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ABSTRACT 

Minimizing the cost of raw materials and the cost of processing is the key to make 

biodiesel technology competitive. Use of a non-edible oil such as Jatropha curcas oil 

can be cheaper option; in-situ transesterification of oil seeds can reduce the processing 

costs of oil recovery. In-situ alkaline transesterification of Jatropha curcas oil seeds 

with methanol, isopropanol and the mixture of methanol with isopropanol were 

explored in a stirred tank reactor. Optimum operating conditions were established 

through response surface methodology for promising options. Inspite of higher 

solubility of oil in isopropanol, in-situ alkaline transesterification of Jatropha curcas 

oil seeds with methanol was observed to be better with a yield of (90.45  0.25)%. 

Mixing methanol with isopropanol could enhance the yield of methyl-isopropyl ester 

yield of (94.78  0.29)%. The properties of methyl-isopropyl ester were similar to the 

properties of methyl ester which were in agreement with the standards of EN 14214 

and ASTM D6751. 

In-situ transesterification is a catalytic liquid-liquid reaction in the presence of 

inert solid phase. Analysis of data through shrinking core model indicated reaction 

rate to be the controlling regime. For in-situ methanolysis with the particle size bigger 

than 425 microns and smaller than 600 microns, the reaction was first order with the 

rate constant from 5.1510-9 to 8.7610-9 ms-1 and Arrhenius activation energies of 

22.66 kJmol-1. For in-situ transesterification with mixture of methanol and 

isopropanol and particle size smaller than 425 microns, the reaction was also first 

order with the rate constant from 7.7210-9 to 1.4910-8 ms-1 and Arrhenius 

activation energies of 20.35 kJmol-1. Assuming phase transfer catalysis mechanism to 

explain the reaction between the immiscible alcohol and oil phases, model equations 

for reaction rate were developed. The results were compared with the experimental 

observation.  
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In-situ methanolysis of Jatropha curcas seed in Soxhlet extractor as an unstirred 

reactor had been investigated. In order to facilitate oil extraction, n-hexane was added 

in methanol. The optimum reaction parameters were determined and the methyl ester 

yield of (83.61 ± 0.57)%. 
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ABSTRAK 

Kunci utama untuk menjadikan teknologi biodiesel lebih kompetitif adalah 

dengan meminimumkan kos bahan mentah dan pemprosesan. Penggunaan minyak 

yang tidak boleh dimakan seperti minyak Jatropha curcas adalah pilihan yang lebih 

murah dan kos pemprosesan boleh dikurangkan melalui proses transesterifikasi biji 

minyak secara in-situ. Proses transesterifikasi biji minyak Jatropha curcas dijalankan 

secara in-situ di dalam reaktor yang mengandungi metanol, isopropanol atau 

campuran metanol dan isopropanol. Keadaan optimum proses ini dianalisa 

menggunakan "Response Surface Methodology" (RSM). Walaupun kelarutan minyak 

dalam isopropanol lebih tinggi, transesterifikasi biji minyak Jatropha curcas secara 

in-situ menggunakan metanol memberikan hasil yang lebih baik sebanyak (90.45  

0.25)%. Percampuran metanol dan isopropanol boleh meningkatkan hasil metil-

isopropil ester sebanyak (94.78  0.29) %. Sifat-sifat metil- isopropil ester hampir 

sama dengan sifat-sifat metil ester yang berkesesuaian dengan standard EN 14214 dan 

ASTM D675. 

Transesterifikasi secara in-situ adalah proses tindakbalas cecair menggunakan 

pemangkin dengan kehadiran pepejal lengai. Analisis data yang dijalankan 

menggunakan model teras mengecut menunjukkan bahawa kadar tindakbalas 

merupakan rejim pengawalan. Metanolisis biji minyak secara in-situ dengan saiz 

zarah di antara 425 dan 600 mikron menunjukkan tindakbalas proses ini mengikut 

tindakbalas tingkat pertama dengan kadar tetapan tindak balas dari 5.1510-9 sehingga 

8.7610-9 ms-1 dan tenaga pengaktifan Arrhenius daripada 22.66 kJ·mol-1. Sementara 

itu, bagi transesterifikasi secara in-situ dengan campuran metanol dan isopropanol 

bagi saiz zarah lebih kecil daripada 425 mikron, tindakbalasnya juga mengikut 

tindakbalas tingkat pertama dengan kadar tetapan tindakbalas dari 7.7210-9 sehingga 

1.4910-8 ms-1 dan tenaga pengaktifan Arrhenius daripada 20.35 kJ·mol-1. Model 
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persamaan untuk kadar tindakbalas dibangunkan, dan hasil persamaan ini 

dibandingkan dengan pemerhatian eksperimen untuk pengesahan.  Metanolisis biji 

minyak Jatropha curcas secara in-situ di dalam ekstraktor Soxhlet telah dijalankan. 

Heksana ditambah ke dalam larutan metanol untuk memudahkan proses 

pengekstrakan minyak. Pada keadaan parameter tindak balas optimum, metil ester 

yang terhasil adalah (83,61 ± 0.57) %. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of research 

1.1.1 Energy demand 

Energy demand is directly related to advances in technology, economic growth, and 

socio-economic development. Fossil fuels such as coal, petroleum and natural gas 

contribute for over 83% of the world energy needs. Nuclear power supports to the 

extent of around 5.9%. Rest is contributed by renewable energy resources such as 

hydroelectric, agro wastes, solar, wind, etc. [1, 2]. The world total primary energy 

consumption has risen from 6630 million tons of oil equivalent (Mtoe) in 1980 to 

12,002 Mtoe in 2010. Based on the International Energy Agency prediction, since 

2010 the world total energy consumption will increase 53% in 2030 [3]. BP’s annual 

Statistical Review of World Energy at the end of 2008 stated that the world oil 

reserves were foreseen at the amount of 1.7x1011 tons and it will be exhausted within 

around 42 years, if the oil consumption increases with the rate of 3% per year. 

Meanwhile, The World Energy Forum estimated that the petroleum reserves will be 

depleted in less than another 10 decades [4, 5]. The combustion of fossil fuels 

generates greenhouse gas and the other pollutant gas emissions, such as oxides of 

sulfur, nitrogen, carbon and unburnt hydrocarbons. The majority of total 

anthropogenic greenhouse gas emissions are derived from the combustion of 

petroleum, coal and natural gas. If fossil fuel consumption continued from 2006 to 

2030 without any attempt to reduce the use of these fuels, emissions of greenhouse 

gases will enhance by 39%. The increase of the accumulation of these gases in 

atmosphere causes climate change, acid rain and smog that would disrupt the 
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environment [1]. In view of this, utilization of renewable energy sources needs to be 

explored for sustainable development. Renewable liquid biofuels such as bioethanol 

and biodiesel from agro- or animal sources are emerging as attractive options to the 

extent possible to supplement liquid fossil fuels [6-8]. Present work is focused on 

biodiesel produced from vegetable fatty oils. 

1.1.2 Vegetable oils 

Vegetable oils are essentially triglycerides with high molecular mass, viscosity and 

low volatilities. They cannot be used directly in internal combustion engines in place 

of petro diesel as fuel.  Vegetable oils (edible or non-edible or used oils) and animal 

fats can be converted by transesterification to meet stringent quality specification of 

ASTM D 6751 or EN 14241 for usage in compression–ignition (diesel) engines. The 

biodiesel feedstock is selected based on the availability in the region or country. 

