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ABSTRACT 

Content-based image retrieval (CBIR) automatically retrieves similar images to the 

query image by using the visual contents (features) of the image like color, texture 

and shape. Effective CBIR is based on efficient feature extraction for indexing and on 

effective query image matching with the indexed images for retrieval. However the 

main issue in CBIR is that how to extract the features efficiently because the efficient 

features describe well the image and they are used efficiently in matching of the 

images to get robust retrieval. This issue is the main inspiration for this thesis to 

develop a hybrid CBIR with high performance in the spatial and frequency domains. 

We propose various approaches, in which different techniques are fused to extract the 

statistical color and texture features efficiently in both domains. In spatial domain, the 

statistical color histogram features are computed using the pixel distribution of the 

Laplacian filtered sharpened images based on the different quantization schemes. 

However color histogram does not provide the spatial information. The solution is by 

using the histogram refinement method in which the statistical features of the regions 

in histogram bins of the filtered image are extracted but it leads to high computational 

cost, which is reduced by dividing the image into the sub-blocks of different sizes, to 

extract the color and texture features. To improve further the performance, color and 

texture features are combined using sub-blocks due to the less computational cost. 

In the frequency domain, the statistical quantized histogram texture features are 

extracted from 8×8 DCT (Discrete Cosine Transformation) blocks and effectiveness 

of CBIR is studied based on: median and Laplacian filters, distance metrics, different 

combination of features, combination of texture features in both domains and 

combination of color and texture features in both domains are presented in order to 

get an efficient hybrid CBIR. Experimental results using benchmark Corel database 

have been shown that the proposed approaches achieve an average accuracy of 82% 

in the spatial domain and 86% in the frequency domain and the improved 

performance of proposed approaches outperform the approaches in the related works 

in the literature. 
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ABSTRAK 

Penterjemahan imej berasaskan kandungan atau content-based image retrieval (CBIR) 

akan menghasilkan imej serupa yang digunapakai dalam kandungan visual seperti 

cirri-ciri warna, tekstur dan juga bentuk. CBIR yang baik adalah berpandukan kepada 

keberkesanan penghasilan ciri-ciri untuk kerja-kerja indeks dan juga imej kandungan 

yang menyamai imej indeks yang sedia untuk diterjemahkan. Walaubagaimanapun, 

isu utama dalam aplikasi CBIR adalah bagaimana untuk menghasilkan ciri-ciri yang 

bertepatan dengan imej yang dikehendaki dan digunapakai dalam penjodohan imej 

untuk keberhasilan penaksiran yang robust atau mantap. Isu ini merupakan sumber 

inspirasi utama dalam kajian thesis kerana ia bertujuan untuk pembangunan model 

hybrid CBIR berprestasi tinggi dalam ruang spatial dan domain-domain frekensi. 

Kami telah mencadangkan beberapa pendekatan yang menggunakan gabungan teknik-

teknik yang berlainan untuk menghasilkan ciri-ciri warna dan tekstur yang tepat di 

kedua-dua bahagian domain. Pada domain spatial atau ruang, ciri-ciri histogram 

warna secara statistik diolah menggunakan taburan piksel melalui tapisan imej jelas 

Laplacian berdasarkan skema-skema kuantum yang berlainan. Namun begitu, 

histogram warna tidak berupaya memberi sebarang informasi spatial atau ruang. Jalan 

penyelesaiannya adalah melalui pembaikpulihan teknik histogram yang mana ciri-ciri 

statistik pada selang-selang histogram yang berbilang atau bins histogram bagi imej 

yang telah ditapis dihasilkan. Hal ini akan membawa kepada kos komputasi yang 

tinggi, yang akhirnya akan dikurangkan melalui pembahagian imej kepada sub-sub 

blok yang terdiri daripada saiz yang berbeza-beza untuk menghasilkan ciri-ciri warna 

dan tekstur itu tadi. Selain dapat meningkatkan prestasi yng lebih baik, ciri-ciri warna 

dan tekstur yang digabungkan menggunakan sub-sub blok adalah kerana kos 

komputasi yang digunapakai adalah kurang dan lebih menjimatkan.  

Dalam frekuensi domain, ciri-ciri tekstur histogram kuantum secara statistik 

adalah dihasilkan daripada blok 8×8 DCT (Discrete Cosine Transformation) dan 

ketepatan CBIR dikaji berdasarkan; median dan tapisan Laplacian, jarak antara 

elemen-elemen dalam satu matrik atau matrik jarak, gabungan ciri-ciri yang berlainan, 

gabungan ciri-ciri tekstur serta kombinasi warna dan tekstur pada kedua-dua jenis 

domain bagi mendapatkan CBIR hybrid yang tepat. Keputusan eksperimen 

menunjukkan bahawa penggunaan pangkalan data Corel sebagai penanda aras  telah 

membuktikan yang kajian ini telah Berjaya memperolehi purata ketepatan sebanyak 

82% pada domain ruang aau spatial dan 86% dalam domain frekuensi. Peningkatan 

prestasi juga didapati adalah lebih memberangsangkan daripada teknik-teknik yang 

telah digunapakai dalam kajian-kajian terdahulu yang berkaitan dengan hasil 

penyelidikan thesis ini. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The visual information of an image is worth more than a thousand words. The image 

can describe an event, story, accident, location, experiment, any process etc., at just a 

glance. Nowadays, a huge collection of digital images is collected due to the 

improvement in the digital storage media, image capturing devices like scanners, web 

cameras, and digital cameras, and the rapid development in the Internet. Due to these 

reasons, there is a need for an efficient and effective retrieval system to retrieve these 

images for visual information in many professional fields like medical, medicine, art, 

architecture, education, crime preventions, fashion, news media etc.  (Pass and Zabih, 

1996; Rani and Saravanan, 2011).  For example in crime prevention, the similar 

image with complete information will be retrieved for a suspected person’s image. In 

the 1970’s, the first approach was text-based. In this approach, images are manually 

annotated and are retrieved by key words. But this approach has two drawbacks: the 

first is that annotating a huge number of images manually is not efficient and this 

requires a lot of human labor. The second drawback is the different subjective 

perception of humans; for example, the lily flower can be annotated as water lilies, 

flowers in a pond, floating flowers or any other biological name. The performance of 

the text-based image retrieval depends upon the best annotation which reflects the 

actual meaning and description of the image. Usually the annotation depends upon the 

fairness, level of view, like, dislike and purpose of annotators. Moreover, mostly the 

annotations represent the partial content of images. However, searching for the 

images using the text-based approach is still very popular among users along with the 

retrieval of images by using the conventional database rules based on key words, for 
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example Yahoo
1
 and Google

2
. Considering the disadvantages of the text-based 

approach, the desired complete, efficient and effective retrieval of similar images will 

not be achieved (Liu et al., 2007). 

1.2 Introduction to Content-Based Image Retrieval (CBIR) 

The image consists of rich contents like color, texture and shape. In order to utilize 

these contents or features for the efficient and effective retrieval of images and to 

overcome the disadvantages of keyword-based retrieval, in the 1980’s, another 

approach emerged; it is called the Content-Based Image Retrieval (CBIR) (Pass and 

Zabih, 1996). CBIR automatically retrieves similar images by using the visual 

contents such as color, shape and texture instead of keywords (Shan and Liu, 2009).  

Many CBIR systems have been developed under different categories such as 

commercial, production, research and demonstration. Some examples are: QBIC, 

ADL, BDLP, Virage, AltaVista, SIMPLIcity and VisualSEEk. A detailed survey is  

given by (Veltkamp and Tanase, 2002).  

A CBIR system can be divided into two steps: feature extraction or indexing and 

similarity measurement or searching as shown in Fig.1.1. In the first step of indexing,  

 

Figure 1.1 The sample abstract block diagram of the CBIR system. 

 

                                                      

1
 http://images.search.yahoo.com/search/, last visit was on April 1, 2012. 

2
 http://www.google.com.my/, last visit was on Aril 1, 2012 

http://images.search.yahoo.com/search/
http://www.google.com.my/
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the low level features are extracted from the images by using certain techniques and 

then these features are represented in a form called a feature vector. These feature 

vectors of all the images are stored in a database. In the second step, similarity is 

measured by calculating the distance between the query image feature vector and the 

feature vectors of the database images using a distance metric like the Euclidian 

distance. If the distance is zero or smaller then that image is relevant to the query 

image (Rani and Saravanan, 2011). 

1.3 Applications of CBIR 

The efficient and effective CBIR systems can be applied to a wide range of 

professional fields. They can play a very vital role in the retrieval of the images for 

visual information. The important fields where CBIR can play an important role 

(Gudivada and Raghavan, 1995; Eakins and Graham, 1999) are: 

 Crime prevention 

 The military  

  Trademark and Copyright Prevention 

 Architectural and engineering design  

 Fashion and interior design 

 Journalism and advertising 

 Medical diagnosis  

 Agricultural and Remote Sensing 

 Cultural heritage 

 Education and training 

 Crime Prevention 

The profile of the past suspects is recorded by crime prevention agencies which 

include fingerprints, shoeprints and facial photographs. The CBIR searches the 

database for the matching of the evidence (fingerprints, photo) of the criminals when 

a crime is committed and whenever the matches are successful, then the whole record 

of the criminal is accessed for identification. 
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 The Military 

CBIR is used very effectively for military applications, for example, in the 

identification of targets and aircrafts of the enemy from radar satellite to hit the 

aircraft or cruise missiles.  

 Trademark and Copyright Prevention 

Trademark identification is a principal area of application of CBIR, where the existing 

trademark is matched with a new trademark to avoid any jeopardy of cheating. The 

violation of copyright of the electronic images over the Internet can be controlled by 

CBIR. The owner of the images can recognize the unauthorized transfer of copies of 

the images.   

 Architectural and Engineering Design 

The 2D and 3D models of objects of engineering and architecture are stored in a 

database with features. These models can be retrieved by using CBIR techniques for 

the training of new clients or students. Moreover, to design a new model using 

existing models, CBIR can retrieve similar or relevant models.  

 Fashion and Interior Design 

In fashion and interior, to support a particular design development, a meticulous 

combination of color and texture can be searched and retrieved from a database of 

fabrics by using CBIR techniques. Similarly, by giving some fabric samples, the 

desired pattern can be retrieved 

 Journalism and Advertising 

A huge number of photographs are collected and maintained by newspaper and 

advertising agencies. These photos can be used in newspapers and advertisement 

effectively. Keyword searching will be very costly due to the meaningful annotation 

of such a huge number of images. To achieve the solution of this problem, CBIR can 

be used efficiently and effectively. 
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 Medical Diagnosis 

In most of the hospitals, a huge number of medical images are stored. The major role 

of these images is to display the medical images concerning a particular patient; 

moreover, these images also play a very vital role in diagnosis by comparing the 

images stored in a database of the past patients using the CBIR techniques. For 

example, the medical image retrieval will help the medical doctors in diagnosing 

brain tumors by matching the current new patient image with the existing similar 

effected images. 

 Agricultural and Remote Sensing 

CBIR can also be used very effectively by agriculture and geographical systems. The 

remote area images can be utilized widely by geographers and agriculturists for 

research as well as for practical purposes. Using CBIR techniques, the areas having 

diseased crops can be retrieved and identified. The government can also be informed 

about lands for which the amount has been paid to the farmers for developing crops 

while those lands are lying empty. 

 Cultural Heritage 

A collection of paintings, statues and heritage images is maintained by museums and 

art galleries. These images can provide useful historical visual information to 

archeologists, painters and researchers using CBIR. They can retrieve images 

according to their interests and desires by giving some example images. 

 Education and Training 

The images can provide very useful visual information in education and training. 

Those key points which cannot be explained during lectures can be identified in 

retrieved images; for example, safety in jungles, safety on mountains and diseased 

crops. These can improve the teaching quality and training.  
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1.4 Problem Statement 

Recently a huge number of images are available due to the development in Internet 

and hardware devices of image capturing. Therefore there is a need of a CBIR having 

an efficient and effective feature extraction to retrieve these images for many fields of 

life like arts, education, engineering and medical etc. Features can be statistical or 

structural (Selvarajah and Kodituwakku, 2011). In recent years the statistical features 

formulation has been improved and new derived features have been developed. Many 

CBIR systems have been developed using different features in the spatial and 

frequency domains. However some have lack of efficiency in terms of accuracy 

(Hiremath and Pujari, 2007; Murala et al., 2009; Thawari and Janwe, 2011) and other 

have high computational complexity  (Kavitha et al., 2011). 

Individual features cannot describe completely the properties of images which can 

affect the performance of CBIR. Hence different features which are extracted by 

using various feature extraction techniques, can be combined together to improve the 

retrieval performance (Deselaers et al., 2007). However the main issue in CBIR is that 

how to extract the features efficiently because the efficient features describe well the 

image and they are used efficiently in matching of images to get robust retrieval. This 

issue makes the CBIR’s retrieval results unstable and inefficient. Therefore this issue 

is the main inspiration for this study. In the present study different techniques are 

fused together to extract statistical color and texture features efficiently in the spatial 

and frequency domains. Then these features are combined to get an efficient hybrid 

CBIR to give the robust retrieval up to near optimal accuracy. However feature 

extraction in the spatial domain has low computational complexity.  

1.5 Research Objectives  

In this study, in order to improve the efficiency of CBIR, various approaches are 

proposed in which different techniques are fused together in the spatial and frequency 

domains to design and implement hybrid CBIR.  

In the spatial domain the first approach is based on Laplacian filter using color 

histogram; the second one is based on sub-blocks of different sizes for color features; 
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the third one is based on sub-blocks of different sizes for the texture features; the 

fourth one is based on the median filter, median filter with edge extraction method 

and Laplacian filter using color histogram refinement method; and the fifth one is 

based on the integration of color and texture features using sub-block methods.    

In the frequency domain to extract the quantized histogram texture features from 

DCT blocks the first approach is based on the median filter, median filter with edge 

extraction method and Laplacian filter; the second one is based on various distance 

metrics (for similarity measurement); the third one is based on different combinations 

of texture features; the fourth one is based on the integration of sub-block method 

with histograms of DCT blocks for texture features; and the fifth one is based on the 

integration of sub-block method with histograms of DCT blocks for color and texture 

features. The main objectives of this research work are: 

 To develop an efficient hybrid CBIR in the spatial domain by using histogram, 

histogram refinement method and sub-block methods based on filters, different 

quantization schemes and sub-block of different sizes to extract color and texture 

features. 

 To develop an efficient hybrid CBIR in the frequency domain by using the DCT 

blocks to extract quantized histogram statistical texture features based on filters, 

distance metrics and combination of features. 

 To develop a near optimal hybrid CBIR by combining color features in the spatial 

and texture features in the frequency domains. 

 To implement and evaluate the proposed approaches based on filters, different 

quantization schemes, sub-block methods using benchmark Corel database. 

1.6 Scope of the Thesis 

Improving the performance of CBIR as compared to the performances of the existing 

approaches in the literature; is the main scope of the thesis and it is based on the 

efficient indexing and retrieval of the images. The performance of CBIR is greatly 

affected by the high computational cost of the feature extraction for indexing of the 

images as well as by the inefficient image retrieval. The main purpose of the 

development and implementation of the proposed approaches is based on efficient 
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indexing and retrieval in the spatial and frequency domains by using the statistical 

color and texture features. The retrieval is based on the overall similarity of images 

not on the object-based.  

The proposed approaches are independent of the dimension of the query and 

target database images. Moreover any new image can be used as a query image other 

than the indexed database images to return similar images. The approaches give 

robust retrieval to the images with simple, bright and smooth textured background 

having less number of objects in foreground, especially one or two simple objects. 

Hence these approaches can be applied for the target identification and finger prints.  

The proposed approaches are invariant to the rotation of the images. By changing 

the rotation of the image at different angles like 0°, 75°, 90° and 180°, the results of 

the retrieval are not so affected. 

The retrieval of the images with complex background and multiple objects in 

foreground semantically is out of the scope of this research work.  

1.7 Thesis Contribution 

The main contribution of this thesis is the development of hybrid image retrieval in 

the spatial and frequency domains by combining various techniques in different 

approaches to extract color and texture features efficiently. The contributions of this 

thesis include: 

 Development of an efficient hybrid CBIR in the spatial domain by using 

histogram, histogram refinement method and sub-block methods based on filters, 

different quantization schemes and sub-block of different sizes to extract color 

and texture features. 

 Development of an efficient hybrid CBIR in the frequency domain by using the 

DCT blocks to extract quantized histogram statistical texture features based on 

filters, distance metrics and combination of features. 

 Development of a near optimal hybrid CBIR by combining color features in the 

spatial and texture features in the frequency domains. 
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 Implementation and evaluation of the proposed approaches based on filters, 

different quantization schemes and sub-block methods using the benchmark Corel 

database. 

The related works about: the different features, features extraction, retrieval 

domains, extraction of color and texture features in the spatial and frequency domains, 

distance metrics for similarity measurement, performance evaluator metrics and data 

set, is reviewed in Chapter 2. 

1.8 Organization of the Thesis 

This chapter introduces and explains the importance and applications of CBIR, 

problem statement, research objectives, scope and contributions of the research work 

in this thesis.  The rest of thesis is organized as follows. In Chapter 2, we describe the 

methods and techniques used for CBIR. Commonly used image features, their types, 

and domains, extraction of color and texture features in the spatial and frequency 

domains are discussed with techniques used for their extraction. Similarity 

measurements for matching of features, performance evaluation measurements of 

research work and the benchmark dataset for testing of proposed approaches are 

discussed. 

In Chapter 3, we elaborate the methodology of the proposed approaches in the 

spatial and frequency domains. In spatial domain the approaches based on: histogram, 

histogram refinement method and sub-blocks methods to extract color and texture 

features. In the frequency domain the quantized histogram texture features are 

extracted in the proposed approaches based on: filter methods, distance metrics and 

combination of features in both domains. 

In Chapter 4, we discuss the implementation and the experimental results of the 

proposed approaches in spatial and frequency domains. Experimental results in spatial 

domain, are analyzed on the basis of different quantization schemes, filter methods 

and sub-blocks of different sizes, while in frequency domain, results are analyzed on 

the basis of different quantization schemes, filter methods, distance metrics, 

combination of features. 
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In Chapter 5, the retrieval performance of our proposed approaches is compared 

among themselves first and then the near optimal approach of them having 

combination of the color and texture features is compared with the state-of-the-art 

work in the literature using the Corel database.  

In Chapter 6, we summarize our contributions, and discuss the future work. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW OF CBIR 

2.1 Content-Based Image Retrieval (CBIR) 

An image consists of rich contents like color, texture and shape. These contents can 

be used in matching of query image with the target images of database for retrieval of 

similar images. Thus retrieval of images by using the contents of images is called 

content-based image retrieval (CBIR).  The features of an image are extracted by 

using certain techniques as a first step of CBIR. The extracted features are then 

represented in such a manner that they will be used in similarity (matching) 

measurement of the query image with the target images of database. 

The development of an efficient and effective CBIR has two major challenging 

problems due to its nature of job to perform: (a) how to describe an image 

mathematically; (b) how to perform matching between two images using their 

extracted descriptions. The first challenge is due to the fact that the image is basically 

nothing more than an array of pixels. To describe the image for retrieval purposes, 

these pixels are represented mathematically. These mathematical descriptions can be 

then formulated in such a way that the similarity measurement can be determined to 

get a high retrieval of the similar images. 

In recent years the improvement has been made to the construction of the 

mathematical description of image and based on these descriptions, new derived 

features of an image have been created.  Along with the advance development of the 

mathematical formulation, new methods have been introduced for the similarity 

measurement. At present a very strong tendency has been introduced to CBIR for the 

extraction of mathematical features from an image, called the statistical methods. 

These statistical techniques extract features by formulating the distribution of the 
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pixel values in an image. In this section, we will first review various image features 

and then the feature similarity methods. 

A feature can be defined as: a value that represents a certain visual property of the 

image (Roumi, 2009). Color, texture and shape are widely used features of image. 

These existing features are  divided into global and local features (Deselaers et al., 

2008). 

2.1.1 Examples of Some CBIR Systems 

CBIR systems are applied to various professions for the retrieval of the images with 

purposeful visual information. For example, face recognition, finger and foot prints  

in crime prevention for security, medical diagnosis to identify and retrieve the similar 

past images from the medical image databases to the input query patient image, trade 

mark identification, designing of new models in engineering etc.(Gudivada and 

Raghavan, 1995; Eakins and Graham, 1999). For the last decade many CBIR systems 

have been developed for demonstration, research, experimental and commercial 

purposes. Among existing CBIR systems, some are described below. 

 SIMPLIcity 

The main purpose of this image retrieval system is to retrieve images for picture 

libraries and biomedical image databases. In this system texture, color and shapes 

features are extracted. For the similarity measurement the Integrated Region Matching 

(IRM) metric is used and it also consists of methods for the classification of the 

images. In experiments this system is tested by using the large-scale picture libraries 

and a database of pathology images. This system provides fast retrieval with the high 

accuracy and it has high robustness to variations of an image (Wang et al., 2001; 

Kosch and Maier, 2009) .  

 ImageFinder 

ImageFinder uses shape features of regions and gives dynamic platform for search in 

which users can make changes according to their requirements. However, it has 

overall poor retrieval performance for all the user queries (Kosch and Maier, 2009).  
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 Caliph & Emir 

It consists of two systems, Caliph and Emir. Caliph employs annotation of the 

images while Emir searching of the images. They are using Color Layout and Edge 

Histogram features. Caliph describes semantic graphs for annotation to improve the 

search. Emir provides good visual similarity search. Emir extracts features in the form 

of MPEG-7, to be maintained by Caliph as MPEG-7 documents (Kosch and Maier, 

2009).  

 VIPER/GIFT 

VIPER provides searching of the images and is a plug-in part of the GIFT system. 

For documents up to 80,000 features like terms in documents and for an image about 

1000 features are extracted. Color and texture features are extracted. For color 

features extraction, histogram and sub-blocks of the images are used while for the 

texture features, the Gabor filters are used (Kosch and Maier, 2009). 

 SIMBA 

SIMBA uses color and texture features. The histogram features are invariant against 

the rotations and translations of the image. Kernel functions are used in the extraction 

of features.  The size of the objects in an image is affected by the size of the kernel for 

the recognition in the images. The big kernel features are invariant to the rotation and 

translation of the bigger objects (Kosch and Maier, 2009). 

  Picture Finder 

Picture Finder uses color, texture and shape features along with the keywords. 

Polygons are characterized in an image by using the different size of shape, color and 

texture features. The similarity for search is affected by the position of the polygons. 

Hence two images will be more similar if the position of the polygons is same. 

However for the robust similarity measurement the size, color and texture features of 

the polygons are very important (Kosch and Maier, 2009). 
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 QBIC (Query By Image Content)  

This CBIR system has been developed by IBM Almaden Research Centre. This 

system provides the flexibility to improve the queries graphically by changing the 

features of an image like texture, shape and color. The user queries can be an example 

image, draw sketches or select texture and color patterns. The Quadratic and weighted 

Euclidean Distances are used to compute the distance between the query and target 

database images  (Niblack et al., 1993). 

 VIR Image Engine 

This system is the extended version of the system developed by Virage Inc. This 

system provides the retrieval to the user query image by using the features of an 

image like color, texture and structure.  For the extraction of features, pixel analysis 

process is performed in the images. distance function is used to compute the distance 

between the images (Bach et al., 1996). 

 VisualSEEk 

This system has been developed by the Image and Advanced Television Lab, 

Columbia University. In this system, matching of the images is based on texture, color 

and spatial location features. In the query the user can draw the sketches of the 

regions with proper color, dimension, position, size, location and spatial relationships 

between the regions (Smith and Chang, 1997). 

 NeTra 

This system is based on the region-based features and developed in the University of 

California by the Department of Electrical and Computer Engineering. In this system 

the image is segmented into a number of regions and from those regions texture, 

color, shape and spatial location features are extracted (Netra, 1997; Ma and Netra, 

1999). 

 MARS (Multimedia Analysis and Retrieval System) 

This system is based on the primitive features like color, spatial layout, texture and 

shape features. It was initially developed at the University of Illinois by the 
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Department of Computer Science. However, it is then further enhanced at the 

University of California by the Department of Information and Computer Science. 

Using the Boolean operators, it supports the formulation of the complex queries of the 

users. The desired query image can be direct or by example (Ortega et al., 1997). 

2.1.2 Global Features 

The features which are computed from the overall image are called global features, 

which represent the characteristics of the whole image. For example in the color 

histogram technique, the whole grayscale image is divided into some number of bins 

like 16, 32 and 64, and in each bin mean of the color pixels distribution is computed. 

These calculated mean values of the all bins of an image are represented in a feature 

vector of color values. The global features are extracted to confine the overall 

properties of the images. For example an image is divided into sub-blocks using the 

color layout method and the color pixel values are calculated to get average values of 

all sub-blocks. These average values are represented in a vector form where each 

value indicates the location of sub-blocks. Since the global features are extracted from 

the overall image, not only the extraction of features is efficient but the computation 

of similarity is also efficient (Datta et al., 2008). 

The color histogram (Swain and Ballard, 1991), color moments (Stricker and 

Orengo, 1995), edge histogram (Won et al., 2002) and color correlograms (Huang et 

al., 1997) are well known techniques for the extraction of the global features. 

2.1.3 Local Features 

Local features (Heng and Qing, 2008) are computed from the every block or patch of 

image when it is divided into some particular blocks or patches. Every block or patch 

of an image has unique visual information. The similarity can be measured by using 

the local features of the blocks to retrieve the image on the basis of some local visual 

information in the image.  

In spatial domain, to increase the retrieval robustness, the local features are 

extracted such that using the neighborhood pixel values of a pixel to calculate a set of 
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features but this approach will increase the computational cost. The computational 

complexity can be reduced by dividing the image into non-overlapping small sub-

blocks and local features are calculated for all sub-blocks (Datta et al., 2008). 

The main purpose of the local feature extraction is to recognize the particular 

objects in an image. The popular methods which are used for the extraction of the 

local features are: global search (Deselaers et al., 2008), local signature (Mikolajczyk 

et al., 2005) and local histograms (Deselaers et al., 2005). 

In global search method the top N nearest neighbor features are searched globally 

in the entire target database images for the query image features. The number of 

features of the target images is computed and sorted which have close matching with 

the query image. Thus if the target image has more number of features then it is most 

similar (Deselaers et al., 2008).  In the local signature method the local features are 

clustered for all the images and matching is performed by using mean and covariance 

of the clusters of the query image with target image (Mikolajczyk et al., 2005). In the 

local histogram, all the features of the image are clustered to get histograms of all 

features in an image (Deselaers et al., 2005). 

2.2 The Most Commonly used Features for CBIR 

The most commonly used features for CBIR are color, texture and shape which are 

described as: 

2.2.1 Color Feature 

Color information is the most prominent and simple visual feature of an image 

(Smeulders et al., 2000) since  it is the dominant part of the human visual perception. 

It has characteristics of robustness in the background of the image, which has some 

complexity, and the variation of size and orientation of an image do not affect it (Park 

et al., 2007). 

Color is the most useful feature due to the simple implementation, robust retrieval, 

efficient computation and need of low storage space, and used by about all CBIR 
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systems. Color is represented by LUV and HSV color space, because they are near 

with the human perception (Muller et al., 2004). 

Initially, in the early days, the color feature is used in the matching of the images 

for the similarity measurement such that the pixel values of the query image is 

compared with the corresponding pixel value of the target image (Kato et al., 1991) 

but the drawback is that changes in the direction, noise and illumination of the 

images, caused a great dissimilarity between the images. This problem is solved by 

(Swain and Ballard, 1991) by introducing the color histogram for the first time. The 

color histogram is the most popular and widely used method for the extraction of 

color features of the images in CBIR (Hafner et al., 1995). A color histogram extracts 

the global color features from the image. It is very simple and easy to compute. It has 

robustness and efficiency to the indexing images in a large database. The color 

histogram consists of the frequency of the occurrences of each pixel value which 

represents the color of an image in the spatial domain. For the extraction of the color 

features, the color histogram is divided into a set of bins of color and each pixel 

having a specific color, belongs to a color bin of that color. It has the characteristic 

that it represents the global information of an image (Swain and Ballard, 1991; Jin, 

2009). These global features representations of an image are very useful in the queries 

in which the matching of the images is based on the overall appearance.  

The color histogram is very fast in the computation of color features (Park et al., 

2008). It has no effect on the small changes in the scenes. It is useful and widely used 

for the images which require invariance in the translation and rotation (Park et al., 

2010). If a query requires retrieving the images with the same scenes but with the 

different circumstances of illuminations, then the color histogram is not a suitable 

technique for such queries. The reason is that the same histograms are generated for 

the images having different appearances due to the lack of spatial information in the 

histograms. In other words, an image with many very small green spots has a 

histogram similar with the histogram of the image which has a single green area (Jin, 

2009). However, a color histogram does not provide the spatial information about the 

location of the pixels and the relationship of a pixel with the other neighboring pixels. 

To preserve the spatial information in a histogram, the color histogram refinement 

method is used to classify the pixels in the coherent and incoherent clusters. If a pixel 
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belongs to a region of a similar color and considerable size, then it is known as 

coherent and in the other case it is known as incoherent. The coherent features like 

mean, variance, size, and major and minor axis lengths of different clusters are 

computed. This method is also called the color coherence vector (CCV) (Park et al., 

2008). 

The spatial relationship can be maintained by using the correlograms technique, 

which depicts the frequency of the number of occurrences of the two pixel values 

having a spatial distance. The color correlograms features are extracted by quantizing 

the image into bins and the frequency of the pair pixels is counted at the neighboring 

pixels (Huang et al., 1997). 

Color features have been extracted using several methods other than the color 

histogram in an image retrieval like color moments and color sets. A method has been 

proposed by (Stricker and Orengo, 1995) using the color moments to triumph over the 

histogram quantization. In this method the statistically color features are computed 

such that the color distribution is characterized by the first moment (mean), second 

moment (variance) and third moment (skewness). 

For combination of the color and spatial information, many methods have been 

developed for the queries in CBIR (Mustaffa et al., 2008). As retrieval, based on the 

segmentation, has high computational complexity for large image database, to reduce 

the computational cost and get the spatial information, the image is divided into nine 

equal sub-blocks and color histogram are constructed for all sub-blocks (Gong et al., 

1996).  A method is developed by (Stricker and Dimai, 1996), to split the image into 

five non-overlapping spatial regions to compute color features in all the regions and to 

be used in matching of the images. A novel algorithm is proposed by (Li, 2003) in 

which an image is divided into sub-blocks to get color features. Recently, various 

methods have been introduced in which different color features are extracted such as 

chromaticity moments based on the regular histograms (Paschos et al., 2003) and 

fuzzy color histogram (Han and Ma, 2002). Corresponding region-based color 

features are extracted and used in matching of the images to retrieve similar images 

(Thomas et al., 2008). 
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2.2.2 Texture Feature 

The visual information of an image which has some repeated patterns of the pixel 

values in some proper arrangement is called the texture of the image (Tuceryan and 

Jain, 1993). The texture features can be seen easily in the natural images like flowers, 

leaves, petals, brick walls etc., separating one area from another. Having significant 

characteristics for image representation by texture, such as directionality, coarseness, 

roughness, smoothness, granularity etc can be very useful for the image retrieval. 

