# Computer Aided Design (CAD) of Tension Leg Platform (TLP) Hull for Deepwater Operation

by

Khairul Izzat Bin Amriem

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

JUNE 2010

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

# CERTIFICATION OF APPROVAL

# Computer Aided Design (CAD) of Tension Leg Platform (TLP) Hull for Deepwater Operation

by

Khairul Izzat Bin Amriem

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(AP Dr. Fakhruldin Bin Mohd Hashim)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK June 2010

# CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources of persons.

(Khairul Izzat Bin Amriem)

### ABSTRACT

Tension Leg Platform (TLP) is a floating structure, vertically moored to seabed by a system of pre-tension tethers held in tension by the buoyancy of the hull. This method restrain vertical motions (heave, pitch and roll) but allows horizontal movements (sway, yaw and surge). The objective of the project is initiating a design library of floaters by developing a Computer Aided Design (CAD) model of TLP. This project involved numerical analysis and 3D Modelling. The numerical analysis that has been done is the forces acting on TLP, surge and heave by using Morison equation and the Response Amplitude Operator (RAO). The study on various dimension of the hull of the TLP was conducted and the result indicates the effect of the various dimension of the TLP's hull to the response of the TLP. The CAD model was developed by using an engineering software name CATIA. Then the animation simulation was done by using ADAMS. The challenge in this project is to design the TLP as it will affect the performance of the structure. Lastly, it is recommended that other parameters are to be analyzed in the future to improve the applicability of research.

### ACKNOWLEDGEMENT

First and foremost, pray to god the Al-Mighty for His bless and love, giving me all the strength to complete the final year project. After everything had been planned, efforts were made, the project managed to be finished within the time frame. Without the help and guidance from other people, this study would not be able to complete successfully. Hence, on this page I would like to express my gratitude to those parties who had directly or indirectly involved in helping me for this project.

I would like to dedicate this project as a token of gift to my beloved parents, Amriem b Rasid and Puziah bt Dzulkifli for their support and pray.

My truly deepest appreciation goes to my supervisor, AP Dr Fakruldin Mohd Hashim. Without his guidance and patience, I would not succeed to complete the project. His advices were of valuable and priceless. To the Final Year Research Project Coordinator, Mr Saravanan and for provide me with all the initial information required to begin the project.

Last but not least, thanks to my fellow colleagues, Ruzanna, Abdul Hazeem, and Abang Zayd for helping a lot in finding and analyzing of the research project. Those precious moments of sharing information will always be remembered.

# TABLE OF CONTENTS

| CERTIFICATE |        |                                                      |    |
|-------------|--------|------------------------------------------------------|----|
| ABST        | RACT   |                                                      | iv |
| ACK         | NOWL   | EDGEMENT                                             | v  |
| CHAI        | PTER 1 |                                                      | 1  |
| 1.0         | INTR   | ODUCTION                                             | 1  |
|             | 1.1    | Background of Study                                  | 1  |
|             | 1.2    | Problem Statement                                    | 2  |
|             |        | 1.2.1 Problem identification                         | 2  |
|             |        | 1.2.2 Significance of the Project                    | 2  |
|             | 1.3    | Objective and Scope of Study                         | 3  |
| CHAI        | PTER 2 | 2                                                    | 4  |
| 2.0         | LITE   | RATURE REVIEW                                        | 4  |
|             | 2.1    | TLPs Compliant Structure                             | 5  |
|             | 2.2    | 6 Degree of Freedom (DOF) Motion of a Floating Rigid | 6  |
|             |        | Body                                                 |    |
|             | 2.3    | Motion of a Floating Structure                       | 7  |
|             | 2.4    | Deepwater                                            | 9  |
|             | 2.5    | Wave Force Measurement                               | 10 |
| CHAI        | PTER 3 | 1                                                    | 11 |
| 3.0         | METI   | HODOLOGY                                             | 11 |
|             | 3.1    | Problem Definition                                   | 11 |
|             | 3.2    | Conceptual Design                                    | 12 |
|             |        | 3.2.1 Design Concept Generation                      | 12 |

| 3.3 | Analysis             | 13 |
|-----|----------------------|----|
| 3.4 | Animation Simulation | 14 |

# **CHAPTER 4**

## 16

| 4.0 | <b>RESULT AND DISCUSSION</b> |                                                 |    |  |  |
|-----|------------------------------|-------------------------------------------------|----|--|--|
|     | 4.1                          | Dimensional, Structural and Environmental Data  |    |  |  |
|     | 4.2                          | Force on Column                                 |    |  |  |
|     | 4.3                          | Force on Pontoon                                | 18 |  |  |
|     | 4.4                          | Total Force on TLP                              | 19 |  |  |
|     | 4.5                          | Calculation on Surge Response                   | 19 |  |  |
|     |                              | 4.5.1 Mass of Surge                             | 19 |  |  |
|     |                              | 4.5.2 Buoyant Force                             | 19 |  |  |
|     |                              | 4.5.3 Surge Stiffness                           | 20 |  |  |
|     |                              | 4.5.4 Surge's Response Amplitude Operator (RAO) | 20 |  |  |
|     | 4.6                          | Calculation on Heave Response                   | 22 |  |  |
|     |                              | 4.6.1 Mass of Heave                             | 22 |  |  |
|     |                              | 4.6.2 Heave stiffness                           | 23 |  |  |
|     |                              | 4.6.3 Heave Response Amplitude Operator (RAO)   | 23 |  |  |
|     | 4.7                          | 3D Drawing                                      |    |  |  |
|     | 4.8                          | Animation Simulation                            |    |  |  |

# **CHAPTER 5**

5.0 CONCLUSION AND RECOMMENDATION 27 6.0 REFERENCES 29 APPENDICES

# 31

27

# LIST OF FIGURES

| Figure 1  | : Tension Leg Platform (TLP)                           | 4  |
|-----------|--------------------------------------------------------|----|
| Figure 2  | : Tension Leg Platform Terminology                     | 6  |
| Figure 3  | : Fixed and Moving Coordinates for A Rigid Body Motion | 7  |
| Figure 4  | : Motion of Floating Structure                         | 7  |
| Figure 5  | : TLP Motion Nomenclature                              | 8  |
| Figure 6  | : Maximum field water depth (meters)                   | 9  |
| Figure 7  | : Physical Decomposition of TLP                        | 12 |
| Figure 8  | : Methodology Flow Chart                               | 15 |
| Figure 9  | : Graph of Surge Response vs Column Height             | 21 |
| Figure 10 | : Graph of Surge Response vs Column Diameter           | 22 |
| Figure 11 | : Graph of Heave Response vs Column Height             | 23 |
| Figure 12 | : Graph of Heave Response vs Column Diameter           | 24 |
| Figure 13 | : 3D Modeling of TLP's Hull                            | 25 |
| Figure 14 | : Animation Simulation in ADAMS                        | 26 |

# LIST OF TABLES

| Table 1 | : Design Variable      | 12 |
|---------|------------------------|----|
| Table 2 | : TLP Dimensional Data | 16 |
| Table 3 | : Structural Data      | 16 |
| Table 4 | : Environment Data     | 17 |
| Table 5 | : Force on Column      | 18 |
| Table 7 | : Force on Pontoon     | 18 |
| Table 8 | : Total Force on TLP   | 19 |
|         |                        |    |

# CHAPTER 1 INTRODUCTION

### **1.0 INTRODUCTION**

#### 1.1 Background of Study

For oil and gas offshore Exploration and Production (E&P) operations in deep waters, floating platforms such as Tension Leg Platforms (TLP) are used. Floating structure is maintained by a variety of mooring line types and systems to keep it stationary at desired locations.