Resources such as soybean oil, canola oil, and palm oil are used to produce biodiesel 

in United States of America, European countries and Malaysia respectively [3, 6, 9, 

10]. Biodiesel is nontoxic, safer, easier to use, handle and store. Biodiesel is 

degradable up to 90-98% in freshwater or soil environment in comparison with 50% 

of petro-diesel in 28 days [6, 8-11]. At present, biodiesel production rates are very 

small in comparison with the demand for petro diesel and hence cannot replace petro 

diesel. It can be used as an additive to reduce the dependence on petro diesel to the 

extent possible. Also, biodiesel can substitute mercaptans to improve lubricity of 

petro diesel. [5-8, 11-13]. 

Currently, the global biodiesel potential production is 51 Mtoe annually. More 

than 80% of biodiesel production comes from Malaysia, Indonesia, Argentina, the 

United States, and Brazil. Most of the feedstock are edible oils and include  soybean 

oil (28%),  palm oil (22%),  animal fats (20%),  coconut oil (11%), rapeseed (5%), 

sunflower (5%) and olive oils (5%) [14]. 
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1.1.3 Transesterification of Vegetable Oils 

Triglycerides in vegetable oils can react with monohydric alcohol in the presence of 

catalyst to produce fatty acid alkyl ester (biodiesel) and glycerol as a by-product. This 

reaction is known as transesterification and is a reversible reaction. Excess alcohol is 

used to shift the equilibrium to products side.  The reaction can be catalyzed by alkalis 

(such as metal hydroxides, alkoxides or carbonates), acids (such as hydrochloric, 

phosphoric, sulfonic and sulfuric acids) or enzymes (such as lipase). The catalyst can 

be homogeneous or heterogeneous. Transesterification is also to be carried out in non-

catalytic supercritical conditions at high reaction temperature (250 to 400C) and 

pressure (35 to 60 MPa) [12, 13, 15, 16]. Alkali-catalyzed transesterification can react 

faster at moderate temperature with high conversion rate. Presence of high free fatty 

acids and moisture can lead to saponification. Resultant soap formation can inhibit the 

reaction and subsequent purification. In comparison, acid-catalyzed reactions and 

lipase enzyme catalyzed reactions are slower in reaction rate and are not affected by 

saponification reactions. Similarly, heterogeneous catalyzed reactions are also slower 

in reaction rates though they offer the advantage of reduced separation steps, 

recyclable catalyst and continuous operation [6, 7, 9, 13, 17]. Biodiesel production by 

supercritical alcohol requires high cost equipment and it is not appropriate to be 

applied in industry scale [10, 12, 18-20]. 

1.1.4 Challenges 

The main challenge of biodiesel use as alternative fuel is the cost of its production. 

The costs of biodiesel production varied greatly in the range of $0.29 per liter to over 

$9.00 per liter [14]. If edible oils are utilized as feedstock to produce biodiesel, its 

cost is adversely affected because of its primary need to food industry [6, 11, 21]. Ma 

[6] mentioned that the cost of oil feedstock accounts for 60 to 75% of the total 

biodiesel fuel if the edible oils are used as feedstock. Lim and Teong [1] reported 

about general expense breakdown for biodiesel production as depicted in Figure 1.1. 

It can be observed that the highest expense for biodiesel production is for providing 

oil feedstock. Chemical feedstock and processing prices account for 12% of total 

production cost. 
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Figure 1.1: General expense breakdown of biodiesel production [1] 

Therefore, the exploration of the alternative feedstock which is at low price and 

available in substantial quantities, instead of refined edible vegetable oils, and 

alternative biodiesel processing are required to reduce the cost of biodiesel production 

[22]. Non-edible oils, such as Jatropha curcas, Pongamia pinnata, Calophyllum 

innophyllum, rubber seed oils, etc., and waste cooking oils are other options as 

biodiesel feedstock which are not consumed by human and do not depend on annual 

field crops. However, common low-cost oils have high free fatty acid content which is 

a constraint in the biodiesel preparation. The pre-treatment to remove the free fatty 

acid before conducting transesterification must be considered, which obviously has 

consequences in the processing cost. 

In the process of transesterification, the vegetable oils must be extracted, purified 

and refined from the oilseeds before reacting it with catalyzed alcohol. These steps 

increase the processing cost of biodiesel production. To reduce the cost, vegetable 

oilseeds can be reacted with catalyzed alcohol directly. This process is known as in-

situ transesterification or reactive extraction, which was developed by Harington and 

D’Arcy in 1985 [23]. The steps of oil purification and refining are not necessary 

anymore, thus the processing time can be reduced as well [24]. Early work on in-situ 

transesterification utilized edible oil seeds, such as soybean flaked  [24, 25], rapeseeds 

[26, 27], sunflower oilseeds [23, 28, 29], rice bran [30, 31],  cottonseeds [32],  castor 

seed [33]. Recently, non-edible oil Jatropha curcas seeds [34-37] and microalgae [38-

40] have been investigated; the reaction times for conversion were high. The 
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homogeneous alkali- or acid-catalyzed methanol or ethanol was used as reagent in this 

process. 

Based on the literature, it is proposed to investigate in-situ transesterification of 

non-edible oilseed to produce fatty acid alkyl ester. Jatropha curcas seed is selected 

as the biodiesel feedstock since it is non-edible oilseed which contains toxic phorbol 

ester in the oil. Hence, it is not competing as resources with food industry. Moreover, 

Jatropha curcas is cultivated in many countries of South-East Asia, its seed has high 

oil content and the produced biodiesel has fulfilled the requirement of diesel machine 

[12, 41]. 

1.2 Problem Statement 

Biodiesel is produced by transesterification of edible oils with excess alcohol in the 

presence of a catalyst. The raw materials have high cost due to edible oils and have an 

adverse effect on the demand of food processing industries. In addition, the raw 

material in transesterification is required to be extracted and purified. Therefore, it is 

necessary to use non-edible vegetable oils and minimize cost of processing steps.  In-

situ transesterification of non-edible oilseeds can be a viable solution.  Due to limited 

solubility of vegetable oils and methanol, transesterification reaction rates are low and 

in-situ transesterification reactions can be even lower due to the necessity of alcohol 

to diffuse into the solid matrix to reach oil in the seeds.   

It is proposed to investigate sodium hydroxide catalyzed in-situ transesterification 

of non-edible Jatropha curcas oilseeds with different alcohols. Reaction rates are 

expected to be dependent on mutual solubility of oil and alcohols. Information on the 

solubility of oils in various alcohols is needed. The alcohol has to diffuse through the 

solid matrix to react with oil phase in the seed; it may experience mass transfer and 

pore diffusion resistance for the reaction. 

In-situ transesterification will be carried out in a stirred-flask as a batch reactor. 

Effect of different reaction parameters will be studied by response surface 

methodology to determine the optimum reaction conditions and reaction kinetics by 
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identifying controlling step. It will be of interest to identify mechanism of reaction 

between two sparingly miscible liquids to explain the reaction kinetics. Investigation 

on in-situ transesterification in Soxhlet extractor as an unstirred reactor is necessary 

for possible technology transfer to industry. 