These properties can play a very important role in the classification of the images. 

Thus for the effective image retrieval, the most relevant and significant texture 

features can be extracted and then these features can be represented in an effective 

vector form to measure the similarity effectively (Baaziz et al., 2010). The texture 

features can be extracted either directly from the coefficients of the transformed 

images or by computing statistically from the coefficients (Li et al., 2000; Do and 

Vetterli, 2002). 

Statistical second or high order moments are usually combined with the filtering 

methods like the Gabor filter or wavelet to extract the texture features. To extract one 

type of texture feature from one sub-band of a filtered image, the filter approach is 

used; while, to extract different texture features from many sub bands of an image for 

classification, statistical features are computed in all sub-bands (Hideyuki et al., 1978; 

Park et al., 2002). The statistical texture features which represent the properties of an 

image such as coarseness, constant, directionality, line-likeness, regularity and 

roughness, are computed and called Tamura features (Hideyuki, Shunji et al., 1978). 

Regarding the human perception, the first three texture features are considered 

important after having gone through a set of experiments by (Deselaers et al., 2008) 

and these three features are extracted by using the histogram method. 

The Gabor filter consists of rows and columns of values which are used to 

compute important information from image data in different directions either by 

calculating the mean and standard deviation of filtered values or by quantizing the 

histogram into bins for each filter (Squire et al., 1999). For medical, aerial and images 

having texture patterns, texture features show good results in terms of retrieval; 

moreover for generic images, the texture features are combined with the other features 

for good image retrieval (Goldberger et al., 2003).  
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The coarseness and recurring patterns of the surface of the images are captured as 

the texture features for example flowers, leaves, petals; brick walls have textures 

features as pattern, coarseness and smoothness. These texture features play an 

important role in the specific domains of image retrieval like medical imaging and 

aerial imagery due to the close association with the human semantics. For the last 

decades the texture features have been used as important features like filter banks 

(Malik and Perona, 1990) and wavelet transforms (Unser, 1995) in the fields of 

computer graphics, computer vision and image processing (Haralick, 1979). The 

texture features in the image processing, are extracted by using directly the 

coefficients of transformed image or by computing the coefficients statistically using 

discrete cosine transformation (DCT) or Wavelet Transformation (Li et al., 2000; Do 

and Vetterli, 2002).  In computer graphics and vision Markov statistical texture 

features are computed by using the wavelet coefficients in different scale and 

orientations of a transformed image (Portilla and Simoncelli, 2000) In early days of 

image retrieval using the texture features based on the texture descriptors of 

(Manjunath and Ma, 1996). Texture features are included in MPEG-7, computing 

important visual information in the standard numerical formats (Manjunath et al., 

2001). For the retrieval of aerial images, a texture features thesaurus is proposed by 

(Ma and Manjunath, 1998). To extract the texture features using this thesaurus, 

statistical texture features are computed using the Gabor filters (Jain and Farrokhnia, 

1990). Advanced textured region features are computed like invariant photometric- 

and affine-transformation features (Schaffalitzky and Zisserman, 2001). Advanced  

affine-invariant texture feature using interest point detection for sparsity, are extracted 

for  texture recognition (Mikolajczyk and Schmid, 2004).  

The texture is represented by a vector of computed features which are extracted 

from the image in the statistical texture approach, while in the structural texture 

approach the texture is represented by a vector of texture primitives and their 

placement rules (Haralick, 1979; Vilnrotter et al., 1986). The statistical texture 

features can be computed either directly from images using  histograms (Stricker and 

Orengo, 1995) or co-occurrence matrices (Haralick, 1979) or by using the filter 

methods like Gabor filters (Jain and Healey, 1998) or transformations consist of 

wavelets (Pun and Lee, 2003; Jafari-Khouzani and Soltanian-Zadeh, 2005), wavelet 

packets (Laine and Fan, 1993), ridgelets, and curvelets (Semler and Dettori., 2006). 
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Separate color features computed by using histograms in CIE Lab space, are 

combined with the texture features computed by using wavelet (Liapis and Tziritas, 

2004).  

2.2.3 Shape Feature 

When an image consists of natural objects, these objects can be identified by shape. 

The shape is the most apparent feature which can be extracted from the images and 

used for the retrieval of an object based on overall similarity.  Shape features are 

clearer visual features than the texture features (Biederman, 1987). Shape features can 

be divided into two categories, region-based  and boundary-based (Loncaric, 1998; 

Zhang and Lu, 2001). For the extraction of the region-based shape features, the image 

is fragmented into different regions and then the shape features like size, area, 

circularity, rectangularity and variance are computed from the regions (Lu and 

Sajjanhar, 1999; Park et al., 2008). Contour or boundary-based shape features 

represent the edges and perimeters of objects. Contour-based features are extracted by 

using the techniques like Wavelet Fourier descriptors (Zhang and Lu, 2004). The 

edges can also be detected by using a canny edge detector (John, 1986; Zhao et al., 

2009) and a Harris edge detector (Harris and Stephens, 1988). 

Shape is an important feature of the regions of the fragmented image and plays a 

significant role in the retrieval due its robust and efficient characterization. Over the  

decades there is a move because of the limitations of the typical modeling from the 

representation of global shape (Flickner et al., 1995) to further local shape features  

(Mehrotra and Gary, 1995; Berretti et al., 2000; Petrakis et al., 2002). 

 The contours are simplified by extracting the shape features using discrete curve 

evolution (Latecki and Lakamper, 2000).  The image is enhanced by using these 

simple contours which remove irrelevant and noisy shape features. For matching of 

the images to measure the similarity, a new shape features is proposed, which is called 

as shape context and quite robust to a number of geometric transformations (Belongie 

et al., 2002). 
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An approach is proposed by (Berretti et al., 2000), to extract the shape features, a 

number of segments are represented as curves and these curves are arranged into a 

metric tree (Ciaccia et al., 1997), for matching of shape efficiently and the retrieval is 

called shape-based image retrieval.  

An approach is proposed by (Petrakis et al., 2002) which is called dynamic 

programming (DP) in which the shape features are extracted in sequences of concave 

and convex segments. However the computational cost of this approach is high due to 

the computation of moments and Fourier descriptors. 

The performance of the CBIR in terms of effective retrieval is not good by using 

the shape features because it is very difficult to describe the shape features which lose 

some vital information and it is greatly affected by noise and occlusion (Loncaric, 

1998). Shape is always combined with the other features like color and texture to 

retrieve the similar images in CBIR. 

2.3 Retrieval Domains of CBIR 

In order to extract the color, texture and shape features from the images for a 

similarity measurement, the visual information of the image needs to be represented 

in certain useful forms. The representation of the image data can be divided into two 

groups called spatial and transformed domains. 

As the image is a two dimensional matrix of pixel values, hence in the spatial 

domain, the features are directly computed by using the pixel values of the image. The 

calculated features are represented in a feature space with fewer dimensions which is 

more efficient in terms of computational cost and storage space (Shahbahrami et al., 

2008). In the spatial domain, the distribution of the pixel values representing color can 

be computed statistically.  

The color histogram statistical features like mean, standard deviation, skewness, 

energy and entropy are extracted by using the probability distribution of the intensity 

levels of the image (Sergyan, 2008). The statistical color features like mean and 

standard deviation are computed simply row and column wise in all the three planes, 

Red, Green and Blue (RGB), of the color image to construct feature vectors with six 
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dimensions. To get the similarity measurement,  the distance is computed between the 

vectors of the query and target images of the database by using the Euclidean distance 

(Kekre and Patil, 2009). 

The texture and color features are jointly used in the spatial domain for the 

retrieval of similar images. The color features are computed simply by using the 

histograms and the texture features are calculated by using the statistical histogram 

features like entropy, smoothness and uniformity (Thawari and Janwe, 2011). To get 

the spatial relationship among the pixels of the image in the spatial domain, the color 

histogram refinement method is used to get the shape features of the objects by 

detecting the region in the image and calculating the size, major and minor axes of 

length, and the variance (Park et al., 2008). 

Nonetheless, the data of the image is transformed from the spatial domain to the 

frequency domain by using certain transformation techniques like the Discrete Cosine 

Transformation (DCT) and the Discrete Fourier Transformation (DFT). The spatial 

domain has sensitivity for variation and at present, most of the images are represented 

in a compressed format like JPEG and MPEG (Nezamabadi-pour and Saryazdi, 2005; 

Liu et al., 2007). That is why most of the researchers are giving attention to the 

transformed domain, and the DCT based image features are extracted widely for the 

image retrieval. DCT is used very commonly because it is a very important 

component of JPEG and MPEG compression and DCT coefficients can be 

reconstructed in reverse easily from the JPEG images. The low level features can be 

extracted directly in the compressed domain without decoding to the spatial domain to 

reduce the computational cost (Mandal et al., 1999). The DC and AC coefficients of 

the 8×8 DCT blocks of a grayscale image are represented in different directions which 

are mapped into the feature vectors of nine dimensions (Bae and Jung, 1997). The 

image in the YUV color space (Luma (Y) and two chrominance (UV) components) is 

divided into four blocks and in each block, only the Y channel is converted from the 

spatial to the DCT blocks to get horizontal, vertical and diagonal texture features in 

all of the blocks (Tsai et al., 2006). The DC and the first three AC coefficients of all 

8×8 DCT blocks are selected in a zigzag order to construct a quantized histogram of 

32 bins to be used as feature vectors for retrieval (Mohamed et al., 2009). 
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The color and texture features are extracted in the DCT domain using the energy 

coefficients of the DCT blocks. The color features are extracted by dividing each of 

the 8×8 DCT blocks into four sub-blocks and the mean is computed in each sub-block 

to get the mean values from the histogram. The texture features are extracted by 

computing the mean and standard deviation in the histograms of the selected 

coefficients of the blocks (Lu et al., 2006). 

2.4 Extraction of Color and Texture Features in the Spatial and Frequency 

Domains 

In this study of research, color and texture features are extracted in the spatial and 

frequency domains by combing different techniques. 

2.4.1 Extraction of Color and Texture Features in the Spatial Domain 

Color information is widely used for CBIR by researchers for retrieval. It is a very 

prominent and extensively studied feature. One reason for its importance is that it is 

invariant to the orientation and scaling of the image (Lei et al., 1999). Color 

information of an image can be extracted by using the different techniques but the 

mostly used and prominent technique is the color histogram. It is extensively used for 

CBIR.  

A color histogram represents the frequency of the occurrences of each color in an 

image. It is divided into bins, each having a number of specific color values of pixels. 

It shows the global characteristic of an image. It has robustness in regards to the 

rotation and translation. The significant characteristic of the color histogram is that it 

can compute the color moments, mean and standard deviation of the images 

efficiently with a large number of pixels of a very huge database (Shahbahrami et al., 

2008). Color histograms can be generated in all three of the components, Red, Green 

and Blue, of the RGB color image by quantizing the histograms of each color 

component, into 64 bins to get the color histogram features (Murala et al., 2009).  

The normalized histograms are quantized into the 48 bins in each component of 

the RGB color image. Thus, for each image a feature vector of the total 48×3=144 

features, is created. For the similarity measurements, the Euclidean distance is used to 
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calculate the distance between the query image feature vector and the database image 

feature vectors. The images are ranked by the similarity distance values (Chakravarti 

and Meng, 2009). 

The color features of an image are computed by using the histogram technique 

(Thawari and Janwe, 2011). The color histogram features are extracted from the 

images for CBIR to retrieve or classify the images in the database according to the 

user query image. The histogram features are the mean, standard deviation, skewness, 

energy and entropy where the mean reveals brightness, standard deviation indicates 

contrast, skewness shows the intensity level distribution about the mean, energy 

describes the distribution of the intensity levels in an image and entropy represents the 

distribution of the pixel values in the intensity levels (Sergyan, 2008). 

A method is proposed by (Park et al., 2010) in which Global and local color 

features are extracted. The global color features are extracted by generating 

histograms in the RGB color space while for the local features the genetic algorithm 

(GA) is used in the HSV color space.  

The main problem in a histogram is that the spatial information in the color 

histogram is not preserved and thus the same histograms will be extracted for the 

images with different looks. For this purpose the histogram technique has been 

modified to get an improved and refined histogram. This method is also called color 

histogram refinement. This refined histogram method divides the histogram into 

buckets of pixels and each bucket is divided into classes of pixels of same local 

properties. The histograms of query image are compared with the database images of 

pixels of the same local properties in the buckets (Liu et al., 2007).  

The color histogram refinement method is used to get the color and shape features 

of the objects in an image. The histogram of the grayscale image is quantized into 

bins. In each bin similar colored connected regions are determined. The number of 

coherent and incoherent pixels in each region of each bin is determined. A pixel is 

coherent if it is present in the same colored region otherwise is incoherent. The 

number and average of the coherent and incoherent clusters are calculated. Additional 

features are also computed but only in the coherent clusters. These features consist of 

the sizes of largest, median and smallest clusters, the major axis length, minor axis 
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length, ellipse angle and variances of the largest, median and smallest clusters. These 

features are not affected by the orientation of an image. For distance calculation, the 

Euclidean distance is used to retrieve the images (Park et al., 2008). 

Most of the images consist of some noise and unwanted information. These 

should be removed from the images by using filters before processing for the 

retrieval. Different filter methods can be used for the removal of noise. A median 

filter is applied on images for enhancement as a preprocessing step. Though this filter 

improves the image quality, it creates another problem, that some amount of the edge 

information of the objects in the images is lost. This edge information is recovered by 

applying an edge extraction method. Then the histogram features are extracted from 

the enhanced filtered image by quantizing the histogram into bins and in each bin the 

average of the pixels is computed which are combined to form a feature vector for the 

retrieval of images. The results showed that the median filter with the edge extraction 

method gives good results (Zhao et al., 2009).  In our research work some approaches 

are based on some filters like Laplacian and median filters.  

To reduce the computational cost sub-blocks of images can be used instead of 

histogram. A method is proposed by (Qiu, 2003) in which block truncation coding 

(BTC) technique is used for improving the effectiveness of CBIR. In this method, the 

image is simply divided into non-overlapping blocks, especially in 4×4 pixels for high 

performance. The mean value of each block is computed and then the mean value is 

compared with each pixel of the block such that if the mean value is less than or equal 

to the pixel value, then the pixel position is replaced by 1, otherwise by 0. One mean 

value is calculated for the first condition and the second for another condition. In 

decoding for each block, the pixel position 1 is replaced by the first mean and 0 by the 

second mean value, which is used in the computation of the color features. 

For an effective CBIR, the image is divided into equal sized sub blocks. Each 

block of the HSV color space image, is quantized to get the color histogram features 

of that block (Kavitha et al., 2011). 

Color moments represent the distribution of the color information in an image.  

Color moments have been used successfully in various CBIR systems for the retrieval 

of similar images, for example in QBIC (Veltkamp and Tanase, 2002). The statistical 
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values, mean, variance and skewness are calculated using the color pixel values of the 

image to describe the color feature distribution in the image (Balamurugan et al., 

2010). Color moments characterize the color image to get the color features for 

retrieval of similar images. Color moments consist of the mean, which is the first-

order moment; the variance, which is the second-order moment and the standard 

deviation, which is the third- order moment. These represent the distribution of the 

color pixel values in an image (Dubey et al., 2010). 

Red, green and blue are the three color components of the RGB color image. In 

each of the components of the image, the color moments, the mean, variance and 

standard deviation, are computed. These moments are calculated column-wise and 

row-wise in the three components to be used as the color features to retrieve similar 

images (Kekre and Patil, 2009).  

In spatial domain to increase the retrieval robustness the local features are 

extracted such that using the neighborhood pixel values of a pixel to calculate a set of 

features but this approach will increase the computational cost. The computational 

complexity can be reduced by dividing the image into non-overlapping small sub-

blocks and local features are calculated for all sub-blocks (Datta et al., 2008). 

For combination of color and spatial information many methods have been 

developed for the queries in CBIR (Mustaffa et al., 2008). A method is developed by 

(Stricker and Dimai, 1996), to split the image into five non-overlapping spatial 

regions to compute color features in all the regions and to be used in matching of the 

images. A novel algorithm is proposed by (Li, 2003) in which an image is divided 

into sub-blocks to get color features. Recently, various methods have been introduced 

in which different color features are extracted such as chromaticity moments based on 

regular histograms (Paschos et al., 2003) and fuzzy color histogram (Han and Ma, 

2002). Corresponding region-based color features are extracted and used in matching 

of the images to retrieve similar images (Thomas et al., 2008).  As retrieval based on 

segmentation has high computational complexity for large image database, to reduce 

the computational cost and get the spatial information, the image is divided into nine 

equal sub-blocks and color histogram are constructed for all sub-blocks (Gong et al., 

1996). 
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Color features have been extracted using several methods other than the color 

histogram in image retrieval like color moments and color sets. A method has been 

proposed by (Stricker and Orengo, 1995) using color moments to triumph over the 

histogram quantization. In this method statistically color features are computed such 

that the color distribution is characterized by the first moment (mean), second 

moment (variance) and third moment (skewness). 

Another feature is the texture feature which is used for the retrieval of images; it 

can be defined as: the area of an image described by the spatial distribution of pixel 

values. Texture can be extracted by using the statistical texture moments in the co-

occurrence matrix technique (Partio, 2002). Texture represents the visual 

characteristics of surfaces like wood and fabric. Texture may be rough, smooth, 

coarse and rippled. It consists of vital information about the structural management of 

surfaces and their relationships to the neighboring environment. Since the texture 

properties of the images contain useful information for the classification purposes, 

statistical texture features of the images can be computed to retrieve the similar 

images (Haralick et al., 1973). 

The spatial neighborhood distribution of the pixel values describe an area in an 

image which is called texture and can be extracted by using the statistical texture 

moments in the co-occurrence matrix technique (Partio, 2002). Analysis of the texture 

is attractive and a useful area of research because it has importance in applications 

like medical image processing, defect detection and remote sensing. Texture is more 

useful in the classification of images than other features like color or shape. Texture 

can be mostly found in the natural images having woods, grass, water, trees etc (Park 

et al., 2005). Density, contrast, coarseness and uniformity are typical texture features 

(Shahbahrami et al., 2008). Statistical histogram texture moments are the mean, 

standard deviation, energy, entropy, skewness and kurtosis. These features are 

calculated by using the intensity levels of the images (Selvarajah and Kodituwakku, 

2011). 
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2.4.2 Extraction of the Statistical Texture Features in the Frequency Domain 

The availability of a huge number of the images is due to the advanced development 

in the image capturing devices, Internet and computer hardware. As a result, most of 

the images at present, are represented in a compressed format like  JPEG 

(Nezamabadi-pour and Saryazdi, 2005; Liu et al., 2007). JPEG(Joint Photographic 

Expert Group) is a compressed format of the images with good quality (Jeong, 1997). 

In the compressed domain, the features can be extracted directly without decoding 

into pixels by using frequency transformation like Discrete Cosine Transformation 

(DCT) which is used as the component of the compression process (Mandal et al., 

1999). In DCT, some information from the image is eliminated and some important 

information is left behind during compression, which can be used to play an important 

role in the retrieval of the similar images  (Zhong and Defee, 2005). 

There are various discrete transformation like discrete cosine transformation 

(DCT), discrete Fourier transformation (DFT) and discrete wavelet transformation. 

These transformations will be prominent domains for retrieval of compressed images 

like JPEG. The selection will be made on the performance of transformation. In this 

work of research we have selected DCT for feature indexing and retrieval due to some 

advantages over DWT such that DCT is less expensive for hardware or software 

implementation  than DWT, for instance the two-dimensional 8×8 DCT blocks in an 

efficient algorithm, involves only 54 multiplications (Feig, 1990) where as in DWT 

each coefficient requires at least one multiplication which increases the computational 

cost. 

DCT is a cosine part of Fourier transformation while the DWT requires more 

computation in time frequency. So it is acknowledged by (Shen, 2013) that the 

computational cost of DWT is higher than DCT,  the regions of image become blurred 

and noise is produced near edges of regions by using the larger DWT basis function 

or wavelet filters, the compression time of DWT is longer than DCT, at low 

compression the quality of DWT is lower than JPEG. Therefore we focus on the 

performance of DCT in this research work. 
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The DC and AC coefficients of the 8×8 DCT transformed blocks are represented 

in nine different directions which represent the nine feature vectors of the texture 

features and the grayscale level distribution in the image (Bae and Jung, 1997). In the 

YUV color space, the texture features are extracted such that the image is divided into 

four blocks and only the Y component in each block is transformed in the DCT 

coefficients to get vertical, horizontal and diagonal features in all of  the blocks for the 

image retrieval (Tsai et al., 2006). The DC and some of the AC coefficients are used 

directionally to get energy histograms which are represented as feature vectors to 

retrieve similar images and the approach is tested with a medium sized database (Lay 

and Guan, 1999). The DC vector is combined with a nine AC coefficient distribution 

vector to get the feature vector of the texture features of the JPEG format images. The 

AC coefficients define the texture information (Shan and Liu, 2009). The statistical 

texture features are extracted from the images in the compressed domain by 

computing the mean and standard deviation moments using the DCT coefficients 

(Feng and Jiang, 2003). 

In the JPEG compressed format, the texture features are extracted by computing 

the central moments of the second and third order using the DCT coefficients. These 

features are used to form a feature vector to retrieve the similar images (Vailaya et al., 

1998). The quantized histograms are extracted from the DCT coefficients in the 

approach of (Mohamed et al., 2009) such that the DC and the first three AC 

coefficients are selected in a zigzag order from the transformed 8×8 DCT blocks of 

the JPEG format images and then histograms of these coefficients are constructed 

with a 32 bins quantization. These histograms are used as a feature vector for 

retrieval. This method is tested using the animal dataset of the Corel database. 

The histogram statistical Texture-Pattern is constructed using AC coefficients of 

each DCT block of the image and used for the image retrieval (Bai et al., 2012). The 

histogram texture features are extracted directly from the DCT coefficients for image 

retrieval (Fan and Wang, 2002). 

To retrieve similar images for the query image from the database, the distance 

metric is used for matching. To measure the distance for the similarity between the 

query and database images the distance metrics like Manhattan Distance (L1 metric), 
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Euclidean Distance (L2 metric) and the Vector Cosine Angle Distance (VCAD) are 

used (Hafner et al., 1995).  

The features of the image are represented in the feature vector form which 

represents the object.  For the similarity measurement, various methods are used to 

compare two feature vectors. In comparison, the distance metric measures the 

difference between the two vectors of the images and a small difference means that 

two images are the most similar. The similarity measure metric measures the 

similarity between the two vectors of the images and a large similarity means that two 

images are closely related (Sergyan, 2008).  

2.4.3 Combination of Features in CBIR 

The effectiveness of the CBIR can be analyzed by combining various texture features 

in different combinations because the individual texture features cannot describe the 

image completely enough to retrieve similar images.  

Only a single feature among the different features like color, texture and shape, 

have been used in most of the early work on CBIR. However, satisfactory results are 

difficult to obtain by using a single feature since an image consists of different visual 

information. In order to get high performance of retrieval, in recent research work 

combination of visual features have been used (Liapis and Tziritas, 2004; Vadivel et 

al., 2004; Chun, 2005). In approach of (Liapis and Tziritas, 2004), color features are 

extracted by using 1-D(dimensional) or 2-D histograms of the CIELab chromaticity 

coordinates while texture features are extracted by computing variance of the discrete 

wavelet frames. In approach of (Vadivel et al., 2004), the color features are extracted 

by using color histogram and texture features are extracted by using Haar or 

Daubechies’ Wavelet moment.  The dimension of the feature vectors by combining 

various features in these approaches was ignored.  However there was no guarantee 

that the retrieval accuracy would be high with low dimension of feature vectors 

(Chun, 2005). A novel retrieval framework is proposed by (Deng et al., 2001; 

Hiremath and Pujari, 2007), in which color, texture and shape features are combined. 

The image is divided into non- overlapping sub-blocks of equal size. The color 

features are extracted by computing color moments, texture features by computing 
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moments using Gabor filter and shape features are extracted by capturing edges of the 

objects in the images using gradient vector flow fields.   

An experimental comparison of the statistical features, such as skewness, color 

variance and cross correlation is performed using the color histogram (Sharma et al., 

2011). For the last three decades, the study of the texture features, such as the MPEG7 

edge histogram, relational invariant feature histogram, global texture features, Gabor 

features and Tamura texture histogram have not fully described the texture properties 

of images. To overcome this issue, various texture features have been combined in 

different combinations to get high performance in terms of image retrieval (Deselaers 

et al., 2007).  

In (Veltkamp and Tanase, 2002) the HSV color space is used because this color 

space is closer to the human visual perception. For this purpose, the RGB color 

images are converted into HSV color images. Each component H, S and V is 

partitioned into 96 bins of the histogram. Due to the large number of computations of 

the histogram for the three color components, the efficiency of this process is low. 

The statistical texture values such as the mean, standard deviation, smoothness, third 

moment, fourth moment, uniformity, and entropy are calculated in each bin of the 

histogram in each component of the HSV. For each component 96×7=672 features 

and for the three components 672×3=2016 features are calculated. 

A method is proposed by (Hiremath and Pujari, 2007), in which the texture, color 

and shape features are fused together and extracted in a non-overlapping partitioned 

image by using the Gabor filter, the statistical color moments and the Gradient vector 

flow fields. In the method of (Murala et al., 2009), the color and texture features are 

combined to retrieve similar images. For the color, the mean and standard deviation 

are computed in a histogram of 64 bins in each channel of the RGB color image, to 

get a total of 192 features. For the texture features, the mean and standard deviation 

are computed in sub bands of the Gabor Wavelet Transform image with the three 

scales and four orientations to get a feature vector of 48 features. In (Thawari and 

Janwe, 2011) the HSV color space is used with three color channels, H, S and V. The 

histogram of each channel is quantized into 96 blocks, and each block has a 

dimension of 32×32 pixels. The statistical texture moments of mean, standard 

deviation, skew, kurtosis, energy, entropy and smoothness are calculated in each bin 
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of the histogram. The total 96×7×3=2016 features are computed. Thus, this process of 

feature extraction involves a large number of computations which increase 

computational cost. The method has used 500 images of the Corel database for 

testing. In the approach of  (Kavitha et al., 2011), the color and texture features are 

also combined. The HSV color space image is divided into sub-blocks. The color 

features are calculated by quantizing the histograms of each block. The texture 

features are calculated by using the grey level co-occurrence matrix. In the approach 

of (Soman et al., 2011), the color and texture features are extracted by computing  the 

color moments of mean, standard deviation and skewness in 8×8 blocks of the three 

components of the RGB image and computing the DC and AC coefficients in 9 

directions in 8×8 DCT blocks. The CBIR approach proposed by (Singha and 

Hemachandran, 2012) is based on the combination of the texture and color features in 

which color features are extracted by using the histogram while texture features are 

extracted by using the Haar Wavelet Transformation to get vertical, horizontal and 

diagonal coefficients.  

2.4.4 Summary and Limitations in the Related Works 

Limitations in the related works, for the extraction of color and texture features in the 

spatial and frequency domains are summarized in Table 2.1. It has been summarized 

in the table that approaches with S#:1 to 3 using histogram for the extraction of color 

features, approaches with S#:4 to 9 using the coefficients of DCT transformed blocks 

in different techniques of histogram, co-occurrence matrix and sub-blocks, for the 

extraction of texture features and approaches with S#: 10 to 20 using different 

techniques to extract and combine color and texture features. It has been concluded 

from the approaches in the Table that the CBIR has two major limitations in terms of 

computational cost of feature extraction and retrieval efficiency. Therefore, these 

limitations motivated us to develop efficient and effective CBIR using hybrid 

methods with color and texture features.  
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Table  2.1  Summary of the related works for the extraction of color and texture 

features in the spatial and frequency domains. 

S# Author Features Techniques/Work Limitations 

1 (Chakravarti 

and Meng, 

2009) 

Color Color Histogram of RGB 

color components  

The algorithm is less efficient 

in retrieval and also attempts to 

analyze color information by 

studying each RGB component 

histogram separately. Thus, the 

color analysis does not provide 

necessarily similarity of colors. 

2 (Sergyan, 

2008) 

Color  Color histogram features  Histogram features are 

generated from the image 

histogram fast and the 

comparison of these features is 

computationally fast and 

efficient using only 200 

images. 

3 (Zhao et al., 

2009) 

Color  Color histogram The approach is less efficient  

in terms of computational cost, 

however the retrieval 

efficiency is only 28% 

precision for some query 

images 

4 (Selvarajah and 

Kodituwakku, 

2011) 

Texture First Order S autistics, 

Autocorrelation (AC), Gray 

Level Run Length Matrices 

(GLRLM), Gray Level Co-

occurrence Matrix(GLCM), 

Gabor Transform and 2 D 

wavelet Transform 

Minimum efficiency of 

individual feature is 34% while 

combination of all features is 

78%. However features 

combination indicates 

somewhat computational 

complexity but has robust 

retrieval.  

5 (Shan and Liu, 

2009) 

Texture  the DC vector and AC 

distribution entropy are 

computed by using the 

distribution of AC and DC 

coefficients 

Approach has high retrieval 

efficiency. However indicates 

somewhat computational issue.  

6 (Tsai et al., 

2006) 

Texture  In the YUV color space, the 

texture features are extracted  

by  dividing into four blocks 

and only the Y component in 

each block is transformed in 

the DCT coefficients to get 

vertical, horizontal and 

diagonal AC coefficients as 

features in all of  the blocks  

Computationally less 

expensive, however, the 

performance is often poorer as 

the features from different sub-

blocks may be correlated. 

7 (Mohamed et 

al., 2009) 

Texture Quantized histogram texture 

features are extracted from 

DCT coefficients over the all 

Computationally less 

expensive and has good 

retrieval efficiency for a small 
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Image blocks by using the DC 

and the first three AC’s 

coefficients 

dataset only. Results are poor 

for the images which have the 

similar complex background to 

the object itself. 

8 (Lay and Guan, 

1999). 

Texture The DC and some of the AC 

coefficients are used 

directionally to get energy 

histograms which are 

represented as feature vectors 

Computationally less 

expensive but retrieval 

efficiency is comparatively 

less.  

 

9 (Deselaers et 

al., 2007). 

discussed a 

large 

variety of 

features for 

image 

retrieval 

Different techniques used  It has been shown that, despite 

more than 30 years in research 

on texture descriptors, still 

none of the texture features 

presented can convey a 

complete description of the 

texture properties of an image. 

Therefore a combination of 

different texture features will 

usually lead to best results. 