TLP is a buoyant platform held in a place by a mooring system. TLP's are similar to conventional platform except that it is maintained on location through the use of moorings held in tension by the buoyancy of the hull. The mooring system is a set of tension legs or tendons attached to the platform and connected to a template or foundation on the sea floor. The template is held in place by piles driven into the sea floor. This method allows the horizontal movement but dampens the vertical movement of the platform. The topside facilities of TLP and most of the daily operations are the same as the conventional platform.

Historically, TLP's have been in use since the early 1980s. The first TLP was built for Conoco's Hutton field in the North Sea in the early 1980s. The hull was built in the dry-dock at Highland Fabricator's Nigg yard in the north of Scotland, with the deck section built nearby at McDermott's yard at Ardersier. The two parts were mated in the Moray Firth in 1984. Since that time, the offshore Industry has gradually utilized the potential of the TLP unit to assist the offshore operations [1].

#### **1.2 Problem Statement**

#### **1.2.1** Problem Identification

Concept design and selection, which is part of the Front End Engineering Design (FEED), is a critical stage in the design of offshore floaters. Such an exercise is based on a structured approach to meet specific requirement or criterion. Extensive iterative process is typically being engaged in such an exercise. In addition, determination of specific parameters with respect to scaled model testing and calibration is not always straightforward, and involves cross referencing between numerical analysis and experimental testing. They are required to be properly designed in order to keep it in position at certain water depth when they are subjected to forces.

#### **1.2.2** Significance of the Project

For oil and gas industries, deepwater operation becomes more important. This is when the development of deepwater technology comes. Floating structures is one of the deepwater technologies that have been developed. However, there is no development of Computer Aided Design (CAD) models of various floaters for the selection of floaters to be use in certain oil and gas field. This work is basically an initial effort to establish a design library of CAD models of various floaters to help the future floater's selection for PETRONAS as we know that most of the reservoirs now are in deepwater.

### 1.3 Objective and Scope of Study

The main objectives of this research are:

- Initiate design library of offshore floaters.
- To develop a CAD model of the hull of Tension Leg Platform (TLP).
- Investigate the behavior of TLP (offset) when the geometry of the structure changes.

The objectives of this study are to design and develop a CAD model of TLP based on the specific requirement and investigate the behavior of the TLP by using the simple numerical analysis and to observe the motion (CATIA and ADAMS). For this project, only the hull of the TLP is considered in the analysis. In order to achieve this objective, a few tasks and research need to be carried out by collecting all technical details regarding the existing TLP in the world and by studying the fundamental aspects of the platforms. A study in using the CAD and ADAMS as the design tools also need to be done in to achieve this objective.

The project is subjected to certain assumption, as to be mentioned in the following:

- Dimensional platform (draught, diameter of member, height, etc) and environmental data (wave height, significant wave height, etc) are assumed to certain values but based on real dimensional data and site condition.
- There are no effects of wind speed in the study.

# CHAPTER 2 LITERATURE REVIEW

#### 2.0 LITERATURE REVIEW

Due to urbanization, the production and consumption of oil and other petroleum products have been rapidly increasing over the years. As a result, oil companies are motivated to go to deeper ocean to extract oil and other resources. This interest in deep water drilling has led to the in-depth study and analysis of deep water structures, like the Tension Leg Platform (TLP). TLPs are compliant structures consisting of a foundation, hull and Tendons. It is vertically moored at each corner by tendons. Each tendon is pre-tensioned so that it does not go slack due to variations in the extreme ocean environment. A picture of a typical TLP is shown in Figure 1[1].



Figure 1: Tension Leg Platform (TLP) [1]

#### 2.1 TLPs Compliant Structure

The foundation is the link between the seafloor and the TLP. Most foundations are templates laid on the seafloor, then secured by concrete or steel piles driven into the seafloor by use of a hydraulic hammer, but other designs can be used such as a gravity foundation. The foundations are built onshore and towed to the site [1].

The hull is a buoyant structure that supports the deck section of the platform and its drilling and production equipment. A typical hull has four air-filled columns supported by pontoons, similar to a semi-submersible drilling vessel. The buoyancy of the hull exceeds the weight of the platform, requiring moorings or tension legs called tendons to secure the structure to the seafloor. The columns in the hull range up to 100ft (30.48m) in diameter and up to 360ft (109.728m) in height. The hull (vertical column) provides the buoyancy for the TLP to float in the water and supports the platform. The hull contains several of the mechanical systems needed for platform operation. Hull-related equipment includes ballasting and trim, drain and bilge systems including emergency drain, HVAC, and utility systems [1, 2].

Deck structure is a multilevel facility consisting of trusses, deep girders and deck beams for supporting operational loads [2].



Figure 2: Tension Leg Platform terminology [2]

Tension Legs (tendons) are tubular that secure the hull to the foundation. This is the mooring system for the TLP. Tendons are typically steel tubes with dimensions of 2-3 ft in diameter with up to 3 inches of wall thickness, the length depending on water depth. A typical TLP would be installed with as many as 16 tendons [1].

The pontoons are flooded during inshore construction, module mating, and TLP installation. De-ballasting is done through pumps located in the caissons. During normal operations, the pontoons are dry [2].

#### 2.2 6 Degree of Freedom (DOF) Motions of a Floating Rigid Body

A TLP is subjected to three translational degrees of freedoms and three rotational degrees of freedom which are surge, sway, heave, yaw, pitch, and roll. Surge, sway and yaw natural frequencies tend to be low, on the order of 1/30 to 1/200 Hz. Heave, pitch and roll natural frequencies tend to be much higher, on the order of 1/5 to 1 Hz. All six degree of freedom contributes to the important of TLP responses [3].



Figure 3: Fixed and Moving Coordinates for a Rigid Body Motion [3]

## 2.3 Motion of Floating Structure

The motion of floating structure depend on the 6-degree of freedom of the structure [4].

The 6 motions are:

- 1. Heave and Yaw are the translational and rotational movement with respect to Y-axis.
- 2. Sway and Pitch are the translational and rotational movement with respect to Zaxis.
- 3. Surge and Roll are the translational and rotational movement with respect to X-axis.