1.3 Objectives 

The objectives of the present work are detailed as follows: 

1. To investigate alkaline-catalyzed in-situ transesterification of Jatropha curcas 

seeds using methanol, isopropanol, the mixture of methanol and isopropanol in 

a stirred-flask reactor; to identify the optimum reaction conditions of in-situ 

transesterification of Jatropha curcas seeds with methanol and the mixture of 

methanol and isopropanol using response surface methodology.  

2. To identify and to develop the reaction mechanism and kinetics of solid-

liquid-liquid in-situ transesterification of Jatropha curcas seeds.  

3. To investigate in-situ transesterification of Jatropha curcas seeds using 

methanol and n-hexane in Soxhlet extractor as an unstirred reactor; to identify 

the optimum reaction parameters using response surface methodology. 

1.4 Scope of the Present Research 

Information on the solubility of oils in alcohols is scarce. Effect of temperature on the 

solubility of methanol, ethanol, and isopropanol in vegetable oils (palm oil, sunflower 

oil, canola oil, corn oil and crude Jatropha curcas oil) will be investigated. The effect 

of solvents such as methanol, ethanol, isopropanol, hexane, mixture of methanol-

isopropanol and mixture of methanol and n-hexane on extractability of oil in Jatropha 

curcas seeds will be investigated. Characteristics of Jatropha curcas seeds and the 

extracted oil will be established.  
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In-situ transesterificaton of Jatropha curcas seed will be conducted using 

isopropanol, methanol, the mixture of methanol and isopropanol catalyzed by sodium 

hydroxide. The individual effect including the amount of alcohol volume to seed 

weight, concentration of alkaline catalysts, reaction temperature, the volume ratio of 

methanol to the mixture on the biodiesel yield will be investigated. The interaction 

effects among these reaction parameters will be identified using response surface 

methodology (RSM) and the optimum conditions will be estimated as well. 

Soxhlet extractor will be utilized to transesterify Jatropha curcas seed in an 

unstirred reactor using the mixture of methanol and n-hexane catalyzed by sodium 

hydroxide. 

The effects of various reaction parameters on the conversions of triglycerides will 

be examined at different reaction times. The reaction mechanism and kinetic 

parameters will be estimated. 

1.5 Organization of Thesis 

This thesis comprises of six chapters: 

 Chapter 1 provides an overview about the background of the research related 

to biodiesel production by transesterification and in-situ transesterification of 

vegetable oils and oilseeds, problem statement, objectives, and scope of the 

present research. 

 Chapter 2 presents a critical literature review on various biodiesel production 

processes with an emphasis on in-situ transesterification. Reaction 

mechanisms and kinetics of solid-liquid-liquid reactions are briefly reviewed. 

 Chapter 3 elaborates the materials and the methodologies used. 

 Chapter 4 deals with the experimental results, the optimization of the process 

parameters and properties of biodiesel produced. 
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 Chapter 5 discusses the development of reaction mechanism, kinetic model, 

and the estimation of reaction rate parameters. 

 Chapter 6 summarizes the research conclusions and recommendations for 

future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Biodiesel 

Biodiesel is a liquid fuel derived by transesterification from renewable feedstock, 

such as vegetable oils (edible or non-edible oils), animal fats and waste cooking oils. 

Biodiesel can be used in diesel engines directly as a fuel, known as B100, or blended 

in any proportion with petro-diesel, such as B5 (5% biodiesel blended with 95% 

petro-diesel). Nowadays, many countries, such as United States of America, Brazil, 

Germany, Italy, UK, France, India, Malaysia, Indonesia, etc., are using biodiesel 

blends commercially [3, 6, 9]. Widely used feedstock includes vegetable oils of 

soybean, canola (rapeseed), palm and sunflower. Usage of edible oils impacts in 

competition with food industry. It is preferable to use non-edible oils, waste cooking 

oils and animal fats as feedstock to produce biodiesel [8, 9, 17, 20, 21, 42].    

2.2 Vegetable oils 

Main components of vegetable oils or animal fats are fatty acid triglyceride esters.  

 

Figure 2.1: Fatty acid Triglyceride ester [17]
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The fatty acid components “R-“ can vary in carbon chain length (number of carbon atoms) as 

well as chemical structure with molecular weights in the range of 650 to 790 and influence 

the fuel properties of biodiesel [17]. Some of the common fatty acids in vegetable oils are 

presented in Table 2.1.  

Table 2.1: The chemical structure of common fatty acids [17] 

Fatty acid [no. C atoms: no. 

double bonds) 

Chemical structure 

Lauric or dodecanoic acid  C12:0 CH3(CH2)10COOH 

Myristic or tetradecanoic acid  C14:0 CH3(CH2)12COOH 

Palmitic or hexadecanoic acid  (C 16:0) CH3(CH2)14COOH 

Palmitoleic or 9-cis-hexadecanoic 

acid                                                  

(C-16:1) CH3(CH2)5CH=CH(CH2)7COOH 

Stearic or octadecanoic acid  (C 18:0) CH3(CH2)16COOH 

Oleic or cis-9-octadecenoic acid  (C 18:1) CH3(CH2)7CH=CH(CH2)7COOH 

Linoleic or cis, cis -9, 12- 

octadecadienoic acid 

(C 18:2) CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH 

Linolenic or octadecatrienoic acid   (C 18:3) CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7

COOH 

Arachidic or eicosanoic acid   (C 20:0) CH3(CH2)18COOH 

Gondoic or cis-11-eicosenoic acid (C 20:1) CH3(CH2)8CH=CH(CH2)8COOH 

Behenic or docosanoic acid  (C 22:0) CH3(CH2)20COOH 

Erucic or cis-13-docosenoic acid  (C 22:1) CH3(CH2)7CH=CH(CH2)11COOH 

 

Fatty acid composition of some commonly used vegetable oils is presented in Table 2.2. 
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Table 2.2: Fatty acid composition in vegetable oils (wt.%) 

Vegetable 

oil 

12:0 14:0 16:0 18:0 18:1 18:2 18:3 20:0 20:1 22:0 22:1 16:1 No. 

Ref. 

Cottonseed 0 0.8 27.9 0.7 22.7 47.9 0 0 0 0 0 0 [43] 

Palm 1.2 0.1 46.4 0 41.2 11.1 0 0 0 0 0 0 [44] 

Sunflower 

seed  

0 0 6.6 5.1 19.6 68.7 0 0 0 0 0 0 [29] 

Soybean 0 0 11.5 4.0 24.5 53 7 0 0 0 0 0 [45] 

Rapeseed 0 0 1.2 2.5 61.4 22.3 11.5 0 0 0 0 0 [46] 

Ricebran 0 0.6 21.5 2.9 38.4 34.4 2.2 0 0 0 0 0 [47] 

Jatropha 

curcas 

0 0–0.1 14.1-

15.3 

3.7–

9.8 

34.3-

45.8 

29.0–

44.2 

0–0.3 0–0.3 0 0–0.2 0 0–1.3 [48] 

Pongamia 

Pinnata 

0 1.09 11.7 7.5 51.6 16.6 0 1.35 0 4.45 0 0 [49] 

Calo-

phyllum 

inophyllum 

0 0 14.8-

18.5 

6.1-

19.2 

36.2-

53.1 

15.8-

28.5 

0 0 0 0 3.3 0 [50] 

Brassica 

carinata 

0 0 2.9  33.9 8.23 1.14 0 10.9 0 42 0 [51] 

Rubber 

seed 

0 0 10.2 8.7 24.6 39.6 16.3 0 0 0 0 0 [52] 

 

It can be seen that most of the vegetable oils contain C16 and C18 fatty acid triglycerides. 