10 (Hiremath and 

Pujari, 2007) 

Color, 

texture and 

shape 

Texture, color and shape 

features are fused together 

and extracted in a non-

overlapping partitioned image 

by using the Gabor filter, the 

statistical color moments and 

the Gradient vector flow 

fields. 

Approach’s retrieval efficiency 

is 55% precision while 

computational cost indicates 

comparatively less expensive. 

11 (Soman et al., 

2011) 

Color and 

texture 

In the approach of, the color 

and texture features are 

extracted by computing the 

color moments of mean, 

standard deviation and 

skewness in 8×8 blocks of the 

three components of the RGB 

image and computing DC and 

AC coefficients in 9 

directions in DCT blocks. 

Approach’s retrieval efficiency 

is 57% precision while there is 

some computational issue due 

to the extraction in the three 

components of RGB image and 

then in the DCT blocks.  

12 (Singha and 

Hemachandran, 

2012) 

Color and 

texture 

combination of the texture 

and color features in which  

color features are extracted by 

using  histogram while texture 

features are extracted by 

using the Haar Wavelet 

Transformation to get 

vertical, horizontal and 

diagonal coefficients. 

There is some computational 

issue due to the extraction in 

the three components of HSV 

and then Haar Wavelet 

Transformation coefficients 

while retrieval efficiency is 

better with 76% precision.  

13 (Lu et al., 

2006) 

 

color and 

texture 

Statistical Color and texture, 

based on DCT coefficients, 

are computed. 

Retrieval efficiency is 

comparatively is good but has 

less computationally cost.  
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14 (Alnihoud, 

2012) 

Color and 

shape 

 Color and shape features are 

extracted based on the SOM 

(self-organizing map). A 

Fuzzy Color Histogram 

(FCH) and the object Model 

Algorithm (to get the edge of 

the objects).  

Good retrieval efficiency of 

74% precision while algorithm 

indicates some computational 

complexity. 

15 (Shahbahrami 

et al., 2008) 

Color and 

Textures 

Color histogram, color 

moments, and color 

coherence vector features. 

The co-occurrence matrices 

and discrete wavelet 

transform features have been 

used for texture descriptors 

Using several techniques for 

feature extraction it shows that 

there is some computational 

issue. 

16 (Murala et al., 

2009) 

Color and 

Textures 

Color Histogram and Gabor 

Transformation 

Retrieval efficiency is 64.76% 

precision while approach 

indicates that there is some 

computational issue due to 

high dimensional feature 

vector. 

17 (Thawari and 

Janwe, 2011). 

Color and 

Textures 

Color and statistical texture 

features of Color Histogram 

of RGB color components 

Computations and feature 

vector with high dimension 

indicates somewhat 

computational issue while 

algorithm is tested by using a 

small dataset with very few 

query images.  

18 (Park et al., 

2008). 

Set of 

features 

with color, 

and shape 

of objects. 

Histogram Refinement 

Method 

This approach has high 

retrieval performance but 

commutation of several 

features indicates some 

computational issue for the 

creation of feature database.  

19 (Kavitha et al., 

2011) 

Color and 

texture  

Sub-block method, color 

histogram and gray-level co-

occurrence matrix from each 

block 

Retrieval efficiency is 50% 

precision while approach 

indicates that there is some 

computational issue due to 

using various techniques for 

extraction of features.  

20 (Dubey et al., 

2010) 

Color and 

texture 

combining the color 

Histogram, Color Moment, 

co-occurrence matrix, and 

edge Histogram descriptor 

features 

Retrieval efficiency is 27% 

while approach indicates that 

there is some computational 

issue due to using various 

techniques for extraction of 

features. 
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2.5 Similarity Measurement 

Similarity measuring is rather easier said than done. It is relatively complex to 

measure between the two images. It is a challenging task in CBIR. The similarity 

measurement shows the power of the correlation between the features of two images. 

It distinguishes one feature from another between the two images. It utilizes the 

extracted features of the images in such a way that a single value is generated which 

shows the desired subjective similarity between the two images and the similarity is 

high if the value is higher (Arevalillo-Herráeza et al., 2008).  

After features extraction, the there was a question that how these features would 

be indexed efficiently and matched effectively for retrieval. Then different methods 

for similarity measurement were introduced by the researchers and grouped like 

feature-based matching (Swain and Ballard, 1991), salient (geometric hashing) feature 

matching (Wolfson and Rigoutsos, 1997), object-silhouette-based matching (Bimbo 

and Pala, 1997), structural (hierarchically ordered sets of features) feature matching 

(Wilson and Hancock, 1997), matching at the semantic level (Fagin, 1997) and 

learning-based approaches for matching (Webe et al., 2000; Wu et al., 2000). 

To imitate the needs of the users the similarity measurement is improved step 

wise by the feedback of the users and an approach was introduced called relevance 

feedback (RF) which was used by (Rui et al., 1997) in MARS system.  

To measure the similarity between the query and target images a method was 

proposed using the earth mover’s distance (EMD) (Rubner et al., 2000) to compute 

the distance between images using their feature vectors. Another distance metric used 

by (Li et al., 2000) is the IRM (integrated region matching) distance which is also 

useful matching-based distance and this distance metric uses the most similar highest 

priority (MSHP) principle for the matching of regions.  

Once the features are extracted from the image then the features are represented in 

a feature vector with N-dimensions. The feature vectors are used to index the images 

into a database. To measure the similarity between the query images and the target 

images of the database, the distance is computed between the feature vectors of the 

query and the target images. The main problem in CBIR is to determine the distance 
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between the images. The distance value reveals the desired perception about the 

images of humans. The similar images have small distance values and dissimilar 

images have large distance values. There are various distance metrics which can be 

used to measure the distance between the features vectors of images, for example the  

Sum of the Absolute Difference (SAD) (Kekre and Mishra, 2011; Selvarajah and 

Kodituwakku, 2011), the Sum of the Squared of the Absolute Difference (SSAD)  

(Selvarajah and Kodituwakku, 2011), the Euclidean distance, the City block distance, 

the Canberra distance, the Maximum values and Minkowski distance (Vadivel et al., 

2003; Zhang and Lu, 2003; Cha, 2007; Sergyan, 2008).  

Let Q and T be the feature vectors of the query and target images having n number 

of features such that Q= {q1 , q2, …, qn} and T={t1 , t2, …, tn} where qi and ti are the 

features of the query and target images. The Euclidean distance D can be used to 

measure the distance between Q and T feature vectors. 

 
2

1

( , )
n

i i

i

D Q T Q T


                                             (2.1) 

The above mentioned distance metrics are discussed in chapter 4. 

2.6 Performance Evaluation  

The effectiveness of the image retrieval is based on the performance of the feature 

extraction and the similarity measurement. In this section, the performance metrics 

which have been adopted not only to evaluate the effectiveness of the image retrieval 

but also to make sure of the stability of the results are described. In order to evaluate 

the retrieval performance of CBIR, three measurements have been used: precision, 

recall (Thawari and Janwe, 2011) and F- score (Sudhakar et al., 2011; Jacob and 

Srinivasagan, 2013). 

Before defining precision and recall first it is necessary to discuss and explain 

abstract diagram of these measurements.  Let A be the set of images in the image 

database, q be the user query image to retrieve the similar images from A, and B be 

the set of retrieved images according to the query image q as show in Fig. 2.1. 
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Figure 2.1  Abstract diagram of the performance evaluation measurements for CBIR. 

There are three other sets a, b and c as shown in Fig. 2.1. Where a denotes the 

retrieved most relevant images to the query image q, b denotes the irrelevant images 

to the query image and c denotes the relevant images in set A and d denotes the 

irrelevant images which are not retrieved. Consider the above diagram and the 

proposed sets of images then the precision and recall can be defined as follows: 

 Precision 

The precision in image retrieval can be defined as:  the measurement of the retrieved 

relevant images a to the query total retrieved images
3
 B

.
 

a a
Precision= =

a+b B
                                            (2.2) 

 Recall 

The recall in image retrieval can be defined as: the measurement of the retrieved 

relevant images a to the total relevant images in database
4
 A. 

a a
Recall= =

a+c A
                                           (2.3) 

 F-Score
5
 

The precision and recall measure the accuracy of the image retrieval with relevancy to 

the query and database images and always two values are computed to show the 

effectiveness of the image retrieval. However, these two measurements cannot give 

                                                      

3
 http://en.wikipedia.org/wiki/Precision_and_recall 

4
 http://en.wikipedia.org/wiki/Precision_and_recall 

5
 http://aimotion.blogspot.com/2011/05/evaluating-recommender-systems.html 

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Precision_and_recall
http://aimotion.blogspot.com/2011/05/evaluating-recommender-systems.html
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complete view of the effective image retrieval. Hence, they can be combined to give a 

single value that describes the accuracy of image retrieval and this combination is 

called F-Score or F-measure to measure accuracy. Both precision and recall 

measurements are combined to compute the F-score (Sudhakar et al., 2011; Jacob and 

Srinivasagan, 2013) and it is also called as a weighted average or the harmonic mean 

of the precision and recall. F-Score can be defined as: 

precision recall
F Score 2

precision recall


  


                                    (2.4) 

The F-Score value is a single value that indicates an overall effectiveness of the image 

retrieval.  

For example, a CBIR method for a query image retrieves totally B=10 images 

with a=8 relevant images out of totally A=30 relevant images in the database. Then 

the precision is a ÷ B = 8 ÷10= 80%, recall is a ÷ A =8 ÷ 30 =27% and F-Score is 2× 

(80×27) ÷ (80+27) =40.37%. Thus this shows that only recall and precision cannot 

measure the effectiveness of the CBIR, a single valued F-Score must also be 

computed to show the overall performance in terms of retrieval. 

2.7 Benchmark Image Datasets 

In the literature, the benchmark image data sets are proposed in order to compare the 

performance of the different image features for the retrieval systems (Deselaers et al., 

2008). In this research work, the Corel dataset (Wang et al., 2001)  is used to test the 

proposed approaches and the comparison of the optimal proposed approach with the 

other approaches in literature is also based on same the dataset. 

 Corel Dataset 

The Corel (Wang et al., 2001) dataset consists of 1000 images from the Corel stock 

photo database. The 1000 images are divided into 10 categories: People, Beach, 

Building, Buses, Dinosaurs, Elephants, Horses, Roses, Mountains, and Foods. Each 

category consists of 100 images. Figure 2.2 shows an example of the images from 

each image category. In the retrieval of this work’s experiments, an image of the same 

category as the query image will have a positive and images of different categories as 



41 

negative. Hence, the Corel dataset is used for evaluating features and methods for 

image matching. 

 

 

 

 

 

Figure 2.2  Images of each category from the Corel dataset. 

2.8 Chapter Summary 

In this chapter, some of the essentials required for this research have been presented. 

The chapter started with the concept of content-based image retrieval, types of 

features, and various basic features like color, texture and shape. It also presented 

techniques of extraction.  The domains are discussed where the features are extracted, 

which affect the retrieval of the images. The extracted features are represented in 

vector form. The similarity measurement discussed using the feature vectors for the 

matching of images. The performance measurements, which are used to evaluate the 

performance of this research work, are discussed. The benchmark data set is described 

which is used to test our approaches and the comparison in Chapter 5 with the other 

methods is based on the same dataset. 
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CHAPTER 3 

METHODOLOGY  

In order to improve the efficiency of CBIR, in this study, various approaches are 

proposed in which different techniques are fused together in the spatial and frequency 

domains to design and implement CBIR system using hybrid methods with color and 

texture features as shown in Fig. 3.1  

 

 

 

 

 

 

 

 

Figure 3.1 Overview of the entire CBIR using hybrid methods with color and textures 

features in the proposed approaches in the spatial and frequency domains.  

In the spatial domain the first approach is based on Laplacian filter using color 

histogram; the second one is based on median filter, median filter with edge extraction 

method and Laplacian filter using color histogram refinement method, third one is 

based on sub-blocks of different sizes for color features; the fourth one is based on 

sub-blocks of different sizes for texture features; and the fifth one is based on the 

integration of color and texture features using sub-block methods. 

Similarity measurement of query image 

with database images 

Results of similar images 

Input query RGB color image  
Input RGB color image from the image 

collection 

Preprocessing 

Construct Feature Vectors 

Feature Database 

 Spatial Domain 

 Computation of color and texture features in spatial domain using histogram, histogram 

refinement method based on median and Laplacian filters and sub-block methods 

 Frequency Domain 

 Computation of texture features in frequency domain using quantized histograms based 

on median and Laplacian filters, distance metrics and combination of features 

Construct Query Feature Vector 
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In the frequency domain to extract the quantized histogram texture features from 

DCT blocks the first approach is based on median filter, median filter with edge 

extraction method and Laplacian filter; the second one is based on various distance 

metrics (for similarity measurement); the third one is based on different combinations 

of texture features; the fourth one is based on the combination of sub-block method 

with histograms of DCT blocks for texture features; and the fifth one is based on the 

combination of sub-block method with histograms of DCT blocks for color and 

texture features. 

3.1 Color and Statistical Texture Features Extraction in the Spatial Domain 

To extract the color and texture features from an image for the efficient retrieval of 

similar images different techniques are combined in various approaches in a spatial 

domain. In the spatial domain various approaches are proposed in which the statistical 

color histogram features are computed using the pixel distribution of the Laplacian 

filtered sharpened image based on the different quantization schemes. However, color 

histogram does not provide the spatial information. The solution is by using the 

histogram refinement method in which the statistical features of the regions in 

histogram bins of the filtered image are extracted. This approach gives efficient 

retrieval but it has high computational cost, which is reduced by dividing the image 

into sub-blocks of different sizes, to extract the local color and texture features of 

image and also to get local information instead of using complex segmentation. To 

improve further the performance, the color and texture features are combined using 

sub-block methods due to the less computational cost and good local information. 

To improve the retrieval performance of the CBIR, color and texture features are 

combined in various approaches in the spatial domain. For this purpose the following 

contributions are mainly focused towards the efficient and effective CBIR: 

 Extraction of the color features of the histograms and their quantization into a 

set of different numbers of bins based on Laplacian, median and median with 

extraction techniques to achieve the effective image retrieval. The 

effectiveness is analyzed based on the set of different quantization schemes of 

histogram in the context of the filters. 
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 Utilization of the sub-block method to extract the color and statistical texture 

features instead of the histogram to reduce the computational complexity. The 

performance is analyzed individually for both features on the basis of the sub-

block methods of different sizes. 

 Combination of color and texture features using the sub-block methods to get 

robust performance in terms of retrieval and reduced computational cost.  

3.1.1 Analysis of the Quantized Color Histogram Features Based on the 

Laplacian Filter (Approach-1) 

In this proposed Approach-1, the main contribution is to analyze and show the 

performance of the quantized histogram color features based on the Laplacian filter 

and different quantization schemes. The proposed approach is started with the 

conversion of the RGB color image into grayscale image and then gets a sharpened 

image by using the Laplacian filter. The first and second order color moments are 

extracted from the histograms by quantizing them into a set of different quantization 

schemes and these features are represented in a feature vector. The feature vectors of 

all of the images are constructed and stored in a database. These vectors are used in 

the matching of the query image with the database target images to retrieve similar 

images.  

3.1.1.1 Preprocessing 

The preprocessing involves the conversion of an image from RGB color space to 

grayscale image and then it is further enhanced by using Laplacian filters. 

3.1.1.1.1 Conversion of RGB Color Image into Grayscale Image 

As the RGB color image consists of three color components, red, green and blue, and 

each component is a two dimensional matrix of pixel values having values from 0 to 

256, therefore the computational cost of the feature extraction would be high. To 

reduce the computational cost, the RGB color image is converted into grayscale 
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(Murala et al., 2009). The proposed approach starts with the conversion of the input 

RGB image into grayscale as shown in Fig. 3.2-A and 3.2-B-a. The grayscale image is 

then converted into a histogram equalized (HE) image f, to get the enhanced image 

with equal intensity levels so as to get a high contrast image as shown in Fig. 3.2-B-b.  

    

                                          (A)                                                                           (B) 

Figure 3.2 (A) Block diagram of the proposed Approach-1(B) Sharpening process 

using Laplacian filter. 

 

 

 

 

 

 

 

Figure 3.3 Preprocessing of the proposed Approach-1 using Laplacian filter. 

 

Original RGB image Grayscale image 

Histogram Equalized image Laplacian Filtered image 
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Then Laplacian filter is applied to get a more enhanced sharpened image. The 

preprocessing steps using the Laplacian filter are shown in Fig. 3.3. 

3.1.1.1.2 Laplacian Filter 

Images mostly consist of noise and unwanted information which effects the matching 

of images in CBIR. Therefore it is very essential to remove the noise and unwanted 

information in image by performing effective noise reduction process before 

performing high-level processing steps to obtain multi-resolution images by using 

different filters like median, Laplacian and Gaussian filters(Demigny, 2002).  

In the proposed approach we use Laplacian filter which is mainly used for the 

extraction of the strong edges of the objects in the images. In our work the Laplacian 

filter uses a window of values which are convoluted with image pixel values. These 

values are further processed to get enhanced and sharpened image to improve the 

retrieval of images because oftenly images with noise and unwanted information lead 

to inefficient retrieval of images in CBIR. 

In the Laplacian filter, a window or mask with some values works with the values 

of the image pixels in the neighborhood. The values in the filter window are called 

filter coefficients. The result of this filter is the sum of the products of the filter 

coefficients and the corresponding image pixel values. This filter gives an image with 

strong edges (Gonzalez et al., 2004). 

Let ( , )f x y be an original image and ( , )f x y  be a Laplacian image such that 

2 2

2 2
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To get the filtered image, all points (x, y) in Eq. 3.4 can be convoluted with a 3×3 

mask as seen in Fig. 3.4. 
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Figure 3.4  3×3 mask of the Laplacian filter. 

The image f, is filtered with the Laplacian filter to get a filtered image g1, with the 

edges of objects in the image as show in Fig. 3.2-B-c. But all of the pixel values in g1 

are positive and these values must be negative because of the negative value -4, at the 

center of the mask as shown in Fig. 3.4. For this purpose, the histogram equalized 

image f, is converted into the real valued image f2, as shown in Fig. 3.2-B-d. This 

image f2, is again filtered with the Laplacian filter to get image g2 with the edge 

information as shown in Fig. 3.2-B-e. But during the filtering process of image g2, 

some amount of the information is lost. To restore this information and get an 

enhanced and sharpened image g, the Laplacian filtered image g2, is subtracted from 

the real valued image f2 and calculated as (Gonzalez et al., 2004):  

g = f2 - g2                                                      (3.5) 

In Eq. 3.5, g is the sharpened and enhanced image with detailed information as 

shown in Fig. 3.2-B-f. This process is also called sharpening of the image (Gonzalez 

et al., 2004). The features are extracted from image g for retrieval and analysis. 

3.1.1.2 Histogram Quantization 

Color is the most prominent and important feature of an image because it is the 

dominant part of the human visual perception. It is widely used in CBIR to retrieve 

images. For this purpose, various color techniques have been used.  Among these 

techniques, the color histogram is the most popular and widely used technique. 

The histogram is defined as the frequencies of the color pixels in the sharpened 

grayscale image. Quantization is a process in which the histogram is divided into a 

number of bins to reduce the number of bins by selecting color pixels which have 
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very close similarity with each other and enclosing them in the same bin. The 

grayscale image by default has 256 maximum number of bins (Park et al., 2008). 

Histogram has the characteristic that it represents the global information of the 

image (Swain and Ballard, 1991; Jin, 2009). This global information representation of 

the image is very useful in the queries in which the matching of the images is based 

on the whole appearance. The color histograms are very fast in the computation of the 

features (Park et al., 2008). It has no effect on the small changes in the scenes. It is 

useful and widely used for the images which require invariance in the translation and 

rotation (Park et al., 2010). However, for a query which requires retrieving the images 

with the same scenes but with different appearances of illuminations, the color 

histogram is not a suitable technique.  Spatial information in the color histogram is 

not maintained due to which the same histograms will be extracted for the images 

with diverse appearances. In other words, an image with many very small green spots 

has a histogram similar with the histogram of the image which has a single large 

green area (Jin, 2009). 

To preserve the spatial information in a histogram, an algorithm is proposed by 

(Liu et al., 2007) in which the color histogram refinement method is used so that 

pixels of the same color are classified into coherent and incoherent clusters. This 

method is also called the color coherence vector (CCV). 

The value of each pixel indicates a specific color that can be represented in the 

various color spaces of the three components, red, green and blue (RGB), and Hue, 

Saturation and Value (HSV). Each component, R, G and B, in the RGB color space 

consists of 0 to 255 pixel values or intensity levels. The computational cost will be 

high for the extraction of the color histogram features from all the three components. 

To reduce the computational speed, the RGB color image is converted into a single 

component grayscale image of only 0 to 255 levels. 

In the proposed Approach-1, all of the 256 levels of the grayscale image are not 

used and it is further reduced to certain levels to reduce the computational cost. The 

process to divide the image into levels or bins of frequencies of the same color is 

called quantization. In this approach, the filtered grayscale image of 256 levels is 

quantized into different numbers of bins so as to reduce the computations. 
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Hence in this proposed approach the histogram of the sharpened filtered image is 

quantized into different quantization schemes. The quantization process is carried out 

separately for quantization schemes of 4, 8, 16, 32, 64 and 128 bins.  

The histogram is then quantized into L (4, 8, 16, 32, 64 and 128) bins such that: 

H= {h(b1), h(b2) ….h (bL) }                                        (3.6) 

Where h(bi) is the frequency of the pixel values in bin bi, for i=1,2,..L and H is the 

histogram of L bins. 

3.1.1.3 Feature Extraction 

For feature extraction, the statistical color moments are considered useful for retrieval 

of similar images. These color moments provide the information about the intensity 

level distribution in the image. The first-order moment is the mean and the second 

order moment is the standard deviation. The mean represents the brightness of an 

image and the standard deviation represents the contrast. The dark image has a low 

mean and the bright image has a high mean. The low contrast image has a low 

standard deviation while the high contrast image has a high standard deviation. The 

mean and standard deviation are calculated in each bin using the distribution of pixels. 

The statistical color features’ mean and standard deviation are calculated in the 

histogram bins of H. Let µj be the mean and σj be the standard deviation in a 

particular bin j, where j=1, 2, 3…, L, and then these two features are calculated by 

using the statistical measurements (Wang et al., 2001; Jia and Wang, 2003) as: 
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Where xji is the pixel value of pixel i in bin j and N is the total number of pixels in 

each bin. 

After the calculation of these color features, the feature vector FV of these values 

is constructed as: 
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FV= {µ1, µ2… µL, σ1, σ2 ... σL}                                   (3.9) 

The feature vectors (FVs) of all of the images are constructed and are stored in a 

database. Algorithm 1 is used to extract color features. The feature vector of the user 

query is constructed in the same way using Eq. 3.7 to 3.9 and compared with the 

feature vectors of the database for similarity and retrieval of relevant images as shown 

in Fig. 3.2-A.  

Algorithm 1  Feature Extraction Algorithm of Approach-1 

Input:  Input image Img_file, Number of bins B  

Output: Feature vector  fv  

1. Read and convert the  Img_file into 2D matrix 

1.1   Img = imgread(Img_file ) 

2. Convert RGB  Img into grayscale image 

2.1   Img_gray = RGB_to_Gray (Img)  

3. Convert grayscale Img_gray  into Histogram Equalized image  

3.1   Img_he = hist_Eq (Img_gray)  

4. Apply Laplacian filter to  Img_he 

4.1.   S_img = Laplacian_Filter (Img_he) 

5. Construct histograms and quantize into B bins  

5.1.   For  b = 1 to B 

5.2.   h(b) = Histogram(S_img, b) 

5.3    End for  

6. Compute the features of mean and standard deviation 

6.1.   For  b = 1 to B 

6.2.   m(b) = mean(h( b)) 

6.3.   stddev(b) = std(h( b)) 

6.4    End for  

7. Initialize   K=1 

8. Construct feature vector fv of features  

8.1.   For  b = 1 to B 

8.2.   fv(1, K) = m(b) 

8.3.   fv(1, K+1) = stddev(b) 

8.4.   K = K + 2 
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8.5    End for  

9. Return feature vector fv 

9.1  Return  fv 

3.1.2 Color Feature Analysis for CBIR Based on Median, Median with Edge 

Extraction Method and Laplacian Filters using the Color Histogram 

Refinement Method (Approach-2) 

In this section, a CBIR Approach-2 is proposed which is based on median and 

Laplacian filters to reduce the noise and provide enhanced sharpened images with 

more detail information using the color histogram refinement method to overcome the 

problem of retaining of spatial information which is not provided by standard 

histogram. The color histogram is divided into bins. The number of regions is 

determined in each bin. The statistical color moments of mean and standard deviation 

are calculated in each bin by using the areas of the regions to get a feature vector 

which is used for image retrieval. 

The proposed Approach-2 is based on the analysis of the statistical color 

histogram features using median, median with edge extraction method and Laplacian 

filters. The statistical features are extracted in histograms using the spatial information 

for each filter separately. Before applying the histogram to the image for the 

extraction of the features, preprocessing is performed. Step wise and entire block 

diagrams of the proposed Approach-2 are shown in Fig. 3.5 and Fig. 3.6. 

3.1.2.1 Preprocessing 

Preprocessing consists of conversion from RGB to grayscale image and the filters 

method to enhance image before using for features extraction. 
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3.1.2.1.1 Conversion of RGB Color Image into Grayscale Image 

 The RGB color image is converted into grayscale and then the grayscale image is 

then converted into a histogram equalized (HE) image to get the enhanced image as 

discussed in section 3.1.1.1.1 and shown in Fig. 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Step wise block diagram of the proposed Approach-2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Block diagram of the entire proposed Approach-2’s process. 
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In the proposed approach we use median and Laplacian filters. In our work these 

filters use a window of values which are convoluted with the image pixel values. 

These values are further processed to get enhanced and sharpened image to improve 

the retrieval of images because oftenly images with noise and unwanted information 

lead to inefficient retrieval of images in CBIR. 

3.1.2.1.2 Median Filter 

Images can contain noise. Therefore, when applying processing techniques on images 

to extract color features, the images needed to be preprocessed to remove unwanted 

information and to get enhanced images with the relevant information only. Median 

filter is based on neighborhood operations. It consists of a window which is 

encompassed over an image to put into order (rank) the pixels in the image area and 

then replace the central pixel with the determined values. 

The median filter replaces the value of a pixel by the median of the gray levels in 

the neighborhood of that pixel (Gonzalez et al., 2004). This filtered image is then 

used for the feature extraction. 

3.1.2.1.3 Median with Edge Extraction Method 

Even though median filtering removes the noise from images, some black specks are 

still left around the border. These black points are due to the default padding of zeros 

(0’s). Some amount of information in the image, like edge information, is lost 

(Gonzalez et al., 2004). To restore the edge information of the median filtered image, 

a technique called canny edge detection is used to determine the edge information in 

the image before applying the median filter (Shan and Liu, 2009). This is the most 

powerful edge detector. This technique detects two edge points, strong and weak, 

using two threshold values T1 and T2 such that T1<T2. If the pixel values are greater 

than T2, then the edge values are strong and if the pixel values are in between T1 and 

T2, then these are called weak edge pixels. At the end, the canny technique connects 

the weak edges to the strong edges by using an 8-connection. The edge detection 

technique is used to determine the edges before applying the median filter to the 



54 

image. The edge information of the median filtered image is restored by the already 

extracted edge information (Gonzalez et al., 2004). Thus, the features are extracted 

from the median filtered image with the edge extraction method. 

3.1.2.1.4 Laplacian Filter 

The Laplacian filter is discussed in detail in section 3.1.1.1.2.  

3.1.2.2 Histogram Refinement Method 

Histogram quantization has been discussed in section 3.1.1.2 and the main 

disadvantage of the color histogram is that spatial information is not maintained due 

to which the same histograms will be extracted for the images with diverse 

appearances. In other words, an image with many very small green spots has a 

histogram similar with the histogram of the image which has a single large green area 

(Jin, 2009). 

To preserve the spatial information in a histogram, an algorithm is proposed by 

(Liu et al., 2007) in which the color histogram refinement method is used so that 

pixels of the same color are classified into coherent and incoherent clusters to get the 

connected regions. The pixels in the regions have spatial correlation in their 

neighborhoods.  Different properties of the regions can be extracted as features. This 

method is also called the color coherence vector (CCV). 

The histogram is then quantized using different quantization schemes with L bins 

such that: 

 H= {h(b1), h(b2) ….h (bL)                                        (3.10) 

where h(bi) is the frequency of the pixel values in bin bi  and H is the histogram of the 

L bins. 

After quantization of enhanced filtered image into number of bins then in the bins 

the number of connected regions is determined using 4-nieghborhood. These regions 

can be used to extract the features. 
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3.1.2.3 Feature Extraction 

For feature extraction, the color histogram refinement method (CHRM) is used. The 

color histogram is quantized into different number of bins and each bin is divided into 

connected regions of pixels. The number of regions in each bin is determined. Then, 

the area of each region is calculated. Two color moments are used to calculate the 

features. The first-order moment is the mean and the second order moment is the 

standard deviation. The mean and standard deviation are calculated in each bin using 

the areas of the regions. 

The statistical color features’ mean and standard deviation are calculated in the 

histogram bins of H. Let µj be the mean and σj be the standard deviation in a 

particular bin j, where j=1, 2, 3…, L bins, and then these two features are calculated 

by using the statistical measurements (Wang et al., 2001; Jia and Wang, 2003) as: 
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Where Aji is the area of the ith region in jth bin and N is the total number of regions in 

each bin j. 

After the calculation of the color features, the feature vector FV is constructed as: 

FV= {µ1,  µ2…. µL,    σ1, σ2…. σL}                                (3.13) 

For all of the images in the database, the feature vectors (FVs) are computed and 

stored in the database, using Algorithm 2. The feature vector of the user’s query 

image is constructed in the same way and compared with the feature vectors of the 

database for similarity and retrieval of relevant images as show in Fig. 3.5. Algorithm 

2 is used to extract the color histogram features based on the filters.  
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Algorithm 2  Feature Extraction Algorithm of Approach-2 

Input:  Input image Img_file, Number of bins B  

Output: Feature vector  fv  

1. Read and convert the  Img_file into 2D matrix 

1.1   Img = imgread(Img_file ) 

2. Convert RGB  Img into grayscale image 

2.1   Img_gray = RGB_to_Gray (Img) 

3. Convert grayscale Img_gray  into Histogram Equalized image  

3.1   Img_he = hist_Eq (Img_gray) 

4. Apply Median and Laplacian filters to  Img_he 

4.1.   F_img =Filters (Img_he) 

5. Construct histograms and quantize into B bins  and create regions N of 

objects 

5.1    For  b= 1 to B 

5.2  Q_ hist(b) =Histogram(F_img, b) 

5.3   Region(b) =Create_Regions (F_img, N) 

5.4    End for  

6. Initialize   K=1 

7. Compute the features and construct feature vector fv   

7.1   For  b= 1 to B 

7.2    fv( K) = mean(Area(Region(b))) 

7.3.   fv( K+1) = std(Area(Region(b))) 

7.4    K = K + 2 

7.5    End for  

8. Return feature vector fv 

8.1  Return  fv 

3.1.3 Features Analysis for CBIR Based on the Color Moments using the Block 

Methods (Approach-3) 

We propose an approach for CBIR that is based on statistical color moments using the 

sub-block methods of different sizes. Efficient and effective retrieval of similar 

images from a database is an active area of research. Without efficient feature 
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extraction and proper indexing structures, similar image retrieval is time consuming 

because the query image is compared with all of the images of the database. The 

computational cost of feature extraction will be increased when the database is large. 