Figure 4: Motion of Floating Structure [4]

However the tendon system restrains motion of the platform in response to wind, waves, current, and tide to within specified limits. By restraining the platform at a draft deeper than that required to displace its weight, the tendons are ideally under a continuous tensile load that provides a horizontal restoring force when the platform is displaced laterally from its still water position. The tendon system limits heave (almost eliminated), pitch, and roll response of the platform to small amplitudes while its softer transverse compliance restrains surge, sway, and yaw response to within operationally acceptable limits. But the vertical degree of freedom (heave, pitch and roll) can be neglected because the vertical degree of freedom is fixed due to the pretension of the tendons. The only significant motions for TLP are surge and sway [2, 5].



Figure 5: TLP Motion Nomenclature [8]

#### 2.4 Deepwater

With the recent advances in exploration and production technology, the minimum water depth at which a deepwater field starts has had to be redefined. Until 18 years ago, from a European perspective, 200m and deeper is considered as deepwater [6].

When viewed globally the answer is not so simple. The Gulf of Mexico, Brazil and West Africa have seen deepwater records tumble as discoveries and production has come from depths greater than 1,000m. In April 1998 the record was pushed to 1,709m [6].

Therefore, 200m is simply not considered to be deepwater anymore especially as various organizations have their own definitions ranging beyond 500m. To take this into account most deepwater online database drawn the limit for the definition of "deepwater" at 300m [6].

The simple graph below shows the worldwide trend in maximum water depths within each year band [6].



Figure 6: Maximum field water depth (meters) achieve by year range [6]

#### 2.5 Wave Force Measurement

For the purpose of wave force measurement, Morison equation is used. The equation was developed by Morison , O'Brien, Johson and Shaaf (1950). The Morrison equation assumes the force to be composed of inertia and drag force linearly added together. The components involve an inertia coefficient and a drag coefficient which must be determined experimentally. The Morrison equation is applicable when the drag force is significant. This is usually the case when a structure is small compared to the water wave length [7].

Morrison equation is applied by implementing the following formula:

$$f = C_M A_1 \frac{\partial u}{\partial t} + C_D A_D |\mathbf{u}| \mathbf{u}$$
<sup>[7]</sup>

Where,

$$A_1 = \frac{\pi}{4} D^2 \tag{7}$$

$$A_D = \frac{1}{2} D$$
 [7]

- D = cylinder diameter
- $\frac{\partial u}{\partial t}$  = local water particle acceleration
- $C_M$  = inertia coefficient
- $C_D$  = drag coefficient
  - = sea water density

Numerous works had been carried out to compute the amount of forces acting upon an offshore structure. Surge and heave analysis were carried out to analyze the responses of the TLP upon varying dimension of TLP. The data can be referred at Appendix A and Appendix B.

# CHAPTER 3 METHODOLOGY

#### 3.0 METHODOLOGY

The methodology is formulated based on Morris Asimov's morphology of design [8]. The research methodology and project activities are summarized in a flow chart as shown in figure 8.

## 3.1 **Problem Definition**

It is vital to understand the problem before finding the right solution. This first design process will determine the direction of the problem solving process. The output of problem definition process is a control document named as Product Design Specification (PDS). For the preliminary, various design of TLP is being collected. The general features for the preliminary are taken from the existing TLP, Brutus that has been developed by Shell Deepwater Development as the basis. The PDS for the TLP is as follows:

General Features:

- Configuration : A fourcaissoned square TLP
- Simpler to build in a shipyard than other geometric configurations.
- Allows for a large deck area
- Good stability features

### 3.2 Conceptual Design

Before producing the design concepts of the TLP, we need to decompose the mechanical system into its subassemblies and components into physical decomposition. The next of step of this phase is to produce design concepts that would perform as required.



Figure 7: Physical decomposition of TLP

The hull and the pontoon will be consider as critical parameters to design the TLP

### **3.2.1 Design Concept Generation**

Table 1 shows the design concept generation

| COMPONENT     | Variable |
|---------------|----------|
| 1. Column     | • Height |
| Cylinder type | H        |

Table 1: Design variable



For the design concept, the parameter for the column and will be varies. The height of the column is varied from 40m to 60m. The diameter of the column is varied from 17m to 27m.

### 3.3 Analysis

Analysis is performed for each variation of the design to determine the system's behavior and determine maximum parameters for the TLP. The parameters that will be analyzed are the offset of the motion of TLP when subjected to force (wave) in surge, heave, and pitch degree of freedom.

To establish any relationship or data analysis with the simulation, a few assumption and structural idealization must be made. This is to ensure that the simulation is in control and only the particular parameters will be tested. For this test, initial pre tension in all tethers is equal and remains unaltered over time. It is quite large in comparison to the changes that occurred during the life time of TLP. However, total pretension changes with the motion of platform. Wave forces are estimated at the instantaneous position of the platform by Morison's equation with Airy's linear wave theory. Wave is considered to act unidirectional in the surge direction only. Wave diffraction effect and wave forces on the tethers are assumed to be negligible. The low frequencies drift oscillation in surge and high frequency tension oscillation of the tethers are not considered in the analysis.

As a basis of the research, the behavior or relations between the parameters were needed to be familiarized. By using the environmental condition that had been chosen, all force for surge and heave need to be calculated. The forces that are calculated are acting on all four columns and pontoons.

#### **3.4** Animation Simulation

Based on the scope of this project, test and analysis will be conducted for the TLP. The CAD model (3D drawing) for each of design variation will be develop using CATIA. For each of the design variation, the animation simulation recording will be played to show some detailed futures by using ADAMS.

The design concept generation had been conducted in the final year project 1. Surge and heave analysis had been analyzed during final year project 2, including the analysis of varying the dimension of TLP. The methodology flow chart is shown in figure 8.



Figure 8: Methodology Flow Chart

# CHAPTER 4 RESULT AND DISCUSSION

#### 4.0 RESULT AND DISCUSSION

### 4.1 Dimensional, Structural and Environmental Data

The dimensional, structural and environmental data of the TLP are shown in Figure below.

| Section | Diameter (m) | Length (m) | Amount             |
|---------|--------------|------------|--------------------|
| Column  | 20           | 50         | 4                  |
| Pontoon | 9.9          | 50         | 4                  |
| Tendons | 1            | 880        | 16                 |
| Tendons | 1            | 880        | (4 at each column) |

Table 2: TLP Dimensional Data [6, 11]

\*9.9 is the equivalent diameter for pontoon

## Table 3: Structural Data [6, 11]

| Total Mass (tonnes)      | 42440                  |
|--------------------------|------------------------|
| Total Weight (kN)        | 416336                 |
| Tethers Stiffness (kN/m) | 102000                 |
| Drought (m)              | 30                     |
| Centre of Gravity (m)    | 6.1<br>(below drought) |

| H <sub>s</sub> (m)               | 12   |
|----------------------------------|------|
| Drag coefficient, C <sub>D</sub> | 6.6  |
| Mass Coefficient, C <sub>M</sub> | 9.3  |
| H <sub>max</sub> (m)             | 24   |
| T <sub>ass</sub> (s)             | 16.7 |
| Depth (m)                        | 910  |

