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CHAPTER 1 

 

INTRODUCTION 

1.1 Background  

Electricity has become one of the most prominent necessities in this world today. 

With fast development and emerging industries worldwide, the requirement for a good 

and reliable power supply have become an important factor. There are many challenges 

in power distribution, which includes maintaining a good power quality at all time. Power 

quality has since become a major concern in the power networks. By definition, power 

quality is a set of electrical boundaries that allows an equipment to function in its 

intended manner without significant loss of performance or life expectancy [1]. An ideal 

power system is defined such when a perfect sinusoidal voltage signal is seen at load-

ends. In reality, however, such idealism is hard to maintain, as any deviation from the 

perfect sinusoidal waveform is considered as distortion [2]. Voltage and current 

distortions or also referred as ‘harmonics’ has since become an active topic for 

researchers and entrepreneurs in finding for a solution.   

Harmonics are currents or voltages with frequencies that are integer multiples of the 

fundamental power frequency. Harmonics current are fed by the non-linear equipments, 

which disrupts the desired ideal linear system [3]. These distorted current pulses, due to 

Ohm’s law, will also begin to distort the voltage waveforms, where it would be carried 

back to the distribution network [4]. Till date, the increasing use of nonlinear loads in 

industry keeps harmonics a rising issue in distribution network despite countless efforts 

being tested and implemented to obtain optimum power quality [5]. Power networks with 
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harmonics above tolerance deteriorate the power quality and hence cause undesired 

problems and issues at both generation and user-ends. IEEE Standard 519-1992 outlines 

the normal tolerance of harmonics voltage to be not more than 5% THD [6]. For better 

comprehension, decomposition of 3
rd

-order harmonics from a distorted waveform is 

illustrated in Figure 1.1. The 150 Hertz waveform is defined as 3
rd

-order harmonics due 

to its third integer multiple of the fundamental power frequency of 50 Hertz, which is the 

base sine waveform.  

 

 

Figure 1.1 Distorted waveform composed of base sine waveform and 3
rd

-order 

harmonics 

Harmonics form a very broad field of study. Hence, understanding the type and 

source of harmonics in each individual network is essential for a fairly accurate analysis 

and system optimization. In a distribution network, power is being generated and 

supplied to various types of equipment. The presence of harmonics in the system is an 

obvious problem but to which extend is the necessity to observe and minimize this 

distortion? Generally, harmonics can be categorized into positive sequence, negative 

sequence and zero sequence. Harmonics of 1
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subsequent orders are defined as positive sequence. Whereas, the negative sequence 

harmonics consists of the 2
nd

-order, 5
th

-order, 8
th

-order, 11
th

-order and its subsequent 

orders. Zero sequence harmonics falls in a same trend as above harmonic orders, in which 

every order in the trend is followed by the third order from the former; harmonics of 3
rd

-

order, 6
th

-order, 9
th

-order, 12
th

-order and 15
th

-order falls under zero sequence [7].  

Harmonics with a positive sequence generally causes overheating of conductors, 

transformers and circuit breakers. Negative sequence harmonics can cause the same 

heating problems as positive harmonics plus additional problems with motors. Unlike 

positive and negative sequence harmonic currents, the zero sequence harmonics does not 

cancel but add up arithmetically at the neutral bus, causing overheating and related 

harmonics issues [8]. The major concern is the effect that harmonics distortion could 

impose; such as potential fire hazard, excessive heat, false tripping of branch circuit 

breakers, increased risk of faults from overvoltage state developed on power factor 

correction capacitors and subsequently increases maintenance cost [5,9].  

The biggest challenge utilities face at present, is to provide reliable services to 

support the ever growing power demand. For instance, India faced critical power issue 

with several blackouts in 2012 due to the energy suppliers’ failure to meet the growing 

demand [10]. The solutions are often very costly.  

As part of the EPRI Reliability Benchmarking Methodology project, investigators 

explored the idea of estimating the voltages at locations without prior inspection. This led 

to the development of the power quality state estimator (PQSE), which uses feeder 

models and recorded data to estimate the system output [11]. There are two parts to state 

estimation (SE); modelling and algorithms. The overall approach is to use a model to 

foretell the behaviour of the system in a particular state, and then compare it with the 

actual telemetry from the system. This is to conclude which state is most likely to 

produce the observed system behaviour [12]. However, these assumptions have 

simplified the implementation but generate several practical problems. 

Harmonics analysis consists of three main stages; harmonics pseudo-measurement or 

data recording, harmonics state estimation and post-fault analysis, as shown in Figure 1.2.  
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Figure 1.2 Block diagram of harmonics analysis process 

Before an estimation model is being constructed, a set of known data derived from 

intended location is essential. These data, or also called as pseudo-measurements, are 

gathered using power analyzers. The complexity of the equipment influences its price and 

affordability. As an alternative, harmonic estimation and time-series prediction are being 

explored.  

Estimation capacity is defined as logarithmic information measure [13], which 

provides reliable information for the analysis. Early studies suggest the usage of Global 

Positioning System (GPS) receiver at every local system to synchronize harmonic phase 

measurements with accuracy of 1µs. However, the high expense of harmonic instruments 

and installation of communication channels limits the number of meters in network [14]. 

Therefore, harmonic estimations are essential to solve complex problems. Before the 

invention of power analyzers, harmonics estimation is carried out by measuring the load 

current and then computing the harmonics via Fourier series [15, 16]. The size and 

complexity of modern power networks makes it difficult to monitor a complete system.  

Time-series prediction or often called as forecasting, on the other hand, works as a 

planning tool that helps management in its attempt to cope with uncertainty of the future, 
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relying mainly on data from the past and analysis of trends. Forecasting can be simply 

categorised into long-term, mid-term and short-term. A long-term forecast is usually 

applied by futurologists to explore the low-probability, high-impact events. For instance, 

this is practised by the projects on National Security Reform’s Vision Working Group 

[18]. Whereas, mid-term forecasting concentrates on the factors that drive the evolution 

of power and challenges the conventional notions of waning plants or resources [19]. 

Short-term forecasts seek to understand the not-too-distant future, but are, all the same, 

enlightened by the developments occurring at presence [20]. Hence, short-term forecast is 

the most essential forecast technique to prepare for harmonic issues, which are to occur in 

the not-too-distant future if left untreated.  

Once pseudo-measurements are collected, they would be fed into the Harmonics State 

Estimation (HSE) model to economically determine the location and magnitude of 

harmonics in a power network and identify its source of harmonics.HSE is the 

fundamental for harmonics analysis in power networks. There are two main parts to state 

estimation (SE); modelling and algorithms. The overall idea of a HSE model is to use 

feeder models and recorded data to foretell the behaviour of the system in a particular 

state, and then compare it with the actual system [21]. Many mathematical methods, such 

as Fast Fourier Transform (FFT) and Least Squares (LS) have been developed over the 

years and have been proven that by using only partial or selected measurement data, the 

entire harmonic distribution of the actual power system can be obtained effectively [22].  

Hence, it is important to determine the harmonics voltages in power network in order 

to take appropriate corrective measures. The possible solutions for power system 

harmonics include passive filter, active filter or hybrid filter. The most common method 

for harmonics filtering is by installing passive filters at power network where necessary. 

It filters harmonics within a selected bandwidth, while active filters shows a more 

sophisticated filtering concept of real-time harmonics cancelling [23]. Hybrid filter, on 

the other hand, combines the advantage of both active and passive filter.   
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1.2 Scope of study 

This research focuses on a specific stage of harmonic analysis; harmonic pseudo-

measurement. A real-life situation is investigated and a proposed solution is discussed. 

The proposed technique aims to fully utilize existing resources, and therefore leads to a 

novel approach. Although the system is developed with MATLAB environment on an 

offline network, it is fully aimed to improve power quality of the intended distribution 

network and prevent future undesired occurrences. This study also highlights the 

importance of reducing cost at the first stage of harmonic analysis to reduce the overall 

maintenance cost of any distribution system. A comparative study between an existing 

system and the proposed system is also carried out through MATLAB simulation to 

validate the claim that the proposed system is better than the existing system.  

1.3 Problem Statement 

University Teknologi PETRONAS (UTP), located in a small town Tronoh, was 

established in 1997 with a unique attempt to utilize gas to produce chilled water for air-

conditioning and waste heat for power generation. It is configured to lower the peak load 

demand and reduce investment for peaking capacity especially for a large building 

complex [24]. A typical gas district cooling plant can be simply illustrated as in Figure 

1.3. 

As potential as it can be, however, this power generation does not meet its expectation in 

producing reliable power supply. In an online survey conducted around the campus area 

in May 2011, the students’ response shows that harmonic issues do exist in the system 

(Refer to Appendix A). The survey was categorized based on students from different 

residential villages in UTP to identify the most troubled village. It targets students from 

various clusters and year of study. Out of 100 students whom participated in the online 

survey conducted, 86% of students agree to have experienced power failure/blackout in 

campus and 10% complained of frequent occurrences of such incidents. Among the 10% 
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of student whom complaint frequent power shortage, a surprising figure of 8% was found 

to be resided in residential village 3 while the remaining 2% mentioned power troubles 

during class and laboratory hours. Among the issues brought forward were loss of 

important data and documents in personal computers due to sudden power failure and 

long hours of laboratory due to frequent power failure, which also causes complications 

to the laboratory equipment. 

In 2009, the research and technology division from PETRONAS, or also known as 

Group Technology Solutions (GTS), was invited to conduct harmonic study around the 

new academic complex to investigate on the multiple power failures. As an outcome, 

GTS reported THDV to be 4.4% of the fundamental at every phase in selected academic 

blocks; Block 2, 3, 5, 13, 17, and 22. This information is vital and has led to many 

harmonics analysis conducts at UTP distribution network [24] - [26]. However, in recent 

years, despite much harmonic issues that has aroused, no proper analysis has been carried 

out due to limited resources. Therefore, there is a need to supervise the UTP distribution 

line in the most cost-efficient and reliable method.  

The summary of problem statements is listed below; 

a) In midst 2011, under a research grant in UTP, a power analyzer was purchased for 

academic purposes. Although the analyzer has huge potentials, the usage is 

limited to data collection for research and academic purposes due to its cost and 

complexity. Only a single unit of power analyzer cannot serve the purpose of 

complete harmonics monitoring across the campus. Therefore, the campus clearly 

lacks a reliable system to monitor and prevent future harmonic-related incidents, 

which has also subsequently increased the maintenance costs.  

b) Since the study focuses on the harmonic issues at load-end (i.e.: power shortage at 

residential villages and academic blocks), a non-linear system would serve best 

for the harmonic monitoring due to the fact that an electric load is a non-linear 

function. Therefore it is indispensable for development of optimal ANN-based 

harmonics monitoring system to optimize the use of the existing power analyzer 

in UTP. Intelligent techniques on the other hand, require optimal network 
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structure with the most appropriate training algorithms to suit the targeted 

distribution network. Careful selection on these techniques will then improve the 

accuracy of the final product as well as the performance of the network. 

1.4 Research aim and objectives 

The impetus of the study is mainly to optimize the use of the power analyser and 

monitor as many locations as possible at a time with minimal cost. The research 

objectives are set to solve the problems that have been brought up, which are; 

a) to propose an intelligent system that provides complete monitoring of harmonic 

fluctuations at UTP distribution line,  

b) to develop a reliable algorithm for the short-term harmonic monitoring by 

utilizing the actual harmonics data from UTP campus, and 

c) to forecast harmonic voltages ahead, which allows preventive measure to be taken 

beforehand.  