Due to the paramount need of edible oils for world food security, it is necessary to use non-

edible oils, waste cooking oils or animal fats for biodiesel production [53, 54]. 
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2.3 Non-edible oils 

Some potential non-edible oils for biodiesel production are Jatropha curcas, 

Pongamia pinnata, Calophyllum inophyllum, Brassica carinata, and rubber oilseed, 

etc. Jatropha has higher oil percentage and the yield per hectare of 2.0 to 3.0 

tons/ha/year [55]. Jatropha curcas is included in Euphorbiaceae family which can 

grow almost everywhere even on gravelly, sandy and saline soils and it is resistance 

in high drought. Its seed is able to be produced for 50 years with high oil content more 

than 35%. The plant can be used to prevent or control erosion, to reclaim land, grown 

as a live fence. Jatropha curcas is the most promising non-edible oilseed for biodiesel 

production based on the oil content of 49% and the composition of its fatty acid which 

comprises 74.2% oleic and linoleic acid (unsaturated fatty acids) [56]. The free fatty 

acid and oil content of Jatropha curcas depend on the geographical growth soil [41, 

53, 54]. 

2.4 Transesterification 

Transesterification is the chemical reaction between fatty acid triglycerides in 

vegetable oils and short-chain alcohol to produce fatty acid alkyl ester (biodiesel) and 

glycerol. Short-chain alcohols include methanol, ethanol, propanol, isopropanol, 

butanol and isobutanol. Selection of alcohol is based on cost, reaction kinetics, and 

the fuel properties of the obtained biodiesel [15, 17].  To enhance the reaction rate, 

catalyst is required during the reaction in order that the reaction can be completed in a 

shorter time with high yield and purity. Alkali, acid, or enzyme catalysts can be 

employed in transesterification. The free fatty acid and water contents in triglyceride 

are the important factors to select the catalyst. Most commonly used alkaline catalysts 

include sodium and potassium hydroxides, carbonates and alkoxides; acid catalysts 

include sulfuric, organic sulfonic, hydrochloric, phosphoric acids;  enzyme catalysts 

include Lipase,  Novozym 435 (Candida antarctica immobilized on acrylic resin), 

Rhizopus oryzae, Pseudomonas cepacea, and Mucor miehei [7, 10, 20]. Acid or 

enzyme catalysts are preferable for oils with high free fatty acid content. 
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In general, transesterification is composed of a sequence of three consecutive 

reversible reactions [7, 16, 57]. 

 In the first step, triglyceride reacts with alcohol to produce diglyceride and fatty 

acid alkyl ester.  

 

 

 Diglyceride as an intermediate product is converted into monoglyceride in the 

presence of alcohol and catalyst.  

 

 

 The last step is the reaction between monoglyceride and alcohol to produce 

glycerol and fatty acid alkyl ester.  

 

 

The overall reaction, one mole of triglyceride requires 3 moles of alcohol to produce 3 

moles of alkyl ester and a glycerol stoichiometrically. 

(2.1) 

(2.2) 

(2.3) 
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However, due to reversible reactions, excess of alcohol is required to increase 

biodiesel yield at faster rate and to facilitate biodiesel-rich phase separation from the 

glycerol-rich phase.  

Reaction rates with alkaline-catalyzed transesterification are faster at moderate 

conditions with lesser catalyst concentration to obtain higher conversion in shorter 

reaction time than acid and enzyme catalyzed reaction [6, 17, 53]. Some of the 

relevant literature on alkali catalyzed transesterification of oils is presented in Table 

A.1. At least molar ratio of oil to alcohol of 1:6 during reaction time over 60 min is 

required to obtain biodiesel yield above 90% [58-63]. Higher molar ratio of oil to 

alcohol of 1:25 and addition of co-solvent, such as tetrahydrofuran, could shorten 

reaction time into 3-7 min using methanol or ethanol at room temperature to obtain 

the yield of biodiesel higher than 98% [64]. 

In alkali-catalyzed transesterification, triglyceride and alcohol must be 

considerably anhydrous. The presence of water in transesterification is able to 

hydrolyze the triglycerides and some of alkyl esters as well to produce free fatty acid 

and glycerol or alcohol. Thereafter, saponification occurs, that is free fatty acid reacts 

with alkaline hydroxide to generate soap and water as presented in reactions (2.9) and 

(2.10) [7, 16]. In addition, saponification can take place if triglyceride consists of high 

free fatty acid. Soap formation as side-reactions must be avoided since it consumes 

the catalyst and reduces the catalyst efficiency. Increasing biodiesel viscosity, gel 

formation, and problem of glycerol separation are the other negative effects of 

saponification.  

(2.4) 
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In order to achieve maximum alkyl ester yield, refined vegetable oils should be 

anhydrous with a free fatty acid content of less than 1% and the alcohol should be 

moisture free [4, 15]. A comparison of different basic catalysts, CH3ONa, CH3OK, 

NaOH, and KOH was carried out for methanolysis of sunflower oil and cottonseed 

oil. Transesterification catalyzed by NaOH and KOH lowered biodiesel yields than 

that catalyzed by CH3ONa and CH3OK since hydroxide group reacted with methanol 

to produce methoxide and water. This water in transesterification caused 

saponification, resulting soaps which were dissolved in glycerol and affected 

biodiesel to be dissolved in glycerol as well [15, 65, 66].  

Some of the recent literature on acid catalyzed transesterication is presented in 

Table A.2. Sulfuric acid showed the most effective catalyst to achieve >90 wt.% 

conversion of triglyceride with methanol [67-73]. 

The alternative method to produce biodiesel from high free fatty acid feedstock 

using homogeneous catalysts is by conducting two step transesterification. In this 

method, high free fatty acid is esterified by acid catalyst in the first step to reduce the 

free fatty acid content up to reach lower acid value which is suitable to be performed 

(2.9) 

(2.10) 
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for next step. In this step fatty acid alkyl ester and water were generated from 

esterification of free fatty acid. The water and impurities should be separated from the 

vegetable oils or animal fats and fatty acid alkyl ester which are to be raw material for 

second step. The lower free fatty acid feedstock resulted in first step is transesterified 

using alkaline catalyst to produce fatty acid alkyl ester (biodiesel). Table A.3 shows 

some research works of two step transesterification of high free fatty acid of vegetable 

oils and animal fats. Generally, two step transesterification requires lower molar ratio 

of alcohol to oil and shorter reaction time than acid transesterification [33, 48, 52, 61, 

74-82].  

Enzymes can be used as biocatalyst in transesterification of vegetable oils. 