Table 4: Environmental Data

### 4.2 Force on Column

To calculate the resultant force due to the environmental load, Morison Equation is use.

$$f = C_M A_1 \frac{\partial u}{\partial t} + C_D A_D |\mathbf{u}| \mathbf{u}$$
(1.1)

Where,

$$A_1 = -\frac{\pi}{4} D^2 \tag{1.2}$$

$$A_D = \frac{1}{2} D \tag{1.3}$$

- D = cylinder diameter
- $\frac{\partial u}{\partial t}$  = local water particle acceleration
- $C_M$  = inertia coefficient
- $C_D$  = drag coefficient

= sea water density

Take  $C_d = 0.65$ ;  $C_m = 1.6$ 

The calculations for determining the force acting to the column are done using the computer spread sheet. The summary of the forces calculation is given in the Appendix A.

## Summary of the column calculation are shown below in table 5:

| Column | $F_{x}(kN)$ | F <sub>y</sub> (kN) |
|--------|-------------|---------------------|
| 1      | 66561.9     | -57238              |
| 2      | 66561.9     | -57238              |
| 3      | 67080.79    | 57117.17            |
| 4      | 67080.79    | 57117.17            |
| Total  | 267285.38   | -120.83             |

Table 5: Force on Column

#### **4.3** Force on Pontoons

Using the same equation as for the columns, force for each pontoon can be determined. The spread sheet of the calculation can be referred to Appendix B. Below is the summary of the Force calculation on all three pontoons.

| Table | 6: | Force | on | Pontoons |
|-------|----|-------|----|----------|
|-------|----|-------|----|----------|

| Pontoon | F <sub>x</sub> (kN) | F <sub>y</sub> (kN) | F <sub>z</sub> (kN) |
|---------|---------------------|---------------------|---------------------|
| 1       | 0                   | -35090.5            | 0                   |
| 2       | 0                   | -35090.5            | 0                   |
| 3       | 35183.2             | -35386.6            | 0                   |
| 4       | 35183.2             | -35386.6            | 0                   |
| Total   | 70366.4             | -140954.2           | 0                   |

## 4.4 Total Force on TLP

Total force on TLP is the sum of forces acting at column and hull are listed in table 7 below.

|         | F <sub>x</sub> (kN) | F <sub>y</sub> (kN) | F <sub>z</sub> (kN) |
|---------|---------------------|---------------------|---------------------|
| Column  | 267285.38           | -120.83             | 0                   |
| Pontoon | 70366.4             | -140954.2           | 0                   |
| Total   | 337651.78           | -141075.03          | 0                   |

**Table 7: Total Force on TLP** 

## 4.5 Calculation on Surge Response

To show the summary of calculation for surge response, the first variations of the dimension of the TLP is used.

## 4.5.1 Mass of Surge

|                                   | = <b>77899990.90</b> kg                                                         |
|-----------------------------------|---------------------------------------------------------------------------------|
| M <sub>SURGE</sub>                | =42440000 + 35459990.88                                                         |
|                                   | = 35459990.88                                                                   |
| Added Mass, M <sub>ADD</sub>      | = $[V_{\text{COLUMNS}} + 2 D^2 (57)/4 + 2 D^3 (30)/12] \times 1025 \text{kg/m}$ |
| Mass of Structure, M              | = 42440000  kg                                                                  |
| Mass of Surge, M <sub>SURGE</sub> | = Mass, M + Added Mass, M <sub>ADD</sub>                                        |

# 4.5.2 Buoyant Force

| F <sub>B</sub> | = $(V_{\text{COLUMNS}} + V_{\text{PONTOONS}}) \times 1025 \times 9.807 / 1000$ |
|----------------|--------------------------------------------------------------------------------|
|                | = <b>420074.14</b> kN                                                          |

# 4.5.3 Surge Stiffness

| Buoyancy, B        | = Structure weight in air, W + Pretension, T |
|--------------------|----------------------------------------------|
| В                  | = 420074.1437 kN                             |
| W                  | = 416336 kN                                  |
| Т                  | = B-W = 3738.143714 kN                       |
| Tether length, L   | = 889 m                                      |
| K <sub>SURGE</sub> | = T/L = <b>4.21 kN/m</b>                     |

## 4.5.4 Surge's Response Amplitude Operator (RAO)

To calculate the Response Amplitude Operator (RAO) of the surge motion, equation below is used,

$$\mathsf{RAO}_{\mathsf{Surge}} = \frac{F/\frac{H}{2}}{[(K - m\omega^2)^2 + (C\omega)^2]^{\frac{1}{2}}}$$
(1.4)

| Where, | F | = | Total horizontal force |  |
|--------|---|---|------------------------|--|
|        | Н | = | Wave height            |  |
|        | Κ | = | Surge stiffness        |  |
|        | С | = | Dumping with $= 0.05$  |  |
|        | m | = | Total Mass             |  |

Using the formulae above, the value of RAO for surge direction is **0.20 m**. Microsoft Excel is used to calculated the surge when the height and diameter of the columns is varied.



Figure 9: Graph of Surge Response vs Column Height

Figure 9 shows the changes in surge response when the column height is varied. When the column height is increased, the surge response of the TLP is decreased. The surge response of the TLP is inversely proportional to the height of the column.



Figure 10: Graph of Surge Response vs Column Diameter

Figure 10 shows the changes in surge response when the column diameter is varied. From the graph, the surge response of the TLP also decreased when the column diameter is increased. The surge response is inversely proportional to the column diameter.

#### 4.6 Calculation on Heave Response

To show the summary of calculation for heave response, the first variations of the dimension of the TLP is used.

#### 4.6.1 Mass of Heave

| $M_{\text{HEAVE}}$                | = 66807279.1 kg                          |
|-----------------------------------|------------------------------------------|
|                                   | = 24367279.09 kg                         |
| Added Mass, M <sub>ADD</sub>      | = $[4 D^2/4 x L + 4 D^3/12] x 1025 kg/m$ |
| Mass of Structure, M              | = 10200000kg                             |
| Mass of Heave, M <sub>HEAVE</sub> | = Mass, M + Added Mass, M <sub>ADD</sub> |

### 4.6.2 Heave Stiffness

|                    | = 14263935.65 kN/m                                     |
|--------------------|--------------------------------------------------------|
|                    | = (16  x10200) + (1256.637  x1025  x9.807)             |
| K <sub>HEAVE</sub> | = Tethers Stiffness + (Water plane area x 1025x 9.807) |
| Water plane area   | $= 4 D^2/4 = 3 (25)^2/4 = 1256.637 m^2$                |

## 4.6.3 Heave's Response Amplitude Operator (RAO)

$$\mathsf{RAO}_{\mathsf{Heave}} = \frac{F/\frac{H}{2}}{[(K - m\omega^2)^2 + (C\omega)^2]^{\frac{1}{2}}}$$
(1.5)

| Where, | F | = | Total vertical force  |  |
|--------|---|---|-----------------------|--|
|        | Н | = | Wave height           |  |
|        | Κ | = | Surge stiffness       |  |
|        | С | = | Dumping with $= 0.05$ |  |
|        | m | = | Total Mass            |  |

The same RAO formulae as surge is used to calculated the RAO for heave. The value of RAO for heave direction is **0.004 m**. Microsoft Excel is used to calculate the heave when the height and diameter of the columns is varied.