The proposed system shows novelty as no previous work has been recorded to neither 

propose nor overcome harmonic issues in UTP distribution network. Since the usage of 

power analyser tool currently, limits the number of monitoring station to one at a time, 

the proposed system is expected to increase efficiency of complete distribution network 

surveillance and reduce monitoring time and cost 

In order to accomplish these objectives, it is very important to carry out network 

assessments on the bases of the average estimation and forecast error, and network 

performance using different training approaches. The models are carefully trained by 

feeding reasonable data gathered from the power analyzer. Possibilities for minimizing 

the error means of other intelligent-based technique are also explored and evaluated.  
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1.5 Assumptions 

To achieve the aforementioned research objectives, a number of assumptions have to 

be made; 

a) it is assumed that the instrument error is below tolerance since the tool is fairly 

new purchase and implies to the standard calibration. Fluke 1750 power analyzer 

calibrated with harmonics current and voltage reading to be ± 0.5 % reading and  

± 0.2 % full scale for the 1
st
 to 20

th
 orders, while from 21

st
 to 50

th
 order 

harmonics, the voltage and current expected to be ± 1 % reading and ± 0.3 % full 

scale; with current sensor accuracy of 1% from 10 mA to 5 A.  

b) The phase angle is not considered in the system since the power analyzer used to 

log data was not able to record the phase angle data. Therefore, the phase angle is 

considered stable.  

1.6 Research Motivation 

The residents or students in UTP currently do not enjoy the benefits of such 

intelligent power generation system due to the issues that occur very often.  At present, 

no preventive measures are taken beforehand to prevent power failures in the campus 

area. This is mainly due to lack of tool or instrument, and also expertise to monitor the 

harmonic fluctuations in the distribution line. Therefore, the campus is in need for a 

reliable surveillance system that is not only user-friendly but also cost-efficient.  

An optional tool that enables efficient harmonics monitoring in UTP distribution 

network would allow a virtual surveillance system to be implemented and thus, reduce 

probability of power failures in near future. 

This is expected to reduce the maintenance cost as prior measures can be taken to 

avoid future power failures. Reduction in terms of equipment will also be possible as 

each surveillance point can be operated  
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1.7 Outline of the Thesis 

This thesis contains five chapters, neatly divided to elaborate each section. The first 

chapter provides a background study on harmonics and the need for harmonics estimation 

at UTP’s distribution network. Thesis objectives and scope of study are clearly outlined 

here.  

Chapter 2 discusses classical methods and the state of art in general. This section 

attempts to provide a review on harmonics studies over time and weighs the advantages 

and disadvantages of several common and famous techniques. 

Chapter 3 demonstrates the proposed harmonics pseudo-measurement monitoring 

system using AI techniques. The AI concept and techniques are also introduced and 

discussed further on its applications to the proposed system.  

Simulation results and discussions are presented accordingly in Chapter 4. The 

estimated and forecast values are compared with the actual data collected from data 

logging using Fluke 1750 power analyzer to determine its validity. The competence of 

the monitoring system is clarified further by comparing the proposed system with a 

traditional system. 

Chapter 5 concludes the thesis by providing a review on the whole work and 

recommendations on future works.  
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Introduction 

The presence of harmonics in distribution line was noted ever since alternating 

current was introduced. However, this issue of distortion that affects the power quality 

was not understood initially and was merely referred as a ‘mystery’. One of the first 

documentation on harmonics was recorded back in 1894 by Edwin J. Houston and Arthur 

E. Kennelly [27], where a keen understanding of harmonics as well as its effects on 

transformers and motors was neatly described with simple graphical interpretations. The 

basic idea in harmonics studies is to measure the harmonics injected by the non-linear 

loads and minimize the unwanted harmonics [28]. Various studies have been conducted 

on harmonics and distortion since 1960s. Before the invention of AI techniques, 

harmonics issues were treated with conventional mathematical models to detect and 

minimize unwanted harmonics in distribution line.  

One of the most primitive methods used to calculate the steady-state solution was to 

integrate the accompanying system of non-linear differential equations for as many 

cycles as required, until the transient response disappears, leaving only the periodic, 

steady-state response. This is the case in any of the highly developed electromagnetic 

transient programs; EMTP and PSCAD/EMTDC [29]-[31]. This approach, however, does 

not always yield satisfying results because some power networks are lightly damped and 

because of difficulties in establishing suitable steady-state initial conditions [32]. This 

solution approach is also time-consuming and sometimes inconclusive [33].  
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2.2 The revolution of Harmonics State Estimation in power systems 

Initial growth in power quality was the replacement of conventional analysis of 

harmonics by state estimations; harmonic state estimation (HSE). Early researches 

commonly suggests fast Fourier transform (FFT) and least-square methods for state-

estimation [9, 17, 34]. Fourier transform is an old method of computation, which was 

developed in attempt to determine the orbit of certain asteroids [35]. It is later been 

adopted and tested in various fields due to its computational advantages. FFT offers 

reduced computations that other methods and also involves the transformation of 

sequences [36]. FFT methods were advantageous when  computations  are  to  be  

performed  on  a machine with  limited  core  storage. However, FFT has been proved of 

its non-feasibility in a recent research. It is found that FFT enables estimation of the 

fundamental amplitude and its harmonics with a reasonable approximation but compel 

disadvantages on window dependency resolution. FFT also performs well for estimation 

of periodic signals in stationary state but fails to perform well for detection of sudden or 

fast changes in waveform [37]. State-estimation by least-squares technique uses direct 

solution using rectangular coordinate system. A.P. Sakis Meliopoulos [16] implements 

sensitivity and observability analysis to increase precision of least-square estimation. 

However, in the research, the confidence level computation showed the existence of 

constant instrument error. Huaiwei Liao [38] later, pointed out that standard least-square 

based method have difficulty obtaining reliable estimates when measurements are less 

than state variables, which are identified as underdetermined system.  

In any traditional method, a common challenge often faced in harmonics state 

estimation issues is the underdetermined systems of equations. This issue is often solved 

by assuming those busses with or without loads thought not likely to contribute harmonic 

emission, as zero harmonic injection. In 2005, T. L. Tan [39] underlines that the problem 

with this technique that the voltage measurements at those buses known or assumed not 

to have harmonics producing devices cannot be used. Loads that are thought not likely to 

emit harmonics may not be true.  Later, Huaiwei Liao [38] showed that underdetermined 
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system can be observable by utilizing the spatial sparsity of harmonic sources under 

proper measurement arrangement. However, this approach is rather time-consuming and 

expensive in meter placements.  

The most common state estimation technique in industry is based on the weighted 

least squares (WLS) method [40]. It usually operates in a cycle of estimation-detection-

elimination until an acceptable result is obtained [41]. Despite its advantages in detecting 

and identifying single and multiple gross measurement errors, WLS is rather time 

consuming to perform such bad-data detection and identification procedures online for 

large systems [42]. A basic Newton Raphson WLS method has a very long computational 

time due to the gain and Jacobian matrices associated with the basic algorithm which 

requires large storage and has to be evaluated every iteration. N. Mohd Nor [43], attempts 

to reduce the time taken to construct the Jacobian matrix by reconstructing or rearranging 

the H matrix and proves its effectiveness in reducing the computational-time. Though, the 

WLS based estimator cannot effectively detect and identify multiple interactive and 

conforming bad data. The most important drawback of least square method and 

alternatives is their high sensitivity to outliers. This is a due to the usage of squares as 

squaring exaggerates the magnitude of difference (e.g., the difference between 20 and 10 

is 10 but the difference between 20
2
 and 10

2
 is equal to 300) and therefore gives a much 

stronger importance to extreme observations [44]. 

2.3 Artificial Intelligence Techniques in Harmonic Analysis  

Since the early to mid 1980s much of the effort in power system analysis has turned 

away from formal mathematical modelling to the less rigorous techniques of Artificial 

intelligence (AI) [45]. AI began with “an ancient wish to forge the gods”. Modern AI was 

developed by classical philosophers, back in 1940s, who attempted to describe the 

process of human thinking as a mechanical manipulation of symbols [46]. AI techniques 

have been introduced to overcome the disadvantages of non-parametric techniques, such 

as the Fast-Fourier transform (FFT) and wavelet transform (WT) [47].  
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In early years, neural network have been actively used for estimation of harmonic 

components in power system [48]-[53]. Various techniques were proposed. For non-

linear systems, several Fuzzy Kalman filtering algorithms have been developed to extend 

Kalman filtering for such system. Hazem N. Nounou [54] presented multi-scale fuzzy 

state estimation using stationary wavelet transforms or known as multi-scale Fuzzy 

Kalman (MSFK) filtering algorithm. A fuzzy system is an approximator which consists 

of a set of IF-THEN type rules, each of which has a premise and a consequent part. Fuzzy 

models have been found very useful for control purposes as for their ability to describe 

complex system in an efficient manner. However, to achieve a good fuzzy control, 

reliable state estimation is essential. In terms of harmonics state estimation where 

measured data usually contain multi-scale features, fuzzy filtering techniques are not 

effective. Fuzzy filtering techniques are single scan methods where it is assumed that the 

measured process data only contains features with fixed contribution over time and 

frequency. MSFK then uses scaling function coefficients of the data obtained using 

Stationary Wavelet Transform (SWT), and then selecting the optimum fuzzy Kalman 

filter, which minimizes a cross-validation estimation error criterion [54]. Although 

Kalman Filter is fairly accurate, it has high mathematical burden which limits its use for 

on-line tracking [55]. Wavelet-based signal processing algorithm in general, introduces 

lag that is equal to the length of the used window and hence, impose limitation on on-line 

applications. 

Adaptive perceptron approach in neural networks has been tested and applied 

successfully for power systems harmonic estimation [56]-[57]. The neural estimator was 

based on the use of an adaptive neuron called ADALINE. Adaptive tracking of harmonic 

components of a power system could easily be done using this algorithm [58]. However, 

ADALINE network is limited to only one output neuron. The convergence of ADALINE 

slows as the number of harmonics included increases and it is also subjected to fall in 

local minima [59]-[61].  

Another common method is the back-propagation neural network, which uses 

supervised training approach to identify selected harmonics. This method treats 

harmonics detection problem as a pattern recognition problem [62]. ANN is one of the 
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earliest methods used in AI. In 1990, R.K. Hartana [63] had published a patent work 

using ANN method for harmonic source monitoring and identification, while in 1992, 

another patent [64] has been recorded to implement ANN based method for power 

systems harmonics voltage prediction. Due to its reliability regarding many other 

techniques available, ANN is still a popular technique in current researches; in harmonic 

estimation [65] and also harmonic analysis [66]. A review by M. Tarafdar [67] shows that 

application of ANN in power systems have shifted from analysis to the operation phase, 

where forecasting of systems has a special interest.  

However, a common drawback is seen in a basic  back propagation approach where 

the time taken for convergence is fairly long and the solution often stuck at local minima 

[68]-[70]. M. Gupta [55] introduced a faster training algorithm for estimation purposes, 

which utilizes particle swarm optimization (PSO) combined with gradient descent (GD) 

to train weights of neural network. This hybrid algorithm has also been proved to be more 

advantageous than genetic algorithm (GA), PSO or GD on stand-alone. The advantage of 

this hybrid algorithm is fast convergence with no possibility of getting stuck in local 

minima. The surety of not getting stuck in local minima is due to PSO and fast 

convergence is because of GD. The NNs are trained to uniquely identify various types of 

devices using their distinct harmonic “signatures” as their input. 