The problems of image retrieval which have been studied widely in the past are given: 

the reduction of the computational cost of feature extraction, the proper representation 

of features and the similarity measurement of the most similar images. To approach 

these issues and to get effective image retrieval, the statistical features are extracted 

from a grayscale image in the proposed approach by dividing the image into sub-

blocks of different sizes. In the proposed block methods simply the color pixel values 

are computed using their distribution in each block. In each block, two color 

moments, mean and standard deviation, are computed using the pixel values to get the 

feature vectors of the different dimensions. The calculated features characterize the 

local information of blocks. The local features are combined in vector to describe the 

overall image. Using the proposed sub-block methods the computational cost is 

reduced as compared to complex segmentation which leads to efficient indexing of 

feature database. The matching of images is based on the local information of blocks 

which gives efficient retrieval of images. After various experiments, the results are 

analyzed and the performance is measured in terms of precision, recall and F-Score. 

3.1.3.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into 

grayscale image to reduce computational cost as shown in Fig. 3.7 and it has been 

discussed in section 3.1.1.1.1. 

3.1.3.2 Block Division  

The grayscale image in the next step as shown in Fig. 3.7, is divided into non-

overlapping sub-blocks of different sizes such as, Whole-Image-as-One-Block, 2-

Blocks-Column-Wise, 2-Blocks-Row-Wise, 2×2, 4×4, 8×8, 16×16, 32×32, and 64×64 

blocks. Each block is a 2-dimensional matrix of 0 to 256 values. These values in each 

block will be used in the computations of the color moments to retrieve the similar 

images from the image database. 
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Let the image I be divided into L number of blocks such that:  

ImgB = {b1, b2 ….bL}                                              (3.14) 

Where bi is the block of image I 

 

Figure 3.7 Block diagram of the proposed Approach-3. 

3.1.3.3 Feature Extraction  

For extraction of color features, the color moments is widely used because it has 

invariance to the rotation, scaling and translation of an image (Kodituwakku and 

Selvarajah, 2010). The proposed approach is also based on color moments which 

include the first order moment, mean, and the second order moment, standard 

deviation. These statistical features are computed in each block by using the pixel 

values.  

The two statistical color moments are extracted from the sub-blocks of the 

grayscale image for all of the proposed different sizes of the block methods. These 
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features are extracted by using the pixel values of the blocks from 0 to 256. The block 

diagram of the proposed approach is shown in Fig. 3.7. 

Different numbers of color features are computed using sub-block methods of 

different sizes, for example for the 4×4 block method, total 4×4×2=32 features; for 

the 8×8 block method, total 8×8×2=128 features; for the 16×16 block method, total 

16×16×2=512 features and so on, are calculated.  

Let the mean be denoted by µ and the standard deviation by σ which are 

calculated  using the xji pixel value, for j = 1, 2,..., L blocks and for i = 1,2,...,N pixels 

, then these values can be calculated (Bannour et al., 2009; Kodituwakku and 

Selvarajah, 2010) as: 
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Where xji is the pixel value of ith pixel in block j and N is the total number of 

pixels in each block j. 

After the calculation of these color features in all sub-blocks L then they are 

combined together to construct a feature vector FV as: 

                      FV= {µ1, µ2… µL, σ1, σ2… σL}                                   (3.17) 

The feature vectors (FVs) of all of the images are constructed in the first step of 

the proposed approach as shown in Fig. 3.7 and are stored in the database. The feature 

vector FV is also calculated for the user query image by using the same approach in 

the second step as shown in Fig. 3.7. This query feature vector is compared with all of 

the feature vectors in the database to retrieve similar images. Algorithm 3 extracts the 

features of the sub-blocks to get feature vector FV.  
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Algorithm 3  Feature Extraction Algorithm of Approach-3 

Input:  Input image Img_file, Size of blocks  L=R×C  

Output: Feature vector  fv  

1. Read and convert the  Img_file into 2D matrix 

1.1   Img = imgread (Img_file ); 

2. Convert RGB  Img into grayscale image 

2.1   Img_gray = RGB_to_Gray (Img);  

3. Divide the image in sub-blocks 

3.1.   For  b = 1 to L 

3.2.   B(b) = Block_Conversion(Img_gray, b); 

3.3    End for  

4. Initialize   K=1; 

5. Construct feature vector fv by computing mean and standard deviation  

features  

5.1.   For  b=  1 to L 

5.2.   fv(1, K) = mean(B(b)); 

5.3.   fv(1, K+1) = stddev(B(b)); 

5.4.   K = K + 2; 

5.5    End for  

6. Return feature vector fv 

6.1  Return  fv 

3.1.4 Features Analysis for CBIR Based on the Statistical Texture Features 

using the Block Methods (Approach-4) 

In order to reduce the computational cost and improve the retrieval efficiency, an 

approach Approach-4 is proposed which is based on the statistical texture features 

which are calculated in the non-overlapping sub-blocks of the image. The texture 

features are mean, standard deviation, skewness, flatness, uniformity, randomness and 

smoothness. For the feature extraction, the grayscale image is divided into non-

overlapping blocks of different sizes like 2×2, 4×4, 8×8 etc.  The block is used as a 

model of the probability distribution of the intensity levels. The statistical texture 
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features are calculated by using the intensity level distribution in each block of the 

image. A feature vector is constructed by using the calculated features and used in the 

image retrieval. 

3.1.4.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into 

grayscale image to reduce computation as shown in Fig. 3.8 and it has been discussed 

in section 3.1.1.1.1. 

3.1.4.2 Block Division  

The division of the grayscale image into sub-blocks of different sizes is discussed in 

section 3.1.3.2 and these steps are also shown in Fig. 3.8. The pixel values in each 

sub-block are used in computation of the statistical texture features to retrieve the 

similar images from the image database. Let the image I be divided into L number of 

sub-blocks such that:  

ImgB = {b1, b2 ….bL}                                              (3.18) 

Where bi is the block of image I 

 

 

 

 

 

 

Figure 3.8 Block diagram of the proposed Approach-4.  
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3.1.4.3 Feature Extraction 

The statistical texture features are considered useful for the classification and retrieval 

of similar images. These texture features provide information about the properties of 

the intensity level distribution in the image like uniformity, smoothness, flatness and 

contrast. The statistical texture features of the mean, standard deviation, skewness, 

kurtosis, energy, entropy and smoothness are calculated by using the probability 

distribution of the intensity levels in the sub-blocks of image I. Let P(bi) be the 

probability distribution of block bi of image I such as: 
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Where B(bi) is the sum of the pixels in block bi, M×N  is the total of the number of 

pixels in image I and P(bi) is  the probability distribution of the intensity levels in 

block bi. The texture features based on the block probability P(b) are: mean, standard 

deviation, skewness, relative flatness or kurtosis, uniformity or energy, entropy and 

smoothness. 

The mean is the texture feature that represents something about the brightness of 

the image. The mean measures the average value of the intensity values. If the mean 

is high, then it means that the image is bright and if low, then the image is dark. The 

mean is defined (Sergyan, 2008; Selvarajah and Kodituwakku, 2011) as: 
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The standard deviation is the second order moment and it shows the contrast of 

the gray level intensities. The low value of the standard deviation indicates low 

contrast and the high value shows the high contrast of the image. This can be 

computed (Selvarajah and Kodituwakku, 2011; Thawari and Janwe, 2011) as: 
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The third order moment is the skewness and it shows the skewness of the intensity 

values. It is the measurement of the inequality of the intensity level distribution about 

the mean. The value will be positive or negative of the skewness. The negative value 

indicates that a large number of intensity values are on the right side of the mean and 

the skewness of the tail of the intensity values is towards the left side of the 

distribution or the tail on the left side is longer than the right side. The positive value 

indicates that a large number of the intensity values are on the left side of the mean 

and the skewness of the tail of the intensity values is towards the right side of the 

distribution or the tail on right side is longer than the left side. The zero value 

indicates that the distribution of the intensity values is relatively equal on both sides 

of the mean. The skewness
6
 is defined (Suresh et al., 2008; Selvarajah and 

Kodituwakku, 2011; Kekre and Sonawan, 2012) as:  

3

3
1

1
( ) ( )

( ) 

 
L

b

SKEW b mean P b
stddev

                          (3.23) 

The fourth order moment is the kurtosis (flatness) and is used to measure the peak 

of the distribution of the intensity values around the mean. The high value of the 

kurtosis indicates that the peak of the distribution is sharp and the tail is longer and 

fat. The low value of the kurtosis indicates that the peak of the distribution is rounded 

and the tail is shorter and thinner. Kurtosis
7
 is be defined (Suresh et al., 2008; 

Selvarajah and Kodituwakku, 2011; Kekre and Sonawan, 2012) as:  

4

4
1

1
( ) ( )

( ) 

 
L

b

kurtosis b mean P b
stddev

                         (3.24) 

The energy feature measures the uniformity of the intensity level distribution. If 

the value is high, then the distribution is to a small number of intensity levels. Energy 

is defined (Sergyan, 2008; Selvarajah and Kodituwakku, 2011) as: 

2
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[ ( )]

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L

b

ENERGY P b                                         (3.25) 

The entropy measures the randomness of the distribution of the coefficient values 

over the intensity levels. If the value of the entropy is high, then the distribution is 

among more intensity levels in the image. This measurement is the inverse of energy. 

                                                      

6
 http://en.wikipedia.org/wiki/Skewness, Last vist on March 2012 

7
 http://en.wikipedia.org/wiki/Kurtosis, last vist on March 2012 

http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
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A simple image has low entropy while a complex image has high entropy. Entropy is 

defined (Sergyan, 2008; Selvarajah and Kodituwakku, 2011)  as: 

2

1

( ) log [ ( )]


 
L

b

ENTROPY P b P b                               (3.26) 

The smoothness texture is measured by using the standard deviation value. It is 

defined (Thawari and Janwe, 2011) as: 

2

1
1

1 ( )
 


SM

stddev
                                          (3.27) 

After the calculation of these texture features, the feature vector FV of these 

values is constructed as:  

FV= {mean, stddev, SKEW, kurtosis, ENERGY, ENTROPY, SM}           (3.28) 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database. Algorithm 4 is used to extract the texture features in the blocks. 

The block diagram of the approach is shown in Fig. 3.8.  

Algorithm 4  Feature Extraction Algorithm of Approach-4 

Input:  Input image Img_file, Number of blocks  L=R×C , Size of image    

S=M×N 

Output: Feature vector  fv  

1. Read and convert the  Img_file into 2D matrix 

1.1   Img = imgread (Img_file ); 

2. Convert RGB  Img into grayscale image 

2.1   Img_gray = RGB_to_Gray (Img);  

3. Divide the image in sub-blocks 

3.1.   For  b= 1 to L 

3.2.   B(b) = Blocks_Conversion (Img_gray, b); 

3.3    End for  

4. Get the probability distribution of the pixels in the sub-blocks 

4.1.   For  b= 1 to L 

4.2.   P(b) = Sum(B(b))/S; 

4.3    End for  
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5. Calculate the statistical texture features  
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6. Construct the feature vector fv that combines the statistical texture 

features  

6.1   fv = [mean stddev  SKEW  kurtosis  ENERGY  ENTROPY  SM]            

7. Return feature vector fv 

 7.1   Return  fv 

3.1.5 Combination of the Color and Texture Features for CBIR using the Blocks 

Methods (Approach-5) 

In this section, an approach Approach-5 is proposed for CBIR in which the color and 

texture features of images are combined for the retrieval of similar images using sub-

block methods. Color and texture features are extracted in Approach-3 and Approach-

4 using 9 different sub-block methods. In this proposed approach an attempt has been 

made to combine the color and texture features using the optimum 8×8 sub-block 

method with efficient retrieval and low computational cost, along with other sub-

block methods of different sizes, of the proposed Approach-3 and approach-4. The 

statistical color moments of the mean and standard deviation, and the texture features 

of mean, standard deviation, skewness, flatness, energy, entropy and smoothness, are 

calculated in non-overlapping sub-blocks of the grayscale image. For feature 

extraction, the image is divided into non-overlapping sub-blocks of different sizes like 
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2×2, 4×4, 8×8 etc.  The statistical texture features are calculated by using the intensity 

level distribution in each block of the image. A feature vector is constructed by 

combining the local color and texture features to retrieve the similar images.   

3.1.5.1 Preprocessing 

The proposed Approach-5 starts with the conversion of the input RGB color image 

into grayscale image to reduce the computational cost as shown in Fig. 3.9 and it has 

been discussed in section 3.1.1.1.1. 

3.1.5.2 Block Division  

The block division of a grayscale image is discussed in section 3.1.3.2.  The values in 

each block are used in the computation of the color and texture features to retrieve the 

similar images from the image database as shown in Fig. 3.9. Let the image I be 

divided into L number of sub-blocks such that  

IB= {b1, b2 ….bL}                                              (3.29) 

Where bi is the block of image, I. 

3.1.5.3 Feature Extraction  

The statistical color moments are extracted by computing the mean and standard 

deviation of the pixel values in the sub-blocks of the grayscale image for all of the 

proposed different sizes of the sub-block methods as discussed in section 3.1.3.3, 

using Eq. 3.15 and Eq. 3.16 to get the feature vector FVc using Eq. 3.17.  

The statistical texture features, mean, standard deviation, skewness, kurtosis, 

energy, entropy and smoothness are calculated by using the probability distribution of 

the intensity levels in the blocks of IB using Eq. 3.19 and 3.20. 
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Figure 3.9 Block diagram of the proposed Approach-5. 

The texture features of mean, standard deviation, skewness, kurtosis, energy, 

entropy and smoothness, which have been discussed in section 3.1.4.3, are computed 

using Eq. 3.21 to 3.27. 

After the calculation of these texture features, the texture feature vector FVt of 

these values is constructed using Eq. 3.28.  

Color feature vector FVc is combined with the texture feature vector FVt to get an 

combined feature vector FV such as: 

FV = FVc + FVt                                                     (3.30) 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database. Algorithm 5 is used to extract the color and texture features to get 

the feature vector FV. The block diagram of the algorithm is shown in Fig. 3.9. 
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Algorithm 5  Feature Extraction Algorithm of Approach-5 

Input:  Input image Img_file, Size of blocks  L=R×C, Size of image S=M×N 

Output: Feature vector  fv  

1. Call Algorithm 3 to compute color features using sub-block method to 

get feature vector fvc  

2. Call Algorithm 4 to compute texture features using sub-block method to 

get feature vector fvt  

3. Combine both feature vectors to get feature vector fv 

3.1   fv = [ fvc   fvt ] 

4. Return feature vector fv 

4.1  Return  fv 

3.2 Statistical Texture Features Extraction in the Frequency Domain 

Retrieval of the similar images in CBIR is based on the features of images. Features 

of the images are extracted and stored, which are then used in comparison with the 

given query example image’s features to search for the desired similar images. The 

identification and extraction of the appropriate image features is a challenging issue in 

CBIR. The storage space and manipulation of the images are the other issues caused 

by the availability of a huge number of images due to the advanced development in 

the image capture devices, Internet and computer hardware. Consequently, most of 

the images at present, are represented in a compressed format like  JPEG 

(Nezamabadi-pour and Saryazdi, 2005; Liu et al., 2007). JPEG(Joint Photographic 

Expert Group) is a compressed format of images with good quality (Jeong, 1997), 

where it can been seen in Fig. 3.10 that an image of a rose with dimension of 384×256 

in the compressed JPEG format with a size of 18.9 KB and Bitmap without 

compression with a size of 288 KB formats. There is no such apparent difference 

visually but there exist huge difference in size. 

In the compressed domain, the features can be extracted directly without decoding 

into pixels by using frequency transformation like Discrete Cosine Transformation 

(DCT) which is used as the component of the compression process (Mandal et al., 

1999). In DCT, some information from the image is eliminated and some important 
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                                     JPEG, size 18.9 KB                        Bitmap, size 288 KB 

Figure 3.10 An image of rose with JPEG and Bitmap formats.  

information is left behind during compression, which can be used to play an important 

role in the retrieval of similar images  (Zhong and Defee, 2005). 

There are various discrete transformation like discrete cosine transformation 

(DCT), discrete Fourier transformation (DFT) and discrete wavelet transformation. 

These transformations will be prominent domains for retrieval of compressed images 

like JPEG. The selection will be made on the performance of transformation. In this 

work of research we have selected DCT for feature indexing and retrieval due to some 

advantages over DWT such that DCT is less expensive for hardware or software 

implementation  than DWT, for instance the two-dimensional 8×8 DCT blocks in an 

efficient algorithm, involves only 54 multiplications (Feig, 1990) where as in DWT 

each coefficient requires at least one multiplication which increases the computational 

cost. 

DCT is a cosine part of Fourier transformation while the DWT requires more 

computation in time frequency. So it is acknowledged by (Shen, 2013) that the 

computational cost of DWT is higher than DCT,  the regions of image become blurred 

and noise is produced near edges of regions by using the larger DWT basis function 

or wavelet filters, the compression time of DWT is longer than DCT, at low 

compression the quality of DWT is lower than JPEG. Therefore we focus on the 

performance of DCT in this research work. 

In our work, statistical quantized histogram texture features are extracted from the 

grayscale image in the frequency domain, using hybrid techniques to develop an 



70 

efficient and effective CBIR to improve the retrieval performance. We proposed 

various approaches in which the grayscale image is transformed into non-overlapping 

8×8 DCT blocks. The first element of each block is called DC, which is the average of 

the intensity values of the blocks and the remaining are called AC coefficients 

corresponding to the frequencies. The AC coefficients describe the texture 

information (Shan and Liu, 2009). The statistical texture features of mean, standard 

deviation, skewness, kurtosis, energy, entropy and smoothness are calculated in all of 

the blocks using the block coefficients in various approaches using different 

techniques. After the feature extraction and creation of the feature database, the 

similarity is measured between the query image and the database images. For this 

purpose, the Euclidean distance is used to calculate the distance between the two 

feature vectors of the images to retrieve relevant images.  

3.2.1 Quantized Histogram Texture Features Based on Median, Median with 

Edge Extraction Method and Laplacian Filters (Approach-6) 

In this proposed Approach-6, our main contribution is to perform the experimental 

comparative analysis of the statistical quantized histogram texture features for the 

effective image retrieval in the DCT domain based on the median and Laplacian 

filters. The approach starts with an 8×8 DCT block transformation of the filtered 

histogram equalized grayscale image. The histograms of the DC and the first three AC 

coefficients are constructed by quantizing them into 32 bins. Then, the statistical 

texture features of mean, standard deviation, skewness, kurtosis, energy, entropy and 

smoothness are calculated by using the probability distribution of the intensity levels 

in the histogram bins of all of the blocks. These features construct a feature vector to 

retrieve similar images from the database. These vectors are used in a similarity 

measurement to compare the query image vector with the database vectors. The 

comparison of the results of the quantized histogram texture features based on the 

median, median with edge extraction and Laplacian filters, is demonstrated and give 

the optimal performance in terms of image retrieval in the DCT domain.  
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3.2.1.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into a 

single component grayscale image to reduce the computational cost because a color 

image consists of Red, Green and Red components (Anjum and Javed, 2007). The 

grayscale image is converted into a histogram equalized (HE) image, to make the 

image’s intensity levels equal to get a high contrast image as shown in Fig 3.11. Then 

median, edge extraction and Laplacian filters are applied to HE image respectively.  

 

Figure 3.11 Block diagram of the proposed Approach-6. 

The preprocessing and filter methods including median filter, median filter with 

edge extraction and Laplacian filter, have been discussed in detail in section 3.1.2.1 

and are applied to the grayscale image to get a more enhanced and sharpened image. 
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3.2.1.2 DCT Block Transformation 

The filtered image is divided into non-overlapping 8×8 blocks. Then, all of these 

blocks are transformed into DCT blocks in the frequency domain. The 8×8 DCT 

block transformation is simpler and quicker. By taking large block size like 64×64, 

then the computational cost and loss of information will be high. Moreover, by taking 

small block size like 4×4 then the compression will be low. Therefore 8×8 block size 

is an optimal choice for DCT transformation.  Each block consists of values called 

coefficients. These coefficients are represented in a matrix of two dimensions of rows 

and columns. Let the two dimensional DCT block with a size of N×N for 

x,y=0,1,2,…,N-1 is calculated as:  
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Where F(u, v) is the transformed block and f(x, y) is the element of the block. 

The first uppermost DCT coefficient in the DCT block is F(0,0) in Eq. 3.31, it is 

also called the DC coefficient and it represents the average intensity value of a block. 

The DC coefficient is also described as the energy of the block. The other coefficients 

of the DCT blocks are called AC coefficients, which correspond to the different 

frequencies (co sinusoidal). 

After the DCT transformation, the DC coefficients of all of the blocks and the first 

three AC coefficients (AC1, AC2 and AC3) are selected in a zigzag order as shown in 

Fig. 3.12. The DC and AC coefficients of all the blocks are used to construct the 

histograms. 

3.2.1.3 Histogram Quantization 

The number of occurrences of the DC coefficients in all the DCT blocks is called the 

DC histogram and the number of occurrences of the AC coefficients is called AC 
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histogram. Let the DC histograms be quantized into L (4, 8, 16 or 32) bins then the 

DC histogram HDC can be calculated as: 

HDC= {h(b1)DC, h(b2)DC ….h (bL)DC }                                      (3.32) 

   

Figure 3.12 Selection of 8×8 DCT block coefficients in zigzag order. 

Where h(bi)DC is the frequency of the DC coefficients in bin bi  and HDC is the 

histogram of L bins.  

The AC histograms for the selected AC coefficients are also quantized into L bins 

and histograms are computed as: 

HAC1= {h(b1)AC1, h(b2)AC1, ..., h(bL)AC1}                                      (3.33) 

HAC2= {h(b1)AC2, h(b2)AC2, ..., h(bL)AC2}                                       (3.34) 

HAC3= {h(b1)AC3, h (b2)AC3, ..., h(bL)AC3}                                       (3.35) 

Where h(bi)AC1, h(bi)AC2 and h(bi)AC3 are the frequencies of AC1, AC2 and AC3 

coefficients in histograms  HAC1, HAC2  and HAC3 using the histogram quantization 

scheme of  L bins. 

Quantization schemes with different number of bins from 4 to 32 have been 

discussed in sections 3.1.1.2. Here in this proposed approach different quantization 

schemes are analyzed in the frequency domain based on the filtered values of images 

for the extraction of the texture features.  

3.2.1.4 Feature Extraction 

The statistical texture features: mean, standard deviation, skewness, kurtosis, energy, 

entropy and smoothness are calculated by using the probability distribution of the 

intensity levels in the histogram bins of the histograms HDC, HAC1, HAC2, and HAC3 

using Eq. 3.31 to 3.35. 
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Let P(b) be the probability distribution of bin b in each of the four histograms H 

using Eq. 3.31 to  3.35 with L bins then it is calculated as: 

( )
( )

H b
P b

M
                                             (3.36) 

Where M is the total number of blocks in image I. 

The texture features of mean, standard deviation, skewness, kurtosis, energy, 

entropy and smoothness, which have been discussed in section 3.1.4.3, are computed 

using the block probability P(b) and Eq. 3.21 to 3.27.  

After the calculation of these texture features, the feature vector fv of these values 

is constructed using Eq. 3.28.  

The feature vectors (fvs) are calculated for all of the histograms using Eq. 3.28 

such that feature vector fvHDC is calculated for the histogram HDC, fvHAC1 for HAC1, 

fvHAC2 for HAC2 and fvHAC3 for HAC3. The four feature vectors are combined to get a 

single feature vector FV of the features as:  

FV= [fvHDC, fvHAC1, fvHAC2, fvHAC3]                              (3.37) 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database. Algorithm 6 is used to extract the quantized histogram texture 

features based on median and Laplacian filters in the DCT blocks. The feature vector 

of the user query is also constructed in the same way and compared with the feature 

vectors of the database for similarity and retrieval of relevant images. The feature 

extraction process is shown in the block diagram of the proposed approach in Fig. 

3.11. 

Algorithm 6  Feature Extraction Algorithm of Approach-6 

Input:  Input image Img_file, Number of bins Bins, filter_type, Blocks B  

Output: Feature vector  fv  

1. Read and convert the  Img_file into 2D matrix 

1.1   Img = imgread(Img_file ) 

2. Convert RGB  Img into grayscale image 

2.1   Img_gray = RGB_to_Gray (Img)  



75 

3. Convert grayscale Img_gray  into Histogram Equalized image  

3.1   Img_he = hist_Eq (Img_gray)  

4. Apply filters to  Img_he 

4.1.   F_img =Filters (Img_he, filter_type); 

5. conversion of  F_img into 8×8 DCT blocks 

5.1   For b= 1 to B 

5.2    dct_blk (b)=DCT_Trans formation(F_img, b) 

5.3    End for 

6. Get the DC, AC1, AC2, AC3 coefficients of all blocks by DC(dct_blk 

(Bi)), AC1(dct_blk (Bi)), AC2(dct_blk (Bi)) and AC3(dct_blk (Bi)) for 

i=1 to B 

7. Get the quantized histograms of Bins bins by  

7.1   DC_h =Histogram(DC, Bins) 

7.2   AC1_h =Histogram(AC1, Bins) 

7.3   AC2_h =Histogram(AC2, Bins) 

7.4   AC3_h =Histogram(AC3, Bins) 

8. Get the probability distribution of histograms  P(b)DC = DC_h(b)/B, 

P(b)AC1 = AC1_h(b)/B, P(b)AC2 = AC2_h(b)/B, P(b)AC3 = AC3_h(b)/B for 

b=1 to Bins. 

9. Calculate statistical texture features for DC, AC1, AC2 and AC3 

coefficients separately to get four feature vectors 
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9.8 fvHDC =[mean stddev SKEW kurtosis ENERGY  ENTROPY  SM] 

9.9 Similarly calculate the feature vectors fvHAC1 fvHAC2  and 

fvHAC3 using steps 9.1 to 9.8 

10. Combine feature vectors of coefficients to get combined feature vector 

10.1      fv= [fvHDC fvHAC1 fvHAC2 fvHAC3] 

11. Return feature vector fv 

11.1. Return  fv 

3.2.2 Analysis of the Distance Metrics in CBIR using the Statistical Quantized 

Histogram Texture Features in the Frequency Domain (Approach-7) 

In this proposed Approach-7, our main contribution is to show the performance of the 

image retrieval by extracting quantized histogram statistical texture features 

efficiently and by matching the query image with the database images effectively 

using various distance metrics in the DCT domain. The proposed method is started 

with the non-overlapping 8×8 DCT block transformation of the grayscale image. The 

histograms of the DC and the first three AC coefficients are constructed. The 

statistical texture features of mean, standard deviation, skewness, kurtosis, energy, 

entropy and smoothness are calculated by using the probability distribution of the 

coefficients in different quantization bins of the histograms of all the blocks. The 

computed features are used to measure the similarity between the query image and the 

database images by using various distance metrics. The performance is analyzed on 

the basis of the results of various distance metrics using different quantization 

schemes in the DCT domain.  
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3.2.2.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into 

grayscale image to reduce computation as shown in Fig. 3.13 and it has been 

discussed in section 3.1.1.1.1. 

3.2.2.2 DCT Block Transformation 

The grayscale image transformation into DCT blocks has been discussed in 3.2.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Step wise block diagram of the proposed Approach-7. 

3.2.2.3 Histogram Quantization 

The histograms of the DC and AC coefficients are constructed and quantized into L 

bins. In this proposed approach, the histograms are quantized into 4, 8, 16 and 32 

bins. The histogram construction and quantization have been discussed in section 
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and HAC3, are generated using Eq. 3.32 to 3.35. The proposed statistical texture 

features are extracted in these histograms. 

3.2.2.4 Feature Extraction 

The first issue in CBIR is to extract the features of an image efficiently and then 

represent them in a particular form to be used effectively in matching of the images. 

The statistical texture features are considered useful for the classification and retrieval 

of similar images. The statistical texture features are extracted in the proposed 

method. The proposed texture features of mean, standard deviation, skewness, 

kurtosis, energy, entropy and smoothness are calculated by using the probability 

distribution of the intensity levels in the histogram bins of the histograms of the DC, 

AC1, AC2 and AC3 coefficients.  

The texture features of mean, standard deviation, skewness, kurtosis, energy, 

entropy and smoothness, which have been discussed in section 3.2.1.4, are computed 

using the DCT block probability P(b) to create the feature vectors, fvHDC, fvHAC1, 

fvHAC2 and  fvHAC3, of the histograms:  HDC, HAC1, HAC2 and  HAC3.. These feature 

vectors are combined to get a single feature vector (FV) of the features using Eq. 3.37. 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database. Algorithm 7 is used to extract the texture features in the DCT 

blocks. The feature vector of the user query is also constructed in the same way and 

compared with the feature vectors of the database for the similarity and retrieval of 

the relevant images. The block diagram of the method is shown in Fig. 3.13. 

Algorithm 7  Feature Extraction Algorithm of Approach-7 

Input:  Input image Img_file, Number of bins Bins, Blocks B  

Output: Feature vector  fv  

1. Read and convert the  Img_file into 2D matrix 

1.1   Img = imgread(Img_file ); 

2. Convert RGB  Img into grayscale image 

2.1   Img_gray = RGB_to_Gray (Img);  
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3. Transformation of  Img_gray  into 8×8 DCT blocks 

5.1   For b= 1 to B 

5.2    dct_blk (b)=DCT_Transformation(Img_gray, b) 

5.1    End for 

4. Get the DC, AC1, AC2, AC3 coefficients of blocks by DC(dct_blk (Bi)), 

AC1(dct_blk (Bi)), AC2(dct_blk (Bi)) and AC3(dct_blk (Bi)) for i=1 to B 

5. Get the quantized histograms of bins Bins by  

5.1   DC_h =Histogram(DC, Bins) 

5.2   AC1_h =Histogram(AC1, Bins) 

5.3   AC2_h =Histogram(AC2, Bins) 

5.4   AC3_h =Histogram(AC3, Bins) 

6. Get the probability distribution of histograms  P(b)DC = DC_h(b)/B, 

P(b)AC1 = AC1_h(b)/B, P(b)AC2 = AC2_h(b)/B, P(b)AC3 = AC3_h(b)/B for 

b=1 to Bins. 