Figure 11 shows the changes in heave response when the column height is varied. From the graph, the negative value of heave response shows that the heave is moving on vertical axis (y-axis) downward. The graph also shows that the column height of the TLP is insignificant to the heave response.



Figure 12: Graph of Heave vs Column Diameter

Figure 12 shows the changes in heave response when the column diameter is varied. The negative value of heave shows that the heave moves downward in vertical axis. As the column diameter is increased, the heave response of the TLP is decreased.

#### 4.7 3D Drawing

CATIA is a one of most common software of Mechanical engineering drawing, it could be use to draw mechanical parts, modeling and simulating easily rather than AutoCAD.

From assembly point of view, the modeling started from the main block which will be referred as Master-Part. This Master-part consists of 2 main sub-assemblies, and from these subassemblies individual components were extracted. From each component, the corresponding part of the hull was designed using different workbenches of CATIA software.

Each sub-assembly (pontoon and column) was drawn separately, ensuring the display of all enclosed details. After completing the design, the generated parts were assembled and all possible interferences were checked to prevent clashes.



Figure 13: 3D Modeling of TLP's Hull

#### 4.8 Animation Simulation

After assembling these parts, an animation simulation was constructed to demonstrate motion of the designed product. For the animation simulation, engineering software, ADAMS is used. The finished 3D drawing of the hull is then converted to igs file in order to export the modeling to ADAMS. To simulate the animation, motion at translational joint is apply with function.



Figure 14: Animation Simulation in ADAMS

# CHAPTER 5 CONCLUSION AND RECOMMENDATION

#### 5.0 CONCLUSION AND RECOMMENDATION

For the purpose of wave force measurement, Morison equation is used. The Morison equation assumes the force to be composed of inertia and drag forces linearly added together. Analysis on the wave energy spectrum using Morison equation provides the amount of energy of the wave system.

TLP is compliant in horizontal motion from the surge analysis. From the analysis, the height and the diameter of the column will affect the surge response. This is because the added mass of the TLP increased when the height of the column increased. The surge response is inversely proportional to the height and diameter of the column.

Heave analysis had been conducted and a very small amount of motion been obtained. This is because TLP is not compliant in vertical motion. Tendons which are tensile in normal condition prevent TLP from moving upward or downward. From the analysis, it shows that the height of the column is insignificant to the heave response. This is because the height of the column does not affect the water plane area of the TLP. However, the diameter of the column does affect the heave response because the water plane area change when the column diameter change.

From the animation simulation, the features of the TLP's hull can be seen. The motion of the TLP can be observed by the animation simulation.

Based on the results of responses subjected to varying the hull dimension, it is concluded that the dimension variations will affect the TLP's responses accept for the column height. However, the case is restricted to only one part of the TLP which is the column dimension. Other important aspects, like the dimension of the pontoon, the material weight, bottom sea pressure, wind force, current etc are not taken into account.

Thus it is recommended that in future, studies on other aspects should be conducted as well to analyze the parameters affecting TLP behavior to improve the applicability of research and contribute to the design library. Studies may include real-life model of TLP, more sophisticated simulation software and laboratory test to compare theoretical results with the experimental result done by the test in laboratory.

#### REFERENCES

- [1] Anonymous. Global Security, Tension Leg Platform [Online] Available from: URL httphttp://www.globalsecurity.org/military/systems/ship/platform-tensionleg, [Retrieved on 7<sup>th</sup> August 2009]
- [2] API Recommended Practice 2T, 1997, "Recommended Practice for Planning, Designing, and Constructing Tension Leg Platforms", Second Edition
- [3] John C. Heideman, 1987," Environmental Design Criteria for TLPs"
- [4] Prof. Subrata Kumar Chakrabarti, 2008, "Short Course On Offshore Technology: An Introduction On Offshore Engineering And Technology"
- [5] M. A. Brogan, 1986, "Tension Leg Platform Design Optimization for Vortex Induced Vibration", Massachusetts Institute of Technology; K. S. Wasserman, MIT
- [6] Anonymous. Deepwater Online. [Online] Available from: URL http://www.deepwater.co.uk/info.htm [Retrieved on 10th May 2010]
- [7] Anonymous. (2008) Brutus : Fact Sheet.[Online] Available from: URL http://www.theoildrum.com/files/Brutus%20Fact%20Sheet. [Retrieved on 20<sup>th</sup> August 2009]
- [8] Dieter, G.E., 2000, *Engineering Design*, 3<sup>rd</sup> Edition, Singapore, McGraw-Hill.
- [9] Mangala M. Gadagi, Haym Benaroya, 2005 "Dynamic response of an axially loaded tendon of a tension leg platform" journal of sound and vibration.

- [10] John Murray, Chan K. Yang and Wooseuk Yang, 1984, "An Extended Tension Leg Platform Design for Post-Katrina Gulf of Mexico"
- [11] Ullman, D.G., 1997, *The Mechanical Design Process*, 2<sup>nd</sup> Edition, New York, McGraw-Hill
- [12] Subrata K.Chakrabarti .2005, *Handbook of Offshore Engineering*,(Volume I) Offshore Structure Analysis, Inc, Plainfied, Illinois, USA
- [13] V.J. Kurian, V.G. Idichandy, 1989, "Hydrodynamic Response of Tension-Leg Platforms – A Model"
- [14] Zeki Demirbilek, Ph. D, 1988, "Tension Leg Platform: An overview of the Concept, Analysis, and Design"
- [15] Lindsey Wilhoit and Chad Supan of Mustang Engineering,2007, "2007 Worldwide Survey of TLPs, TLWPs"