In 1994, while ANN technology was actively being explored in harmonic studies, 

D.K.Ranaweera [71] highlighted the concern that the ANN methods applied for load-

forecasting problems do not flag mathematically when they are extrapolating from the 

training data, and therefore creates room for invalid forecast as a result. Classical ANN 

techniques concentrate on global fit, while gives poor fit on local regions [72]. Therefore, 

it underlines the main unmet need of users who wishes to use ANN techniques in 

forecasting; the determination of confidence intervals for each load forecast. Newer 

generation Radial Basis Function (RBF) techniques employs hybrid algorithms, in which 

varies nonlinear time-varying techniques are adopted when training the RBF neural 

network (RBFNN) [73]. Real time experiment of time-series prediction on different 

practical load types of Taiwan power system (Taipower) were carried out to compare 

between an RBFNN network with nonlinear time-varying evolution PSO (NTVE-PSO) 
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algorithm and existing PSO algorithm [73]. Simulation results proved NVTE-PSO 

algorithm has better forecasting accuracy and computational efficiency for different 

electric demand.  

The idea of RBF was drawn from the theory of function approximation. An RBF 

network is similar to a feed-forward neural network, only with slightly different approach 

[74]. RBF methods were tested on harmonic studies for over a decade and has gained 

popularity in time-series prediction in early 1990s [75] and have since continuously 

applied and enhanced to suit various needs [46], [76]-[77]. In general, it is capable of 

approximating highly nonlinear functions, the training can be done in a sequential 

manner, and the use of local approximation gives better generalization capabilities [66]-

[68]. However, this method seems to show the same disadvantages found in a back 

propagation neural network approach [46]. 

2.4 Artificial Intelligence in Harmonic Estimation 

Each system display unique attributes and therefore, a suitable problem solving 

method need to be identified before evaluating its performance. D.O. Abdeslam [65] 

proposes a new approach to improve the performance of conventional Active Power 

Filters (APFs) by using ANN for harmonic estimation. The separation of powers is 

implemented with an Adaline NN based on a prior knowledge of frequency waveform, in 

which, a multilayer NN was used to generate reference currents to cancel the unwanted 

harmonics. To test the effectiveness of the proposed method, a common power quality 

environment was created mathematically, with nonlinear loads to create distortion. The 

method is justified by showing estimation error to be 0.01%, whereas the THD parameter 

reduced to 0.85% after the neural estimation compensation currents are applied.  

  Although M.J. Ringrose [78] in his paper aims to monitor multiple harmonic sources 

using state estimation, the initial measurements or pseudo measurements are provided 

using NN. NN serves the purpose well due to the highly complex and poorly defined 

input-output relationships between the harmonic and power flow measurements and the 
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harmonic sources. Using this technique, harmonic sources could be monitored using only 

a few harmonic-monitoring stations. Similar approach was used by R.K. Hartana [63] 

back in 1990. NN used to make initial estimates of harmonic sources, which are then 

used as pseudo measurements for harmonic state estimation, which further improves the 

measurements. 

Another recent research [79] exploits the few real-time measurements from 

distribution systems to provide an initial estimation of harmonic currents. Bayesian 

approach was used to estimate the source of harmonic distortion in the tested distribution 

network; laboratory scaled small low-voltage single-phase network. However, similar to 

earlier researches, a prior knowledge about the harmonic behavior of the load was 

determined. The a prior information was modeled with Gaussian distributions so that a 

closed-form solution of the estimation problem was possible. To evaluate the quality of 

these estimates, a posteriori check on the coherence between the obtained results and the 

initial assumptions. The proposed technique was validated by performing tests on a 

small-sized low-voltage distribution network in a laboratory scale.  

Other applications of ANN in harmonic estimation include [80] extraction of 

selective harmonics contents in the signal based on separated and sequential training with 

RBFNN technique. It demonstrates the capability of RBFNN to estimate the harmonics 

with half fundamental cycle. To train the algorithm, desired output were computed using 

FFT on several fundamental cycles of source current waveform.  

In short, most researches aims to efficiently estimate harmonics in order to reduce 

error at HSE. Although PQ analyzers are easily available in market today, attempts to 

develop virtual analyzers to replace these equipment are being looked at. The virtual PQ 

analyzer, which is developed with ADALINE technique, provides a flexible analytical 

and measuring platform without taking hardware requirements into account. The 

performance was later tested with a series of test signals generated via the arbitrary 

waveform generator (AWG).  
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2.5 Artificial Intelligence in Harmonics Time-series Prediction  

ANN based approach have also gained popularity in prediction of power system 

harmonic voltages in early 90’s. Mori. H [81] tested the effectiveness of recurrent neural 

network back in 1991. Unlike the conventional feed-forward ANN, the recurrent neural 

networks have the advantage of being able to consider the dynamics of a time-series. In 

early 1995, [82] applied RBFNN model and a back-propagation model to provide peak 

and total load forecasts for the next day and showed strong results indicating RBFNN to 

perform better than the back-propagation model. Pacific Gas and Electric Company’s 

(PG&E) load data for 1985 were used to train the networks and holidays were excluded 

from both training and testing data sets to ensure that the observations were free from any 

irregular load patterns. 

Most researchers develop approximation tools using a lab or MATLAB-based model. 

[83], for the first time, utilize a practical power distribution offered by Thaipower 

Company. The actual hourly load data was used for the time-series prediction of one-day 

(24-hr) ahead and five-days ahead. Three different schemes were introduced with 504 

numbers of training data for each scheme; to forecast weekdays for spring season, 

weekdays for autumn season, and weekends across two seasons respectively. Simulation 

results of the proposed non-linear time-varying evolution particle swarm optimization as 

the training phase of radial basis function neural network (NTVE-PSO-RBFNN) has 

better forecast accuracy, superior convergence rate, and shorter computation time than 

other PSO-RBFNNs in time-series prediction. 

2.6 Summary of Chapter 

Each network has its own limitations. To overcome these drawbacks, hybrid 

algorithms were formed and tested for their effectiveness. Although the techniques used 

in these researches appear to be similar, they were each designed for different problems 

and conditions. Hence, problem identification is merely as important as choosing the 
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technique for solving. In short, feed-forward neural network with back-propagation 

training method is the most anticipated approach in estimating harmonics, whereas RBF 

technique is more widely selected for harmonics prediction. In the following chapter, 

harmonics estimation in UTP distribution network is carried out using back-propagation 

neural network technique. Whereas, harmonics time-series prediction uses RBF 

approach.  
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CHAPTER 3 

 

METHODOLOGY 

3.1 Introduction 

This chapter will provide an insight of the solution proposed to overcome the problem 

as stated in Chapter 1, as well as abide with the objectives of the study. The tools used to 

measure and develop the proposed system are also defined carefully to provide better 

understanding. Before presenting the proposed system, it is important to understand and 

learn on the research background, the tools to be used along the process, and the research 

design that includes data collection technique and interpretations. In short, this chapter 

discusses on the knowledge acquisition and pre-processing, data collection, in-depth 

discussion on the proposed algorithm and the algorithm developments. A comparative 

study is also proposed at the end of the chapter between Virtual Harmonic Analyser and 

Forecaster (V-HAF) system and a typical system with a forecast network to evaluate the 

reliability of the proposed V-HAF system.  

3.2 Establishing a Research Territory  

This research is systematically organized to enable reader to understand the 

experiments carried out, their purposes and the outcome recorded, with discussions along 

the chapter for better understanding.  The experiments and data logging were carried out 
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at student residency village in UTP, in which powered by Gas District Cooling (GDC). 

GDC system will be further discussed in following section as research background. An 

academic-based tool, MATLAB is proposed due to its user-friendly interface, reliability, 

and flexibility to compare with other research works.  

The techniques used in this research are merely adoption from previous successful 

research works. After a careful analysis on the most suitable techniques for this study, 

they are developed with the aid of MATLAB version 7.1 software, and implemented for 

the case of harmonic distortion in UTP distribution network. A well-known estimation 

model, which was proven to have shown successful results, is picked for harmonic 

estimation. The model is briefly known as feed-forward Neural Network. As for time-

series harmonic prediction, which forms the second proposed network in V-HAF system, 

the RBF technique is chosen based on qualities that are discussed further in this chapter. 

Section 3.5.1 brings in depth the process of data collection; from meter placement to data 

segregation.  

A systematic research framework is then applied to present the proposed system. 

Section 3.5.2 to 3.5.4 discusses on the knowledge acquisition, development of basic 

block diagram and development of proposed model for each system. Technique 

validation, experimentation and data collection, analysis and documentation are presented 

in the following chapter. In short, the research is strictly guided by research framework 

shown in Figure 3.1. 

Upon establishing the two-network system, known as V-HAF, a comparative study is 

conducted to compare the performance of V-HAF based on the predicted future harmonic 

voltages. A Non-linear Auto-Regressive with eXogenous (NARX) dynamic recurrent 

Neural Network is used for the comparative study. The results are evaluated based on 

MAPE, correlation coefficient and the execution time.  

 



 

 

22 

 

 

Figure 3.1 Research framework flow-chart for research presentation 

3.3 Research Background – Gas District Cooling (GDC) 

GDC is a co-generation system that utilizes gas to produce chilled water for air-

conditioning and waste heat for power generation. Such a configuration helps to lower 

the peak load demand and reduces investment for peaking capacity especially for a large 

building complex [86]. There are a total seven districts cooling systems in Malaysia that 
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are all fuelled by natural gas, with two standalone operations and five are cogenerated. 

The GDC systems were pioneered in Malaysia by Gas District Cooling Sdn. Bhd. 

(GDCSB), with the first plant established in 1997. The plants are located in major cities; 

Kuala Lumpur City Center, Putrajaya Plant 1, Kuala Lumpur International Airport, 

Putrajaya Plant 2, and UniversitiTeknologi PETRONAS (UTP). Unlike other plants, the 

GDC plant supplying UTP was build out of necessity. The campus is located at the end of 

power distribution lines in industrial surroundings and therefore, the quality of the 

available power was not complying with the university’s requirements [84]. Figure 3.1 

provides a good illustration of a GDC system, which uses gas and diesel fuel.  

 

 

Figure 3.2 A typical Gas District Cooling System Schematic for the Kuala Lumpur 

International Airport Plant [84] 

However, it can be said that, to a certain extent, all power plant components possess 

the undesirable property of introducing distortion into the AC power circuit. 
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3.4 Programming tool 

This study utilizes MATLAB’s interactive tools and command-line functions to 

develop various approximation tools to cater the research’s need. MATLAB is a program 

originally designed for solving linear algebra type problems using matrices. Today, it has 

become a useful tool for prototyping AI projects due to its large library functions, useful 

data visualization, focuses on high-level details and also allows quick prototype 

development of algorithms.  

MATLAB offers a huge range of AI tools that also enables its users to integrate 

different techniques to achieve the simulation goal. It is a good tool for demonstration 

purposes, which is the main objective of this study. It is also a common tool used by 

researchers worldwide.   

3.5 Approximation Tool 

Based on literature review, as discussed in Chapter 2, intelligent system based models 

have proven to be more advantageous than any classical methods. The challenge in 

applying intelligent method in problem-solving is to determine the best possible method 

for the intended problem. Since demonstrating an organised monitoring system is the 

main objective of this thesis, analysis on the most suitable method with high 

dependability will be purely based on previous studies. Algorithm optimization will NOT 

be focused in this study. Hence, the literature review would underline the techniques that 

would be proposed for this research on various grounds, which would be discussed 

further.  

To develop any approximation tool, a prior in-depth understanding on the tools is 

crucial. Hence, basic architectures of the proposed approximation tools will be further 

investigated to allow appropriate parameter adjustment to find the best fit. For model 

parameters selection, a systematic approach with regards to number of hidden layers, 
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number of nodes, epochs, network performance, desired activation functions, and training 

period has to be unambiguously formulated. 

3.6 Research Design 

Underlining a good research design is a primary need for successful research work. 

This study concentrates in proposing a solution for the UTP’s distribution network, which 

is currently troubled with harmonics issues. Hence, an intelligent and reliable system 

needs to be implemented in UTP distribution system to reduce on the maintenance cost. 