Enzymatic-catalyzed transesterification can be carried out in moderate process 

conditions (35-45C reaction temperature) and simple product separation including 

simple glycerol recovery, minimal wastewater treatment and without side reactions, as 

well as more environmentally friendly. Nevertheless, the reaction rate of enzymatic-

catalyzed transesterification is relatively lower and the cost of catalyst is more 

expensive than chemical-catalyzed transesterification, thus it is not commercially 

developed yet [19, 20, 53, 83-85]. 

2.5 In-situ transesterification 

In transesterification process, the vegetable oil must be extracted from the oilseed 

before reacting it with alcohol to produce biodiesel. The oil extraction can be 

performed by mechanical extraction, such as expeller pressed oil, or chemical 

extraction using chemical solvent. The liquid-liquid or solvent extraction is used to 

remove the oil from the seeds. Non-polar solvent is required to extract oil, such as 

chloroform, n-hexane, isopropanol, etc. The oil extraction is followed by oil 

separation from the solvent and purification (degumming, deacidification, dewaxing, 

dehydration, etc.) from the impurities. These multiple processes increase the cost of 

oil which account for 75% of the total production costs of biodiesel production  when 

refined oil is used as a feedstock [1, 86]. To reduce the processing time and cost of 

biodiesel, oil in vegetable oil seeds can be reacted with alcohol directly. This process 

is known as in-situ transesterification where oil extraction and transesterification can 

be carried out simultaneously.  
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The concept of in-situ transesterification was proposed by Harrington and D’Arcy 

[23]. They investigated in-situ transesterification of sunflower oilseeds and compared 

with the conventional method of transesterification of pre-extracted sunflower oil with 

acidified methanol.  Higher fatty acid methyl ester yield obtained by in-situ than 

conventional method had been demonstrated. The fatty acid methyl ester composition 

analyzed by GLC and cloud point of product from in-situ transesterification was 

comparable with the product from conventional method. Table 2.3 shows the previous 

research works in in-situ transesterification of various oilseeds. 
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Table 2.3: In-situ transesterification 

Reference Feedstock Alcohol alcohol:oil Catalyst amount of 
catalyst 

Dp 
(µm) 

T 
(C) 

t BD yield 
(%) 

Shuit, S.H., et al., 
2010 [35] 

Jatropha 
curcas seeds 

Methanol 7.5:1 (mL·g-1) H2SO4 15 wt.% < 0.335 mm 60 24 h 91.02 

Kasim, F.H. and Jatropha Methanol 400:1 (mol·mol-1) NaOH 0.15 N < 0.71 mm 60 1 h 86.9% 
Harvey, A.P., 2011 
[37] 

curcas seeds         

Hailegiorgis, S.M., 
et al. 2011 [87] 

Jatropha 
curcas seeds 

Ethanol 7.5:1 (mL·g-1) CTMAB+
NaOH 

NaOH/oil 

1 mol/mol 

0.675 wt.% 

500 µm 30 150 min 99.5% 

Ginting, M.S.A., et 
al. 2012 [36] 

Jatropha 
curcas seeds 

Ethanol 140:20 (mL·g-1) NaOCH3 2.0 wt.% 500 µm 30 2 h 99.98% 

Kartika, I.A., et al., 
2013 [88] 

Jatropha 
curcas seeds 

Methanol 6:1 (mL·g-1) KOH 0.075 mol/L  50 5 h 80% 

Hailegiorgis, S.M., 
et al., 2013 

Jatropha 
curcas seeds 

Methanol 5.92:1 (mL·g-1) BTMAOH
+ NaOH 

1.42:1 
(mol/mol) 

500 µm 38 1.72 h 89.8% 

Harrington, K.J.  
and D’Arcy-Evans, 
1985 [23] 

Sunflower 
oilseeds 

Methanol 200:20 (mL·g-1) H2SO4 30 (mL) coarse sand 60 4 h 45.5% (seed 
basis) 

Georgogianni, 
K.G., et al., 2008 

Sunflower 
seeds 

Methanol 

600 rpm  

200:20 (mL·g-1) NaOH 2.0 wt.% coarse sand 60 2 h 97% 

[29]  Methanol 
24 kHz (us) 

200:20 (mL·g-1) NaOH 2.0 wt.% coarse sand 60 40 min 97% 

  Ethanol  
600 rpm 

266:20 (mL·g-1) NaOH 2.0 wt.% coarse sand 80 4 h 90% 

  Ethanol  
24 kHz (us) 

266:20 (mL·g-1) NaOH 2.0 wt.% coarse sand  40 min 98% 

          



 

19 

 

          
Reference Feedstock Alcohol alcohol:oil Catalyst amount of 

catalyst 
Dp 
(µm) 

T 
(C) 

t BD yield 
(%) 

Zeng, et. al., 2009 
[89] 

Sunflower 
seeds 

Methanol + 
DEM 

101.39:1 
57.85:1 

(mol·mol-1) 

NaOH 0.5:1 
(mol·mol-1 
of oil) 

- 20 13 min 97.7% 

Ozgül, S. and 
Türkay, S., 1993 

Rice bran Methanol 150:50 (mL·g-1) H2SO4 2.5 mL - - 4 h 85.9% 

[30]  Ethanol 150:50 (mL·g-1) H2SO4 2.5 mL - - 4 h 98.7% 

Lei, H., et al.,  Rice bran Methanol 75 (MeOH) + H2SO4 0.75 g 16 mesh 60 3 h 98.83% 
2010 [31]   150 (ether) : 50 

(mL·g-1) 
NaOH 0.71 g    80.47% 

Kildiran, G.,  Flaked  methanol 150:50 (mL·g-1) H2SO4 6 mL 0.5 – 1 mm 65 3 h 41.5% 

et al., 1996 [25]  soybean ethanol 150:50 (mL·g-1) H2SO4 6 mL <0.5mm, <1 mm 78 3 h 80.9% 

  n-propanol 150:50 (mL·g-1) H2SO4 6 mL <0.5 mm,<1 mm 78 3 h 84.6% 

  n-butanol 150:50 (mL·g-1) H2SO4 6 mL <0.5 mm,<1 mm 78 3 h 78% 

Haas, M.J., et  Flaked  Methanol 226:1 (mol·mol-1) NaOH 1.6 M 0.28–0.35 mm 60 8 h 84% 

al., 2004 [24] soybean Methanol 543:1 (mol·mol-1) NaOH 2.0 M 0.28– 0.35 mm 23 8 h 84% 

Haagenson, D.M, et 
al., 2010 [26] 

Rapeseed Methanol 275:1 (mol·mol-1) KOH 1.05 M 86.5%(20 mesh) 

13.5%(50 mesh) 

60 6 h 80% 

Zakaria, R. and 
Harvey, A.P, 2012 
[27] 

Rapeseed Methanol 670:1 (mol·mol-1) NaOH 0.1 mol·kg-1 300-500 µm 60 1 h 85% 

El-Enin, S.A.A., et 
al., 2013 [90] 

Rapeseed Methanol 720:1 (mol·mol-1) KOH 0.02 N coarse sand 65 1 h 90% 

Obibuzor, J.U., et 
al., 2003 [91] 

Waste pulp of 
palm seeds 

Methanol 35.16:1 
(mol·mol-1) 