APPENDICES

**APPENDIX A** 

SUMMARY OF FORCE CALCULATION USING MORISON EQUATION

#### column 1

| t    | Fx         | Fy         |  |
|------|------------|------------|--|
| 0    | -28147339  | 22608526.7 |  |
| 1.7  | -59271013  | 23132770.3 |  |
| 2.7  | -66369310  | 2154612.58 |  |
| 3.7  | -63395782  | -19124962  |  |
| 4.7  | -50875890  | -37729077  |  |
| 5.7  | -30904435  | -51055138  |  |
| 6.7  | -6667101.6 | -57238915  |  |
| 7.7  | 18216778   | -55415337  |  |
| 8.7  | 40324037   | -49231379  |  |
| 9.7  | 65954494   | -13494928  |  |
| 10.7 | 65954494   | -9686589.9 |  |
| 11.7 | 66561492   | 11832945.9 |  |
| 12.7 | 58605982   | 31697128.9 |  |
| 13.7 | 42923148   | 47127088.3 |  |
| 14.7 | 21306781   | 55964272.2 |  |
| 15.7 | -3525580.9 | 56972415.7 |  |
| 16.7 | -28147339  | 50010486.2 |  |

column 2

| t    | Fx       | Fy       |
|------|----------|----------|
| 0    | -2.8E+07 | 22608527 |
| 1.7  | -5.9E+07 | 23132770 |
| 2.7  | -6.6E+07 | 2154613  |
| 3.7  | -6.3E+07 | -1.9E+07 |
| 4.7  | -5.1E+07 | -3.8E+07 |
| 5.7  | -3.1E+07 | -5.1E+07 |
| 6.7  | -6667102 | -5.7E+07 |
| 7.7  | 18216778 | -5.5E+07 |
| 8.7  | 40324037 | -4.9E+07 |
| 9.7  | 65954494 | -1.3E+07 |
| 10.7 | 65954494 | -9686590 |
| 11.7 | 66561492 | 11832946 |
| 12.7 | 58605982 | 31697129 |
| 13.7 | 42923148 | 47127088 |
| 14.7 | 21306781 | 55964272 |
| 15.7 | -3525581 | 56972416 |
| 16.7 | -2.8E+07 | 50010486 |
|      |          |          |

column 3

| t    | Fx       | Fy       |
|------|----------|----------|
| 0    | 36655408 | 22608527 |
| 1.7  | -3890516 | 57117174 |
| 2.7  | -2.8E+07 | 50546688 |
| 3.7  | -4.9E+07 | 36905046 |
| 4.7  | -6.3E+07 | 18100627 |
| 5.7  | -6.7E+07 | -3235953 |
| 6.7  | -6E+07   | -2.4E+07 |
| 7.7  | -4.5E+07 | -4.2E+07 |
| 8.7  | -2.4E+07 | -5.3E+07 |
| 9.7  | 1257409  | -2.6E+07 |
| 10.7 | 25613607 | -5.4E+07 |
| 11.7 | 46235233 | -4.2E+07 |
| 12.7 | 60600543 | -2.5E+07 |
| 13.7 | 67080792 | -4336037 |
| 14.7 | 64962413 | 17050839 |
| 15.7 | 54442634 | 36052412 |
| 16.7 | 36655408 | 50010486 |

column 4

| t    | Fx       | Fy       |
|------|----------|----------|
| 0    | 36655408 | 22608527 |
| 1.7  | -3890516 | 57117174 |
| 2.7  | -2.8E+07 | 50546688 |
| 3.7  | -4.9E+07 | 36905046 |
| 4.7  | -6.3E+07 | 18100627 |
| 5.7  | -6.7E+07 | -3235953 |
| 6.7  | -6E+07   | -2.4E+07 |
| 7.7  | -4.5E+07 | -4.2E+07 |
| 8.7  | -2.4E+07 | -5.3E+07 |
| 9.7  | 1257409  | -2.6E+07 |
| 10.7 | 25613607 | -5.4E+07 |
| 11.7 | 46235233 | -4.2E+07 |
| 12.7 | 60600543 | -2.5E+07 |
| 13.7 | 67080792 | -4336037 |
| 14.7 | 64962413 | 17050839 |
| 15.7 | 54442634 | 36052412 |
| 16.7 | 36655408 | 50010486 |

#### Pontoon 1

| t    | Fx | Fy         |
|------|----|------------|
| 0    | 0  | -450630.69 |
| 1.7  | 0  | -239911.97 |
| 2.7  | 0  | -62749.432 |
| 3.7  | 0  | 128064.518 |
| 4.7  | 0  | 304320.189 |
| 5.7  | 0  | 436606.087 |
| 6.7  | 0  | 500990.818 |
| 7.7  | 0  | 490314.101 |
| 8.7  | 0  | 419229.055 |
| 9.7  | 0  | 294346.148 |
| 10.7 | 0  | 127604.691 |
| 11.7 | 0  | -61406.733 |
| 12.7 | 0  | -246172.34 |
| 13.7 | 0  | -396998.66 |
| 14.7 | 0  | -487245.28 |
| 15.7 | 0  | -501292.38 |
| 16.7 | 0  | -450630.69 |

| Pontoon 2 |    |          |
|-----------|----|----------|
| t         | Fx | Fy       |
| 0         | 0  | -450631  |
| 1.7       | 0  | -239912  |
| 2.7       | 0  | -62749.4 |
| 3.7       | 0  | 128064.5 |
| 4.7       | 0  | 304320.2 |
| 5.7       | 0  | 436606.1 |
| 6.7       | 0  | 500990.8 |
| 7.7       | 0  | 490314.1 |
| 8.7       | 0  | 419229.1 |
| 9.7       | 0  | 294346.1 |
| 10.7      | 0  | 127604.7 |
| 11.7      | 0  | -61406.7 |
| 12.7      | 0  | -246172  |
| 13.7      | 0  | -396999  |
| 14.7      | 0  | -487245  |
| 15.7      | 0  | -501292  |
| 16.7      | 0  | -450631  |

### Pontoon 3

| t    | Fx       | Fy       |
|------|----------|----------|
| 0    | -211323  | -460056  |
| 1.7  | -444149  | -242983  |
| 2.7  | -502360  | -62796.1 |
| 3.7  | -490295  | 126176   |
| 4.7  | -409640  | 297496.8 |
| 5.7  | -271679  | 427199.8 |
| 6.7  | -95712.4 | 497140.3 |
| 7.7  | 93644.05 | 497534   |
| 8.7  | 269900.3 | 428326   |
| 9.7  | 408399.2 | 299197.9 |
| 10.7 | 489765.7 | 128213.9 |
| 11.7 | 502617.2 | -60706.3 |
| 12.7 | 445155.7 | -241134  |
| 13.7 | 325419.9 | -387829  |
| 14.7 | 160159.9 | -480269  |
| 15.7 | -27505.5 | -505522  |
| 16.7 | -211323  | -460056  |

#### Pontoon 4

| t    | Fx       | Fy       |
|------|----------|----------|
| 0    | -211323  | -460056  |
| 1.7  | -444149  | -242983  |
| 2.7  | -502360  | -62796.1 |
| 3.7  | -490295  | 126176   |
| 4.7  | -409640  | 297496.8 |
| 5.7  | -271679  | 427199.8 |
| 6.7  | -95712.4 | 497140.3 |
| 7.7  | 93644.05 | 497534   |
| 8.7  | 269900.3 | 428326   |
| 9.7  | 408399.2 | 299197.9 |
| 10.7 | 489765.7 | 128213.9 |
| 11.7 | 502617.2 | -60706.3 |
| 12.7 | 445155.7 | -241134  |
| 13.7 | 325419.9 | -387829  |
| 14.7 | 160159.9 | -480269  |
| 15.7 | -27505.5 | -505522  |
| 16.7 | -211323  | -460056  |