The main cause of increasing maintenance cost with the electrical system maintenance in 

UTP is due to lack of proper surveillance on the harmonics at the distribution line. 

Maintaining a good power quality would eliminate unwanted costs due to damages 

caused by poor surveillance. This also reduces probability of damages of private and 

laboratory equipment due to poor power quality. Figure 3.2 suggests the overlook on the 

proposed monitoring system. 

 

Figure 3.3 Complete overlook on the proposed intelligent system for UTP 

distribution network 

Power 

generation 

Power 

distribution 

Load 
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This section brings into detail on the development of the proposed Virtual Harmonic 

Analyser and Forecaster (V-HAF) system. A dual-function system is expected to reduce 

instrument cost, which will be discussed further in Chapter 4’s comparative analyses. The 

research proposes an offline system that enables monitoring of fluctuations in recent and 

future harmonic readings using intelligent techniques.  

3.6.1 Data Collection 

This section provides a thorough insight on the data collection and interpretation, 

which is used to directly train and develop the approximation tools. To ensure data 

gathered for the research is valid, verifications were done prior to training algorithms. 

3.6.1.1 Meter Placement  

The study focuses on the user-end of the distribution line, in which several harmonic 

issues had been encountered. Figure 3.2 shows a simple illustration of the UTP 

distribution network. It consists of two gas turbine generators located at the GDC plant 

that generates 11 kV and distributes along the 3-5 km distribution line before stepped 

down to 415 V, which supplies the offices, academic buildings and residential villages.   

The bold ‘X’ as marked in the Figure 3.2 and 3.3 shows the location targeted to 

gather necessary data for proposed system training and development. Figure 3.3 is a 

single-line diagram of UTP distribution network, which shows a more detailed diagram 

of data logging location for the targeted distribution network. The primary location 

identified through student survey and repeated harmonics issue were recorded at student 

residential village 3, located in the centre of the students’ accommodation area. It 

accommodates approximately 1200 students. Hence, the data logger was fitted at SSB 

V31 switchboard to record voltage, current, and harmonics behaviour in this particular 

student residential village. The sub-station distributes 240 V, 800/5A current at load-end.  
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3.6.1.2 Data Logger Tool 

Raw data are gathered using Fluke 1750 Power Analyzer, which allows data logging 

for an intended period. The equipment measures voltages at each phase, and 5-Amp 

current clamps used to gather phase currents from current transformer (CT).   

Figure 3.4          GDC-UTP embedded distribution network 

 

The algorithm is trained and tested using data from phase A (red); phase B, phase C 

and neutral line estimation can be done using a similar algorithm with sufficient training. 

Figure 3.4 show the instrument on-site, while logging data. The instrument was attached 

at each location’s switchboard for 10-days.  
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The clarity of data recorded is assured by a hand-held digital clamp meter that enables 

instantaneous voltage and current readings. A comparison is made between measures 

shown on both meters before data logging are initiated.  

 

 

Figure 3.5 Fluke 1750 power analyser logging data at SSB V31  

3.6.1.3 Analysis of Data / Data Interpretation 

Based on logged data at student residential village in UTP, the existence on 

harmonics can be seen from the event on the logged voltage plot. The surges on various 

random locations on the voltage waveform plot at Figure 3.5 prove the presence of 

disturbance in the line and calls for immediate attention to overcome the issue.  
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Let; fundamental frequency is 50Hz, harmonics data (multiples of the fundamental 

frequency) are recorded from the first-order, which is the fundamental order, up to 50
th

 

harmonics order. For instance, the third order harmonics is measured as; 

3
rd

-order harmonics = Fundamental harmonics (50 Hz) x 3 = 150 Hz            (3.1) 

Figure 3.6  Voltage waveform recorded from Fluke Power Analyser at student 

residential village in UTP 

The data shows significant decrease of harmonic voltages as the order increases. 

Table 3.1 shows the maximum recorded harmonic voltages in percentage of fundamental 

harmonic voltage from data logging site. It only shows till the 15
th

-order of harmonics 

since the following orders does not show significant harmonic voltages recorded and, 

therefore, can be ignored for this case.  

Table 3.1 tabulates maximum harmonics voltage (Vh(max)) in percentage of the 

fundamental harmonic voltages. The first order shows almost 100% measurement as first 

order of harmonics records voltages at 50 Hz, which is the fundamental measure. The 

following harmonic orders show percentage of harmonic distortions. Based on gathered 

data, seventh-order harmonic records the highest distortion. Therefore, the proposed 

system is tailored to estimate and predict the seventh-order harmonic voltages (Vh7). It is 

important to identify the distorted harmonic orders, since the system proposed could only  



 

 

30 

 

Table 3.1 Percentage of fundamental harmonics voltage in Phase A 

Harmonics order Vh(max) [%] 

1 102.60 

2 0.86 

3 0.95 

4 0.50 

5 1.41 

6 0.39 

7 2.42 

8 0.42 

9 0.85 

10 0.39 

11 1.21 

12 0.30 

13 1.02 

14 0.30 

15 0.46 
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content a single order estimation and prediction. Similar systems need to be developed 

and trained in respective of different harmonic orders. 

3.6.1.4 Data Segregation for Training, Validation, and Testing 

Data were taken in percentage of fundamental harmonics. Sampling period of 3 

seconds executes 3806 rows of data between 1.48 pm to 5.00 pm of the same day. This 

data is then divided into three sets; training data set, validation data set, and test data set. 

A ratio of 60:30:10 was proposed or in another word, 60% of data set for training, 30% 

for validation and 10% for test data set. Table 3.2 simplifies the mentioned data 

segregation according to logged data set; 

Table 3.2 Data segregation for training, validation, and testing based on logged data 

Data Set Percentage of total 

data set (%) 

Data rows, m 

Training 60 2284 

Validation 30 1142 

Testing 10 380 

 

In terms of MATLAB coding, the above data segregation are done as per MATLAB 

coding below. For estimation network; 

 

% TRAINING DATA 

pC = data(1:2283,1:2); 

t = data(1:2283,4); 

% VALIDATION DATA 

pCV = data(2284:3425,1:2); 
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tV = data(2284:3425,4); 

% TEST DATA 

pCT = data(3426:3806,1:2); 

tT = data(3426:3806,4); 

where ‘pC’, ‘pCV’, and ‘pCT’ indicates input data for training, validation and testing 

respectively, whereas ‘t’, ‘tV’, and ‘tT’ refers to the targeted measures. For time-series 

prediction models, data segregation were done to fit accordingly; 

 

% TRAINING DATA 

p = data(1:1141,4); 

t = data(1142:2282,4); 

% VALIDATION DATA 

pV = data(2283:2854,4); 

tV = data(2855:3426,4); 

% TEST DATA 

pT = data(3427:3616,4); 

tT = data(3617:3806,4); 

where ‘p’, ‘pV’, and ‘pT’ indicates input data for training, validation and testing 

respectively, whereas ‘t’, ‘tV’, and ‘tT’ refers to the targeted measures. The ‘data’ 

referred in both set of MATLAB codes calls the collected measures from instrument 

logging, which is then saved in MATLAB work folder as ‘data.xls’.  

3.6.2 Proposed System: Virtual Harmonic Analyser and Forecaster (V-HAF) 

The main objective of this thesis is to demonstrate harmonics estimation based on 

RMS voltage and RMS current of the measurement point, and forecasting harmonics data 

for the next 24-hours. Therefore, two separate networks are proposed to execute the tasks 

individually. These networks form a system or ‘black box’.  
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While conventional techniques generally suggests data logging of preceding data, 

prior to forecasting, the proposed V-HAF system enables forecast of harmonics voltages 

using preceding fundamental measures. The main advantage of the proposed system is 

that it does not require the usage of a more expensive tool such as harmonic power 

analyser, but allows fundamental data logger to provide sufficient inputs. This indirectly 

reduces cost of instrument. This is further justified at the end of Chapter 4. The 

fundamental data gathered from instrument are then processed as in Figure 3.6.  

 

Figure 3.7 The overall proposed system which compromises estimation and time-

series prediction models in a ‘black box’ 
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Figure 3.8 Proposed ‘Black Box’ systems operating flow-chart 
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Figure 3.6 shows the overall proposed system that feeds RMS voltage and RMS 

current from location and able to produce harmonics estimation for the same time period 

and predicts harmonics voltages for the next 24-hours. The ‘Black Box’ takes V-rms and 

I-rms recorded at targeted location and provides current and future harmonic voltages to 

cater the need of UTP’s distribution network for a reliable harmonic monitoring system. 

The first tool serves as an estimation model and second tool as short-term time series 

prediction model. The flow chart in Figure 3.7 below provides a better understanding on 

the system flow.  

Both networks are neatly written in MATLAB M-file using build-in functions from 

MATLAB library and will be further discussed along with basic knowledge acquisition 

on the techniques proposed. 

3.6.3 Feed-forward Neural Network for Harmonics Estimation 

In harmonics studies, NN is one of the earliest tested AI techniques [78], and is still 

used in recent researches due to its adaptive nature and high approximation accuracy. Its 

recursive nature makes it possible to be used in real-time measurements. Figure 3.8 

provides an insight on the network architecture for harmonics pseudo-measurement 

estimation at UTP distribution network using feed-forward neural network. 

To begin with, parameter selection is done by multiple simulations using different 

sets of inputs to identify the best performing network. Once the appropriate inputs are 

identified, they would be fed into the harmonic pseudo-measurement estimation tool, in 

this case, neural networks. The network developed for this estimation purpose is a feed-

forward neural network with back-propagation learning algorithm. Real harmonics data 

logged using the power analyser instrument will be utilized as the benchmark for the 

network training and error calculation. In general, network development of the estimation 

model will strictly abide to the following process flow-chart. 
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Figure 3.9 Overall process of harmonic pseudo-measurement estimation. 

As illustrated in the flow chart in Figure 3.9, network inputs and targets are set; m-by-

n matrix, where m is number of data rows and n is number of inputs/target. Once inputs 

determined, neural network parameters are set and designed to suit the problem and 

weights are trained to optimize the estimation using back-propagation training method. 

3.6.3.1 Fundamentals of Feed-forward Neural Network  

ANN is a concept adapted from the human brain system. In a human body, signals or 

‘tasks’ are being carried by neurons. A typical neuron collects these signals through a 

host called dendrites, which then travels (spikes of electrical activity) along axon. Once 

the signal reaches its desired destiny, synapse converts it into electrical effect and induces 

reactions. Learning occurs when a neuron receives larger excitatory input than its 

inhibitory input and forces the neuron to change its effectiveness of the synapses [21]. 

Based on this knowledge acquisition from simple logical operations, ANN-based models 

in different fields were discovered.   

ANN is a part and parcel of intelligent based system to distinctively improve the 

conventional computing techniques. The evolution of harmonics analysis techniques from 

conventional methods to ANN-based solutions clearly proves the statement above.  
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Figure 3.10 Proposed system flow-chart for estimation model 
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Similar to the neuron behaviour in a human body, ANN consists of neurons, while signals 

are passed through weighted links [52]. Figure 3.10 shows a graphical illustration of a 

typical architecture of a feed-forward ANN, which is proposed in this study.  

Figure 3.11 A typical architecture of a feed-forward neural network. 

Three layers are seen in the ANN architecture as shown above; input layer (i), hidden 

layer (j), and output layer (h). Multilayer neural network is selected in this study due to 

the non-linearity behaviour of the observed system. 

INPUT LAYER: Input layers neurons represent the data fed into the network, inputs 

of hidden layer neurons defined by the sum of weighted inputs, while weighted sum of 

outputs of the hidden layer neurons decides on the network output. This type of network 

is more often referred to as feed-forward network. An important application of the feed-

forward neural network is pattern recognition; extracting and detecting trends that are too 

complex for classical computation or even for human observation. As discussed, the 

training data set contains 2,284 data samples or data rows, m. 