H2SO4 15 mL  68 12 h 97.20% 
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Reference Feedstock Alcohol alcohol:oil Catalyst amount of 

catalyst 
Dp 
(µm) 

T 
(0C) 

t BD yield 
(%) 

  Ethanol 35.16:1 
(mol·mol-1) 

H2SO4 15 mL  78 12 h 99.35% 

Ehimen, E.A., et 
al., 2010 [38] 

Microalgae Methanol 315:1 (mol·mol-1) H2SO4 0.04 mol powder 60 2 h 92% 

Velasquez- Orta Chlorella  Methanol 600:1 NaOH 0.15 mol·L-

1 
powder 80 75 min 77.6% 

 S.B., et al., 2012 
[92] 

vulgaris Methanol 600:1 H2SO4 0.35 mol·L-

1 
powder 80 2 h 96.8% 

Qian, J., et al., 2008 
[32] 

Cotton seeds Methanol 135:1 (mol·mol-1) NaOH 0.1 M 0.3– 0.335 mm 40 3 h 98% 

Madankar, C.S., et 
al., 2013 [93] 

Castor seed Methanol 250:1 (mol·mol-1) KOH 1 wt.% - 65 3 h 96.1% 

[94]  Ethanol 6.5:1 (mL·g-1) + NaOH 1.62:1 
(mol·mol-1) 

500 µm 35 1.54 h 99.4% 

Sulaiman, S., et al., 
2013 [95] 

solid  coconut  
waste 

Methanol 10:1 (mL·g-1) KOH 2.0 wt.% - 62 7 h 88.5% 

Jairurob, P., et al. 
2013 [96] 

after-stripping 
sterilized palm 
fruit 

Methanol 225:1 (mol·mol-1) KOH 3.85% 
(w/v) 

 60 9 h and 
36 min 

97.25% 

DEM: diethoxymethane 

CTMAB: cetyltrimethylammonium bromide 

BTMAOH: Benzyltrimethylammonium hydroxide 



 

The main factors affecting in-situ transesterification including the moisture 

content, molar ratio of oil to alcohol, catalyst concentration, reaction temperature, 

reaction time and particle size are discussed in the following section. 

2.5.1 Moisture content 

The moisture content of oilseed affected the biodiesel yield produced from in-situ 

transesterification, increasing moisture content of the seeds reduced the yield of 

product since it causes the formation of hydroxide ions, which induce saponification 

of free fatty acids, triglycerides and esters as shown in reactions (2.9) and (2.10). The 

resulting soaps cause an increase in viscosity, formation of gels and foams, and made 

the separation of glycerol difficult [4, 27, 97] 

Harrington and D’Arcy [23] investigated the effect of moisture content in 

sunflower seeds in the process of in-situ methanolysis with sulfuric acid as catalyst. 

They observed that ester yields are generally improved as water is excluded from the 

transesterification reaction. 

Haas, M.J., et al. [97] conducted in-situ methanolysis of soybean flaked catalyzed 

by sodium hydroxide. Removing the moisture content in flaked soybean by drying the 

substrate, a significant reduction in the reagent requirements was achieved. Drying the 

flaked soybean had eliminated the moisture content from 2.6% to 0% moisture. This 

condition enhanced the production of fatty acid methyl ester from 97% to 100%. The 

methanol volume was reduced 60% and sodium hydroxide concentration was 

decreased 56%. 

Zakaria, R. and Harvey, A.P. [27] in direct biodiesel production by in-situ 

methanolysis of rapeseed using sodium hydroxide as alkali catalyst investigated the 

effect of drying the seed. It was observed that the moisture content more than 6.7 

wt.% in the seed substantially decreases the yield of ester.  

2.5.2 Type of alcohol 

Type of alcohol affects the biodiesel yield since in this process, extraction and 

transesterification proceed simultaneously. Alcohols with high ability to extract oil 
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from the oilseeds and ability to transesterify it are required to obtain high yield of 

biodiesel.  

Ozgül and Türkay [30] investigated in-situ esterification of rice bran with 

methanol and ethanol in presence of sulfuric acid as acid catalyst. Solubility of oil in 

ethanol is higher than in methanol and hence the ethyl ester yield was higher than 

methyl ester. However, purity of methyl ester is better than ethyl ester due to easier 

separation. 

Kildiran, et al. [25] investigated in-situ alcoholysis of flaked soybean with 

methanol, ethanol, n-propanol, and n-butanol. The solubility of triglycerides in 

alcohols was affected by the chain length and molecular weight of alcohol, the longer 

chain length and the greater molecular weight of alcohols caused the higher 

triglyceride solubility in alcohols. Among the alcohols, methanol was lacking in 

soybean oil extraction from the seeds. In-situ alcoholysis was influenced by this 

solubility, hence lower triglyceride conversion into methyl ester, less than 60%, was 

obtained. Meanwhile, 98% ethanol, n-propanol, and n-butanol had higher solubility of 

triglyceride, which converted into higher alkyl ester. The highest ester content of 

84.6% was obtained by in-situ propanolysis. However, alkyl ester produced by in-situ 

ethanolysis, propanolysis, and butanolysis had higher free fatty acid contents than the 

crude soybean oil in the seeds. The purity of biodiesel could enhance by increasing 

reaction time and temperature and by decreasing the particle size of soybeans. 

Özgül-Yücel and Türkay [98] investigated the effect of various monohydroxy 

alcohols (methanol, ethanol, n-propanol, 2-propanol, and n-butanol) on in-situ 

esterification and extraction of high free fatty acid rice bran oil catalyzed by sulfuric 

acid. They found that, during oil extraction, above 90% of free fatty acid content was 

soluble in alcohol. The molecular weight and chain length of alcohols had no effect 

on the free fatty acid solubility. However these factors affected on the solubility of 

neutral oils in alcohol, increasing the molecular weight and chain length of alcohol 

enhanced this solubility. In-situ esterification occurred through dissolution and 

esterification of free fatty acid to produce monoesters. The presence of this monoester 

had lessened the solubility of neutral oil components in alcohol. Thus, the highest 

alkyl ester content could be achieved by in-situ esterification of the highest free fatty 
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acid rice bran oil, because the alkyl ester content mostly affected by neutral oil 

solubility. 

2.5.3 Molar ratio of alcohol to oil 

Molar ratio of triglyceride to alcohol is one of the important factors which influence 

the yield of in-situ transesterification. Increasing the molar ratio of triglyceride to 

alcohol enhances the yield of alkyl ester. 

Kaul, et al. [34] conducted parametric study of jatropha seeds by reactive 

extraction with methanol and sodium hydroxide as alkali catalyst. They showed that 

rising seed to solvent ratio (w/w) from 1:2.6 to 1:7.8 along with increasing sodium 

hydroxide concentration from 0.05 M to 0.1 M with the particle size of more than 

2.46 mm augmented the conversion of jatropha oil to biodiesel from 23.8% to 

98.82%. 

Kasim and Harvey [37] investigated the influence of various parameters on  

reactive extraction of Jatropha curcas L. with methanol catalyzed by sodium 

hydroxide. They explained that the methanol volume requirement in reactive 

extraction is very high compared to the conventional process to drive the penetration 

of alkaline methanol into the seed. Biodiesel was produced if methanol-oil molar ratio 

was more than 100:1. The yield of biodiesel enhanced from 52% to 86.9% by 

increasing methanol-oil molar ratio from 200:1 to 600:1. Further rising methanol-oil 

molar ratio did not significantly increase the yield. 