7. Calculate the statistical texture features in the histograms DC_h, AC1_h, 

AC2_h and AC3_h for b=1 to Bins using the P(b) to get feature vector 
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1

( ) ( )
Bins

DC

b

stddev b mean P b


   

7.3   
3

3
1

1
( ) ( )

( )

Bins

DC

b

SKEW b mean P b
stddev 

   

7.4   
4

4
1

1
( ) ( )

( )

Bins

DC

b

kurtosis b mean P b
stddev 

   

7.5   
2

1

[ ( ) ]
Bins

DC

b

ENERGY P b


  

7.6   2

1

( ) log [ ( ) ]
Bins

DC DC

b

ENTROPY P b P b


   

7.7   2

1
1

1 ( )
 


SM

stddev
 

8. Construct the feature vector of calculated features       

8.1  fvDC=[mean stddev SKEW kurtosis ENERGY ENTROPY SM] 

9. Similarly calculate the feature vectors fvAC1 fvAC2 and fvAC3 using steps 7.1 
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to 7.7. 

10. Combine feature vectors of coefficients to get combined feature vector      

            10.1   fv= [fvDC fvAC1 fvAC2 fvAC3] 

11. Return feature vector fv 

11.1   Return  fv 

3.2.2.5 Distance Metrics 

Once the feature database of the images is created with the feature vectors in the first 

step of the approach as shown in Fig. 3.13 using Algorithms 7, then the user can give 

an image as a query image to retrieve the similar images from the database. In the 

second step of the approach, the feature vector of the query image is computed by 

using the same steps as discussed in section 3.2.1.4. 

 The similarity measurement is the second issue in CBIR in which the query 

image is compared with the target images of the database. To measure the similarity 

between the query image and the target database images, the difference is calculated 

between the query feature vector and the target database feature vectors by using the 

distance metrics. The small difference between the two feature vectors indicates the 

large similarity and small distance. The vectors of the images with small distance are 

most similar to the query images. The distance metrics which are included in this 

work are the Sum of Absolute Difference (SAD), Sum of Squared of Absolute 

Differences (SSAD) (Selvarajah and Kodituwakku, 2011), Euclidean distance, City 

block distance, Canberra distance, Maximum value metric and Minkowski distance 

(Sergyan, 2008).  

Let the query feature vector is represented by Q and the target feature vector by T 

of the database for the seven distance metrics to calculate the difference between the 

two vectors for similarity:  
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3.2.2.5.1 Sum of Absolute Difference (SAD) 

The Sum of Absolute Difference (SAD)
8
 is a very straightforward distance metric and 

extensively used for computing the distance between the images in CBIR to get the 

similarity.  In this metric, the sum of the differences of the absolute values of the two 

feature vectors are calculated (Selvarajah and Kodituwakku, 2011). The similarity is 

decided on the computed value of the distance.  This distance metric can be calculated 

as: 

 
1

( , )
n

i i

i

D Q T Q T


                                      (3.38) 

Where n is the number of features, i=1, 2…, n. Both images are the same for D(Q, 

T) =0 and the small value of D shows the relevant image to the query image. Image 

retrieval is performed by using Algorithm 8. 

The distance metric SAD is a simple method to search for the similar images in 

the database to the query image, automatically, but it can be sensitive and 

untrustworthy towards the consequences of the background issues of the image, such 

as variations in size, color, illumination and the direction of light
9
. 

3.2.2.5.2 Sum of Squared Absolute Difference (SSAD) 

In this distance metric, the sum of the squared differences of the absolute values of the 

two feature vectors are calculated. This distance metric can be calculated (Selvarajah 

and Kodituwakku, 2011)  as: 

 
1

2
( , )

n

i i

i

D Q T Q T


                                            (3.39) 

It has some computational complexity due to the square of the differences as 

compared to SAD. However, squaring always gives a positive value but it highlights a 

big difference. The distance metric SSAD can be used in the spatial as well as in the 

                                                      

8 http://en.wikipedia.org/wiki/Sum_of_absolute_differences, last visit on September 18, 2012. 
9 http://en.wikipedia.org/wiki/Sum_of_absolute_differences, last visit on September 18, 2012. 

http://en.wikipedia.org/wiki/Sum_of_absolute_differences
http://en.wikipedia.org/wiki/Sum_of_absolute_differences
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transformed domains but in the transform domain the calculated value depends upon 

the quality of the compression
10

.   

3.2.2.5.3 Euclidean Distance 

This distance metric is most commonly used for the similarity measurement in image 

retrieval because of its effectiveness. It measures the distance between the two vectors 

of images by calculating the square root of the sum of the squared absolute 

differences and it can be calculated (Wang et al., 2005; Sergyan, 2008) as: 

 
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( , )
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i

D Q T Q T


                                        (3.40) 

3.2.2.5.4 City Block Distance 

This distance metric is also called Manhattan distance. This distance metric is 

computed by the sum of the absolute of differences between the two feature vectors of 

the images and can be calculated
11

 (Sergyan, 2008) as: 

1

( , )
n

i i

i

D Q T Q T


                                             (3.41) 

3.2.2.5.5 Canberra Distance 

The city block distance metric gives large value for the two similar images which 

create dissimilarity between the similar images. Hence, each feature pair difference is 

normalized by dividing it by the sum of a pair of features. This metric is used for the 

numerical measurement of the distance between the query and database feature 

vectors and can be calculated (Sergyan, 2008) as:  

1

( , )
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i i

i i i

Q T
D Q T

Q T





                                            (3.42) 

                                                      

10 http://siddhantahuja.wordpress.com/tag/sum-of-squared-differences/  , last visit on September 18, 2012. 
11 http://people.revoledu.com/kardi/tutorial/Similarity/QuantitativeVariables.html , last visit on September 18, 2012. 

http://siddhantahuja.wordpress.com/tag/sum-of-squared-differences/
http://people.revoledu.com/kardi/tutorial/Similarity/QuantitativeVariables.html
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The value of this method is arranged in ascending order such that the top most 

shows high similarity. It has a similarity with the city block distance metric. It has a 

good effect for the data which are spread about the origin (Schulz, 2007). 

3.2.2.5.6 Maximum Value Distance 

This distance metric is also called the Chebyshev distance. This distance is used to get 

the largest value of the absolute differences of a pair of features of the feature vectors 

and can be calculated (Sergyan, 2008) as:  

 1 1 2 2( , ) max , ,..., n nD Q T Q T Q T Q T                           (3.43) 

The distance value is the maximum of the difference of the features of the pair of 

images, which shows the maximum dissimilarity of the two images. 

3.2.2.5.7 Minkowski Distance 

The generalized form of the distance can be defined as:  

 
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D Q T Q T


 
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 
                                           (3.44) 

Where p is a positive integer. 

 This generalized form gives other distance metrics for positive values of p, for 

example p=1 gives the city block distance and p=2 give the Euclidean distance. In 

this work, for the comparison of the distance metrics, we also take p=3 as the 

Minkowski distance. Algorithm 8 is used to retrieve images by using, one by one, the 

distance metrics in Eq. 3.38 to 3.44. 

Algorithm 8  Image Retrieval Algorithm of Approach-7 

Input:  A query image Q, target images T1, ..., TN   

Output: A sorted list of target images  

1. Select a query image Q 
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1.1.     Img_file = get_image(Q) 

2. Extract n number of features of Q to create feature vector fv 

2.1.     Qfv =Feature_Extraction (Img_file)   //call Algorithm 9 

3. For each target image Ti 

4. Access the feature vector of target image Ti from feature database fv_DB 

4.1.     Tfv = fv_DB( Ti) 

5. Calculate the sum of Absolute Difference (SAD) for n number of 

features and get the distance value. 

5.1. D(Q, Ti) =  
1

n

j j

j

Qfv Tfv


  

6. End for 

7. Rank all the target images according to D(Q, Ti). 

8. Similarly calculate the distance values for the following distance metrics 

by repeating the steps from 1 to 7 

8.1. Sum of Squared Absolute difference (SSAD) 

8.1.1. D(Q, Ti) =  
1

2n

j j

j

Qfv Tfv


  

8.2. Euclidean distance  

8.2.1. D(Q, Ti) =  
1

2n

j j

j

Qfv Tfv


  

8.3. City block distance 

8.3.1. D(Q, Ti) =
1

n

j j

j

Qfv Tfv


  

8.4. Canberra distance 

8.4.1. D(Q, Ti) =
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n
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j j j
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8.5. Maximum value distance 

8.5.1. D(Q, Ti)=  1 1 2 2max , ,..., n nQfv Tfv Qfv Tfv Qfv Tfv    

8.6. Minkowski distance  

8.6.1. D(Q, Ti) =  
3
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Qfv Tfv

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 

 
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3.2.3 Experimental Analysis of the Combination of the Statistical Quantized 

Histogram Texture Features in the Frequency Domain (Approach-8) 

In this proposed Approach-8, the main contribution is to show the performance of the 

image retrieval by the combination of different quantized histogram texture features 

in the frequency (DCT) domain. 

3.2.3.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into 

grayscale image to reduce the computational cost as shown in Fig. 3.13 and it has 

been discussed in section 3.1.1.1.1. 

3.2.3.2 DCT Block Transformation 

In this approach, we start with the non-overlapping 8×8 DCT block transformation of 

a grayscale image as shown in the block diagram in Fig. 3.13  and that is discussed in 

section 3.2.1.2 using Eq. 3.31. After the DCT transformation, the DC and AC 

coefficients of all of the blocks are selected in a zigzag order as shown in Fig. 3.13. 

All of these DC and AC coefficients are used to construct histograms. 

3.2.3.3 Histogram Quantization 

The histograms of the DC and AC coefficients are constructed and quantized into 

L=32 bins. The histogram construction and quantization have been discussed in 

section 3.2.1.3, in which the DC quantized histogram HDC and AC histograms, HAC1, 

HAC2 and HAC3 are generated using Eq. 3.32 to 3.35.   

3.2.3.4 Feature Extraction 

The statistical texture features of mean, standard deviation, skewness, kurtosis, 

energy, entropy and smoothness are calculated in different combinations like single, 
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two, three and four feature combinations by using the probability distribution of the 

coefficients in the histogram bins of the histograms of the coefficients.  

The texture features, which have been discussed in detail in section 3.1.4.3, are 

computed using the DCT block probability P(b) to create the feature vectors fvHDC, 

fvHAC1, fvHAC2 and  fvHAC3, of the histograms HDC, HAC1, HAC2 and  HAC3. These feature 

vectors are combined to get a single feature vector (FV) of the features using Eq. 3.37. 

The size of the feature vectors varies due to the different combinations of features; for 

example, by considering the mean and standard deviation, then each feature vector of 

the DC and the first three AC coefficients will have two features. Then, these four 

feature vectors with two features are combined to get a single feature vector of eight 

features. 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database using Algorithms 7 with different combinations of features. The 

block diagram of the method is shown in Fig. 3.13.  

3.2.4 Analysis of the Experimental Performance of the Combination of the 

Statistical Texture Features in the Spatial and Frequency Domains for 

CBIR (Approach-9) 

In this section, an approach Approach-9 is proposed in which the statistical texture 

features, mean, standard deviation, skewness, flatness, energy, entropy and 

smoothness, of the grayscale images in the spatial domain are combined with the 

statistical texture features in the DCT domain for the retrieval of similar images in 

CBIR. The retrieval by texture features in the spatial domain using the sub-block 

methods have been discussed in section 3.1.4 using the 9 different sub-block methods, 

separately. In the frequency domain, the statistical texture features have been used for 

the retrieval of similar images and are discussed in section 3.2.1 and 3.2.3. 

The statistical texture features are extracted from the sub-blocks of an image in 

the spatial domain in Approach-4. In order to further improve the retrieval 

performance of CBIR, the statistical texture features are extracted from the DCT 

transformed blocks of the images in the frequency domain in Approach-7. The 
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features are extracted from the quantized histograms using only the DC and first three 

AC coefficients of all of the blocks. The performance is not only effective in retrieval 

but also efficient in the computational cost. Since both Approach-4 and Approach-7 

are effective and efficient in retrieval as well as in computation, therefore the feature 

vectors of the two approaches using 8×8 blocks, are combined together to further 

improve the retrieval performance of CBIR effectively. 

3.2.4.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into 

grayscale image to reduce the computational cost as shown in Fig. 3.14 and it has 

been discussed in section 3.1.1.1.1. 

3.2.4.2 Feature Extraction 

The proposed approach starts with the conversion of the RGB color image into a 

grayscale image. Then, the texture features are extracted from the grayscale image. 

The feature extraction is carried out in two steps: Extraction in the spatial domain 

using the block method and in the DCT domain using the histogram method as shown 

in Fig. 3.14.   

3.2.4.2.1 Texture Feature Extraction using Block Method in the Spatial Domain 

The feature extraction in the spatial domain using sub-block methods has been 

discussed in section 3.1.4.3; that is using simple sub-blocks of image, is a simpler and 

quicker method with good retrieval accuracy as compared to the segmentation of the 

images. The grayscale image is divided into 8×8 non-overlapping L sub-blocks. Each 

block is in a 2-dimensional matrix of 0 to 256 values. The statistical texture features, 

mean, standard deviation, skewness, kurtosis, energy, entropy and smoothness are 

calculated by using the probability distribution of the pixel values in all of the blocks 

using Eq. 3.19 to 3.27. After the calculation of these texture features, the texture 
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feature vector FVp is constructed using Eq. 3.28, as shown in Fig. 3.14.  In the next 

step, the texture features are calculated in the DCT domain. 

3.2.4.2.2 Texture Feature Extraction using Histogram Method in the Frequency 

Domain 

The statistical texture feature extraction using the histogram method in the DCT 

domain has been discussed in Approach-7 and sections 3.2.2.4. The same grayscale 

image is divided into non-overlapping 8×8 blocks. Then, all of these blocks are 

transformed into DCT blocks in the frequency domain. Each block is in a 2-

dimensional matrix. After the DCT transformation, the DC and the first three AC 

coefficients of all of the blocks are selected in a zigzag order and are used to construct 

the histograms HDC, HAC1, HAC2 and HAC3, as shown in Fig. 3.14. The histograms are 

quantized into 32 bins. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Block diagram of the proposed Approach-9 based on the combination of 

the texture features in the spatial and frequency domains. 
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The statistical texture features, mean, standard deviation, skewness, kurtosis, 

energy, entropy and smoothness are calculated by using the probability distribution of 

the intensity levels in the histogram bins of the histograms HDC, HAC1,  HAC2 and HAC3, 

to create the feature vectors fvHDC, fvHAC1, fvHAC2 and fvHAC3  as discussed in Approach-

6 and section 3.2.1.4. These features vectors are combined to get a single feature 

vector (FVd) using Eq. 3.37. 

After the calculation of the feature vectors FVp in the spatial domain and FVd in 

the frequency domain, are combined to get a combined feature vector, FV, such as: 

FV= FVp + FVd                                               (3.45) 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database using Algorithms 9. The feature vector of the user query is also 

constructed in the same way and compared with the feature vectors of the database for 

similarity and the retrieval of relevant images. The block diagram of the proposed 

approach is shown in Fig. 3.14. 

Algorithm 9  Feature Extraction  Algorithm of  Approach-9 

Input:  Input image Img_file, Size of blocks  L=8×8, Size of image S=M×N 

Output: Feature vector  fv  

1. Call Algorithm 4 to compute texture features using 8×8 sub-block 

method to get feature vector fvp  

2. Call Algorithm 7 to compute texture features using 8×8 DCT block 

method to get feature vector fvd  

3. Combine both feature vectors to get feature vector fv 

3.1   fv = [ fvp   fvd ] 

4. Return feature vector fv 

4.1  Return  fv 
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3.2.5 Analysis of the Experimental Combination of the Color and Texture 

Features in the Spatial and Frequency Domains (Approach-10) 

As discussed in Approach-9 that the statistical texture features of the grayscale images 

in the spatial and frequency domains are combined to improve the performance of 

retrieval. In order to further improve the retrieval performance of CBIR, an approach, 

Approach-10 is proposed, in which the statistical color features in the spatial domain 

are combined with the statistical texture features of the grayscale images in the 

frequency domain. The color features which have been extracted in the spatial domain 

using the 8×8 block method and discussed in Approach-3. In the frequency domain, 

the statistical quantized histogram texture features are extracted using the 8×8 DCT 

blocks, which has been discussed in Approach-7. 

In this proposed Approach-10, the statistical color features in the spatial domain 

are combined with the texture features in frequency domain. It has been shown in 

Approach-3 that the 8×8 sub-block method is not only effective in the retrieval with 

but it is also efficient in the computation of the color features extraction. First, the 

color feature vector of the features is constructed using the 8×8 sub-blocks of the 

grayscale image. Then the quantized histogram texture feature vector is created using 

the 8×8 DCT blocks of the same image. Then, these two feature vectors are combined 

to get a net feature vector of both domains to retrieve similar images.  

3.2.5.1 Preprocessing 

The proposed approach starts with the conversion of the input RGB color image into 

grayscale image to reduce the computational cost as shown in Fig. 3.15 and it has 

been discussed in section 3.1.1.1.1. 

3.2.5.2 Feature Extraction 

The color and texture features are extracted from the grayscale image. In order to 

construct the feature vectors, the features are extracted in two steps. In the first step, 

the color features are extracted in the spatial domain using sub-block method and in 
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the second step the texture features are extracted in the frequency domain using the 

quantized histograms of the DCT blocks as shown in Fig. 3.15. 

3.2.5.2.1 Color Feature Extraction using Block Method in the Spatial Domain 

The color feature extraction in the spatial domain using the 8×8 sub-block method has 

been discussed in section 3.1.3.3 of Approach-3. The grayscale image is divided into 

8×8 non-overlapping 64 sub-blocks. Each block is in a 2-dimensional matrix of 0 to 

256 values. The statistical color features first order moment, mean, and second order 

moment, standard deviation, are calculated by using the probability distribution of the 

pixel values in all of the blocks. After the calculation of these color features, the color 

feature vector, FVc, is constructed as discussed in section 3.1.3.3 and as shown in Fig. 

3.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Block diagram of the proposed Approach-10 based on the combination of 

the color and texture features in the spatial and frequency domains. 
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3.2.5.2.2 Texture Features Extraction using Histogram Method in the 

Frequency Domain 

The statistical quantized histogram texture features using 32 bins quantization scheme 

are extracted from the 8×8 DCT blocks of the grayscale image using the probability 

distribution of the coefficients of the blocks in the frequency domain, which have 

been discussed in section 3.2.1.2 to section 3.2.1.4 to construct the feature vector, 

FVd. 

After calculation of the color feature vector FVc, in the spatial domain and the 

texture feature FVd, in the frequency domain, are combined to get a combined feature 

vector FV, such as: 

FV= FVc + FVd                                                (3.46) 

The feature vectors (FVs) of all of the images are constructed and stored to create 

a feature database using Algorithms 10. The feature vector of the user query is also 

constructed in the same way and compared with the feature vectors of the database for 

the similarity and retrieval of relevant images. The block diagram of the proposed 

approach is shown in Fig. 3.15. Algorithm 10 is used to extract the features. 

Algorithm 10  Feature Extraction Algorithm of Approach-10 

Input:  Input image Img_file, Number of blocks  L=8×8, Size of image S=M×N 

Output: Feature vector  fv  

1. Call Algorithm 3 to compute the color features using 8×8 sub-block 

method to get a feature vector fvc  

2. Call Algorithm 7 to compute the texture features of histograms using 

8×8 DCT blocks to get a feature vector fvd  

3. Combine both feature vectors to get a feature vector fv 

3.1   fv = [ fvc   fvd ] 

4. Return feature vector fv 

4.1  Return  fv 
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3.3 Similarity Measurement  

Once the feature database of the images is created with the feature vectors, the user 

can give an example image as a query to retrieve the similar images from the 

database. The feature vector of the query image is also computed in the second step of 

the same approach.  

To measure the similarity between the query image and the database images, the 

difference is calculated between the query feature vector and the database feature 

vectors by using the distance metric. A small difference between the two feature 

vectors indicates a large similarity and a small distance. The vectors of the images 

with a small distance are most similar to the query images. The distance metric, which 

has been included in this work, is the Euclidean distance. This distance metric is most 

commonly used for the similarity measurement in image retrieval because of its 

efficiency and effectiveness. It measures the distance between the two vectors of the 

images by calculating the square root of the sum of the squared absolute differences. 

Let Q and T be the feature vectors of the query and target images, having n 

number of features such that Q= {q1 , q2, …, qn} and T={t1 , t2, …, tn} where qi and ti are 

the features of the query and target images. The Euclidean distance D can be used to 

measure the distance between the Q and T feature vectors. 
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                                       (3.47) 

Both images are the same for D = 0 and the small value of D shows the most 

relevant image to the query image.  

3.4 Image Retrieval 

For the retrieval of images, all the proposed approaches are performed in two steps. 

 Step-1: Feature Database Creation 

In the first step, all of the images are acquired, one after another, from the 

collection of the images for the feature extraction. The extracted features are 
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stored in a database in the form of feature vectors to create a feature database as 

shown in Fig. 3.1. The computation time of features database creation is noted 

for each proposed approach separately to get the computational cost of the 

feature database. The feature database is created once and it can be used as a 

source to provide similar images to any query image. The query image can be of 

the same database or any new image from any other source with any dimension.  

Algorithm 11 is used to create feature database. 

Algorithm 11 Feature Database Creation Algorithm 

Input:  Image database with images, I1, ..., IN   

Output: Feature database  fv_DB creation  

1. For each input image Ii  do 

2. Get image file from database  

2.1  Img_file = get_image(Ii) 

3. Extract features to create feature vector fv 

3.1  fv = Feature_ Extraction (Img_file) //Call Feature Extraction Algorithm 

4. Store the feature vector fv in a feature database fv_DB 

4.1  fv_DB(i) =fv 

5. End for 

 Step-2: Retrieval by Query Image 

In the second step, the user browses the database images and selects any image as 

a query image to search and retrieve relevant images from the feature database by 

using the same algorithm. The feature vector of the query image is constructed 

and compared with the feature vectors of the database by computing the 

similarities using the Euclidean distance metric. The relevant images are 

displayed to the user according to the query image as shown in Fig. 3.1. 

Algorithm 12 is used for the retrieval of relevant images. 

Algorithm 12  Image Retrieval Algorithm 

Input:  A query image Q, target images, T1, ..., TN   

Output: A sorted list of target images  

1. Select a query image Q 
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1.1  Img_file = get_image(Q); 

2. Extract n number of features of Q to create feature vector fv 

2.1  Qfv =Feature_Extraction (Img_file)   // Call F. E. Algorithm 

3. For each target image Ti 

4. Access the feature vector of target image Ti from feature database fv_DB 

4.1  Tfv (i) = fv_DB( Ti) 

5. Calculate Euclidean distance 

5.1  D(Q, Ti) =  
2

1

n

j j

j

Qfv Tfv


  

6. End for 

7. Rank all the target images according to D(Q, Ti). 

3.5 Chapter Summary 

In this chapter, methodology of different approaches for the developing of CBIR, 

have been discussed by extracting the color and texture features in the spatial and 

frequency domains to improve the retrieval performance of images.  

In the spatial domain, for the extraction of the color features, the color histogram, 

color histogram refinement method and sub-block methods are used; while for the 

extraction of texture features, the sub-block methods are used. These features are 

extracted by computing the pixel values of a two dimensional matrix of pixels of an 

image in the spatial domain. The color standard histogram technique for a grayscale 

Laplacian filtered sharpened image gives good performance, especially for the 32 bins 

quantization scheme. However the standard histogram has lack of spatial information. 

To get the spatial information, the color histogram refinement method is used. The 

performance of this approach is based on the analysis of the features of the median 

and Laplacian filtered images using different quantization schemes. But this approach 

has high computational cost. To reduce the computational cost and to improve further 

the performance of the CBIR, in another two approaches the image is divided into 

non-overlapping sub-blocks to extract the local statistical color and texture features in 

the sub-blocks of the grayscale image. The color and texture features are extracted 

jointly from the non-overlapping blocks of the grayscale image and the performance 

is analyzed on the basis of different block sizes. The approaches in spatial domain 
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mainly have focused on the performances of the color and texture features 

individually and in a combination of both in terms of efficiency and effectiveness for 

the retrieval of similar images. 

In the frequency domain, various approaches are proposed to extract statistical 

quantized histogram texture features to improve the performance of the image 

retrieval in terms of retrieval and computational costs in the frequency (DCT) domain 

based on the median, median with edge extraction method and Laplacian filters, 

distance metrics, combination of features, combination of texture features in both 

domains and combination of color features in the spatial and the texture features in the 

frequency domains. The main contribution in the frequency domain is the incremental 

efficiency of the proposed approaches by utilizing the significant energy of the 

coefficients of the DCT blocks. The distribution of the coefficients of the blocks is 

used statistically to compute the texture features in different combination in various 

approaches. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter the experimental results of the implementation of all the proposed 

designed approaches from Approach-1 to Approach-10 in the spatial and frequency 

domains which have been discussed in Chapter 3, are discussed and analyzed to show 

the improvement in the retrieval performance of CBIR to achieve the main objective 

of the this study of research.  

4.1 Experimental Setup 

All the proposed approaches have been implemented using MATLAB 7.1 software, 

computer with Intel (R) Core (TM)
2
 Dua processor,  CPU with speed of 2.20GHz and 

memory RAM (random Access memory) with the storage space of 2 GB.  

The proposed CBIR algorithms are tested by using the Corel image database 

which is provided by (Wang et al., 2001) and discussed in section 2.7.  

Evaluation criteria for CBIR depend upon the benchmarking which is still an issue 

for the researchers. However, there are recommendations issued by the technical 

committee from the International Association for Pattern Recognition (IAPR) 

regarding benchmarking of image retrieval (An et al., 2011). Guidelines based on the 

recommendations for implementation of CBIR algorithm are given by (Park et al., 

2008):  

1. Usage of the free available image database for researchers without any constraint. 

2. All the database images are loaded in main memory for the retrieval evaluation to 

reduce the hardware dependency. 

3. The total number of images for testing in the Corel database is 1000. 
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4. The format of the images is JPEG. 

5. The database consists of ten different types of image categories. 

6. From all the categories a set of about 30 evaluation image queries are used. 

7. For each image query total 9 images are retrieved as thumbnails as a result. 

8. The evaluating measurements are precision, recall and F-Score. 

In this thesis the experimental setup is same for all the proposed approaches and 

using the above same guidelines. Each algorithm is performed in two steps as 

discussed in section 3.4. In the first step, the features database is created for all images 

using the proposed approach and in the second step the user can select any image 

from the browsing window of user interface. The targeted images are displayed to the 

user in windows having 9 images separately as thumbnails. Important thing is that the 

user can give any image as a query image whether from the same database or any new 

image from any other outside source with any dimension. 

Precision, recall and F-Score measurements are computed to show the retrieval 

accuracy of the query image among the returned images. These measurements are 

calculated for the top 9 relevant images retrieved in response of a query example 

image  (Park et al., 2008) and are displayed to the user as thumbnails.  

The purpose of implementation of the proposed algorithms is to analyze the 

impact of the combination of different techniques by extracting of color and texture 

features in the spatial and frequency domains for the robust retrieval of images.  

4.2 Results and Discussion of the Proposed Approaches in the Spatial Domain 

In this section the results of all the proposed approaches in the spatial domain, 

discussed in Chapter 3, are discussed: 
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4.2.1 Analysis of the Quantized Color Histogram Features Based on the 

Laplacian Filter (Approch-1) 

In Approach-1 the retrieval results of the CBIR by using the quantized histogram 

features are analyzed based on Laplacian filter and different quantization schemes.  

4.2.1.1 Results and Discussion 

In the experiments, the two steps; feature database creation and image retrieval, of the 

proposed approach are performed for all of the proposed quantization schemes of 4, 8, 

16, 32, 64, and 128 bins separately, using the Corel dataset images. The performance 

is measured in terms of average precision, recall and F-Score for these images as 

shown in Tables 4.1 to 4.3. 

The results in Table 4.1 show the precision of the all categories of images for the 

quantization schemes of the histograms with different numbers of bins, which 

includes 4, 8, 16, 32, 64 and 128 bins, using color features. The categories of 

dinosaurs, buses and people give good results especially for 32 bins and the overall 

average precision is 51%. Table 4.2 also shows good results in terms of the recall for 

roses, buses and food using histograms 32 bins and the overall average recall is 72%. 

Table  4.1  Average precision of the query images from the entire image categories 

for different quantization schemes. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins 64 Bins 128 Bins Average 

Dinosaurs 67 67 89 89 87 83 80 

Buses 44 44 56 67 51 49 52 

People 38 50 51 60 50 48 50 

Beaches 44 44 56 59 55 50 51 

Buildings 44 44 56 60 53 51 51 

Roses 33 56 56 58 54 50 51 

Horses 44 67 44 46 41 38 47 

Elephants 44 33 56 59 50 45 48 

Mountains 33 44 44 45 38 35 40 

Foods 33 33 44 46 35 33 37 

Average 42 48 55 59 51 48 51 

Table 4.3 shows the F-Score of all of the image categories for the quantization of 

the histograms of the Laplacian sharpened image in different numbers of bins, which 
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includes 4, 8, 16, 32, 64 and 128 bins, using color features. The F-Score shows the 

overall performance of the proposed algorithm for the entire image categories using 

histograms. It can be seen from Table 4.3 and Fig. 4.1 that the performance in terms 

of the average F-Score is better for the categories: dinosaurs, buses and roses than 

other categories especially for 32 bins, and the overall average F-Score is 59%.  

Table  4.2  Average recall of the query images from the entire image categories for 

different quantization schemes. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins 64 Bins 128 Bins Average 

Roses 75 71 83 83 80 76 78 

Buses 80 80 71 75 70 68 74 

Foods 75 75 80 75 77 65 75 

Mountains 60 80 80 80 79 75 76 

Beaches 67 80 71 71 70 69 71 

Buildings 67 80 71 71 69 64 70 

Dinosaurs 75 60 73 80 76 74 73 

Horses 57 67 80 80 78 72 72 

Elephants 67 60 83 71 77 73 72 

People 60 67 50 70 58 55 60 

Average 68 72 74 76 73 69 72 

Table  4.3  Average F-Score of the query images from the entire image categories 

for different quantization schemes. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins 64 Bins 128 Bins Average 

Dinosaurs  71 69 86 86 83 79 79 

Buses 57 57 63 71 59 57 60 

Roses 50 60 62 67 61 55 59 

Beaches 51 57 66 68 65 60 61 

Buildings 53 57 63 65 60 59 59 

Horses 44 66 63 64 61 56 59 

Elephants 55 63 55 58 53 50 56 

People 50 44 66 68 61 55 57 

Mountains 44 51 58 55 51 47 51 

Foods 43 44 47 56 44 41 46 

Average 52 57 63 66 60 56 59 

Figure 4.2 shows the average F-score for the different quantization schemes. The 

incremental F-Score from 52% to 66% for 4 to 32 bins quantization, which shows that 

dividing the enhanced sharpened image into more bins, gives more color information 

with a bright color image as compared with less numbers of bins. In Fig. 4.2 it can be 
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seen that the results in terms of average F-Score for the quantization schemes from 4 

to 32 bins is incremental. As the quantization bins are increasing the retrieval 

accuracy is also increasing from 52% to 66% average F-score. We stop the 

quantization at 32 bins to locate the optimum quantization scheme because the 

accuracy is decreasing as the number of bins increasing from 64 to 128.  It has been 

noticed that quantization schemes with large number of bins do not necessarily lead to 

a better accuracy and on another side these lead to a much less efficient search. Hence 

the selection of a quantization scheme must be taken after a careful study and 

analysis. 
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Figure 4.1  F-Score of the query images from the entire image categories in different 

quantization schemes. 
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Figure 4.2  Average F-Score of the query images from the entire image categories for 

different quantization schemes. 
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The results show that the retrieval accuracy certainly affected by the selection of 

the proper quantization scheme after thorough experiments. The difference of the 

retrieval accuracy in terms of F-Score, between the optimal and maximum 

quantization schemes is decreasing. Accordingly using the quantization scheme with 

256 bins is not recommended because it will give an inefficient retrieval of similar 

images.  As a result it is distinguished that on one side using quantization scheme of 

bins with large number of values, describes the image with more detail information 

while on another side the matching distance between images is increasing which leads 

to a less effective image retrieval. 