Network inputs are determined by trial-and-error method where several combinations 

of input parameters were fed and tested for minimum error at simulation (estimation as 

close as possible to real data). Input set tested were; 
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b) Set B: RMS currents ONLY 

c) Set C: RMS voltages and RMS currents (TWO parallel inputs) 

The most advantageous set of inputs are determined by calculating the lowest mean 

square error with cross-validation technique. Cross-validation technique will be discussed 

further as this thesis writing progresses.   

HIDDEN LAYER: The most important criteria to be determined in this layer is the 

number of neurons. For this, trial-and-error based technique is proposed. Another 

important parameter in a neural network structure is determining the activation functions. 

For the hidden layer, activation function chosen should introduce nonlinearity into the 

network. Considering the neural network is trained by back-propagation, the most 

advantageous activation function is a sigmoid function. Sigmoid function is easy to 

differentiate, which reduces computation burden [88].  

Activation functions are employed to decide if the neuron either fires or does not fire. 

B. Karlik [89], in his paper, performed analysis of various activation functions in 

generalized multilayer perceptron (MLP) architectures of ANN. In an experimental 

comparison made between Bi-polar sigmoid, Uni-polar sigmoid, Tanh, Conic Section, 

and RBF; Tanh (hyperbolic tangent) function performs better recognition accuracy with 

an error of 0.002 that is 99% accuracy with 40 neurons at hidden layer. Therefore, this 

study suggests a combination of “Tanh-Tanh” activation functions for both neurons of 

hidden layer and output layer for good results. However, the real accuracy of these 

activation functions can differ with different applications and conditions in which the 

ANN is composed to cater. The following MATLAB plot in Figure 3.11 is a graphic of 

the hyperbolic tangent function for real values of its argument x over the domain -5 ≤  x  

≤ 5.     

For this purpose, the network is tested with two different sigmoid functions; 

hyperbolic tangent sigmoid transfer function (‘tansig’) and logarithmic sigmoid 

transfer function (‘logsig’). Hyperbolic tangent sigmoid transfer function returns 

squashed elements between -1 and 1, while the latter transfer function returns squashed 

elements between 0 and 1. For output layer, where targets (harmonics voltage 



 

 

40 

 

magnitudes) are positive values and have no known upper bound, a pure linear function is 

sufficient. 

In this study, network weights initialization is made random, while activation 

functions are pre-determined, as mentioned above. 

 

Figure 3.12 Hyperbolic Tangent Function  

OUTPUTLAYER: The outputs solely depend on the firing ability of the network; 

firing rule determines how one calculates whether a neuron should fire for any input 

pattern. On the other hand, to provide a good firing ability, the hidden layers are equipped 

with computational neurons which detect the neuron weights and adjust it at each 

iteration to find the best fit at output.  

Mathematically, general ANN output can be simply written as; 

    ∑        
 

  1
     (3.1) 

where  isn number of inputs, W is weight matrix, b is the bias value, often 1, and   is 

the activation function [21]. The desired output is harmonic voltage measures that are as 

close as possible to the actual data gathered from the power analyser equipment; with m-

by-1 matrix.  
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The evolved models need to be trained to accomplish realistic targets. Thus, the 

selection of training algorithm and parameters needs to be explicitly understood. 

Generally, ANN can be categorized to supervised and unsupervised learning network. 

Supervised training uses external teacher, while paradigms of unsupervised learning are 

Hebbian learning and competitive learning; in which learning is based on only local 

information [87]. The following network development issues or points need to be clearly 

understood to enable good training command: learning rate, momentum factor, local and 

global minima of the network. 

Hence, in forward pass, the outputs and the errors at the outputs are calculated. 

Whereas in backward pass, the output and hidden unit errors are used to alter the weights 

on the output and hidden units respectively. In short, the estimation accuracy is based on 

the efficiency of training; error feedback and weight adjustments. 

3.6.3.2 Back-propagation Training and Control Parameters 

Back-propagation technique, or also called as error feedback training technique, can 

be simply described as illustrated in Figure 3.12. The block diagram in Figure 3.10 shows 

approximation outputs obtained from a feed forward network are compared to the set of 

targeted values. The difference or error obtained would be feed back to the training 

algorithm and this process is repeated till training goal reached. The goal of back-

propagation algorithm is to find a new set of weights and biases that generate outputs 

closer to the actual target values. The process of finding the best weights are often 

referred to as ‘training’. As long as training goal has not been reached, back-propagation 

training continues.  
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Figure 3.13 A simple block diagram of ANN structure with back-propagation training 

Foremost, suitable back-propagation techniques need to be identified and tested. This 

is because one network cannot be suited for different problem background. Therefore, 

proper problem identification is important to determine the best solution to be proposed. 

The system as proposed will be fitted at the user-end, in which is a low-voltage 

distribution line. There are various function optimization techniques to provide numerical 

solution to a problem of minimizing a function.  

Similar to finding suitable number of neurons at hidden layer, there is no direct law or 

formula to determine the right training function to be used. A trial-and-error method can 

be used in this case. The different possibility can be carried out and the best will be 

chosen. For example the fastest training function is generally ‘trainlm’, and it is the 

default training function for feed-forward neural network. ‘trainlm’ or Levenberg-

Marquardt (LM) is a well-known non-linear optimization algorithm. Application of LM 

back-propagation method in power system dates back to as early as 1980 [88], whereas 

the technique initially was found back in 1963 [89]. In power systems, LMBP technique 

is widely used for various purposes; i.e. peak load forecasting [90], reducing harmonic 

distortion in supply system [91], and estimation of harmonic current produced by Grid-

connected PV system [92]. Is it easily chosen over GD as LM shows faster performance. 

It has been popularly used due to its good accuracy and compromise between the speed 

of Newton method and stability of the steepest descent method [93]. Similar to quasi-
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Newton method, LM was designed to approach second order training speed without 

having to compute Hessian matrix.  

The quasi-Newton method, ‘trainbfg’, is also considerably fast. These methods 

tend to be less efficient for large networks (with thousands of weights), since they require 

more memory and more computation time for these cases [96]. Also, ‘trainlm’ 

performs better on function fitting (nonlinear regression) problems than on pattern 

recognition problems (Matlab, 2010). 

STOPPING CRITERIA: The training stops if any of the stopping criteria met; number 

of iteration reaches maximum epochs or performance function meets the goal. The effect 

that each input has at decision making is dependent on the weight of the particular input. 

Training stops when any of these conditions occur: 

1) The maximum number of epochs (repetitions) is reached. 

2) The maximum amount of time has been exceeded. 

3) Performance has been minimized to the goal. 

4) The performance gradient falls below mingrad. 

5) mu exceeds mu_max. 

6) Validation performance has increase more than max_fail times since 

the last time it decreased (when using validation). 

Once training goal reached, the applicability of the trained algorithm is then evaluated 

based on mean square error (MSE). To enable direct comparison to other researches, 

MSE is often being used to evaluate the neural network’s performance [95]. MSE is 

computed by taking the differences between the targets and actual output, squaring the 

errors and averaging over all the samples [96], or can be written mathematically as; 

 

     
1

 
 ∑   ̂     

  
 

  1
   (3.2) 

where   is real vector and to estimate it, we use an estimator with a function of our 

observation  ̂, which is a function of n random variables. Number of neurons in hidden 
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layer is adjusted by trial and error to obtain the best mean squared error (MSE). To 

reduce error at validation sample estimation, cross-validation approach is proposed in this 

study to train the networks efficiently; algorithm is run on the training set until MSE 

starts to decreases on the validation set, which usually occurs long before the minimum 

MSE is reached on the training set. 

The network is acceptable when MSE is sufficiently small at validation ; training 

algorithms iteratively adjust its parameters in the direction of the negative gradient of 

mean squared error. Simulation errors are evaluated in MSE due to its continuous error 

metric, where errors will be summed over the validation set, and then normalized by the 

size of validation set.  

3.6.4 Radial Basis Function forHarmonic Time-Series Prediction  

Time-series prediction or forecast means to estimate or calculate in advance. This is 

essential in power systems field as preventive measures to secure the power quality can 

be planned ahead before unnecessary losses occur. The second algorithm in the V-HAF 

system aims to demonstrate time series prediction of harmonics pseudo-measurement 

based on values estimated using ANN. It is developed for short-time forecasting, in 

which the model is only able to forecast harmonic voltage measure for the next 24-hours. 

To simplify, the proposed forecasting algorithm is as Figure 3.13. 

It is seen in figure above that the output from Tool #1 or also the estimated harmonic 

voltages will be fed as inputs into the time-series prediction tool to forecast future 

harmonic voltages. Similar to the previous algorithm, real harmonics data logged using 

the power analyser instrument will be utilized as the benchmark for the network training 

and error calculation. This, however, only applies to the network training. A well trained 

network can work independently.  
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Figure 3.14 Overall process of time-series prediction of harmonic pseudo-

measurement. 

For time-series prediction, the method proposed by Chien-Cheng Lee [76] in his 

paper will be adopted. He had proven that an RBF network, trained by contaminated 

training data with fifty percent of the outliers performs better than an ordinary back-

propagation neural network even though no outliers included. Flow chart in Figure 3.14 

gives an understanding on a typical RBF network formation using MATLAB software. 

For reliable and more accurate measures that are closer to the actual values, the 

proposed tool is trained with data gathered from the power analyser instrument. Since 

error from instrument is neglected, measured values are assumed to be actual values. 

Once inputs are determined, neural network parameters are set and designed to suit the 

problem and weights are trained to optimize the estimation using back-propagation 

training method. 
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Figure 3.15 Proposed system flow-chart for time-series prediction model 
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3.6.4.1 Fundamentals of Radial Basis Function 

Radial Basis Function (RBF) is a type of commonly used technique for time series 

modelling and pattern classification problems [97]. Similar to the feed-forward neural 

network architecture, an RBF network consist of input, hidden, and output layers. 

Although NN can involve more than one hidden layer, RBF network is limited to only a 

single layer of hidden neurons. Figure 3.15 illustrates a time-series RBF system, with n 

number of inputs (x1, x2, ... ,xn) and output, y.  

The network is composed using MATLAB M-file, which offers reliable build-in 

functions in its library; ‘newrb’, which creates a two-layer RBF network.  

INPUT LAYER: The network input is am-by-1 matrix, where m is the number of 

data rows. Similar to estimation model, the training data set proposed contains 60% of the 

whole data collected; 2,284 data samples. However, it is important to note that the 

training data set is divided in 50:50 ratios to serve as inputs and targets respectively. 

Number of inputs, n is 1,142 and set to forecast the following 1,142 data rows.  

HIDDEN LAYER: The first layer has ‘radbas’ neurons, and calculates its weighted 

inputs with dist, and its net input with ‘netprod’. Typical shape of a radial basis 

transfer function is as in Figure 3.16. However, in an RBF network, only one hidden 

layer is used with each node having a ‘centre’. These centres are compared with the 

network input vector to find a symmetrical response; also referred to as Euclidean 

distance [98].  

At this step, a trial-and-error method need to be implemented to find the fairly 

appropriate number of neurons that gives the best network performance with validation 

data set.  
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Figure 3.16 A simple time-series RBF topology  

 

Figure 3.17 Typical shape of a radial basis function 
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OUTPUT LAYER: The second layer has ‘purelin’ neurons, and calculates its 

weighted input with ‘dotprod’ and its net inputs with ‘netsum’. The output of each 

neuron in the hidden layer is computed with the Euclidean distance, using a nonlinear 

function. A commonly used nonlinear function here is the Gaussian function. Gaussian 

function decreases the response monotonically with distance from the central point.  With 

the output of each neuron, the network output can be mathematically describes as 

follows;  

  ∑     
 
  1        (3.5) 

where n is the number of neurons in the hidden layer, w is the weight vector between 

hidden and output layers, and   is the basis function of the network. 