Kartika, et al. [88] reported solvent extraction and in situ transesterification of 

jatropha seeds in a single step with methanol and n-hexane as co-solvent catalyzed by 

potassium hydroxide. They demonstrated that increasing methanol to seed ratio from 

2:1 to 6:1 (mL/g) enhanced the yield of biodiesel from 35% to 80%. 

Hailegiorgis, et al. [94] undertook parametric study and optimization of in situ 

transesterification of Jatropha curcas L. assisted by benzyltrimethylammonium 

hydroxide as a phase transfer catalyst. They demonstrated that increasing the ratio of 

methanol to J. curcas seeds up to 6.5:1 (v/w) has a positive effect on the yield of 

biodiesel. However, further rising the ratio of methanol to J. curcas seeds over 6.5:1 
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has a negative effect on biodiesel yield. The overloading of methanol volume could 

dissolve biodiesel in the glycerol phase which reduced the yield.  

2.5.4 Catalyst type and concentration 

Catalyst concentration can influence the biodiesel yield. In-situ transesterification can 

be alkaline-catalyzed and acid-catalyzed dependence on the free fatty acid and 

moisture content in the feedstock. Lower catalyst concentration is insufficient to 

complete the conversion of triglyceride to biodiesel. Increasing catalyst concentration 

accelerates the reaction that can enhance the conversion and biodiesel yield to achieve 

maximum result at certain catalyst concentrations. Further addition of catalyst 

concentration will not speed up the reaction rate and insignificantly enhance the 

conversion of oil to biodiesel as well as its yield. 

Ginting, et al. [36] investigated in-situ ethanolysis of Jatropha curcas catalyzed 

by sodium hydroxide, potassium hydroxide and sodium methoxide with various 

concentration of 0.5; 1.0; 1.5; 2.0 and 2.5 wt.% at 70C for 2 h. Increasing sodium 

methoxide concentration from 0.5 wt.% to 2.0 wt.% enhanced the biodiesel yield. 

Further increasing catalyst concentration the ethyl ester was apparently constant. 

Meanwhile, increasing sodium and potassium hydroxides from 0.5 wt.% to 2.5 wt.% 

raised the ethyl ester yield. It demonstrated that for reaction completion, the amount 

of sodium methoxide required was less than that of sodium hydroxide and potassium 

hydroxide. This is because the sodium methoxide has no significant effect on the 

triglyceride saponification. Only hydroxide group would promote the triglyceride 

saponification which resulted in lower biodiesel yield. 

Rising sodium hydroxide concentration from 0.1 N to 0.15 N into the reactive 

extraction of J. curcas enhanced the yield of biodiesel from 76.2% to 87.8%. 

Nevertheless, further addition of sodium hydroxide concentration of 0.2 N decreased 

the yield of biodiesel into 80.8% since the emulsions started to form caused by 

saponification and hydrolysis [37]. 

Hailegiorgis, et al. [87] reported that the presence of cetyltrimethylammonium 

bromide (CTMAB) as phase transfer catalyst could enhance the yield of biodiesel 

produced by in situ ethanolysis of Jatropha curcas L. catalyzed by sodium hydroxide. 
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The highest yield of fatty acid ethyl ester was 89.1% at NaOH concentration of 1.013 

wt.% without CTMAB. In the presence of CTMAB with molar ratio of 

CTMAB/NaOH of 1, the yield of fatty acid ethyl ester enhanced into 98.8% at NaOH 

concentration of 0.675 wt.%. Thus, the reactions assisted by CTMAB could reduce 

the concentration of NaOH by 33.3%. 

Madankar, et al. [93] investigated parametric study of reactive extraction of castor 

oilseeds for methyl ester production catalyzed by potassium hydroxide at 

concentrations of 0.5–1.5% of oil and reaction temperature of 65C with methanol–oil 

molar ratio of 250:1 and stirring  speed of 600  rpm. The lower catalyst concentration, 

i.e. 0.5% of KOH is insufficient to the completion of the reaction after 3 h.  At 1% 

KOH concentration, the yield of the reaction is 96% after 3 h.  Potassium hydroxide 

concentration of 1% is the optimal catalyst concentration giving higher yield of castor 

oil methyl ester. Further increase in the catalyst concentration decreases the yield due 

to the high concentrations of alkaline catalyst which prevail the saponification 

reaction to form soaps. 

2.5.5 Reaction temperature 

Reaction temperature affects both the rate of diffusion and reaction and the yield of 

biodiesel. Commonly, an increase in reaction temperature accelerates the diffusion 

and reaction rate to be faster and enhance the conversion of triglyceride to biodiesel to 

achieve the maximum conversion and yield in a shorter time. 

Hailegiorgis, et al. [94] investigated effect of reaction temperature in the range of 

25C to 65C in parametric study and optimization of  in situ ethanolysis of Jatropha 

curcas assisted by benzyltrimethylammonium hydroxide as a phase transfer catalyst. 

As the transesterification reaction between the immiscible phases is controlled by 

diffusion processes, the effect of temperature is expected to be very slight. An 

increase in temperature can promote saponification reactions as well; the yield of 

biodiesel can even decrease with temperature as observed. 

Qian, et al. [32] performed in-situ alkaline transesterification of cottonseed oil for 

production of biodiesel with methanol and sodium hydroxide as catalyst. They 

reported that reaction temperature had little influence on the extraction and 
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conversion of cottonseed oil. When increasing the reaction temperature from 30C to 

65C, the amount of cottonseed oil dissolved in methanol was increased only from 

97.7% to 99.7%, and the conversion to methyl ester was almost same. The optimum 

reaction temperature was 40C for the in-situ alkaline transesterification for 3 hours 

reaction time. 

Siler-Marinkovic and Tomasevic [28] demonstrated that in the process of in-situ 

transesterification of sunflower oilseeds, high yield and good biodiesel quality was 

achieved in high molar ratio of methanol to seed (200:1 or higher) and a strong 

sulfuric acid catalyst (100% on oil basis). Increasing reaction temperature (65C) 

could reduce reaction time (1 hour) to complete the conversion of methyl ester. The 

maximum crude methyl ester yield of 98.2% was obtained with the molar ratio of 

methanol to oil of 300:1, a strong acidic catalyst (100% on oil basis), at reaction 

temperature of 65C, during 4 hours reaction time. However, it is possible to obtain a 

good quality of ester after 4 h of heating at 30C. 

2.5.6 Reaction time 

Reaction time is required to complete the transesterification of vegetable oils or 

animal fats and to achieve the maximum conversion of oil to biodiesel and the yield. 

Generally, at first the reaction proceeds slowly since of the slow dispersion of alcohol 

into the oil. After certain time, the reaction occurs faster to achieve the maximum 

conversion and yield of alkyl ester. Further reaction time will not improve the reaction 

rate where the conversion and yield are relatively constant. A longer reaction time 

decreases the conversion and yield of alkyl ester since the reverse reaction, which is 

the alkyl ester hydrolysis, tends to compete with the forward one which leads the 

depletion of biodiesel and results in more soap formations [99]. 