Clearly quantization in less number of bins reducing computational cost but also 

reducing the information concerning with the content of images. However histogram 

with large number of bins contains more information and give more discrimination 

power but it will increase the computational cost which leads to inefficient indexing 

of images with features to create features database. Quantization in large number of 

bins, histogram contains more bins with zero frequency of values. It is concluded that 

quantization in less and large number of bins have some disadvantages regarding 

retrieval. Then a question is raised that which number of quantization in bins will be 

optimal as concerned with effective retrieval of images. We cannot surely give the 

optimal quantization scheme depends upon the image type but we cay that the near to 

the optimal quantization scheme obtained using the sharpened Laplacian filtered 

image in our experimental work, is 32 bins. 
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Figure 4.3  Time taken by the creation of feature databases for different quantization 

schemes. 



103 

Figure 4.3 shows the computational cost in terms processing time taken by the 

feature database creation. It is clear from the graph that as the number of bins in 

quantization scheme is increased the time also increased but the time difference is in 

seconds. It can be seen that the algorithm gives good results for the 32 bins 

quantization scheme in terms of retrieval and less effective results for more than 32 

bins quantization scheme; however, the computational cost for the feature extraction 

to create the feature database using the 32 bin quantization, is higher than other bins 

with a slight difference in seconds. 

Figure 4.4 (a-c) shows the results of the user queries. Each figure consists of a 

query image and the retrieved similar images from the database by using the proposed 

approach. The top single image is the query image and the below 9 are the relevant 

images. The results show that the proposed approach has good retrieval accuracy. 

 

 

 

                         (a)                                        (b)                                        (c) 

Figure 4.4  Query image results of (a) dinosaurs, (b) buses and (c) people using 32 

bins quantization scheme in Approach-1. 

4.2.1.2 Summary 

The quantization of the histograms into bins has an impact on the performance of 

CBIR. In the proposed approach, the Laplacian sharpened grayscale image is used for 

feature extraction because the energy is compensated in the sharpened method, which 

is lost by the Laplacian filter in the preprocessing of the grayscale image to get a 

sharpened and enhanced image without noise. In the sharpening process using the 

Laplacian filter, not only the noise is reduced but the information is also preserved 

which gives a precise matching of images. The sharpened image is quantized into 

schemes with different number of bins like 4, 8, 16, 32, 64 and 128 bins. The 

statistical color features are extracted from the bins and represented in the feature 



104 

vectors. These vectors are used in the similarity measurement for the retrieval of 

similar images. From the results, it is concluded that the quantization of the 

histograms into 32 bins gives the good performance in terms of F-Score in the 

retrieval of similar images as well as in the processing time for the creation of the 

feature database. After performing the experiments by using the images of all the 

categories as query images to get the results for the analysis and evaluation, proposed 

Approach-1 gives good performance in terms of effectiveness. 

4.2.2 Color Feature Analysis for CBIR Based on Median, Median with Edge 

Extraction Method and Laplacian Filters using the Color Histogram 

Refinement Method (Approach-2) 

In Approach-2 the retrieval results of the CBIR by using histogram refinement 

method to extract color features are analyzed based on different filters and different 

quantization schemes. 

4.2.2.1 Results and Discussion 

In the experiments, the two steps of the proposed algorithm are performed for three 

filter methods separately by using the quantization schemes of 4, 8, 16 and 32 bins, 

separately. The results are analyzed on the basis of three filter methods against 

different quantization schemes. The performance is measured in terms of the F-Score 

using the precision and recall for all of the images of the Corel database as shown in 

Tables 4.4 to 4.6.  

The results in Table 4.4 show the average F-Score of the entire image categories 

against the quantization of the histograms in 4, 8, 16 and 32 bins using the median 

filter method by extracting color features. The F-Score shows the overall performance 

of the proposed algorithm for the query images of the entire categories. It can also be 

seen that the average F-Score is high for the categories of dinosaurs, horses and roses 

with 100%, 82% and 79% F-Scores, respectively. The 32 bins quantization gives 

good results as compared to other bins which is 70% average F-Score. The overall F-

Score is 65%. This shows that the histogram refinement method with 32 bins gives 
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good results using the color information of the median filtered images with good 

brightness and contrast. 

Table  4.4  Average F-Score of the query images from the entire image categories for 

different quantization schemes using the median filter. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins Average 

Dinosaurs 100 100 100 100 100 

Horses 74 86 77 90 82 

Roses 89 72 74 80 79 

Elephants 61 64 70 71 66 

Buses 53 61 66 69 62 

Beaches 45 53 65 68 58 

People 44 54 61 62 55 

Buildings 47 55 67 50 55 

Mountains 40 44 47 60 48 

Foods 36 40 43 51 42 

Average 59 63 67 70 65 

Table  4.5  Average F-Score of the query images from the entire image categories for 

different quantization schemes using the median filter with edge extraction method. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins Average 

Dinosaurs 97 100 100 100 99 

Roses 73 82 89 90 84 

Horses 68 78 79 86 78 

Buses 58 68 67 74 67 

Elephants 57 61 72 74 66 

Buildings 53 55 68 51 57 

People 41 59 54 61 54 

Mountains 44 44 59 67 54 

Beaches 49 52 51 56 52 

Foods 41 42 51 60 49 

Average 58 64 69 72 66 

Table 4.5 shows the F-Score of the query images with different quantization 

schemes that includes 4, 8, 16 and 32 bins using the median with edge extraction 

filtered images. It can be seen from Table 4.5 that the performance in terms of the 

average F-Score for the categories of dinosaurs with 99%, roses with 84% and horses 

with 78%, is better than other categories, especially for 32 bins, and the overall 
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average F-Score is 66%. The average F-score for the different histogram bins is 

incremental from 58% to 72% for 4 to 32 bins quantization which shows that dividing 

the enhanced image into more bins give more color information by replacing the edge 

information of the median filtered image with a brighter color image as compared 

with a less number of bins. 

Table 4.6 shows the average F-Score of the Laplacian sharpened images against 

the quantization of the histograms in different number of bins that includes 4, 8, 16 

and 32 bins, using the color histogram features. It can be seen from Table 4.6 that the 

performance in terms of the average F-Score for the categories of dinosaurs with 

100%, roses with 92% and horses with 90%, is better than the other categories, 

especially for 32 bins, and the overall average F-Score is 70%. The average F-score of  

the different quantization schemes is incremental from 64% to 75% for 4 to 32 bins 

quantizations which shows again that dividing the Laplacian sharpened and enhanced 

image into more bins gives more color information with a brighter color image as 

compared with a less number of bins. 

Table  4.6  Average F-Score of the query images from the entire image categories for 

different quantization schemes using the Laplacian filter. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins Average 

Dinosaurs 100 100 100 100 100 

Roses 89 91 92 95 92 

Horses 88 88 90 94 90 

Elephants 59 75 75 79 72 

Buses 53 68 69 77 67 

Buildings 50 55 58 79 61 

People 55 58 61 66 60 

Beaches 51 57 60 59 57 

Mountains 51 44 59 56 53 

Foods 45 43 54 48 48 

Average 64 68 72 75 70 

Table 4.7 shows the comparison of the results of the proposed approach on the 

basis of the three filter methods: median, median with edge extraction and Laplacian 

filters, in terms of the average F-Score. The average F-Score based on the median, 

median with edge extraction and Laplacian filters are 65%, 66% and 70%. The overall 
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average F-Score is 67%. The F-Score using the Laplacian filter is 75% in the 32 bins 

histogram quantization and average is 70% which is better than other filter methods 

using quantization bins other than 32 bins. This shows that the Laplacian sharpened 

image has more energy for the retrieval of similar images. 

Table  4.7  Average F-Score of the filters methods using different quantization 

schemes. 

Filter Methods 4 Bins 8 Bins 16 Bins 32 Bins 
F-Score 

Average 

Median filter 59 63 67 70 65 

Median with Edge Extraction 60 64 69 72 66 

Laplacian filter 64 68 72 75 70 

Average 61 65 69 72 67 

These filter methods provide enhanced images with more significant color 

information in the histograms; furthermore, color information plays an important role 

in the retrieval of the similar images. The color information can be extracted in the 

form of the statistical color features which provide the best performance in terms of 

retrieval, especially for the Laplacian filter as compared to other filter methods. The 

proposed approach has also provided improved performance for the median and 

median with edge extraction methods. 

Figure 4.5 shows the computational cost for the creation of the feature database, 

in terms of processing time of the different filters in different quantization schemes. It 

can be seen that the time also increasing when the number of histogram quantization 

bins is increased. Since the 32 bins gives better performance in retrieval, it is 

considered the optimum quantization even though it takes more time in minutes than 

other bins like 4, 8 and 16 bins. 

4.2.2.2 Summary  

The performance of the Approach-2 is based on the different filter methods with 

different quantization schemes using the color histogram refinement method for 

feature extraction.  Median, median with edge extraction and Laplacian filter methods 

are applied on grayscale images for noise removal before applying the histogram 

method. During the median filtration, edge information is lost which is restored by the  
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Figure 4.5  Feature database creation time in minutes of the filter methods using 

different quantization schemes. 

edge detection method while in the Laplacian method; some amount of information is 

also lost which is restored by subtracting the Laplacian image from the grayscale 

image to get a more enhanced sharpened image. The statistical features of mean and 

standard deviation of the quantized histograms are calculated using the spatial 

information of the connected regions. These statistical features are used for the 

retrieval of the relevant images. These features do not depend upon the orientation of 

the image. The performance is analyzed on the basis of the three filter methods using 

the spatial information of the histograms by quantization in different numbers of bins. 

The results show that the algorithm provides good results based on the Laplacian filter 

with 75% average F-Score. 

4.2.3 Features Analysis for CBIR Based on the Color Moments using the Block 

Methods (Approach-3) 

In Approach-3 the retrieval results of the CBIR by using sub-blocks of grayscale 

image to extract color features by computing color moments, are analyzed based on 

sub-blocks of different sizes. 
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4.2.3.1 Results and discussion 

In the experiments, the two steps of the algorithm are performed for all of the 

proposed sub-blocks of different sizes: Whole-Image-as-One-Block, 2-Blocks-

Column-Wise, 2-Blocks-Row-Wise, and 2×2, 4×4, 8×8, 16×16, 32×32, and 64×64 

blocks. Query images from the entire image categories of the Corel database are used 

and the performance of the proposed approach is measured by calculating the average 

precision, recall and F-Score for all of the proposed sub-block methods. The results 

are shown in Tables 4.8 to 4.10. 

Table 4.8 shows the average precision in percentage for the query images of all of 

the categories against 9 proposed different sub-block methods by calculating two 

color moments; these are the mean and the standard deviation. The results in terms of 

precision of the proposed approach are good for all of the query images of categories, 

especially for dinosaurs, roses and elephants. These three categories provide good 

local color information in sub-blocks especially using 4×4, 8×8 and 16×16 block 

methods because these sub-block methods give better results of 62%, 66% and 63% 

precision as compared to the other sub-block methods. 

Table  4.8  Average precision of the query images from the entire image categories 

for different sub-block methods. 

C
a

te
g

o
ri

es
 

W
h

o
le

 I
m

a
g

e
  

a
s 

O
n

e-
B

lo
ck

 

2
 B

lo
ck

s 
 

C
o

lu
m

n
s 

W
is

e
 

2
-B

lo
ck

s 
 

R
o

w
 W

is
e
 

2
×

2
 B

lo
ck

s 

4
×

4
 B

lo
ck

s 

8
×

8
 B

lo
ck

s 

1
6

×
1

6
 B

lo
ck

s 

3
2

×
3

2
 B

lo
ck

s 

6
4

×
6

4
 B

lo
ck

s 

A
v

er
a

g
e 

Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 100 79 89 89 89 91 100 100 100 93 

Elephants 33 56 78 67 78 78 78 78 78 69 

Horses 44 50 43 54 58 70 66 60 54 55 

Buses 44 67 44 56 47 67 56 44 56 53 

People 56 56 56 56 56 56 44 44 56 53 

Buildings 56 44 56 44 45 56 56 56 44 51 

Beaches 56 56 44 44 56 44 44 44 44 48 

Mountains 44 41 33 33 44 56 44 44 44 43 

Foods 33 33 33 33 44 44 44 44 33 38 

Average 57 58 58 58 62 66 63 61 61 60 

Table 4.9 shows the average recall in percentage for all of the categories against 9 

different block methods by using statistical color features, the mean and the standard 
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deviation. The proposed approach gives good results in terms of recall for all of the 

query image’s categories and the optimum results is obtained for dinosaurs, buildings 

and beaches. The results in terms of recall for the block methods are also good and the 

optimal for the 4×4, 8×8 and 16×16 methods. 

Table  4.9  Average recall of the query images from the entire image categories for 

different sub-block methods. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Buildings 100 67 83 67 67 71 71 83 80 77 

Beaches 71 71 67 67 83 80 80 80 77 75 

Buses 57 76 77 83 67 100 83 57 71 75 

Mountains 80 75 60 65 80 83 67 80 75 74 

Foods 60 75 75 60 80 80 80 80 75 74 

Roses 90 57 77 79 78 62 68 65 64 71 

People 56 71 71 71 71 71 80 67 75 70 

Horses 50 75 60 80 67 84 80 67 62 69 

Elephants 50 64 64 65 64 70 70 70 70 65 

Average 71 73 73 74 76 80 78 75 75 75 

Table 4.10 shows the F-Score of all of the categories of images against 9 different 

sub-block methods used for the extraction of color features from a grayscale image. 

The F-Score shows the overall performance of the proposed approach for the query 

images of all of the categories using the sub-block methods. It can be seen from Table 

4.10 that the performance in terms of the average F-Score is better for the categories: 

dinosaurs, roses and elephants with 100%, 80% and 67%, respectively. 

It can be seen that the different block methods have been used for image retrieval 

to obtain the optimum method among them. After extensive experimental results and 

analysis, it has been concluded that the three block methods 4×4, 8×8 and 16×16, are 

the optimum methods with relatively good results of 67%, 71% and 68%average F-

Score as compared to the other methods. These three methods are in the middle while 

the performance in terms of the retrieval of the first four i.e. Whole-Image-as-One-

Block, 2-Blocks-Column-Wise, 2-Blocks-Row-Wise, 2×2 and the last two methods 

32×32, and 64×64 are relatively low. The optimum method is 8×8 blocks which 
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shows that that this method has good potential to provide local color information for 

the retrieval of images in the spatial domain for CBIR. The overall average F-Score is 

65% which shows good and improved performance in terms of the retrieval of the 

images using the color moments of the grayscale images by dividing them into 

different block sizes. 

Table  4.10  Average F-Score of the query images from the entire image categories 

for different sub-block methods. 
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Roses 95 66 83 84 83 74 81 79 78 80 

Elephants 40 60 70 66 70 74 74 74 74 67 

Buses 50 71 56 67 55 80 67 50 63 62 

Horses 47 60 50 64 62 76 72 63 58 61 

Buildings 72 53 67 53 54 63 63 67 57 61 

People 56 63 63 63 63 63 57 53 64 60 

Beaches 63 63 53 53 67 57 57 57 56 58 

Mountains 57 53 43 44 57 67 53 57 55 54 

Foods 43 46 46 43 57 57 57 57 46 50 

Average 62 63 63 64 67 71 68 66 65 65 
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Figure 4.6  Feature database creation time in minutes of the different sub-block 

methods using the entire image categories. 

Figure 4.6 shows the computational cost in terms of time taken by 9 different 

block methods to create a feature database for all of the categories of the images. It 

can be seen in Fig. 4.6 that the three block methods 4×4, 8×8, and 16×16, are again in 



112 

the middle on the basis of the computational cost for the creation of a feature 

database. These three methods have more computational cost than the first four, i.e., 

the Whole-Image-as-One-Block, 2-Blocks-Column-Wise, 2-Blocks-Row-Wise, 2×2 

but less than the last two methods, 32×32, and 64×64. It is concluded that the 

computational cost increased as the number of blocks increased. Since the retrieval 

performance of the 4×4, 8×8, and 16×16 block methods is high, hence they are 

considered the optimum methods while their computational cost is relatively high. 

Thus, the performance of our proposed approach is not only relatively efficient in 

computations of feature extraction but also gives good accuracy in terms of F-Score. 

Figure 4.7 (a-c) shows the results of the user queries. Each figure consists of a 

query image and the retrieved images from the database. The results show that the 

proposed approach has good retrieval performance.  

 

 

 

 

 

 

                       (a)                                       (b)                                       (c) 

Figure 4.7  Query image results of (a) dinosaurs, (b) roses and (c) elephants using 

8×8 sub-block method for extraction of color features. 

4.2.3.2 Summary  

In this proposed Approach-3 which has been based on the statistical color moments 

and these moments are extracted from the sub-blocks of different sizes of the images. 

It has been shown that the statistical color features have good retrieval performance 

using the color information of the local blocks in the images. The grayscale image is 

used for the feature extraction to reduce the computational cost and increase 

efficiency. The grayscale image is divided into blocks of different sizes to calculate 

the local statistical features of the mean and standard deviation of the pixels in each 

block. In this approach, 9 different block methods have been used. The color moments 

have been extracted in all of the methods and analyzed for their individual retrieval 
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performance in terms of accuracy. The experimental results have been shown that the 

proposed approach is efficient in the feature extraction for different block methods 

and gives the improve performance in terms of accuracy, especially for the 8×8 and 

16×16 block methods. It has been shown that the proposed approach is not only 

efficient in the feature extraction but also gives good accuracy in terms of retrieval.  

4.2.4 Features Analysis for CBIR Based on the Statistical Texture Features 

using the Block Methods (Approach-4) 

In Approach-4 the retrieval results of the CBIR by using sub-blocks of grayscale 

image to extract texture features, are analyzed based on sub-blocks of different sizes. 

4.2.4.1 Results and Discussion 

In the experiments, the two steps are performed for all of the proposed sub-block 

methods, Whole-Image-as-One-Block, 2-Blocks-Column-Wise, 2-Blocks-Row-Wise, 

2×2, 4×4, 8×8, 16×16, 32×32, and 64×64 blocks, separately. Query images from the 

entire image categories of the Corel database are used and the performance of the 

proposed approach is measured by calculating the average precision, recall and F-

Score for all of the proposed sub-block methods. The results are shown in Tables 4.11 

to 4.13. 

Table 4.11 shows the average precision in the percentage for the query images of 

the entire image categories against 9 different sub-block methods by calculating the 

statistical texture features. The results in terms of precision of the proposed approach 

are improved for the image categories, especially for dinosaurs, roses and elephants. 

These three categories provide local texture information in the blocks especially using 

the 4×4, 8×8 and 16×16 block methods because these block methods give better 

results of 67%, 70% and 68% precision as compared to the other block methods. 

Table 4.12 shows the average recall in percentage for the query images from the 

image categories against 9 different block methods by using the statistical texture 

features. The proposed approach gives a good result in terms of recall for all of the  
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Table  4.11  Average precision of the query images from the entire image categories 

for different sub-block methods using the texture features. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 87 85 89 100 100 100 100 100 100 96 

Elephants 70 78 78 80 82 88 79 80 78 79 

Buses 52 56 59 64 65 66 66 60 61 61 

Horses 52 58 59 60 63 70 71 59 51 60 

Buildings 46 47 56 54 57 60 58 50 42 52 

People 45 40 60 56 44 65 56 44 43 50 

Mountains 40 45 47 48 55 55 54 55 52 50 

Beaches 43 41 55 56 56 47 44 48 40 48 

Foods 33 44 42 43 44 52 56 50 62 47 

Average 57 59 65 66 67 70 68 65 63 64 

Table  4.12  Average recall of the query images from the entire image categories for 

different sub-block methods using the texture features. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 80 57 60 57 95 99 100 100 96 83 

People 67 57 83 86 72 86 69 67 58 72 

Beaches 63 67 83 86 70 67 60 80 60 71 

Buildings 62 65 67 71 65 80 70 80 72 70 

Foods 38 100 60 76 60 88 60 60 70 68 

Horses 55 57 83 67 71 71 75 55 62 66 

Elephants 64 64 58 64 64 73 73 64 64 65 

Buses 66 68 67 57 70 55 68 57 69 64 

Mountains 40 67 67 71 62 66 62 80 61 64 

Average 64 70 73 74 73 79 74 74 71 72 

categories and is good for dinosaurs, roses and people. The results in terms of recall 

are good for the block methods as well as for the 4×4, 8×8 and 16×16 block methods. 

Table 4.13 shows the F-Score of the entire image categories against 9 different 

block methods used for the extraction of texture features from grayscale images. The 

F-Score shows the overall performance of the proposed approach for all of the images 
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using the block methods. It can be seen from Table 4.13 that the performance in terms 

of average F-Score is better for the categories dinosaurs, roses and elephants with 

100%, 88% and 72%, respectively. 

Table  4.13  Average F-Score of the query images from the entire image categories 

for different block methods using the texture features. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 83 68 72 73 97 99 100 100 98 88 

Elephants 67 70 67 71 72 80 76 71 70 72 

Horses 53 57 69 63 67 70 73 57 56 63 

Buses 58 61 63 60 67 60 67 58 65 62 

Buildings 53 55 61 61 61 69 63 62 53 60 

People 54 47 70 68 55 74 62 53 49 59 

Beaches 51 51 66 68 62 55 51 60 48 57 

Mountains 40 54 55 57 58 60 58 65 56 56 

Foods 35 61 49 55 51 65 58 55 66 55 

Average 59 62 67 68 69 73 71 68 66 67 

It can be seen in Table 4.13 that the three block methods, 4×4, 8×8 and 16×16, 

give relatively good results with the average F-Score of 69%, 73% and 71% as 

compared to the other methods. It shows that these methods have a good potential to 

provide local statistical texture information for retrieval of images in CBIR. The 

overall average F-Score is 67% which shows good and improved performance in 

terms of the retrieval of images using the texture features of the grayscale images by 

dividing them into different block sizes. 

Figure 4.8 shows the computational cost in terms of time taken by 9 different 

block methods for the creation of a feature database using query images of the 

categories. It can be seen in Fig. 4.8 that the three block methods, 4×4, 8×8 and 

16×16, are in the middle on the basis of the computational cost for the creation of a 

feature database. These three methods have more computational cost than the first 

four, i.e., Whole-Image-as-One-Block, 2-Blocks-Column-Wise, 2-Blocks-Row-Wise 

and 2×2 while the computational cost is less than the last two methods, 32×32 and 

64×64. It has been concluded that the computational cost increases as the number of 

blocks increases. Since the retrieval performance of the 4×4, 8×8 and 16×16 block 
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methods is high, they are considered the optimum methods; moreover, their 

computational cost is relatively low. 
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Figure 4.8  Feature database creation time in minutes of the different sub-block 

methods using the texture features in Approach-4. 

Thus, the performance of the proposed Approach-4 is not only efficient in 

computations of texture feature extraction but it also gives good accuracy in terms of 

precision, recall and F-Score. 

Figure 4.9 (a-c) shows the results of the user queries. The results show that the 

proposed algorithm has good retrieval accuracy. 

 

 

 

 

 

 

                      (a)                                        (b)                                      (c) 

Figure 4.9  Query image results of (a) dinosaurs, (b) roses and (c) elephants using 

texture features of 8×8 sub-block method in Approach-4. 

4.2.4.2 Summary  

In the proposed Apparoch-4 the statistical texture features are extracted from blocks 

of different sizes of images. It has been shown that the statistical texture features has 

good retrieval performance. The grayscale image is used for feature extraction to 
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reduce the computational cost and increase the efficiency. The grayscale image is 

divided into sub-blocks of different sizes to calculate the local statistical features of 

mean, standard deviation, skewness, flatness, energy, entropy and smoothness of the 

pixels in each block. In this approach, 9 different block methods have been used. The 

statistical texture features have been extracted in all of the methods and their 

individual retrieval performance has been analyzed in terms of accuracy. In the 

experiment, the results show that the proposed approach is efficient in feature 

extraction for different sub-block methods and give good performance in terms of 

accuracy, especially for the 8×8 and 16×16 block methods. It has been shown that 

proposed approach is not only efficient in feature extraction but also gives good 

accuracy in terms of retrieval. 

4.2.5 Combination of the Color and Texture Features for CBIR using the Blocks 

Methods (Approach-5) 

In Approach-5 the color and texture features of images are combined for the retrieval 

of similar images using sub-block methods. The block methods have been used 

individually for the extraction of color and texture in Approach-3 and Approach-4 

with proper analysis of the performance in terms of retrieval using 9 different block 

methods, separately. In Approach-3, the statistical color features are extracted from 

blocks of an image. After analysis of the results, it is shown that the 4×4, 8×8 and 

16×16 block methods gives good and improved results with a 67%, 71% and 68% 

accurate retrieval, respectively. To further improve the retrieval performance for 

CBIR, the statistical texture features of mean, standard deviation, skewness, flatness, 

energy, entropy and smoothness, are extracted from the blocks of images. It has been 

shown in the Approach-4, that the statistical texture features have good retrieval 

performance using the texture information of the local blocks in the images. In the 

Approach-4, 9 different block methods have been used. The texture features have 

been extracted in all of the methods and an analysis of their individual retrieval 

performance in terms of accuracy has been performed. For improvement in retrieval, 

it has been shown in Approach-4 again, that the 4×4, 8×8 and 16×16 block methods 

gives better and improved results with a 69%, 73% and 71% accurate retrieval, 

respectively. The result of the 8×8 method is improved from 71% to 73%. 
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Now, the Approach-5 in this section is an attempt to combine the color and 

texture features using the optimum 8×8 sub-block method with efficient retrieval and 

low computational cost, along with other sub-block methods of different sizes. The 

statistical color moments of the mean and standard deviation, and the texture features 

of mean, standard deviation, skewness, flatness, energy, entropy and smoothness, are 

calculated in non-overlapping sub-blocks of the grayscale image. For feature 

extraction, the image is divided into non-overlapping sub-blocks of different sizes like 

2×2, 4×4, 8×8 etc.  The statistical texture features are calculated by using the intensity 

level distribution in each block of the image. A feature vector is constructed by 

combining the local color and texture features to retrieve the similar images.  After 

extensive experiments, the results are analyzed in terms of precision, recall and F-

Score measurements for all of the proposed block methods.  

4.2.5.1 Results and Discussion 

In the experiments, two steps for image retrieval are performed for all of the proposed 

9 block methods to extract the color and texture features, create a feature database and 

retrieve similar images. The performance of the proposed approach is measured by 

calculating the average precision, recall and F-Score for all of the proposed block 

methods. The results are shown in Tables 4.14 to 4.16. 

Table 4.14 shows the average precision in percentage for all of the categories 

against the 9 different block methods by calculating and combining the color and 

texture features. The result in terms of the precision of the proposed approach is good 

for query images of all of the categories, especially for dinosaurs, roses and elephants. 

These three categories provide good local color and texture information in the blocks, 

especially using the 4×4, 8×8 and 16×16 block methods, because these block methods 

give better results, with 77%, 82% and 79% precision, than the other block methods. 

Table 4.15 shows the average recall in percentage for all of the categories against 

the 9 different block methods by using the combination of the statistical color and 

texture features. The proposed approach, gives good results in terms of recall and the 

better are for dinosaurs, roses and horses. Results in terms of recall for the block 



119 

methods are also good and the better are for the 4×4, 8×8 and 16×16 methods as 

compared to other methods. 

Table  4.14  Average precision of the query images from the entire image categories 

for different sub-block methods using the combination of color and texture features. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 92 89 100 100 100 100 100 100 100 98 

Elephants 71 70 84 86 93 92 92 93 92 86 

Horses 65 58 71 80 91 92 93 91 90 81 

Beaches 59 51 61 59 77 82 89 87 87 72 

Mountains 36 43 63 67 67 77 87 90 90 69 

Buses 56 63 63 68 72 85 64 56 41 63 

People 59 51 62 48 52 58 51 24 18 47 

Foods 45 48 37 49 62 65 65 27 22 47 

Buildings 46 40 49 56 54 70 44 29 26 46 

Average 63 61 69 71 77 82 79 70 67 71 

Table  4.15  Average recall of the query images from the entire image categories for 

different sub-block methods using the combination of color and texture features. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 59 78 100 100 100 100 100 100 100 93 

Horses 68 75 59 78 72 90 88 82 81 77 

Elephants 63 85 64 70 80 82 69 80 79 75 

Foods 70 85 65 79 76 83 77 65 69 74 

Mountains 73 72 59 68 75 78 71 80 72 72 

Buildings 77 77 73 67 69 70 77 62 72 72 

People 68 61 72 66 73 72 78 76 70 71 

Beaches 88 73 65 64 73 68 68 63 62 69 

Buses 60 65 67 62 61 78 72 70 69 67 

Average 73 77 72 75 78 82 80 78 77 77 

Table 4.16 shows the F-Score of all of the categories of images against the 9 

different block methods used for the extraction of the color and texture features from 

the grayscale image. The F-Score shows the overall performance of the proposed 

approach for all of the images using the block methods. It can be seen from Table 
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4.16 that the performance in terms of the average F-Score is better for the categories: 

dinosaurs, roses and elephants with 100%, 95% and 80%, respectively. 