Both layers have biases. Initially the ‘radbas’ layer has no neurons. The complete 

MATLAB coding for prediction model using RBF network is attached as Appendix B.  

3.6.4.2 Network Training 

In order to forecast harmonics pseudo-measurement, an RBF network is trained with 

raw harmonics data gathered using Fluke 1750 Power Analyzer. A well trained algorithm 

is then used as a tool to forecast harmonics voltages based on estimated harmonic 

voltages. 

The network training is similar to an ANN back-propagation technique, where, the 

steepest gradient descent learning rule continuously adjusts the network parameters until 

stopping criteria or error target is reached; until the network’s mean squared error falls 

below goal or the maximum number of neurons are reached. The main issue in RBF 

modelling is to determine an appropriate number of basis functions to achieve a good 

bias-variance compromise [99]. In short, the following steps are repeated in the 

MATLAB simulation process until the stopping criteria met; 

1) Network simulated with random weights 
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2) Identify input vector with greatest error 

3) A neuron, or also referred as basic function, is then added with weights equal to 

that vector 

4) Output layers weights redesigned to minimize network performance error. 

However, the RBF ‘spread’ value is determined by trial-and-error method. Every 

trained network is evaluated by feeding a test data set and the forecast is compared to the 

actual data set obtained from instrument. The ‘spread’ is network parameter that 

controls the smoothness of its function approximation. Repeated simulations were carried 

out to find the best ‘spread’ value. Training is considered complete when the trained 

network is able to process a new set of data with minimum error.  

The network performance is evaluated using mean absolute error (MAE). MAE is a 

network performance function. Unlike the back-propagation training algorithm, which 

attempts to minimise the MSE, MAE is used to measure accuracy of forecasts. It is a 

common measure of forecast error in time-series analysis that corrects the ‘cancelling 

out’ effects by averaging the absolute value of the errors; 

     
1

 
∑ |     |

 
  1       (3.6) 

where  
 
 is the predicted value,   

 
is the actual measures and n is the number of variables. 

To determine how well the estimation and time-series prediction values really 

represented the actual data set, a simple regression is proposed. The correlation 

coefficient, r, can be formulated as below; 

   
 ∑    ∑   ∑  

√   ∑      ∑       √  ∑      ∑   
    (3.7) 

where n is the number of data sets, t is the targeted data set or the actual measures from 

instrument logging, and yis the harmonic voltage output from respective intelligent 

techniques used. The value of r is expected to be in -1≤ r ≤ +1 range to show a good 

correlation between the actual and outputs generated from the intelligent techniques. A 
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correlation greater than 0.8 is generally described as strong, whereas a correlation below 

0.5 can be considered as weak. 

3.7 Comparative Study Between V-HAF and NARX Forecast  

A system that integrates TWO separate intelligence methods arise questions on the 

system’s dependability and error tolerance. Hence, the performance of the proposed 

system is compared with a time-series prediction method or a typical system. A typical 

system here is defined as a system that feeds    to generate   +1. Hence, for this purpose, 

a Non-linear Auto-Regressive with eXogenous (NARX) dynamic recurrent neural 

network is proposed. This approach has been verified in a recent research in 2008, to 

predict chaotic time-series and proven to achieve a correlation coefficient estimated for 

the original and generated (1000 points) time series close to 1. Figure 3.17 further 

illustrates the proposed comparative study between V-HAF system and NARX time-

series prediction.  

The network, or simply known as NARX, is an important class of discrete-time non-

linear system. It is simply an architectural approach of recurrent neural network (RNN) 

with embedded memory, which is proven to have the potential to capture the dynamics of 

nonlinear dynamic system [100]. 

Besides RNN, a NARX model can be implemented in various approaches. A simple 

approach that implements NARX technique is the classic feed-forward neural network 

with an embedded memory. Figure 3.1  illustrates a typical NARX model tapped with 

delay line at input.  

A distinguished attribute of the NARX model is well illustrated in Figure 3.14, where 

input is usually referred as a “time window” since it only provides limited reflection on 

part of the series; 

      (                           (     )            )  (3.7) 
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Figure 3.18 Illustration of (a) proposed V-HAF system, and (b) NARX system. 

 

Figure 3.19 NARX network architecture with four output delays 
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where u(t) and y(t) represents input and output respectively, at time t,    and    are the 

input and output order, and f nonlinear function [101]. The advantage this network carries 

is that the embedded memory can help to speed up propagation of gradient information, 

and hence help to reduce the effect of vanishing gradient.  

The NARX system is trained by 1142 sets of sample data as proposed to train the 

RBF network in Section 3.5.4.1. For comparative study, both V-HAF and NARX system 

will be evaluated based on error produced when simulated using test data set. The 

simulation execution times for both systems are measured by using ‘tic’ and ‘toc’ 

MATLAB function. The execution time of the codes that embodied by these two 

functions are measured in unit of second. The results of the simulation are tabulated in 

Chapter 4.  

The NARX model is trained until best performance was obtained. To test and 

compare this technique against the proposed system, test data set is used. A total data row 

of 380 rows of data used as test data set, which yields 190 rows of input set and another 

190 rows of target. Whereas, fundamental RMS voltage and current from the test data set 

will be used as input for the developed V-HAF system and both simulation results will be 

compared in terms of time-series prediction outputs, relative to the raw data. This enables 

direct comparison to be made on the time-series prediction error, correlation coefficient 

and computational time in seconds. To compare between methods, mean absolute 

percentage error (MAPE) is proposed since it does not depend on the series’ magnitude 

or unit of measurement, and can be averaged across series and can be used for comparing 

methods. MAPE can be formulated as below; 

      
1

 
∑ |

     

  
|        

  1      (3.8) 

where    is the actual harmonic measures,    is the network outputs and n is the number 

of data sets. A MAPE of below 5% is considered highly accurate [102].  
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3.8 Summary of chapter 

This chapter explains in detail on the proposed system to resolve harmonics issues 

faced in UTP distribution network. A prior understanding of the approximation tool is 

vital before evaluating the best fit intelligent system method for the problem. Chapter 3 

carefully explains on the method and parameter selection for proposed models. The 

complete system is presented and a comparative study suggested evaluating the proposed 

system.  

The research, however, concentrates only on a residential village that is experiencing 

repeated power issues. A ‘Black Box’ is proposed to overcome the main issue identified 

in this thesis; excessive maintenance cost that occurs recently at UTP distribution due to 

poor network quality surveillances.  

The novelty of this research lies on the proposed solution or system to overcome the 

harmonic issues in UTP distribution network. No such efforts have been taken or put in 

practise before to monitor UTP distribution network. Current solution for the power 

issues experienced is far too costly to be implemented frequently; inviting third party 

(GTS) to provide a complete quality observation and report on affected areas. The 

proposed stand-alone algorithms are hassle-free and user-friendly too, as it would not 

require a third-party’s expertise for handling.  

Therefore, the ‘Black Box’ or V-HAF as proposed, is tailored to fit the purpose of 

developing a reliable harmonics monitoring system that not only provides complete 

monitoring of harmonic fluctuations at UTP distribution line, but also expends the usage 

of the currently available power analyser. The advantage of the proposed system is that it 

requires only a fundamental (RMS voltage and RMS current) data logging in order to 

estimate and forecast harmonics voltages as accurate as a power analyzer instrument. 

In the next chapter, the precision of the algorithms and their ability would be tested 

and verified, in order to support the proposed system’s dependability. The proposed 

algorithms will also be compared to other selected researches for clarification. 
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

Simulation results of each algorithm in the ‘Black Box’ system, or referred as V-HAF 

system, are presented individually using MATLAB programming tool as in Chapter 3. 

These results are tabulated for best interpretation and necessary plot are inserted in this 

chapter in attempt to visualize the simulation results. Three sets of simulation results have 

been presented accordingly in this chapter. The comparative performance between the 

proposed V-HAF system and NARX forecast method is analyzed in terms of forecast 

accuracy. At the end of chapter, advantages and disadvantages of proposed system 

against existing systems and approaches have been evaluated and compared.  

4.2 V-HAF Simulation Results  

First of all, it is important to note that the proposed system are trained and developed 

based on assumption that harmonic measures recorded using the instrument are error-

free. Therefore, the efficiency of proposed technique would be compared to the actual 

measures from Fluke 1750 Power Analyzer. Simulation of the proposed V-HAF system 

is shown and discussed in two parts to present the estimation and time-series prediction 

model respectively, before conducting a complete demonstration of the system using test 

data set.  
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4.2.1 Part 1: Simulation Results for Tool#1 - Short-Term Estimation using Feed-

forward Neural Network with LM Back-propagation 

To ensure optimum performance of the network, appropriate parameter adjustments 

need to be identified. Table 4.1 show simulation summary on trial-and-error based 

method to find best-fit network parameters for neural network with LM back-

propagation. Three set of inputs are tested, as discussed in Chapter 3 previously. 

Amongst the three sets, Set B simulations show the highest error, ranging from 1.0578 to 

1.3086. This is due to the usage of current (Ampere) data, which is not consistent and 

fluctuates in a more uneven manner than the voltage measures. Hence, Set A with voltage 

measures as input shows a more accurate estimation. However, the results show that Set 

C, which consists of TWO parallel inputs, records least estimation mean square error at 

cross-validation. It is observed that each node at the input layer typically represents a 

single attribute that may affect the estimation. 

Figure 4.1 shows network training performance versus training goal that was set as 

0.023 SSE. The intersection of these plots marks the convergence of the network and 

training stops as stopping criteria met. The network training using training data set 

converged in 7 iterations, with goal achieved at 0.022917 SSE. 

Table 4.2 shows a quick comparison of estimation accuracy and number of iteration 

between the classical NN with GD back-propagation and the proposed estimation 

technique for demonstration in this study. 

The system performs better estimation using LM training method, compared to the 

standard GD method integrated with feed-forward neural network in MATLAB 

programming tool. This evaluation is important as not to overlook the performance of 

LM, which promises a better result based on literature. Several trial-and-error simulations 

using GD training method leads to it best fit result, in which the network shows near 

convergence or at goal 0.029 SSE, as shown in Figure 4.2 below. The back-propagation 

training algorithm attempts to minimise the MSE.  
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Table 4.1 Simulation summary on hidden layer adjustment for NN with LM back-

propagation 

Num. of neurons 

at hidden layer 

Hidden layer 

activation 

function, φ 

Error (MSE) 

SET A SET B SET C 

10 

Tansig 0.9101 1.0578 0.9371 

Logsig 0.7952 

min. 

gradient 

reached 

1.0031 

20 

Tansig 0.652 1.1732 0.0301 

Logsig 0.6713 

min. 

gradient 

reached 

0.0917 

30 

Tansig 1.5078 1.2549 0.8455 

Logsig 0.9469 

min. 

gradient 

reached 

1.0240 

50 

Tansig 0.9982 1.2548 1.0266 

Logsig 1.0891 

min. 

gradient 

reached 

0.0963 

100 

Tansig 0.9163 1.3086 0.1160 

Logsig 1.1664 

min. 

gradient 

reached 

0.9816 
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Figure 4.1 Network training performance for NN with LM back-propagation 

 

Table 4.2 Summary of estimation network comparison 

Back-propagation Method MSE (%) Number of iteration(s) 

Gradient Descent (GD) 3.7402 > 100 

Levenberg-Marquardt (LM) 0.0301 7 
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Figure 4.2 Network performances for NN with GD back-propagation 

Hypothesis is proven true as GD training takes longer time to converge compared to 

LM method and performs poor estimation. This shows that the quadratic approximation 

of error function is reasonable with LM training. The network training could find proper 

step size for each direction in order to display convergence very fast. If the error function 

has a quadratic surface, it can converge directly in the first iteration. The LM algorithm 

blends the steepest descent method and Gauss-Newton algorithm, in which it exhibits the 

speed advantage of Gauss-Newton algorithm and the stability of the steepest descent 

method.  