**APPENDIX B** 

SURGE AND HEAVE RESPONSE WHEN VARYING COLUMN DIMENSION

|               |       |             |            |            |             | Surge Respo | nse (Height Variation | 1)            |              |                     |                   |             |            |
|---------------|-------|-------------|------------|------------|-------------|-------------|-----------------------|---------------|--------------|---------------------|-------------------|-------------|------------|
| Height Column | Draft | 4 columns   | 2 pontoons | 2 Pontoons | Added Mass  | Surge Mass  | Buoyant Force, Fb(KN) | Pretension, T | Tether lengt | Surge stiffness, Ks | Natural Frequency | Damping, C  | Surge      |
| 41            | 21    | 27049112.75 | 7890129.58 | 520748.55  | 35459990.88 | 77899990.9  | 420074.1437           | 3738.143714   | 889          | 4.204886067         | 0.000232332       | 1809.863493 | 0.20147438 |
| 42            | 22    | 28337165.74 | 7890129.58 | 520748.55  | 36748043.87 | 79188043.9  | 432706.0794           | 16370.07937   | 888          | 18.43477406         | 0.000482491       | 3820.750839 | 0.19820708 |
| 43            | 23    | 29625218.72 | 7890129.58 | 520748.55  | 38036096.86 | 80476096.9  | 445338.015            | 29002.01502   | 887          | 32.69674749         | 0.00063741        | 5129.626319 | 0.19504409 |
| 44            | 24    | 30913271.71 | 7890129.58 | 520748.55  | 39324149.85 | 81764149.8  | 457969.9507           | 41633.95067   | 886          | 46.99091498         | 0.000758098       | 6198.525804 | 0.19198048 |
| 45            | 25    | 32201324.7  | 7890129.58 | 520748.55  | 40612202.84 | 83052202.8  | 470601.8863           | 54265.88633   | 885          | 61.31738568         | 0.000859243       | 7136.206242 | 0.18901164 |
| 46            | 26    | 33489377.69 | 7890129.58 | 520748.55  | 41900255.82 | 84340255.8  | 483233.822            | 66897.82198   | 884          | 75.67626921         | 0.000947245       | 7989.090001 | 0.18613325 |
| 47            | 27    | 34777430.68 | 7890129.58 | 520748.55  | 43188308.81 | 85628308.8  | 495865.7576           | 79529.75763   | 883          | 90.06767569         | 0.001025595       | 8781.994505 | 0.18334123 |
| 48            | 28    | 36065483.66 | 7890129.58 | 520748.55  | 44476361.8  | 86916361.8  | 508497.6933           | 92161.69329   | 882          | 104.4917157         | 0.001096453       | 9529.973647 | 0.18063175 |
| 49            | 29    | 37353536.65 | 7890129.58 | 520748.55  | 45764414.79 | 88204414.8  | 521129.6289           | 104793.6289   | 881          | 118.9485005         | 0.001161273       | 10242.94044 | 0.17800121 |
| 50            | 30    | 38641589.64 | 7890129.58 | 520748.55  | 47052467.78 | 89492467.8  | 533761.5646           | 117425.5646   | 880          | 133.4381416         | 0.001221087       | 10927.81249 | 0.17544620 |
| 51            | 31    | 39929642.63 | 7890129.58 | 520748.55  | 48340520.76 | 90780520.8  | 546393.5002           | 130057.5002   | 879          | 147.9607511         | 0.001276665       | 11589.63073 | 0.17296352 |
| 52            | 32    | 41217695.62 | 7890129.58 | 520748.55  | 49628573.75 | 92068573.8  | 559025.4359           | 142689.4359   | 878          | 162.5164418         | 0.001328596       | 12232.194   | 0.17055014 |
| 53            | 33    | 42505748.6  | 7890129.58 | 520748.55  | 50916626.74 | 93356626.7  | 571657.3716           | 155321.3716   | 877          | 177.1053267         | 0.001377347       | 12858.44309 | 0.16820320 |
| 54            | 34    | 43793801.59 | 7890129.58 | 520748.55  | 52204679.73 | 94644679.7  | 584289.3072           | 167953.3072   | 876          | 191.7275196         | 0.001423292       | 13470.70514 | 0.16591999 |
| 55            | 35    | 45081854.58 | 7890129.58 | 520748.55  | 53492732.72 | 95932732.7  | 596921.2429           | 180585.2429   | 875          | 206.3831347         | 0.001466742       | 14070.85573 | 0.16369795 |
| 56            | 36    | 46369907.57 | 7890129.58 | 520748.55  | 54780785.7  | 97220785.7  | 609553.1785           | 193217.1785   | 874          | 221.0722866         | 0.001507952       | 14660.43021 | 0.16153466 |
| 57            | 37    | 47657960.55 | 7890129.58 | 520748.55  | 56068838.69 | 98508838.7  | 622185.1142           | 205849.1142   | 873          | 235.7950907         | 0.001547141       | 15240.70226 | 0.15942781 |
| 58            | 38    | 48946013.54 | 7890129.58 | 520748.55  | 57356891.68 | 99796891.7  | 634817.0498           | 218481.0498   | 872          | 250.5516626         | 0.001584492       | 15812.74079 | 0.15737523 |
| 59            | 39    | 50234066.53 | 7890129.58 | 520748.55  | 58644944.67 | 101084945   | 647448.9855           | 231112.9855   | 871          | 265.3421188         | 0.001620167       | 16377.452   | 0.15537484 |
| 60            | 40    | 51522119.52 | 7890129.58 | 520748.55  | 59932997.66 | 102372998   | 660080.9211           | 243744.9211   | 870          | 280.166576          | 0.001654304       | 16935.61107 | 0.1534246  |