Table  4.16  Average F-Score of the query images from the entire image categories 

for different sub-block methods using the combination of color and texture features. 
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Dinosaurs 100 100 100 100 100 100 100 100 100 100 

Roses 72 83 100 100 100 100 100 100 100 95 

Elephants 67 77 73 77 86 87 79 86 85 80 

Horses 67 66 65 79 80 91 91 86 85 79 

Beaches 71 60 63 61 75 74 77 73 72 70 

Mountains 48 54 61 67 71 77 78 85 80 69 

Buses 58 64 65 65 66 81 68 62 51 65 

Foods 55 61 47 60 68 73 70 38 34 56 

Buildings 57 53 59 61 61 70 56 39 38 55 

People 63 56 67 55 61 64 62 37 28 55 

Average 66 67 70 73 77 82 78 71 67 72 

It can be seen in Table 4.16 that the three block methods of 8×8, 16×16 and 4×4 

methods give relatively good results with 82%, 78% and 77% average F-Score as 

compared to the other methods. It shows that these methods have good potential to 

provide local color and texture information for the retrieval of images in CBIR. The 

overall average F-Score is 72% which shows good and improved performance in 

terms of the retrieval of images using the combination of the color and texture 

features of the grayscale images by dividing them into the non-overlapping blocks of 

different sizes. 

Figure 4.10 shows the computational cost in terms of time taken by the 9 different 

block methods to create a feature database for all of the categories of the database 

images. It can be seen that the time is also increased when the number of blocks is 

increasing. Since the 8×8 blocks method gives better performance in terms of 

retrieval, it is considered the optimum block method to provide texture features for 

image retrieval even though it takes more time in minutes than the other block 

methods like 2×2 and 4×4 while it takes less time than 16×16 and 32×32. Thus, the 

8×8 blocks method not only gives good results in terms of retrieval but is also 

comparatively efficient in the extraction of features. 
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Figure 4.10  Feature database creation time in minutes of the different sub-block 

methods using the combination of color and texture features for the entire image 

categories. 

Thus, the performance of the proposed algorithm is not only efficient in the 

computations of feature extraction but also gives good accuracy in terms of precision, 

recall and F-Score. 

4.2.5.2 Summary  

In this section an Approach-5 has been proposed which is based on the combination 

of the statistical color and texture features. These features are extracted from non-

overlapping blocks of different sizes of the images. It has been shown in the proposed 

approach that the combination of the color and texture features has good retrieval 

performance using the combined color and texture information of the local blocks in 

the images. A grayscale image is used for the feature extraction to reduce the 

computational cost and increase the image retrieval efficiency. The grayscale image is 

divided into non-overlapping sub-blocks of different sizes. In all of the blocks, mean 

and standard deviation are calculated as color features by using the pixel values of the 

blocks. The statistical texture features, mean, standard deviation, skewness, kurtosis, 

energy, entropy and smoothness are calculated by using the probability distribution of 

the intensity levels in the blocks. In this approach, 9 different block methods have 

been used. Both the color and texture features are extracted in all of the methods and 

analyzed for their individual retrieval performance in terms of accuracy. The results 

of the experiments show that the proposed approach is efficient in the features 
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extraction for sub-block methods with different sizes and gives the optimal 

performance in terms of accuracy, especially for the 8×8 and 16×16 block methods. 

4.3 Results of the Proposed Approaches in the Frequency Domain 

In this section the results of all the proposed approaches in frequency domain in 

Chapter 3, are discussed: 

4.3.1 Quantized Histogram Texture Features Based on Median, Median with 

Edge Extraction Method and Laplacian Filters (Approach-6) 

In Approach-6 the retrieval results of the CBIR by extracting quantized histogram 

texture features, are analyzed based on different filters and different quantization 

schemes in the frequency (DCT) domain. 

4.3.1.1 Results and Discussion 

The proposed Approach-6 is performed in two steps as discussed in section 3.4. In the 

first step, the feature database is created by extracting the feature vectors. In the 

second step, the feature vector of the query image is created and compared with the 

database feature vector. In the experiments, the two steps of the proposed approach 

are performed for the three filter methods, separately by quantizing them into 

different histogram bins like 4, 8, 16 and 32 bins, separately. The results are analyzed 

on the basis of the three filter methods against the different quantization schemes. The 

performance is measured in terms of the F-Score using the precision and recall for the 

randomly selected query images of the Corel database as shown in Tables 4.17 to 

4.19. 

The results in Table 4.17 show the average F-Score of the 10 categories of images 

against the quantization schemes of 4, 8, 16 and 32 bins using the median filter 

method by extracting the texture features. The F-Score shows the overall performance 

of the proposed approach for the images of all of the categories using the texture 

features in the different histogram quantization bins of the DCT blocks. It can also be 
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seen that the average F-Score is high for the categories of dinosaurs, people and 

horses with 100%, 94% and 73% F-Score, respectively. The 32 bins quantization 

scheme gives good results as compared to the other schemes. The overall average F-

Score is 66%. This shows that the quantized histogram texture features with 32 bins 

gives good results for the median filtered images. 

Table  4.17  Average F-Score of the query images from the entire image categories 

for different quantization schemes using the median filter. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins Average 

Dinosaurs 100 100 100 100 100 

People 77 100 100 100 94 

Horses 44 80 84 84 73 

Buses 51 72 78 81 70 

Beaches 58 69 72 72 68 

Buildings 62 67 67 67 66 

Roses 53 56 55 56 55 

Elephants 51 51 48 55 51 

Mountains 53 45 39 45 46 

Foods 45 21 34 43 36 

Average 60 66 68 70 66 

Table 4.18 shows the F-Score of the image categories for the quantization of 

histograms of the median with edge extraction filtered images in different 

quantization schemes that include 4, 8, 16 and 32 bins using the quantized histogram 

texture features. It can be seen from Table 4.18 that the performance in terms of 

average F-Score for the categories of dinosaurs with 100%, people with 99% and 

horses with 77%, is better than other categories, especially for 32 bins, and the overall 

average F-Score is 69%. The average F-score for the different quantization schemes is 

incremental from 64% to 73% which shows that dividing the enhanced image into 

more bins gives more texture information by replacing the edge information of the 

median filtered image as compared with a less number of bins. 

Table 4.19 shows the average F-Score of the image categories of the Laplacian 

sharpened images against the different quantization schemes of 4, 8, 16 and 32 bins 

using the histogram texture features. It can be seen from Table 4.19 that the  
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Table  4.18  Average F-Score of the query images from the entire image categories 

for different quantization schemes using the median filter with edge extraction 

method. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins Average 

Dinosaurs 100 100 100 100 100 

People 96 100 100 100 99 

Horses 45 88 84 90 77 

Beaches 59 74 85 74 73 

Buses 55 63 76 84 70 

Buildings 69 70 66 61 66 

Roses 57 57 60 64 60 

Elephants 59 62 55 62 59 

Mountains 57 48 47 49 50 

Foods 48 23 48 43 40 

Average 64 69 72 73 69 

Table  4.19  Average F-Score of the query images from the entire image categories 

for different quantization schemes using the Laplacian filter. 

Categories 4 Bins 8 Bins 16 Bins 32 Bins Average 

Dinosaurs 100 100 100 100 100 

People 75 96 100 100 93 

Horses 75 82 88 85 83 

Beaches 62 90 92 83 82 

Buses 70 74 75 78 74 

Roses 66 64 74 79 71 

Buildings 58 61 67 69 64 

Elephants 63 44 48 60 54 

Mountains 47 52 52 60 53 

Foods 46 35 42 62 46 

Average 66 70 74 78 72 

performance in terms of the average F-Score for the categories of dinosaurs with 

100%, people with 93% and horses with 83%, is better than other categories, 

especially for the 32 bins, and the overall average F-Score is 72%. The average F-

Score for the different histogram bins is incremental from 66% to 78% for the 4 to 32 

bin quantization which shows again, that dividing the Laplacian sharpened and 
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enhanced image into more bins gives more texture information as compared with a 

less number of bins. 

Table 4.20 shows the comparison of the results of the proposed approach on the 

basis of the three filter methods: median, median with edge extraction and Laplacian 

filters in terms of the average F-Score using all of the categories of the images of the 

Corel database for the texture histogram statistical features. The average F-Score is 

based on the median, median with edge extraction and Laplacian filters are 66%, 70% 

and 72%. The overall average F-Score is 69%. The F-Score using the Laplacian filter 

is 78% in the 32 bin histogram quantization and the average is 74%, which is better 

than other filter methods using the quantization bins other than 32 bins. This shows 

that the Laplacian sharpened image has more energy for the retrieval of similar 

images using the texture information of histograms in the DCT domain. 

Table  4.20  Average F-Score of the filters method for different quantization schemes. 

Filter Methods 4 Bins 8 Bins 16 Bins 32 Bins Average 

Median filter 60 66 68 70 66 

Median with Edge Extraction 64 69 72 73 70 

Laplacian filter 66 70 74 78 72 

Average 63 68 71 74 69 

It can be seen in Table 4.20 that the optimal quantization scheme for all three 

filter methods is 32 bins. So by extracting texture features using distribution of values 

in 32 bins give robust retrieval to the images sharpened with the Laplacian filter.  

These filter methods provide enhanced images with more significant information 

in the histograms. The texture information can be extracted in the form of the 

statistical texture features which provide the good and improved performance in terms 

of retrieval, especially for the Laplacian filter as compared to other filter methods. 

The proposed approach also provides improved performance for the median and 

median with edge extraction methods. 

Table 4.21 show the computational cost of the approach in terms of the time taken 

by different numbers of quantization bins for the creation of the feature database 

using all of the categories of the images. It can be seen that the time is also increasing 

when the number of the histogram quantization bins is increasing and less time is 

taken by using the Laplacian filter. Since the 32 bins gives better performance in 
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retrieval, it is considered to be the optimal quantization even though it takes more 

time in minutes than other bins like 4, 8 and 16. 

Table  4.21  Feature database creation time in minutes of the filter methods for 

different quantization schemes. 

Filter Methods 4 Bins 8 Bins 16 Bins 32 Bins Average 

Median with Edge Extraction 19.83 19.85 19.9 19.97 19.89 

Median filter 16.22 16.24 16.29 16.31 16.27 

Laplacian filter 16.00 16.17 16.22 16.27 16.17 

Average 17.35 17.42 17.47 17.52 17.44 

4.3.1.2 Summary  

In this section, a CBIR Approach-6 has been proposed for the effective image 

retrieval in which the experimental comparison of the statistical texture features in 

terms of the accuracy of the image retrieval based on the median and Laplacian filters 

is performed in the DCT domain. Only the DC and the first three AC coefficients with 

more significant energy are selected in each DCT block to get the quantized 

histogram statistical texture features. These features are extracted from the median, 

median with edge extraction and Laplacian filtered images. The experimental 

comparison of the results of the three filter methods are analyzed for all of the image 

categories in terms of the accuracy of the image retrieval. It has been concluded that 

the enhanced and sharpened Laplacian filtered images using the quantized histogram 

texture features give good performance in terms of the F-Score in the DCT domain for 

the compressed images as compared to the retrieval of the images in the spatial 

domain. 

4.3.2 Analysis of the Distance Metrics in CBIR using the Statistical Quantized 

Histogram Texture Features in the Frequency Domain (Approach-7) 

In Approach-7 the retrieval results of the CBIR by extracting quantized histogram 

texture features, are analyzed based on the different distance metrics and different 

quantization schemes in the frequency (DCT) domain. 
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4.3.2.1 Results and Discussion 

In the experiment, the two steps of the approach are performed for all of the 

quantization of the histograms into 4, 8, 16 and 32 bins, separately. For each 

quantization of the histograms, all the distance metric are used, separately, in the 

experiments to get the results in terms of precision and recall to calculate the F-Score. 

Consequently, each distance metric is tested in all of the quantization bins and the 

results are analyzed for all of the distance metrics against all of the quantization 

schemes. The results in precision, recall and F-score of all of the quantization 

schemes using only the Euclidean distance metric for the similarity measurement and 

all of the image categories, are shown in Tables 4.22 to 4.24. 

Table 4.22 shows the average precision in percentage of the seven distance 

metrics in different histogram quantization bins using query images of all of the 

image categories for the matching of the query image with the target images of the 

database in searching for similar images. It can be seen that the dinosaurs, roses, 

people and horses give better results as compared to the other categories whereas 

using the Euclidean distance gives the optimal results for the quantization bins, 

especially for 16 and 32 bins, which have an average precision of 81% and 82%, as 

compared to the other distance metrics. The average precision is improved 

incrementally from the 4 bins quantization to 32 bins. The overall average precision is 

70%, which shows good and improved retrieval. 

Table  4.22  Average precision of the query images from the entire image categories 

for distance metrics using different quantization schemes. 
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Table 4.23 shows the average recall in percentage of all of the image categories in 

different histogram quantization bins using all of the distance metrics for the matching 

of the query image with the database images in searching for similar images. The 

results show that the performance in recall is also better for the dinosaurs, roses, 

people and horses as compared to the other categories. Moreover, using the Euclidean 

distance gives the best results for the quantization bins, especially for 16 and 32 bins, 

which are an average recall of 81% and 84% as compared to other distance metrics. 

The average recall is also improved incrementally from the 4 bins quantization to 32 

bins. 

Table  4.23  Average recall of the query images from the entire image categories for 

distance metrics using different quantization schemes. 

 

Table 4.24 shows the average F-Score which describes the overall performance of 

the retrieval of the similar images category-wise in various histogram quantization 

bins using the Euclidean distance. The retrieval performance of the proposed method 

using the Euclidean distance for the categories of dinosaurs, roses, people and horses 

is better. It can be seen in Table 4.24 that the F-Score retrieval is increased from the 4 

bins quantization towards the 32 bins for all of the distance metrics. The otimal 

performance in terms of the average F-Score is given by using the Euclidean distance 

for all of the quantization bins, especially for the 16 and 32 bin quantization having 

81% and 83% average F-Scores which show that 32 bins provides more energy in the 

DCT blocks for retrieval. 
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Table  4.24  Average F-Score of the query images from the entire image categories 

for distance metrics using different quantization schemes. 

 

Table 4.25 shows the average precision of the proposed distance metrics which 

are used in the matching of the images to retrieve the similar images using different 

histogram quantization bins for the extraction of statistical texture features in the DCT 

blocks. It can be seen that the optimal retrieval average precision is 82% of the 

Euclidean distance using the 32 bin quantization.  The City Block, Sum of Squared of 

Absolute Differences (SSAD) and Canberra distance also give good performance in 

terms of precision. The results show that using the top four distance metrics, as shown 

in Table 4.25, for matching of the images for retrieval of similar images, the optimal 

results are obtained, especially in the 32 bin quantization in the DCT domain. 

Table  4.25  Overall average precision of the query images from the entire image 

categories for distance metrics using different quantization schemes.  

Distance Metrics 
4 

Bins 

8 

Bins 

16 

Bins 

32 

Bins 
Average 

Euclidean distance 77 78 81 82 80 

City Block Distance 68 75 79 80 76 

Sum of Squared of Absolute Differences (SSAD) 66 72 75 79 73 

Canberra Distance 64 69 75 78 72 

Maximum value distance 60 66 75 79 70 

Sum of Absolute Difference (SAD) 51 60 63 70 61 

Minkowski distance (with p=3) 55 58 60 68 60 

Average 63 68 73 77 70 

Table 4.26 shows the average recall of the proposed distance metrics which are 

used in the matching of the images to retrieve the similar images using the different 

histogram quantization bins for the extraction of the statistical texture features in the 

DCT blocks. The best retrieval recall is 84% of the Euclidean distance using the 32 
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bins quantization.  The City Block, Canberra Distance and Sum of Squared of 

Absolute Differences (SSAD) also give good performance in terms of recall. The 

overall average recall is 76%.  

Table  4.26  Overall average recall of the query images from the entire image 

categories for distance metrics using different quantization schemes. 

Distance Metrics 
4 

Bins 

8 

Bins 

16 

Bins 

32 

Bins 
Average 

Euclidean distance 76 79 81 84 80 

City Block Distance 75 76 80 82 78 

Canberra Distance 75 78 79 80 78 

Sum of Squared of Absolute Differences (SSAD) 75 76 77 80 77 

Maximum value distance 73 74 77 80 76 

Minkowski distance (with p=3) 68 75 77 79 75 

Sum of Absolute Difference (SAD) 66 69 70 78 71 

Average 73 75 77 80 76 

Table 4.27 shows the average F-Score of the distance metrics using the quantized 

histogram texture features of the DCT blocks. The F-Score results show that by using 

histogram statistical texture features of different quantization bins, the Euclidean 

distance gives good retrieval performance, especially in 32 bins in the DCT domain. 

The City Block, Canberra Distance and Sum of Squared of Absolute Differences 

(SSAD) also give good performance in terms of retrieval. Table 4.27 shows that the 

32 bin quantization provides good energy in the DC and in the first three AC 

coefficients in the DCT blocks in the frequency domain for the opimal retrieval of the 

JPEG images in terms of an average 73% F-Score. 

Table  4.27  Overall average F-Score of the query images from the entire image 

categories for distance metrics using different quantization schemes.  

Distance Metrics 
4 

Bins 

8 

Bins 

16 

Bins 

32 

Bins 
Average 

Euclidean distance 77 79 81 83 80 

City Block Distance 71 75 79 80 76 

Canberra Distance 69 73 77 79 75 

Sum of Squared of Absolute Differences (SSAD) 69 74 76 79 75 

Maximum value distance 65 69 75 79 72 

Minkowski distance (with p=3) 60 64 67 75 67 

Sum of Absolute Difference (SAD) 57 63 66 73 65 

Average 67 71 74 78 73 

Table 4.28 shows the average computation time taken by the proposed distance 

metrics for the matching of a query image with the database images to retrieve the 
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similar images.  It can be seen in Fig. 4.11 that the Euclidean distance, City Block 

Distance and Sum of Absolute Difference (SAD) take less computational cost for the 

similarity measurement of the query image with the database images. The results 

show that the Euclidean distance is not only effective in retrieval but also efficient in 

the computations. Fig. 4.12 shows that the computational time taken by using the 32 

bins quantization is slightly greater as compared to the other quantizations but for the 

retrieval performance it is better than other bins. 

Table  4.28  Average computation time (in minutes) of the proposed distance metrics 

for matching of the query image with the database images. 

Distance Metrics 4 Bins 8 Bins 16 Bins 32 Bins Average 

Euclidean distance 0.0183 0.0185 0.0186 0.0188 0.0186 

City Block Distance 0.0187 0.0188 0.0190 0.0190 0.0189 

Sum of Absolute Difference (SAD) 0.0187 0.0188 0.0190 0.0193 0.0190 

Maximum value distance 0.0187 0.0188 0.0195 0.0192 0.0191 

Sum of Squared of Absolute Differences (SSAD) 0.0189 0.0189 0.0192 0.0194 0.0191 

Minkowski distance (with p=3) 0.0190 0.0192 0.0192 0.0193 0.0192 

Canberra Distance 0.0192 0.0193 0.0194 0.0193 0.0193 

Average 0.0188 0.0189 0.0191 0.0192 0.0190 
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Figure 4.11  Average computation time (in minutes) of the proposed distance metrics 

for matching of the query image with the database images. 
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Figure 4.12  Average computation time (in minutes) of the proposed distance metrics 

for matching of the query image with the database images using different quantization 

schemes. 

Figure 4.13(a-d) shows the results of the user queries using the histogram of 32 

bins and the Euclidean distance for the similarity measurement. Each figure consists 

of a query image and the similar retrieved images from the database. The top single 

image is the query image and the below nine are the relevant images. The results 

show that proposed method has good retrieval accuracy. 
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                                      (c)                                                        (d)   

Figure 4.13  Query results of (a) dinosaurs, (b) roses, (c) people and (d) horses, using 

the histogram of 32 bins and the Euclidean distance for the similarity measurement. 
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4.3.2.2 Summary   

In this section, a CBIR approach is proposed which is based on the performance 

analysis of various distance metrics using the quantized histogram statistical texture 

features in the frequency domain. Only the DC and the first three AC coefficients 

having more significant energy are selected in each DCT block to get the quantized 

histogram statistical texture features. The similarity measurement is performed by 

using seven distance metrics. The experimental results are analyzed on the basis of 

various distance metrics, separately, using different quantized histogram bins such 

that the Euclidean distance has better efficiency in computation and effective retrieval 

in the 32 bin quantization. We have concluded that the Euclidean distance, City Block 

Distance and Sum of Absolute Difference (SAD) metrics give good performance in 

terms of the F-Score using the quantized histogram texture features in the DCT 

domain for compressed images. 

4.3.3 Experimental Analysis of the Combination of the Statistical Quantized 

Histogram Texture Features in the Frequency Domain (Approach-8) 

In Approach-8 the retrieval results of the CBIR by extracting quantized histogram 

texture features, are analyzed based on the different combination of features and 

different quantization schemes in the frequency (DCT) domain. 

4.3.3.1 Results and Discussion 

The approach is performed in two steps such that in the first step, the proposed feature 

database is created. In the second step, the feature vector of the query image is also 

constructed and compared with the feature vectors of the feature database. 

In the experiments, the query images from all of the image categories of the Corel 

database are used and the performance of the proposed approach is measured by 

calculating the precision, recall and F-Score. 

To get the effective retrieval of similar images, the comparison of the combination 

of the statistical texture features is performed since a single texture feature does not 
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give a complete description of the image to be presented. The two steps in section 3.4 

are performed for the single and all of the combinations of the features using all of the 

image categories. In the experiments, the optimal combination of the features is 

selected on the basis of the retrieval of the images. We demonstrate the combination 

of the quantized histogram statistical texture features to get improved performance in 

terms of image retrieval in the DCT domain. The results of the different combinations 

of the texture features in the quantization of the histograms in the 32 bins in the DCT 

domain are shown in Tables 4.29 to 4.31. 

Table 4.29 shows the average precision, recall and F-score of all of the image 

categories for the combination C32 having seven texture features: mean, standard 

deviation, skewness, kurtosis, energy, entropy and smoothness, in the quantized 

histogram of 32 bins in the DCT domain. It can be seen that the dinosaurs, roses, 

people, horses and buses give better results as compared to the other categories. All of 

the images of each category are used as query images. For this combination, the 

histograms are quantized into 32 bins. The overall average F-Score is 83%, which 

shows good and improved retrieval. 

Table  4.29  Average precision, recall and F-Score of the query images from the 

image categories for the combination C32 using the quantization scheme of 32 bins. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.30 and Fig. 4.14 show the results of the single and the different 

combinations of texture features in the quantization scheme of 32 bins using randomly 

selected query images. It can be seen that the performance of the texture features in  

Categories Precision Recall F-Score 

Dinosaurs 100 100 100 

Roses 96 93 94 

People 88 95 91 

Horses 93 92 93 

Buses 86 80 83 

Elephants 79 80 79 

Beaches 82 76 79 

Buildings 77 79 78 

Mountains 62 73 67 

Foods 60 70 65 

Average 82 84 83 
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Table  4.30  Average precision, recall and F-Score of the query images from the 

entire image categories for different combinations of the texture features using the 

quantization scheme of 32 bins. 

Type Code Features Precision Recall F-Score 

Single 

Features 

C01 Mean 61 69 65 

C02 Standard deviation 67 67 67 

C03 Skewness 62 70 66 

C04 Kurtosis 69 77 73 

C05 Energy 61 73 66 

C06 Entropy 71 70 71 

C07 Smoothness 33 47 39 

  Average 61 68 64 
  

Two 

Features 

C08 Mean + Standard Deviation 71 69 70 

C09 Skewness + Kurtosis 70 73 71 

C10 Energy + Entropy 60 63 61 

C11 Kurtosis + Energy 63 70 66 

C12 Kurtosis + Entropy 70 75 72 

  Average 67 70 68 
  

Three 

Features 

C13 Energy + Entropy + Smoothness 51 47 49 

C14 Mean + Standard deviation + Skewness 74 72 73 

C15 Kurtosis + Energy + Entropy 69 75 72 

C16 Mean + Standard deviation + kurtosis 79 77 78 

C17 Mean Standard deviation + Energy 71 73 72 

C18 Mean +Standard deviation + Entropy 74 73 73 

C19 Mean+ Standard deviation + Smoothness 71 72 71 

  Average 70 70 70 
  

Four 

Features 

C20 Mean + Standard deviation + Skewness + Kurtosis 80 74 77 

C21 Mean + Standard deviation + Skewness + Energy 74 72 73 

C22 Mean + Standard deviation + Skewness + Entropy 76 74 75 

C23 Mean + Standard deviation + Skewness + Smoothness 74 75 74 

C24 Skewness + Kurtosis + Energy + Entropy 73 74 73 

C25 mean + Standard deviation + Kurtosis +Energy 79 75 77 

C26 Mean + Standard deviation + Kurtosis + Entropy 80 73 76 

C27 Mean + Standard deviation + Kurtosis + Smoothness 79 73 76 

C28 Mean + Standard deviation + Energy + Entropy 74 74 74 

C29 Mean + Standard deviation + Energy + Smoothness 72 70 71 

C30 Mean + Standard deviation + Entropy + Smoothness 74 73 73 

C31 Kurtosis + Energy + Entropy + Smoothness 73 80 76 

  Average 76 74 75 
  

Seven 

Features 
C32 

Mean + Standard deviation + Skewness + Kurtosis + 

Energy + Entropy + Smoothness 
82 84 83 

terms of F-Score increases as the combination of the features also increases. Using 

single statistical features give a low performance of a 64% F-Score. Two texture 

features combination gives a comparatively good average F-Score of 68%. Three 

features random combinations give an average F-Score of 70%. Four features random 

combinations provide improved performance in terms of 75% average F-Score. 

Finally, the combination of all the seven features, gives the optimal results of 83% 

average F-Score. It has been noted that the combination of the mean and standard 

deviation with other features give the best results, especially with skewness, kurtosis 
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and entropy. While the combination of the other features like smoothness, energy, 

entropy, skewness and kurtosis with each other in different combinations like two and 

three features combinations give relatively low performance in terms of the F-Score. 

However, the combination of all of the features gives a high performance. 
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Figure 4.14  Average F-Score of the query images from the entire image categories 

for different combinations of the texture features using 32 bins quantization scheme. 

Table 4.31 shows the overall results in the average F-Score of the different 

combinations. It can be seen that the F-Score increases from the single feature towards 

all seven features combination. The four features and all the features combinations 

give high performance in terms of the F-Score such as 75% and 83%. Therefore, the 

combination of the texture features of the quantized histograms in the DCT domain 

using the 32 bin quantization gives good performance in terms of the F-Score in the 

retrieval of similar images instead of using a single feature or a combination of texture 

features less than three features. 

Table  4.31  Average F-Score of the different combinations of the texture features. 

Feature combination Average F-Score 

Single Feature 64 

Two features combination 68 

Three features combination 70 

Four features combination 75 

All features combination 83 
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Figure 4.15  Average time taken by the different combination of the features for the 

creation of the feature database. 

Figure 4.15 shows the average computational time taken by the different 

combination of texture features for creation of the feature databases. It can be seen that 

the combination of all seven features takes more time, with less difference of time in 

seconds only, than the other combinations but the retrieval performance is higher than 

the other combinations. 

4.3.3.2 Summary  

A CBIR Approach-8 has been proposed in which the statistical texture features are 

extracted from the quantized histograms in the DCT domain. Only the DC and the first 

three AC coefficients having more significant energy are selected in each DCT block 

to get the quantized histogram statistical texture features. In this approach, the analysis 

of the results of the different combinations of the statistical quantized histogram 

texture features is performed for the optimal features combination in terms of effective 

retrieval and efficiency. The experimental results show that the combination of more 

features gives better results as compared to a single feature or a few texture features 

combination. The quantization in 32 bins for the four and for the all seven texture 

features combinations gives the optimal results in terms of the F-Score as compared to 

the low and high bins quantization. 
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4.3.4 Analysis of the Experimental Performance of the Combination of the 

Statistical Texture Features in the Spatial and Frequency Domains for 

CBIR (Approach-9) 

In Approach-9 the retrieval results of the CBIR by extracting quantized histogram 

texture features, are analyzed based on the combination of texture features in the 

spatial and frequency domains. 

4.3.4.1 Results and Discussion 

The approach is performed in two steps such that in the first step, the feature database 

is created. In the second step, the feature vector of the query image is also constructed 

and compared with the feature vectors of the feature database. 

In the experiments, the query images which are randomly selected from all of the 

image categories of the Corel database are used and the performance of the proposed 

approach is measured by calculating the average precision, recall and F-Score. The 

results are shown in Table 4.32. 

Table 4.32 shows the average precision, recall and F-Score in percentage for all of 

the categories by extracting the statistical texture features of the images using the 8×8 

block method in the spatial domain and the 8×8 DCT block transformation in the 

frequency domain. The result in terms of F-Scores of the proposed approach is 

improved and better for all of the categories, especially for dinosaurs, roses, horses 

and buses. These categories provide significant texture information in the 8×8 block 

partition in the spatial and frequency domains using the Euclidean distance for the 

similarity. The overall average F-Score is 84% which shows improved performance in 

terms of retrieval of similar images by combining the feature vectors of the texture 

features in the spatial and frequency domains of the grayscale images by dividing 

them into 8×8 non-overlapping blocks.  

The average computation time taken by the proposed approach for the creation of 

the feature database is 15 minutes which is reasonable time for creation of a database 

of images which are created once and are to be used for the matching with the query 

image. 
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Table  4.32  Average precision, recall and F-Score of the query images using the 

combination of the texture features in the spatial and frequency domains. 

Categories Precision Recall F-Score 

Dinosaurs 100 100 100 

Roses 100 95 97 

Horses 100 90 95 

Buses 93 88 91 

Elephants 85 90 87 

Beaches 82 79 80 

Buildings 76 79 77 

Foods 72 75 73 

People 73 70 71 

Mountains 56 83 67 

Average 84 85 84 

Thus, the performance of the proposed Approach-9 is not only efficient in the 

computations of the feature extraction but also effective in terms of the retrieval of 

similar images. 

4.3.4.2 Summary  

In this section an approach for CBIR has been proposed which is based on the 

combination of the feature vectors of the statistical texture features in the spatial and 

frequency domains using the 8×8 non-overlapping block methods and the DCT block 

transformation. The probability distribution of the intensity levels of all of the blocks 

have been used to calculate the texture features to create feature vectors in both 

domains. These feature vectors are combined for retrieval of similar images and these 

features are extracted from non-overlapping blocks of different sizes of the images. 

For the similarity measurement, the Euclidean distance is used to measure the 

similarity of the query image with images in the database. The experimental results 

show that the proposed approach is efficient in the feature extraction as well as 

effective in retrieval. 
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4.3.5 Analysis of the Experimental Combination of the Color and Texture 

Features in the Spatial and Frequency Domains (Approach-10) 

In Approach-10 the retrieval results of the CBIR by extracting quantized histogram 

texture features, are analyzed based on the combination of color features in the spatial 

and the texture features in the frequency domains. 

4.3.5.1 Results and Discussion 

The approach is performed in two steps such that in the first step, the proposed feature 

database is created. In the second step, the feature vector of the query image is also 

constructed and compared with the feature vectors of the feature database. 

In the experiments, the query images are randomly selected from all of the image 

categories of the Corel database and the performance of the proposed approach is 

measured by calculating the precision, recall and F-Score. The results are shown in 

Table 4.33. 