Due to NN behavior which yields different results at every simulation, multiple 

simulations were carried out using the chosen estimation network. Table 4.3 tabulates 15 

simulation trials with error at cross-validation used as the comparison measure to 

determine the least error producing network before converting into stand-alone 

simulation network.  
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Table 4.3 Multiple simulation error summary  

Trial(s) 
Error at cross-validation 

(MSE) 

1 0.0301 

2 0.0701 

3 0.0098 

4 0.1710 

5 0.0103 

6 0.0027 

7 0.0230 

8 0.0067 

9 0.0931 

10 0.0080 

11 1.302 

12 0.0207 

13 2.186 

14 0.0111 

15 1.009 
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Hence, the best-fit estimation model with MSE of 0.0027 at cross-validation is 

determined from multiple trainings and network parameters are as presented in Table 4.3. 

The parameters are specifically designed for feed-forward neural network using LM 

back-propagation.By running several tests, as shown in Table 4.1 and 4.3, with learning 

rate of 0.3 and 0.2 momentums, ‘tansig’ activation function at hidden layer and 20 

neurons at hidden layer are seen to produce network with least MSE of validation 

simulation. Table 4.4 summarizes the network parameter for estimation model as 

proposed.  

Table 4.4 Parameters for proposed estimation model 

Parameters Value(s) 

Input(s) i. RMS voltages 

ii. RMS currents 

Num. of neurons at hidden layer 20 

Activation function at hidden layer Tangent sigmoid 

Activation function at output layer Linear  

Training method (back-propagation)  Levenberg-Marquardt (LM) 

Epoch(s) 7 

Goal 0.023 

Learning rate 0.3 

Momentum  0.2 
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The complete MATLAB coding for estimation model using feed-forward neural 

network with Levenberg-Marquardt back-propagation is attached as Appendix B. To 

visualize the quality of the developed network, the estimation at cross-validation and 

error evaluations are presented below. Figure 4.3 shows the estimated harmonic voltages 

at cross-validation and error plot which indicates the difference between estimation and 

actual value measured using power analyzer instrument.  

 

Figure 4.3 Harmonic voltage estimation using validation data set 

 

Analysis of error at validation data (cross-validation) simulation plot shows that an 

average of ±2% error or difference observed between the measured and estimated 

harmonic voltages. Figure 4.4 highlights the percentage error of simulation using 

validation data set (cross-validation), with two horizontal lines which indicating area 

within -2 ≤ y ≤ 2 as the average error range of the simulation. 
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Figure 4.4 Percentage errors between measured and estimation results using 

validation data set 

 

To further analysis the quality of estimated outputs, estimated regression analysis was 

performed between the actual and estimates, as shown in Figure 4.5. Discrete values of 

estimated voltage at the intended measured values are seen to construct a linear pattern. 

This show the estimated values are close to measured, with error as discussed previously.  

The coefficient of correlation is computed to be; 

        2        (4.1) 

Hence, positive correlation obtained close to +1 that indicates a strong correlation 

between the actual and estimated harmonic voltages.  
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Figure 4.5 Regression analyses between the actual and estimated harmonic voltages 

using NN with LMBP  

4.2.2 Part 2: Simulation results for Tool#2 – Time-series Prediction using Radial 

Basis Function (RBF) 

Similar cross-validation training technique is used for the development of ‘Tool#2’. 

Parameter adjustment for the time-series prediction model is presented in Table 4.6 and 

error summaries tabulated accordingly. Trial-and-error based simulations carried out to 

identify the best-fit ‘spread’ value with carefully adjusted maximum number of neurons 

(‘mn’) and goal parameters. Training stops when training goal reached.  
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Table 4.5 Trail-and-error simulations for RBF network 

Trial 

Num. 
‘spread’ 

Error (MAE) 

Training Cross-validation 

1 0.0 2.433101 13.311526 

2 0.25 1.074674 6.323349 

3 0.5 0.223373 1.902273 

4 0.75 0.000985 0.285001 

5 0.8 0.078512 0.109363 

6 0.9 0.003914 0.076445 

7 1.0 0.931441 4.337120 

 

The value of spread parameter that ensures the best generalization is chosen. At 

spread value 0.9, the least absolutes error was observed at cross-validation, and the 

network performance can be judged by analyzing the performance as plotted in Figure 

4.6. The network goal was set to 0.6 SSE and the mentioned parameters in Table 4.6 were 

adjusted to meet this goal. Complete MATLAB coding for RBF time-series prediction 

model is attached as Appendix C. 

This accuracy is reached in only six iterations with a measured performance of 

0.599506 SSE, as shown in Figure 4.6. RBF network is generally classified as a high-

accuracy network with fast convergence. 
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Figure 4.6 Training performance for RBF network  

The network performance is compared with a standard NN time-series prediction 

model and the simulation results are tabulated as in Table 4.7. From the simulation results 

tabulated, RBF network shows better generalization property, hence, better time-series 

prediction.  

Table 4.6 Summary of time-series prediction network comparison 

Time-series prediction 

model 

MAE (%) Number of iteration(s) 

Radial Basis Function 

(RBF) 

0.076445 6 

Neural Network (NN) 0.899340 143 
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Based on Table 4.7 above, it is proven that an RBF network would be a wise choice 

to be able to demonstrate the time-series prediction for harmonic voltages for UTP 

distribution network, with reliable accuracy and hence, fluent demonstration.  

Figure 4.7 plots the predicted harmonic voltages, the actual data set as gathered from 

Fluke 1750 power analyzer data logging, and error between the prediction and actual. 

From this plot, one can observe a consistent prediction result when a new set of data fed 

as cross-validation.  

Figure 4.7 Time-series prediction results versus real measures and difference in 

voltage 

From Figure 4.7 and 4.8, it is observed that there is an increase of error towards the 

end of prediction and also error fluctuation present at n = ±100. The error range can be 

seen in Figure 4.8, where error or difference between the prediction and actual falls at an 

average of -0.6501%. This increase in error is due to change of input range and 

insufficient training of the network. This can be overcome by providing sufficient 

training for the network by feeding more raw data for training. For this case, the training 

will be considered acceptable if regression analysis shows satisfactory results. Figure 4.8 

also highlights an average percentage error of the training to be -0.61706, which means 

less than ±1% error.  
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Figure 4.8 Error observations in percentage error for time-series prediction using 

RBF network 

In general, validation data simulation generates an MAE of 0.0632 at validation 

simulation. From the regression analyses as shown in Figure 4.9, it can be clearly seen 

that the predicted harmonic voltage measures follows the trend of the real harmonic data. 

The coefficient of correlation is computed to be; 

                (4.1) 

Hence, positive correlation obtained to be higher than 0.8 and considered as a strong 

correlation between the actual and predicted harmonic voltages.  

Hence, the error is negligible. Therefore, network training is complete and the trained 

network is developed into a stand-alone forecast model using MATLAB compiler (mcc); 

mcc-mcompiled_network 

in which “compiled_network” calls a MATLAB function that captures the RBF network 

parameters and create a trained stand-alone network.  
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Figure 4.9 Regression analyses between the actual and estimated harmonic voltages 

using RBF network 

4.3 Results of Comparative Study between V-HAF and NARX systems 

A comparative study was proposed in Chapter 3 earlier to determine if the proposed 

system to monitor harmonic in UTP distribution network is indeed a reliable method. 

Hence, this section presents comparative simulation results between the proposed V-HAF 

system and NARXsystem, which was developed using MATLAB and simulated using 

inputs from UTP distribution network. 

Table 4.8 shows the error in mean absolute percentage error (MAPE) and the code’s 

execution time needed using the proposed V-HAF and NARX systems. The execution 

time is measured by using tic and toc MATLAB functions. The code structure is as 

followed; 
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tic; 

 (Simulation code as per algorithm) 

x=toc; 

Table 4.7 Comparing simulation results between proposed V-HAF system and 

NARX technique 

Intelligent System MAPE 
Correlation 

Coefficient, r 
Execution time (sec) 

V-HAF 4.4487662 0.998139 7 

NARX 4.003541 0.998266 5 

Based on tabulated results above (Table 4.8), it is observed that both V-HAF and 

NARX simulations generate similar error range, which is below 5%. Hence, error is 

acceptable for both systems. This is further verified by computing the correlation 

coefficient, which falls near +1%.  

However, a NARX simulation result shows a lower error compared to the proposed 

V-HAF system. This is due to direct time-series prediction using harmonic voltages as 

input data at NARX model, while the time-series prediction inputs in V-HAF were 

obtained from the estimation model.  

Hence, it has been demonstrated that the V-HAF system, which consists of two 

separate algorithms, gives similar results of time-series prediction with those obtained 

using direct prediction (only one algorithm utilized). Prediction error can be decreased 

further if more accurate estimated values could be fabricated. Therefore, the proposed V-

HAF system is acceptable in terms of simulation error, based on acceptance line drawn 

from previous study, by E. Diaconescu [103]. In order to determine if the system is worth 

being implemented, further analyses are done to weigh the pros and cons of the proposed 

method in the following section.  
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4.4 Advantages and disadvantages of the proposed V-HAF system 

In order for this system to be implemented in UTP distribution network, a thorough 

consideration has to be done on both its advantages and disadvantages. While the novelty 

of this study lies at proposing the system itself which has never been done in UTP 

distribution network, the proposed system has to be competent and reliable enough to be 

implemented. The main advantage of this system is its ability to monitor harmonics 

voltages continuously in UTP and reduce maintenance cost due to damages experienced 

due to high harmonic range in distribution line.  

Conventional method 1 here is referred to the time-series prediction method that 

utilizes raw harmonic data for model trainings, while conventional method 2 refers to 

classical technique in which harmonic voltages are computed based on fundamental 

measure.   

Table 4.8 Comparison between implementation of V-HAF and conventional 

methods 

Comparison criteria V-HAF system 
Conventional 

method 1 

Conventional 

method 2 

Cost of instrument to 

collect raw input data 

USD500 – 

USD2,500 

USD6,000 – 

USD6,500 

USD500 – 

USD2,500 

Computational burden Low Low High 

A copy of cost of instruments can be found attached as Appendix D & E at the end of 

this thesis. Therefore, the proposed V-HAF system also imposes advantages such as; 

i. lower instrument cost for input data collection, and 

ii. low computational burden, which allows fast estimation and time-series 

prediction with intelligent techniques. 

 



 

72 

 

4.5 Summary of Chapter 

The proposed V-HAF system compromises two tools, which are Tool#1 for the 

estimation and Tool#2 for time-series prediction, in a successful manner. Tool#1 and 

Tool#2 simulation results are presented accordingly in this chapter. All simulations were 

generated by MATLAB. The system is evaluated using cross-validation technique, with a 

60:30:10 ratio of training, validation and test data set respectively. Training is considered 

complete when error at cross-validation is acceptable. Simulation results of Tool#1 are 

first presented, and a stand-alone model developed once training is successful. The same 

process was repeated for time-series prediction using Tool#2. For comparative study, 

both stand-alone models were fed with test data set and evaluated accordingly. The same 

set of data was also used to test a pre-developed NARX model to compare the accuracy 

of the models based on time-series prediction output.  