|            |       |             |            |            |             |            | Surge Response ( Dia  | meter Variatio | n)            |                     |                   |             |             |
|------------|-------|-------------|------------|------------|-------------|------------|-----------------------|----------------|---------------|---------------------|-------------------|-------------|-------------|
| Dia Column | Draft | 4 columns   | 2 pontoons | 2 Pontoons | Added Mass  | Surge Mass | Buoyant Force, Fb(KN) | Pretension, T  | Tether length | Surge stiffness, Ks | Natural Frequency | Damping, C  | Surge       |
| 17         | 30    | 27918548.51 | 7890129.58 | 520748.55  | 36329426.65 | 78769426.7 | 428600.7003           | 12264.70028    | 880           | 13.93715941         | 0.000420638       | 3313.339789 | 0.199257361 |
| 18         | 30    | 31299687.61 | 7890129.58 | 520748.55  | 39710565.74 | 82150565.7 | 461759.5314           | 45423.53137    | 880           | 51.61764928         | 0.000792673       | 6511.850037 | 0.191080296 |
| 19         | 30    | 34874034.65 | 7890129.58 | 520748.55  | 43284912.79 | 85724912.8 | 496813.1528           | 80477.15281    | 880           | 91.45131001         | 0.00103286        | 8854.182952 | 0.183135386 |
| 20         | 30    | 38641589.64 | 7890129.58 | 520748.55  | 47052467.78 | 89492467.8 | 533761.5646           | 117425.5646    | 880           | 133.4381416         | 0.001221087       | 10927.81249 | 0.175446207 |
| 21         | 30    | 42602352.58 | 7890129.58 | 520748.55  | 51013230.71 | 93453230.7 | 572604.7667           | 156268.7667    | 880           | 177.578144          | 0.001378471       | 12882.25573 | 0.168029477 |
| 22         | 30    | 46756323.46 | 7890129.58 | 520748.55  | 55167201.6  | 97607201.6 | 613342.7592           | 197006.7592    | 880           | 223.8713173         | 0.001514462       | 14782.23691 | 0.160896047 |
| 23         | 30    | 51103502.3  | 7890129.58 | 520748.55  | 59514380.43 | 101954380  | 655975.542            | 239639.542     | 880           | 272.3176614         | 0.001634312       | 16662.52635 | 0.154051828 |
| 24         | 30    | 55643889.08 | 7890129.58 | 520748.55  | 64054767.22 | 106494767  | 700503.1152           | 284167.1152    | 880           | 322.9171764         | 0.001741331       | 18544.26853 | 0.147498651 |
| 25         | 30    | 60377483.81 | 7890129.58 | 520748.55  | 68788361.95 | 111228362  | 746925.4787           | 330589.4787    | 880           | 375.6698622         | 0.001837788       | 20441.41468 | 0.141235027 |
| 26         | 30    | 65304286.49 | 7890129.58 | 520748.55  | 73715164.63 | 116155165  | 795242.6326           | 378906.6326    | 880           | 430.5757189         | 0.001925331       | 22363.71917 | 0.135256821 |
| 27         | 30    | 70424297.12 | 7890129.58 | 520748.55  | 78835175.25 | 121275175  | 845454.5768           | 429118.5768    | 880           | 487.6347464         | 0.002005217       | 24318.30367 | 0.129557831 |
|            |       |             |            |            |             |            |                       |                |               |                     |                   |             |             |

|                             |             |            |       |            | Surge Respo | onse ( Diameter | r variation ) |                  |           |              |          |        |
|-----------------------------|-------------|------------|-------|------------|-------------|-----------------|---------------|------------------|-----------|--------------|----------|--------|
|                             |             |            |       |            |             |                 |               |                  |           |              |          |        |
| Mass (kg)                   | 42440000    | Dia Column | Draft | 4 column   | 4 pontoons  | Added Mass      | Heave Mass    | Water Plane Area | Heave Sti | Natural Freq | Damping, | Heave  |
| Pontoon Equivalent dia(m)   | 9.9         | 17         | 3     | 5273504    | 15780259.2  | 21053762.78     | 63493762.8    | 907.9202769      | 10758574  | 0.411634544  | 2613623  | -0.002 |
| Free board (m)              | 20          | 18         | 3     | 0 6259938  | 15780259.2  | 22040196.69     | 64480196.7    | 1017.87602       | 11863868  | 0.428943384  | 2765835  | -0.002 |
| Pontoon length(m)           | 50          | 19         | 3     | 0 7362296  | 15780259.2  | 23142555.37     | 65582555.4    | 1134.114948      | 13032322  | 0.445776051  | 2923513  | -0.001 |
| Structure weight in air(KN) | 416336      | 20         | 3     | 8587020    | 15780259.2  | 24367279.09     | 66807279.1    | 1256.637061      | 14263936  | 0.462070022  | 3086964  | -0.001 |
| Water Depth(m)              | 910         | 21         | 3     | 9940549    | 15780259.2  | 25720808.1      | 68160808.1    | 1385.44236       | 15558709  | 0.477770592  | 3256523  | -0.001 |
| Total Vertical force(KN)    | -141075.03  | 22         | 3     | 0 11429324 | 15780259.2  | 27209582.68     | 69649582.7    | 1520.530844      | 16916642  | 0.492830777  | 3432546  | -0.001 |
| omega                       | 0.05988024  | 23         | 3     | 0 13059784 | 15780259.2  | 28840043.09     | 71280043.1    | 1661.902514      | 18337735  | 0.507211239  | 3615404  | -0.00  |
| Tether Stiffness(KN)        | 102000      | 24         | 3     | 0 14838370 | 15780259.2  | 30618629.59     | 73058629.6    | 1809.557368      | 19821987  | 0.520880185  | 3805479  | -0.00  |
| Water Plane Area(m2)        | 1256.637061 | 25         | 3     | 0 16771523 | 15780259.2  | 32551782.45     | 74991782.4    | 1963.495408      | 21369399  | 0.533813215  | 4003160  | -0.001 |
|                             |             | 26         | 3     | 0 18865683 | 15780259.2  | 34645941.93     | 77085941.9    | 2123.716634      | 22979971  | 0.545993093  | 4208839  | -0.001 |
|                             |             | 27         | 3     | 0 21127289 | 15780259.2  | 36907548.3      | 79347548.3    | 2290.221044      | 24653703  | 0.557409442  | 4422907  | -0.000 |

|                             |          |           |       |           |            | Heave Respon | se ( Height Va | ariation )         |            |             |          |
|-----------------------------|----------|-----------|-------|-----------|------------|--------------|----------------|--------------------|------------|-------------|----------|
| Mass (kg)                   | 42440000 | Height Co | Draft | 4 columns | 4 pontoons | Added Mass   | Heave Mass     | Heave Stiffness, K | Natural Fr | Damping, C  | Heave    |
| Pontoon Equivalent dia(m)   | 9.9      | 40        | 20    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Free board (m)              | 20       | 41        | 21    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Pontoon length(m)           | 50       | 42        | 22    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Structure weight in air(KN) | 416336   | 43        | 23    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Water Depth(m)              | 910      | 44        | 24    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Total Horizontal force(KN)  | -141075  | 45        | 25    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| omega                       | 0.05988  | 46        | 26    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Tether Stiffness(KN)        | 102000   | 47        | 27    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
| Water Plane Area(m2)        | 1256.637 | 48        | 28    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 49        | 29    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 50        | 30    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 51        | 31    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 52        | 32    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 53        | 33    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 54        | 34    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 55        | 35    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 56        | 36    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 57        | 37    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 58        | 38    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 59        | 39    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |
|                             |          | 60        | 40    | 8587020   | 15780259.2 | 24367279.09  | 66807279.1     | 14263935.65        | 0.46207    | 3086964.091 | -0.00168 |