Conference, Houston, Texas, 1977.

106



[89] HydeSoft Computing LLC. (2010). Dplot Software. Available:

http://www.dplot.com/index,htm

[90] J. P. Coates, "Interpretation of Infrared Spectra: A Practical Approach," in

Encylopedia of Analytical Chemistry, R. A. Meyers, Ed., ed: John Wiley &

Sons, 2000, pp. 10815-10837.

[91] P. Crews, J. Rodriguez, and M. Jaspars, Organic Structure Analysis. London:

Oxford University Press, 1998. p. 636.

[92] D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction to

Spectroscopy, 4th ed. California: Brooks / Cole, 2009. p. 727.

[93] M. Schnitzer, "Organic Matter Characterization," in Methods ofSoil Analysis,

Part 2, Chemical and Microbiological Properties, B. L. Page, R. H. Miller,

and D. R. Keeney, Eds., 2nd ed Madison, USA: Soil Science Society of

America (SSSA), 1982, pp. 581-594.

[94] J. D. Collinson and D. B. Thompson, Sedimentary Structures. London: Allen

&Unwin, 1989. p. 207.

[95] A. Bhattacharyya and C. Chakraborty, Analysis ofSedimentaiy Successions: A

Field Manual, 1st ed. Rotterdam, Netherlands: A.A. Balkema Publishers,

2000. p. 408.

[96] K. Bjorlykke, "Introduction to Sedimentology," in Petroleum Geoscience:

From Sedimentary Environments to Rock Physics., K. Bjorlykke, Ed., ed

Berlin: Springer, 2010, pp. 27-86.

[97] R. C. Selley, Ancient Sedimentary Environments and their Subsurface

Diagnosis, 4th ed. Derby: Chapman & Hall,, 1996. p. 300.

[98] J. C. Harms, J. B. Southard, and R. G. Walker, Lecture Notesfor Short Course

9: Structures and Sequences in Clastic Roclzs: Society of Economic

Paleontologists and Mineralogists, 1982. p. 249.

[99] D. A. V. Stow, Sedimentary Rocks in the Field: A Color Guide. London:

Manson Publishing Ltd., 2005. p. 320.
107



[100] R. G. Walker, FaciesModel. Toronto: Geoscience Canada, 1984. p. 409.

[101] B. W. Flemming, "Tidal Flats," in Encyclopedia of Sediments and

Sedimentary Rocks, G. V. Middleton, Ed., 1 ed: Springer, 2003, pp. 734-736.

[102] G. M. Friedman, "Classification of Sediments and Sedimentary Rocks," in

Encyclopedia of Sediments and Sedimentary Rocks, G. V. Middleton, Ed., 1

ed: Springer, 2003, pp. 127- 135.

[103] C. W. Passchier and R. A. J. Trouw, Microtectonics. Berlin, Germany:

Springer-Verlag, 2005. p. 366.

[104] B. E. Hoobs, "The Geological Significance of Microfabric," in Preferred

Orientation in Deformed Metal and Rocks: An Introduction to Modern Texture

Analysis, H. R. Wenk, Ed., ed NY, USA: Academic Press, 1985, pp. 463-484.

[105] B. E. Hobbs, M. D. Means, and P. F. Williams, An Outline of Structural

Geology. NY, USA: Wiley, 1976. p. 571.

[106] J. J. M. van der Meer and J. Menzies, "The Micromorphology of

Unconsolidated Sediments," Sedimentary Geology, vol. 238, pp. 213-232,

2011.

[107] J. J. M. van der Meer, "Micromorphology," in Past Glacial Environments:

Sediments, Forms and Techniques, vol. 2, J. Menzies, Ed., 1st ed Oxford, UK:

Butterworth & Heinemann, 1996, pp. 335-355.

[108] J. J. M. van der Meer, "Microscopic Evidence of Subglacial Deformation,"

Quatenary Science Review, vol. 12, pp. 553-587, 1993.

[109] Mohd Syamim Ramli, E. Padmanabhan, M. A. Mokhtar, and W. I. W. Yusoff,

"Spatial-Temporal Variability of Hydrocarbon Distribution in the Northern

Sector of the Belait Formation," presented at the National Geoscience

Conference (NGC), Shah Alam, Selangor, Malaysia, 2010.

[110] G. M. Friedman, "Petrofabric Analysis of Experimentally Deformed Calcite-

Cemented Sandstones," JournalofGeology, vol. 21, pp. 12-37, 1963.

108



[111] J. J. Gallagher Jr., "Fracturing of Quartz Sand Grains," in Site

Characterization, Preprint Proceedings of 17th Symposium on Rock

Mechanics W. S. Brown, S. J. Green, and W. A. Hustrulid, Eds., ed University

of Utah, USA, 1976, pp. 2A4-1 - 2A4-8.

[112] R. H. Worden and S. D. Burley, "Sandstone Diagenesis: The Evolution of

Sand to Sandstone," in Sandstone Diagenesis: Recent and Ancient, S. D.

Burley and R. H. Worden, Eds., ed MA, USA: Blackwell Science, 2003, p.

649.

[113] R. E. Chapman, "Chapter 3: Compaction of Sediment and Sedimentary Rocks,

and its Consequences," in Petroleum Geology: A Concise Study, 3rd ed

Amsterdam, Holland: Elsevier Science Ltd., 1983, p. 315.

[114] R. L. Folk, Petrology of Sedimentary Rocks. Texas, USA: Hemphill

Publishing, 1980. p. 182.

[115] M. E. Tucker, Sedimentaiy Petrology: An Introduction to the Origin of

Sedimentary Rocks, 3rd ed.: Wiley-Blackwell Publishing, 2001. p. 272.

[116] M. A. Mokhtar, "Facies Characterization of Belait Fonnation in Marudi Area,

Sarawak.," BSc. (Hons.) Thesis, Dept. of Applied Geology, Curtin University

of Technology, Sarawak, Malaysia, 2009.

[117] R. Hall, "Cenozoic geological and plate tectonic evolution of SE Asia and the

SW Pacific: computer-based reconstructions, model and animations," Journal

ofAsian Earth Sciences, vol. 20, pp. 353-431, 2002.

[118] A. J. Martin, "Flaser and wavy bedding in ephemeral streams: a modern and

an ancient example," Sedimentaiy Geology, vol. 136, pp. 1-5, 2000.

[119] H. Reineck and F. Wunderlich, "Classification and Origin of Flaser and

Lenticular Bedding," Sedimentology, vol. 11, pp. 99-104, 1968.

[120] R. A. Davis, Coastal Sedimentaiy Environments, 2nd ed. NY, USA: Springer-

Verlag, 1985. p. 716.

109