The results from comparative study between V-HAF and NARX shows that V-HAF 

system performs similar to a classical time-series prediction technique, which in the 

downside, uses raw harmonic data from power analyser instrument as inputs. Hence, V-

HAF system allows a significant reduction in instrument costs since it only need 

fundamental voltage and current to generate the harmonic voltages and future data that 

enable reduction of maintenance cost due to harmonic issues as previously recorded in 

UTP distribution network.  

Chapter 5 summarizes the whole study and highlights on the significant contribution 

of the study and recommendations for future work.  
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CHAPTER 5 

 

CONCLUSION AND DISCUSSION 

5.1 Introduction 

In the power industry, advances of technology and equipment do not solve the current 

harmonic issue, but indeed multiplies it. Continuous maintenance plan and ability to 

monitor the power quality has since become the focus of many researchers worldwide. 

For a maintenance technician to neither underestimate nor overestimate the harmonic 

fluctuations in the distribution line, convenient harmonic monitoring technique with 

reasonable degree of accuracy need to be developed. 

In this modern era, Artificial Intelligence (AI) has surpassed all classical techniques 

in proving its reliability in various aspect and field. Artificial Neural Network is a 

working tool employed to solve real-time problems. Feed-forward neural network with 

back-propagation training and RBF are among the most successful and common 

techniques utilized in harmonic estimation and prediction respectively. Therefore, these 

techniques are employed to demonstrate the usage of AI technique in replacing PQ meter 

to reduce cost in data collection phase. A detailed introduction of harmonics estimation 

and prediction, and its need in UTP distribution network is presented in this thesis.  

Chapter 2 gives an overview of the state of art of harmonics estimation and 

forecasting in power systems field and weighs the advantages and disadvantages of each 

method discussed. It also clarifies the methods selected to estimate and forecast harmonic 

voltages. This led to the selection of fee-forward neural network with Levenberg- 
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Marquardt back-propagation for harmonics pseudo-measurement estimation, and RBF for 

short-term time-series harmonic prediction, which are further discussed in the next 

chapter.  

Simulations and tests were done to identify best fit and to understand the behaviour 

and adaptability of the developed networks. Throughout the network development and 

simulations, many challenges had occurred; insufficient professional assist in handling 

the equipment, the clarity of gathered data, instrument error, and the quality of network 

trainings. In neural network training, when a network shows a near-perfect fit in-sample 

but poor prediction out-of-sample, it is the attribute of “overfitting” plot. This occurs in 

neural network training due to their flexibility in approximating different functional 

forms. To avoid “overfitting”, network training must be stopped before it reaches local 

minimum. With good training, the network’s performance is more reliable and minimizes 

error.  

In short, the thesis meets its objective, which is to propose and develop a reliable 

intelligent system that provides a complete monitoring of harmonic fluctuation in UTP 

distribution network. The system, which consists of an estimation and a time-series 

prediction model, not only reduces measuring instrument cost, bu also allows preventive 

measures to be taken beforehand by forecasting future harmonic voltages. Hence, all 

research objectives stated in chapter 1 has been achieved with sufficient experiment and 

presentation of results.  

5.1 Summary of Contribution 

In conclusion, the main contributions of this thesis are: 

i. Development of an alternative method to measure harmonics with reduced 

cost. 
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ii. Short-term time-series harmonic prediction allows corrective measures to 

be taken beforehand or prepared before unwanted losses occur and saves 

maintenance costs.  

iii. With this system in place, it is possible to monitor more locations at a time 

since cost of instrument is subsequently reduced. This enables more 

accurate HSE without the need to neglect or choose measurement point 

due to restrictions in number of instruments available.  

5.2 Recommendations  

Some of the problems that have aroused for future investigation are outlined below. 

i. For a more satisfactory harmonic estimation, the network must be tested 

with other techniques as well, such as hybrid algorithms to overcome the 

disadvantages each network carries.  

ii. Since instrument error is neglected in this study, results obtained from 

estimation and prediction may not be close enough to the actual harmonic 

measures. Therefore, error elimination using harmonic state estimation 

(HSE) tool should be included into the system to minimize error.  

iii. The proposed system should be available online to enable real-time 

observation.  
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APPENDIX A 

Student Survey Form on Electricity Conditions in UTP 

Electricity condition in UTP 

*All data collected in this survey will be held anonymously and securely. All results will be presented in an 

aggregated and anonymised form. Demographic data collected at the end of the survey will only be used 

for the purpose of an individual study conducted for master’s degree research and will not be used to 

identify any individuals. 

Current year of study? * 

       

Which student residential village you reside in? 

       

1. Have you experiences a power failure/blackout in campus? If yes, please rate on 
the frequency of occurrence (blackout). 

o  never 

o  once in a while 

o  frequently 

2. If yes, when do you mostly experience the power failure?  

o  8am till 5pm 

o  5pm onward  

3. Are you satisfied on the electricity services you have received? 

o  yes 

o  no 

4. Have you been through any complication caused by electric supply disturbance in 
UTP ? 

o  yes 

o  no 

o If yes, please specify 

__________________________________________________________ 

5. Do you think UTP should seriously look into providing better power supply? 

o  yes 

o  no 

 

Submit
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APPENDIX B 

MATLAB Simulation Code for Neural Network with Levenberg-Marquart 

backpropagation 

%============================================================== 

% NN (LMBP) - Pattern recognition / Estimation  

% Author        :   Ugasciny Arumugam  

% Date          :   Spetrember, 2012 

% Description   :   to estimate harmonics voltage  

%============================================================== 

%train_set  : 28.08.2012 Tues   SSB VC1 <-- estimation.m 

%test_set   : 29.08.2012 Wed    SSB VC1 <-- est4.m 

%val_set1   : 04.09.2012 Tues   SSB VC1 

%val_set2   : 05.09.2012 Wed    SSB VC1 

%val_set3   : 30.08.2012 Thurs  SSB VC1 

%val_set4   : 11.09.2012 Tues   SSB B-L 

%val_set5   : 31.08.2012 Fri    SSB VC1 

%val_set6   : 01.09.2012 Sat    SSB VC1 

%val_set7   : 10.09.2012 Mon    SSB B-L 

% 

=============================================================== 

fprintf('=======================================================\n'); 

fprintf('        Harmonics Pseudo-Measurement Estimation TRAINER          \n'); 

fprintf('=======================================================\n'); 

 

train_set = xlsread('C:\Program Files\MATLAB71\work\train_set.xls'); 

test_set = xlsread('C:\Program Files\MATLAB71\work\test_set.xls'); 

 

ptrain = train_set(:,1:2);    % |V avg|I avg|S avg| PF | 

ttrain = train_set(:,5);      % |Vh max| 

 

% Set network (NN with Levenberg-Marquardt bp) :- 

fprintf('Please wait. Network under training...\n'); 

net = newff(minmax(ptrain'),[10 1],{'tansig','purelin'},'trainlm');  

 

% Adjust NN parameters :- 

net.trainParam.epochs = 1000;       % iteration 

net.trainParam.show = 100;  

net.trainParam.goal = 0.001;         % Perf. minimized to goal(based on target) 

%net.trainParam.goal = mean(var(t1')')/100;      

net.trainParam.lr = 0.3;            % learning rate 

net.trainParam.mc = 0.6;           % momentum  

 

% Training :- 
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net = init(net); 

net = train(net,ptrain',ttrain'); 

fprintf('Training complete...\n'); 

ytrain = sim(net,ptrain'); 

etrain = ytrain' - ttrain; 

train_error = mse(etrain) 

 

% Test network :- 

ptest = test_set(:,1:2);    % |V avg|I avg|S avg| PF | 

ttest = test_set(:,5);      % |Vh max| 

ytest = sim(net,ptest'); 

etest = ytest' - ttest; 

test_error = mse(etest) 

x = [ytest' ttest etest]; 

 

% Plot :- 

%input('\nPress ENTER to plot estimation vs. target...'); 

input('Press ENTER to plot test simulation'); 

close all 

plot(ttest, 'b') 

grid on 

hold 

plot(ytest,'r') 

xlabel('n'); 

ylabel('Harmonics Voltage, V(h)'); 

plot(etest,'p--') 

%title('7th-order harmonics voltage estmation(red) vs. target(blue)'); 

%============================================================== 
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APPENDIX C 

MATLAB Simulation Code for Radial Basis Function 

%============================================================== 

% RADIAL BASIS FUNCTION (RBF) - Time-series prediction 

% Author        :   Ugasciny Arumugam 

% Date          :   Oct. 09, 2012 

% Description   :   to forecast future harmonics voltages 

% 

=============================================================== 

%train_set  : 28.08.2012 Tues   SSB VC1  

%test_set   : 29.08.2012 Wed    SSB VC1 

%val_set3   : 30.08.2012 Thurs  SSB VC1 

%val_set5   : 31.08.2012 Fri    SSB VC1 

%val_set6   : 01.09.2012 Sat    SSB VC1 

%val_set4   : 11.09.2012 Tues   SSB B-L 

%est_set    : test(29.08.12)||val1(04.09.12)||val2(05.09.12)||val3(30.08.12) 

%============================================================== 

fprintf('=======================================================\n'); 

fprintf('                    RBF Time-Series Prediction                   \n'); 

fprintf('=======================================================\n'); 

close all 

 

% DATA FEED 

train_set = xlsread('C:\Program Files\MATLAB71\work\train_set.xls'); 

test_set = xlsread('C:\Program Files\MATLAB71\work\test_set.xls'); 

est_set = xlsread('C:\Program Files\MATLAB71\work\est_set.xls'); 

val_set3 = xlsread('C:\Program Files\MATLAB71\work\val_set3.xls'); 

val_set5 = xlsread('C:\Program Files\MATLAB71\work\val_set5.xls'); 

val_set6 = xlsread('C:\Program Files\MATLAB71\work\val_set6.xls'); 

val_set4 = xlsread('C:\Program Files\MATLAB71\work\val_set4.xls'); 

val_set7 = xlsread('C:\Program Files\MATLAB71\work\val_set7.xls'); 

 

p = train_set(:,5);     % 28.08.12 (real) 

t = test_set(:,5);      % 29.08.12 (real)   <-- test 

ptest = val_set3(:,5);  % 30.08.12 (real) 

ttest = val_set5(:,5);  % 31.08.12 (real) 

pval = est_set(:,1);    % 29.08.12 (est)    <-- simulation 

tval = val_set3(:,5);   % 30.08.12 (real) 

pvalL = val_set(:,5); 

tvalL = val_set4(:,5); 

 

% TRAIN NETWORK 

spread = 0.9;           % 0.0 - 1.0 (for network smoothness)  

goal = 0;               % performance goal (SSE) 
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mn = 50;                % choose max num of neurons 

df = 5;                 % number of neurons to add between displays 

net = newrb(p',t',goal,spread,mn,df); 

ytrain = sim(net,p'); 

etrain = ytrain' - t; 

mae(etrain) 

out_train = [ytrain' t etrain];  

 

% TEST NETWORK 

input('press ENTER to test network..'); 

ytest = sim(net,t'); 

etest = ytest' - ptest; 

%mse(etest) 

mae(etest) 

out_test = [ytest' ttest etest]; 

 

% PLOT 

input('Press ENTER to plot test simulation'); 

plot(ytest,'r'); 

grid on 

hold 

plot(ptest,'b'); 

plot(etest,'p--'); 

%xlabel('n'); 

ylabel('Harmonics Voltage, V(h)'); 

%plot(p1,y,'b'); 

legend('Forecast','Actual','Error(MAE)'); 

%============================================================== 
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APPENDIX D 

Price Quotation for a standard Current and Voltage data logger 
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APPENDIX E 

Price Quotation for a standard Power Quality Analyzer 

 