Table  4.33  Average precision, recall and F-Score of the query images using the 

combination of the color and texture features in the spatial and frequency domains. 

Categories Precision Recall F-Score 

Dinosaurs 100 100 100 

Roses 100 98 99 

Horses 97 95 96 

Buses 95 90 92 

Elephants 94 86 90 

Beaches 89 82 85 

Buildings 77 78 77 

Foods 71 80 75 

People 70 76 73 

Mountains 72 70 71 

Average 87 86 86 

Table 4.33 shows the precision, recall and F-Score in percentage for all of the 

categories by extracting the statistical color and texture features of the images using 

the 8×8 block method in the spatial domain and the 8×8 DCT block transformation in 
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the frequency domain. The results in terms of the F-Scores of the proposed approach 

are improved and better for all of the image categories, especially for dinosaurs, roses, 

horses and buses. These categories provide significant color information in the 8×8 

block partition in the spatial domain and texture in the frequency domain using the 

Euclidean distance for the similarity. The overall average F-Score is 86% which 

shows improved performance in terms of the retrieval of similar images. This is 

accomplished by combining the color feature vector with the texture feature vector in 

the spatial and frequency domains of the grayscale images by dividing them into 8×8 

non-overlapping blocks.  

The average computational time taken by the proposed approach for the creation 

of the feature database is 14.27 minutes which is a reasonable time for creation of the 

feature database. Thus the performance of the proposed Approach-10 is not only 

efficient in the computations of the feature extraction but also effective in terms of the 

retrieval of similar images. 

4.3.5.2 Summary  

In this section, an approach for CBIR is proposed which is based on the combination 

of the feature vectors of the statistical color and texture features in the spatial and 

frequency domains using the 8×8 non-overlapping block method and the DCT block 

transformation. The probability distribution of the intensity levels of all of the blocks 

have been used to calculate the color and texture features to create the feature vectors 

in both domains. These feature vectors are combined for the retrieval of similar 

images and these features are extracted from the non-overlapping blocks of the 

images. For the similarity measurement, the Euclidean distance is used to measure the 

similarity of the query image with the images in the database. The experimental 

results show that the proposed approach is efficient in the feature extraction as well as 

effective in retrieval. 
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4.4 Chapter Summary 

In this chapter, the results of the various proposed approaches for the extraction of 

color and textures have been discussed and analyzed in the spatial and frequency 

domains to get an efficient CBIR.  

In spatial domain, for extraction of the color features, the color histogram, color 

histogram refinement method and sub-block methods are used; while for the 

extraction of texture features, the block methods are used in various approaches. In 

Approach-1, the color histogram technique for a grayscale Laplacian filtered 

sharpened image gives retrieval performance with 66% average F-Score using 32 bins 

quantization scheme and 0.515 minutes as computational cost of creation of feature 

database. In Approach-2, to increase the efficiency of retrieval and retain the spatial 

information, the color histogram refinement method is used based on filters with 

improved retrieval performance of 75% average F-Score using Laplacian filter with 

32 bins quantization but a high computation cost of 50 minutes of feature database 

creation. In Approach-3, to reduce the computational cost and improve the efficiency, 

the local statistical color features are extracted from non-overlapping sub-blocks of 

different sizes. However after experimental results the 8×8 block method gives 71% 

F-Score with reduced features database creation computational cost of 0.5155 

minutes. In Approach-4, to reduce the computational cost furthermore and improve 

the efficiency, the local statistical texture features are extracted from non-overlapping 

sub-blocks of different sizes. Again the 8×8 block method gives 73% F-Score with 

reduced features database creation computational cost of 0.314 minutes. In order to 

improve the efficiency and reduce the computational cost, it has been shown that the 

combination of color and texture features in Approach-5 using 8×8 sub-block method, 

gives a robust retrieval of 82% average F-Score with the near to optimum features 

database creation computational cost of 0.5824 minutes.  After the analysis of the 

results of the Approache-1 to Approach-5, it has been shown that the performance of 

the retrieval is incremental from the histogram to the block methods. The combination 

of the color and texture features in the block methods gives near to optimum retrieval 

performance in the spatial domain. 
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In frequency domain, quantized histogram texture features are extracted from the 

transformed non-overlapping 8×8 DCT blocks by using only the DC and the first 

three AC coefficients having more significant energy in Approach-6 to Appraoch-10. 

 In Approach-6, it has been shown after experimental results that using the 

quantized histogram texture feature based on Laplacian filter  in the DCT domain for 

the compressed images, an improved retrieval performance is achieved with a 78% 

average F-Score using 32 bins quantization scheme and with features database 

creation computational cost of 16.27 minutes.  In Approach-7, the retrieval 

performance is analyzed based on various distance metrics using the quantized 

histogram texture features and it has been shown that the Euclidean distance has 

better efficiency in computation and an effective retrieval with an 83% average F-

Score in the 32 bins quantization. In Approach-8 it has been shown that combination 

of statistical quantized texture features in the DCT domain gives improved 

performance with combination of more features. In Approach-9, it has been show that 

the combination of the feature vectors of the statistical texture features in both 

domains of the spatial and frequency using the 8×8 non-overlapping blocks gives 

performance with  84% average F-Score using 32 bins quantization scheme and with 

features database creation computational cost of 15 minutes. In the last Approach-10, 

it has been show that the combination of the feature vectors of the statistical color and 

texture features in both domains of the spatial and frequency, achieves retrieval 

performance with  86% average F-Score using 32 bins quantization scheme and with 

features database creation computational cost of 14.27minutes. 

 After the analysis of the results of the different approaches, it has been shown 

that the performance of retrieval is robust to the color and texture features in the 

spatial and frequency domains, especially with the combination of color and texture 

features in both domains.   
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CHAPTER 5 

PERFORMANCE ANALYSIS OF THE PROPOSED METHODS 

5.1 Performance Analysis of the Proposed Approaches 

In this chapter, comparisons of the proposed approaches for the effective CBIR are 

performed among themselves and then with the other approaches in literature. The 

comparisons of the approaches which are discussed and analyzed in Chapters 3 and 4 

are discussed: 

5.1.1 Approaches in the Spatial Domain  

The results of the Approch-1 to Approch-5 are given in Table 5.1 and Fig. 5.1in terms 

of F-Score by selecting randomly the query images from all of the image categories of 

the Corel image database in the spatial domain according to the recommendations for 

implementation of CBIR algorithm given in section 4.1 by (Park et al., 2008). In order 

to improve the retrieval performance of CBIR, different techniques are fused in these 

approaches. In all of the approaches, the distribution of the pixel values in the 

grayscale images are used to compute the feature vectors using different techniques to 

retrieve the similar images to the example query image. It can be seen that the retrieval 

performance is incremental and improved from Approach-1 to Approach-5 as shown 

in Table 5.1. In Approach-1, the quantized color histogram features are extracted from 

the grayscale Laplacian filtered sharpened image. The analysis is performed on the 

basis of the different numbers of quantization bins and the 32 bins quantization give 

good results with an average F-Score 66%. In Approach-2, the color histogram 

refinement method is used to extract the features by computing the areas of the regions 

of the objects of the median and Laplacian filtered images. An analysis of the results is 

performed on the basis of the filters and the different numbers of quantization bins, and 

it has been shown that using the Laplacian filter with the 32 bins quantization gives 
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improved retrieval with an average F-Score 75%. In Approach-3 and Approach-4, the 

color and texture features are extracted from the grayscale images by dividing them 

into different numbers of sub-blocks. It has been shown that the 8×8 block method 

provides important color and texture information for the retrieval and gives improved 

results with an average F-Score 71% and 73% in terms of retrieval. In Approach-5, the 

color and texture features are combined using the 8×8 block method and retrieval is an 

average F-Score 82%. This shows that the combination of the statistical color and 

texture features in the spatial domain using the block method give better results as 

compared to the other approaches. 

Table 5.1 Comparison of the proposed approaches in terms of the F-Score for the 

query images from the entire image categories in the spatial domain. 

Categories Approach-1 Approach-2 Approach-3 Approach-4 Approach-5 

Dinosaurs 86 100 100 100 100 

Roses 71 95 74 99 100 

Horses 67 94 76 70 91 

Elephants 68 79 74 80 87 

Buses 65 77 80 60 81 

Mountains 64 56 67 60 77 

Beaches 58 59 57 55 74 

Foods 68 48 57 65 73 

Buildings 55 79 63 69 70 

People 56 66 63 74 64 

Average 66 75 71 73 82 
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Figure 5.1 Comparison of the approaches in terms of the F-Score for the query 

images from the image categories in the spatial domain. 
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5.1.2 Approaches in the Frequency Domain  

In order to improve the retrieval performance of CBIR, the different techniques are 

used in the frequency domain, in Approache-6 to Approach-10. Using these 

approaches, the grayscale image is transformed into 8×8 DCT blocks. The DC and first 

three AC coefficients are used to compute the feature vectors using different 

techniques to retrieve the similar images to the example query image. The results are 

shown in Table 5.2 and Fig. 5.2. It can be seen that the retrieval performance is further 

increased and improved from Approach-6 to Approch-10. The Approach-8 is in not  

Table 5.2 Comparison of the approaches in terms of the F-Score for the query images 

from the image categories in the frequency domain. 

Categories Approach-6 Approach-7 Approach-9 Approach-10 

Dinosaurs 100 100 100 100 

Roses 79 94 97 99 

Horses 85 93 95 96 

Buses 78 83 91 92 

Elephants 60 79 87 90 

Beaches 83 79 80 85 

Buildings 69 78 77 77 

Foods 62 65 73 75 

People 100 91 71 73 

Mountains 60 67 67 71 

Average 78 83 84 86 
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Figure 5.2 Comparison of the approaches in terms of the F-Score for the query 

images from the image categories in the frequency domain. 
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shown in Table 5.2 because the results of Approache-7 and Approache-8 are same. The 

optimum results of combination of features in the Approach-8 are used also by the 

Approach-7. 

In Approach-6, the quantized histogram texture features are extracted from the 8×8 

DCT blocks of the grayscale image based on the median and Laplacian filters, using 

the DC and AC coefficients of the blocks. The analysis is performed on the basis of the 

different numbers of quantization bins, and the 32 bin quantization gives good results 

with an average of 78% retrieval using the Laplacian filter. But, this result is less than 

the results of Approach-5. Hence, to further improve retrieval, in Approach-7, the 

quantized histogram texture features are extracted from the 8×8 DCT blocks of the 

grayscale image; however, the analysis of the results are performed on the basis of the 

various distance metrics used for the similarity measurement and on the different 

numbers of the quantization bins.  It has been shown that the retrieval performance is 

better with an average 83% F-Score using the Euclidean distance and the 32 bins 

histogram quantization. In Approach-8, the analysis of the results of the different 

combinations of the statistical quantized histogram texture features is performed for 

the optimal feature combination in terms of effective retrieval and efficiency. The 

experimental results show that the combination of more features gives better results as 

compared to a single feature or a few texture features combination. The quantization in 

32 bins for the four and for the all seven texture feature combinations gives the 

improved results in terms of the F-Score as compared to the low and high bins 

quantization. In Approach-9, the statistical texture features in the spatial domain using 

the 8×8 block method are combined with the quantized histogram texture features in 

the frequency domain using the 8×8 DCT blocks of the grayscale image, and the 

retrieval is an average F-Score 84%. In the last Approach-10, the color and texture 

features are combined using the 8×8 blocks in the spatial and the 8×8 DCT blocks in 

the frequency domains; the retrieval average for the F-Score is 86%. This shows that 

the combination of the statistical color and texture features in the spatial and frequency 

domains, using the 8×8 blocks of the image, gives better results as compared to the 

other approaches in the spatial as well as in the frequency domains. 

In Fig. 5.3 and Fig. 5.4, the results of all of the approaches in the spatial and 

frequency domains are shown and it is clear that Approach-10 with the combination of 
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color and texture features has overall the robust retrieval as compared with the other 

approaches.  Thus, we conclude that the 8×8 block conversion of the grayscale image 

provides important color and texture information for the retrieval of the similar images 

in the spatial and frequency domains using the 32 bins histogram quantization. 
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Figure 5.3 Comparison of all the proposed approaches in terms of the F-Score 

in the spatial and frequency domains for the query images from the entire image 

categories. 
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Figure 5.4 Comparison of the approaches in terms of the F-Score in the spatial 

and frequency domains for the query images from the entire image categories. 
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The proposed approaches can also accept any image as query image for retrieval of 

similar images other than the feature database images as shown in Fig. 5.5. These 

approaches are independent of dimension (size). For example the query images in Fig. 

5.5(a) and Fig. 5.5(b) are taken from the outside source other than Corel Dataset and 

Fig. 5.5(a) has dimension of 734 × 817 pixels while Fig. 5.5(b) has dimension of 425 × 

309 pixels. Hence an image with any dimension can be accepted. 

            

                                      (a)                                                        (b) 

Figure 5.5 Query image results of (a) with dimension 734 × 817 (b) with 

dimension 425 × 309 using Approach-10. 

              

                                      (a)                                                         (b) 

              

                                       (c)                                                       (d) 

Figure 5.6 Results of query image with rotation of (a) angle 0º, (b) angle 75º , 

(c) angle 90º and (d) angle 180º using Approch-10. 
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The proposed approaches are invariant to the rotation as shown in Fig. 5.6. By 

changing the rotation of the image at different angles like 0°, 75°, 90° and 180° the 

results of the retrieval are not so affected. 

5.2 Performance Analysis of the Proposed Approaches with the Other 

Approaches in Related Works 

Evaluation criteria for CBIR depend upon the benchmarking which is still an issue for 

the researchers. However, there are recommendations issued by the technical 

committee from the International Association for Pattern Recognition (IAPR) 

regarding benchmarking of image retrieval (An et al., 2011). Guidelines based on the 

recommendations for implementation of CBIR algorithm are given by (Park et al., 

2008), which have been discussed in section 4.1. 

The results of the proposed near to optimum Approach-10, are also compared with 

the other approaches of  (Hiremath and Pujari, 2007; Mohamed et al., 2009; Murala et 

al., 2009; Kavitha et al., 2011; Soman et al., 2011; Thawari and Janwe, 2011; 

Alnihoud, 2012; Singha and Hemachandran, 2012) based on the precision as shown in 

Table 5.3. In the method of (Hiremath and Pujari, 2007), color, texture and shape 

features are fused together and extracted in a non-overlapping partitioned image. 

Texture features are extracted by using the Gabor filter, the statistical color moments 

are used to calculate the color features. The shape of the objects is extracted by using 

the Gradient vector flow fields and the shape features are depicted by using invariant 

moments. The method is tested by using the Corel image database and the overall 

average precision is 55%. In the method of (Mohamed et al., 2009), an image is 

divided into non-overlapping 8×8 blocks and then these blocks are transformed into 

the DCT domain. The DC and the first three AC coefficients of each block are picked 

up in a zigzag order. These coefficients are used to construct quantized histograms of 

32 bins. These histograms are used to construct a feature vector for retrieval. They 

tested their method with the animal dataset and got an average precision of 70%. 

In the method of (Murala et al., 2009), the color and texture features are combined 

to retrieve similar images. For the color features, the mean and standard deviation are 

computed in a histogram of 64 bins in each channel of the RGB color image, to get a 
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total of 192 features. For the texture features, the mean and standard deviation are 

computed in sub bands of the Gabor Wavelet Transform image with the three scales 

and four orientations to get a feature vector of 48 features. The performance of this 

method is measured in terms of an average precision of 65%. 

Table 5.3 Comparison of the proposed Approach-10 with other approaches in terms 

of precision for the query images from the entire Corel’s image categories. 
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Dinosaurs 95 99 100 90 61 80 100 97 100 

Elephants 48 70 62 N/A 39 60 50 86 94 

Horses 74 40 91 N/A 35 80 85 87 97 

Roses 61 N/A 80 N/A 87 88 97 76 100 

People 48 N/A 76 50 44 55 87 65 70 

Buses 61 N/A 52 50 75 50 84 92 95 

Beaches 34 N/A 50 40 50 50 68 62 89 

Buildings 36 N/A 47 35 45 25 70 71 77 

Mountains 42 N/A 28 N/A 34 40 32 49 72 

Foods 50 N/A 63 N/A 31 40 63 77 71 

Average 55 70 65 53 50 57 74 76 87 

In the approach of  (Thawari and Janwe, 2011) the HSV color space is used with 

three color channels, H, S and V. The histogram of each channel is quantized into 96 

blocks, and each block has a dimension of 32×32 pixels. The statistical texture 

moments of mean, standard deviation, skew, kurtosis, energy; entropy and 

smoothness are calculated in each bin of the histogram. The total 96×7×3=2016 

features are computed. Thus, this process of feature extraction involves a large 

number of computations which increase computational cost. The method has used 500 

images of the Corel database for testing. The average precision of the method in 

(Thawari and Janwe, 2011) is 53%. In the approach of  (Kavitha et al., 2011), the 

color and texture features are also combined. The HSV color space image is divided 

into sub-blocks. The color features are calculated by quantizing the histograms of 

each block. The texture features are calculated by using the grey level co-occurrence 
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matrix. The most similar highest priority (MSHP) principle is used to calculate the 

difference between the query and the target image blocks. The Euclidean distance is 

used to calculate the similarity measurement. In the approach of (Soman et al., 2011), 

the color and texture features are also combined. For the color features, the color 

moments of mean, standard deviation and skewness are calculated in 8×8 blocks of 

the three components of the RGB color image to retrieve the similar images. The 

texture features are calculated in 8×8 DCT blocks by computing the DC and AC 

coefficients in 9 directions to get the feature vectors of the query and the retrieved 

images using the color features. In the method of (Alnihoud, 2012), the color and 

shape features are extracted based on the SOM (self-organizing map). A Fuzzy Color 

Histogram (FCH) and subtractive fuzzy clustering algorithms are used to get the color 

features and the object Model Algorithm is used to get the edge of the objects. Then, 

the shape features like area, centroid, major axis length, minor axis length, 

eccentricity and orientation are computed to get the performance in terms of the 

average precision of 74%. The CBIR approach proposed by (Singha and 

Hemachandran, 2012) is based on the combination of the texture and color features. 

For the color features, the RGB image is converted into the HSV (Hue, Saturation and 

Value) color space. Each color component is quantized into 8 bins to get normalized 

histogram color features. For the texture features, the RGB color image is transformed 

using the Haar Wavelet Transformation to get vertical, horizontal and diagonal 

coefficients. These coefficients are converted into the HSV plane and each component 

is quantized into 8 bins to get normalized histogram texture features which are 

combined with the color features. The Histogram Intersection Distance method is 

used for the similarity measurements.  

In order to get an effective and efficient CBIR, in this research work, we have 

fused the various approaches in the spatial and frequency domains. After the 

comprehensive analysis of the approaches, we have concluded that the fusion of the 

color and texture features in the spatial and frequency domains in Approach-10, gives 

the optimal and most robust performance of retrieval.  Hence, the proposed Approach-

10 is compared with the other approaches in Table 5.3 in terms of precision. This 

proposed approach starts with the conversion of the RGB color images into grayscale 

images to reduce the computational cost. To extract the color features, the grayscale 

image is divided into 8×8 non-overlapping blocks and the texture features are 
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extracted by converting the grayscale image into non-overlapping 8×8 DCT blocks. 

The DC and first three AC coefficients with significant energy of each block are 

picked up in a zigzag order to construct the histograms. The histograms are quantized 

into 32 bins to calculate the statistical texture features in the histogram bins. The color 

and texture features are combined to retrieve the similar images. The proposed 

method is tested by using the same Corel image database as used by the other existing 

methods. The results of this approach are effective not only in retrieval but also in 

efficiency. The overall average precision of this proposed method is 87%, which is 

higher than the other methods using the 32 bins histograms. Thus, in this proposed 

approach, to reduce the computational cost, the image is converted into a single plane 

grayscale image. The mean and standard deviation are calculated as the color 

moments and the seven texture features in non–overlapping blocks. For the similarity 

measurement, the Euclidean distance is used. The proposed method has good 

performance in terms of precision using the color quantized texture features and the 

Euclidean distance for the similarity measurement in the spatial and DCT domains for 

the compressed images as shown in Table 5.3. 

However the difference between our  proposed Approach-6 and the approach of 

(Mohamed et al., 2009 is that we have used filters to get enhanced image with 

convoluted values of images and then histograms of the transformed values of these 

filtered values are constructed and quantized by using different quantization schemes. 

After that we calculate statistical texture features of histograms. They have 

constructed only histograms of coefficients of blocks and quantized only in 32 bins 

and histograms are used as features.  We have studied the effect of texture features in 

DCT domain and the results are analyzed on the basis of filters as well different 

quantization schemes.  

In all of the above approaches of the related works to calculate the precision, an 

image from any category of the Corel database is selected randomly and the relevant 

images are displayed to the user according to the query. Similarly in our approaches 

we also calculate the precision by selecting randomly 30 images from all the image 

categories and the relevant images are displayed to the users as thumbnails. 
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5.3 Chapter Summary 

In this chapter, comparisons of all the proposed approaches in the spatial and 

frequency domains for the effective CBIR are performed first among themselves and 

then the proposed approach with near to optimum performance with the other 

approaches in the literature.  

In the spatial domain different techniques used for color and texture features in 

various approaches, however the Approach-5 gives optimum performance for the 

combination of color and texture features using the 8×8 block method with an average 

F-Score of 82%.  

In the frequency domain different techniques used for texture features in various 

approaches, however the Approach-10 gives optimum performance for the 

combination of color and texture features in the spatial and frequency domains with an 

average F-Score of 86%. 

Finally our Approach-10 with near to optimum result of 87% average precision is 

compared with the other existing approaches in the literatures. It has been shown that 

our proposed approach has better performance than the other approaches in terms of 

retrieval. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

6.1 Summary of Contributions 

Effective CBIR is based on efficient feature extraction for indexing and on effective 

query image matching with the indexed images for retrieval. However the main issue 

in CBIR is that how to extract the features efficiently because the efficient features 

describe well the image and they are used efficiently in matching of images to get 

robust image retrieval. This issue is the main inspiration for this thesis to develop an 

efficient hybrid CBIR with high performance in the spatial and frequency domains 

using color and texture features. We propose various approaches in which different 

techniques are fused to extract the statistical color and texture features efficiently in 

both domains. In the spatial domain, the statistical color histogram features are 

computed using the pixel distribution of the Laplacian filtered sharpened images 

based on the different quantization schemes. However color histogram does not 

provide the spatial information. The solution is by using the histogram refinement 

method in which the statistical features of the regions in histogram bins of the filtered 

image are extracted. This approach gives efficient retrieval but it has high 

computational cost, which is reduced by dividing the image into the sub-blocks of 

different sizes, to extract the local color and texture features of images and also to get 

local information in place of using complex segmentation. To improve further the 

performance, the color and texture features are combined using sub-block methods 

due to the less computational cost and good local information. 

In the frequency domain, the statistical quantized histogram texture features are 

extracted from 8×8 DCT (Discrete Cosine Transformation) blocks and effectiveness 

of CBIR is studied based on: median and Laplacian filters, distance metrics, different 

combination of features, combination of texture features in both domains and 
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combination of color and texture features in both domains are presented in order to 

get an efficient hybrid CBIR. Experimental results using benchmark Corel database 

have been shown that the proposed approaches achieve an average accuracy of 82% 

in spatial domain and 86% in frequency domain and the improved performance of 

proposed approaches outperform the approaches in the related works in the literature. 

In this thesis, we present various approaches in the spatial and frequency domains 

for image retrieval in CBIR. The approaches in the spatial domain include: 

approaches for color features using histogram and the color histogram refinement 

method (CHRM) based on median and Laplacian filters, and the approaches for the 

color and texture features based on sub-blocks of an image. The approaches in the 

frequency domain include: approaches for the quantized histogram texture features 

using the DCT blocks based on median and Laplacian filters, various distance metrics 

and various combinations of features. Other approaches based on the combination of 

the texture features in the spatial and frequency domains and the combination of the 

color in the spatial domain with the texture features in the frequency domain have also 

been presented.  

The contribution of the thesis starts with a proposed Approach-1 in the spatial 

domain in which we have used the Laplacian sharpened grayscale image for the 

feature extraction because the energy is compensated in the sharpen method, which is 

lost by the Laplacian filter in the preprocessing of the grayscale image to get a 

sharpened and enhanced image without noise. In the sharpening processing using the 

Laplacian filter, not only is the noise reduced but the information is also preserved 

that plays useful role in retrieval of the similar images from a database. The sharpened 

image is quantized using different quantization schemes like 4, 8, 16 and 32 bins. The 

statistical color features are extracted from the bins and represented in feature vectors. 

These vectors are used in the similarity measurement for the retrieval of similar 

images. From the results, it has been concluded that the quantization scheme with 

histograms of 32 bins gives good performance in terms of the F-Score in the retrieval 

of similar images.  For the evaluation of the retrieval performance, another Approach-

2 is proposed which is based on the performance of the different filter methods using 

the color histogram refinement method for the feature extraction in which the pixel 

values are convoluted with filter values.  Median, median with edge extraction and 
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Laplacian filter methods are applied on the grayscale images for the noise removal 

before applying the histogram method. During the median filtration, edge information 

is lost which is restored by the Canny edge detection method while in the Laplacian 

filter some information is also lost which is restored by subtracting the Laplacian 

image from the grayscale image to get a more enhanced and sharpened image. The 

statistical features of mean and standard deviation of the quantized histograms are 

calculated using the mathematically computed values of the connected regions. These 

statistical features are used for the retrieval of the relevant images. These features do 

not depend upon the orientation of the image. In this approach, the spatial information 

in the images is preserved. The performance is analyzed on the basis of the three filter 

methods using the spatial information of the histograms by quantizing them using 

different quantization schemes. The results show that the approach is efficient in 

retrieval but has high computational cost. 

To reduce the computational cost and improve the efficiency of retrieval an 

Approach-3 is proposed which is based on the statistical color moments and these 

moments are extracted from the non-overlapping sub-blocks of different sizes using 

the distribution of the pixel values of the images. It has been shown in this approach 

that the statistical color features has good retrieval performance by using the statistical 

local information of the local blocks in the images. In this approach, 9 different sub-

block methods have been used. The color moments have been extracted in all of the 

methods and their individual retrieval performance has been analyzed in terms of the 

F-Score. In another proposed Approach-4, the statistical texture features are extracted 

using the distribution of the pixels in the sub-blocks of the grayscale image. These 

features represent the brightness, contrast, skewness, flatness, uniformity, randomness 

and smoothness in the sub-blocks of the images. In the experiment, the results show 

that the proposed approaches using the sub-block methods are efficient in color and 

texture feature extraction for the different block methods and give the best 

performance in terms of accuracy comparatively, especially for the 8×8 and 16×16 

block methods. In the spatial domain Approach-5 is proposed in which the color and 

texture features are combined using the sub-block methods, and the improved good 

results are provided by using the 8×8 sub-blocks. 



158 

In order to improve the retrieval performance of CBIR, an Approach-6 has been 

proposed in the frequency domain for the effective image retrieval in which the 

experimental analysis of the statistical texture features based on the median and 

Laplacian filters is performed in the DCT domain. Only the DC and the first three AC 

coefficients with more important energy are selected in each DCT block to get the 

quantized histogram statistical texture features. These features are extracted from the 

median, median with edge extraction and Laplacian filtered images. The experimental 

analysis is performed on the basis of the results of the three filter methods using the 

different quantization schemes, and it has been shown that the enhanced and 

sharpened Laplacian filtered images using the quantized histogram texture features 

give good performance in terms of the F-Score in the DCT domain for the compressed 

images.  

An analysis of the statistical quantized histogram texture features is presented in 

another Approach-7 in the DCT domain based on the various distance metrics using 

the different quantization schemes. It has been shown that different values are 

calculated by using different distance metrics for the similarity measurements. The 

Euclidean distance has the optimal retrieval performance using the 32 bins 

quantization scheme as compared to the other proposed distance metrics. The 

combination of the statistical quantized histogram texture features is presented in 

another Approach-8 in the DCT domain, and it has been shown that the combination 

of more than one texture features give the optimal and improved performance in terms 

of retrieval. 

Finally, an Approach-9, to combine the textures features in the spatial and 

frequency domains has been presented. While in another Approch-10, the color 

features in the spatial domain are combined with the quantized histogram texture 

features in the frequency domain. It has been shown that the color and texture 

features’ integration in the spatial and frequency domains provide the best results as 

compared to the other approaches in the spatial and frequency domains.  The 

performances of the proposed approaches are compared to the related works, and we 

give an extensive discussion on their performances. The detailed results of the 

retrieved images for the different query images on the different categories of the 
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benchmark Corel database demonstrate the effectiveness of these approaches and the 

combination schemes. 

In summary, the proposed work in this thesis has mainly focused on the extraction 

of the statistical color and texture information of the images for the effective retrieval 

of similar images. The histograms and sub-block methods provide local color and 

texture information of the grayscale image. The last approach includes both the color 

information of the pixel values and the texture information of image.  

6.2 Limitations of the Research Work 

By the nature of knowledge, every research work in any filed has some limitations to 

make sure the future research directions in that filed. In the same way, the work in this 

thesis also has some limitations as follows:  

 The proposed approaches do not provide good retrieval to the images with 

complex background. 

 Images with multiple objects in foreground also affect the retrieval performance 

with some extent of the proposed work. 

 Feature database is created once and loaded at run time for searching but new 

image cannot be added at run time. For new addition the whole feature database 

will be recreated. 

 Object-based search cannot be performed and the retrieval is only on the global 

information of the overall image.  

 Another problem in this work is that the proposed features do not describe the 

images, semantically. This lack of semantics is called the semantic gap. The 

semantic gap is the lack of information between the user query and the retrieval 

algorithm. The semantic gap between the retrieval using low level features and 

the high level user’s request leads CBIR algorithms to the wrong results 

(Smeulders et al., 2000). 

 Only tested in Corel dataset. 
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6.3 Future Work 

The limitations of the research work give new directions for future research work. 

Hence the limitations of this work also provide foundation for future research.  

 In this thesis, the work has shown that the global histogram and sub-block color 

and texture features provide good performance in terms of retrieval results. 

However, different methods and image features could be combined to provide 

better image retrieval results, particularly on large image databases.  

 This combination of different techniques and features in the spatial and frequency 

domains provide our future work directions as to how to get appropriate features 

for image matching and retrieval.  

 Region-based features can be further improved to resolve the background 

complexity problem using histogram refinement method. 

 The local features of the image play important roles in object recognition and 

provide effective local object information in images for retrieval. Hence, in future 

to further improve the retrieval performance local features can be included. 

 The hybrid CBIR system should be dynamic to add any new image in the feature 

database at run time without recreation of the whole feature database. 

  The global features should be combined with local information to perform 

object-based retrieval to further enhance the retrieval. 

 It is very important to bridge the semantic gap between the low level features and 

the high level semantics of the image. However, using currently relevant 

feedback techniques and linking the low level visual features with annotations the 

semantic gap is still a challenging task for CBIR.  
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