Effect of reaction time was studied by Kasim and Harvey [37] in reactive  

extraction  of  Jatropha curcas  for biodiesel production The methyl ester yield, 

produced from reactive extraction with molar ratio of alcohol  to  oil  of  400:1,  

NaOH  concentration of 0.1  N, mixing speed of 400 rpm at reaction temperature of 

60C, showed minimal change after 30 min. It is very likely that the reactive 

extraction itself completed between 20 and 30 min. The reactions less than 20 min did 
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not achieve high yields. This results were in agreement with another work by Kaul, et 

al. [34], who obtained high methyl ester conversions almost up to 30 min and beyond 

30 min a constant conversion rate was observed. However, for high free fatty acid of 

Jatropha curcas longer reaction time was required to obtain the maximum methyl 

ester yield produced from in-situ esterification with methanol to seed ratio 7.5 mL/g 

and 15 wt.% sulfuric acid concentration at 60C reaction temperature during 24 h 

reaction time [35]. 

The extraction and conversion of cottonseed oil was increased with the increase of 

reaction time. The oil dissolved in methanol was nearly 99% of the total oil, and 98% 

of this oil was converted into biodiesel within 3 h. Further increase in the reaction 

time from 3 to 5 h, caused a less effect on the extraction and conversion of cottonseed 

oil [32]. 

2.5.7 Particle size 

The extraction and conversion of oil rely on the particle size. Particles with smaller 

size will have larger surface area that favors the extraction of oil out from the seeds. 

The extraction and conversion of cottonseed oil were increased by decreasing the 

particle size of cottonseed flours. Under the optimum reaction conditions including 

molar ratio of methanol to oil of 135:1 with NaOH concentration of 0.1 mol/L and 

400C reaction temperature, at the end of 3 h, the amount of cottonseed oil dissolved in 

methanol was 99.1% of the total oil and the conversion of this cottonseed oil was 98% 

for particle size between 0.3 and 0.335 mm. However, with further decrease in the 

particle size, the extraction and conversion of cottonseed oil kept nearly constant [32].  

The similar effect was obtained by Shuit, S.H., et al. [35] in process of in-situ 

esterification of Jatropha curcas with sulfuric acid. The extraction efficiency 

gradually increased with higher reaction period. Within 8 h of reaction period, almost 

50% of the oil content in the seeds has already been extracted out. Initially, both 

ranges of particle size, 0.355 to 1 mm and less than 0.355 mm, exhibited the same 

trend for extraction efficiency up to a reaction period of 8 h. Beyond that, for particles 

ranging from 0.355 to 1 mm, the extraction efficiency was almost constant, while for 
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particles with less than 0.355 mm, the extraction efficiency kept on increasing until it 

reaches more than 90% at a reaction period of 24 h. 

On the contrary, Kaul, S., et al. [34] in reactive extraction of Jatropha curcas with 

methanol and sodium hydroxide catalyst investigated the effect of three different size 

of particles including Dp < 0.85 mm, 0.85<Dp<2.46 mm and Dp>2.46 mm. 

Increasing particle size enhanced the conversion of oil to methyl ester. The maximum 

methyl ester conversion of 98% was obtained using seed size more than 2.46 mm at 

weight ratio of seed to solvent (w/w) 1:7.8 and catalyst concentration 0.1 M. 

2.6 Response surface methodology 

Optimization of the reaction parameters is very important during conducting 

experiments. In conventional experiments, optimization is usually performed by 

varying a single factor while the other factors were fixed at a specific set of 

conditions. This method requires a large number of experiments and time consuming. 

Statistical experimental design, such as response surface methodology (RSM), can be 

used for optimization of reaction parameters in order to avoid the limitations of the 

classical method [86]. Response surface methodology is a set of methods that includes 

[100]: 

a) Setting up a series (designing a set) of experiments that will result in suitable 

and reliable measurements of the interest response 

b) Establishing a mathematical model that best fits the data compiled from the 

design selected in (a), by performing suitable tests of hypothesis regarding the 

model’s parameters 

c) Determining the optimum condition of the experimental factors that result in 

maximum or minimum value of the response 

A response surface methodology is useful to develop, improve, and optimize 

processes. In most RSM problems, the true response function is unknown, which is 

assumed to be continuous in the independent variables within some specified region 

of interest, and an empirical model is often fit to the data as approximating functions. 

An empirical model can be linear function of independent variables (first-order 

model) or polynomial form (second-order model). The purpose of fitting empirical 
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model is to provide a smooth curve that can summarize the data. The method of least 

square is used to estimate the parameters in the empirical models (linear or 

polynomial forms) [100]. By applying the RSM, the experimenter can obtain [101]: 

 an understanding of how the independent variables affect the selected process 

response,  

 the determination of any interrelationship among the independent variables, 

 characterization of the combined effect that all independent variables may 

have on the process response. 

An important aspect of RSM is the design of experiments to develop the model fitting 

of physical experiments and to select the points where the response should be 

evaluated. The selection of design of experiments has a large effect on accuracy of the 

approximation and the cost of constructing the response surface. In planning the 

experimentation, experimenter requires to select the factors or independent variables 

to be used in the experiment and choose the range of values and the number of levels 

of each factor to measure the effects of the factors on the response [102]. The use of 

coded variables instead of the original independent variables facilitates in 

experimental design, which are: 

 computational ease and increased accuracy in predicting the model 

coefficients 

 improved interpretability of the coefficient estimates in the model 

 Coding removes the units of measurement of independent variables. A coding 

formula for defining the coded variable, xi, is: 

 
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where XiL and XiH are low and high levels of Xi, respectively [100].  

In the design of experiments, low-degree polynomials (such as first-order model) 

are more selected than high-degree polynomials since of the simpler form (fewer 

numbers of terms). However, if the first-order model is not appropriate to fit the 

existence of response surface curvature, the first-order model is replaced with higher-

order model, such as second-order model. There are two designs of experiment that 

most used for estimation of the parameters in second-order model, namely central 

composite design (CCD) and Box-Behnken design (BBD) [100, 103].  
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A central composite design comprises of 

 A full (or fraction of a) 2k factorial design, where k is the number of independent 

variables and the factor levels are coded to values of -1 and +1, which is called the 

factorial portion of the design. It contributes in estimation of linear terms and the 

interact 

 n0 center points (n0 ≥ 1) which provides an internal estimate of error (pure error) 

and contributes toward the estimation of quadratic terms 

 Axial points on the axis of each design variable at a distance of  from the design 

center, which is called the axial portion of the design. They contribute in 

estimation of quadratic terms but do not contribute in estimation of interaction 

terms 

The total number of design points is 022 nkN k  . The distance of  depends on 

the number of points in the factorial portion in the design (F), which leads the design 

to be rotatable central composite design to maintain the consistent and stable variance 

of the predicted response at points of interest, 

4
1

F  (2.14) 

 

Figure 2.2: Central composite design for k = 3 [103] 

Meanwhile, since rotatability is a spherical property, the region of interest is a sphere 

and the design must include center runs to provide stable variance of predicted 
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response. Commonly, three to five center runs are recommended [100, 102, 103]. 

Figure 2.2 shows the central composite design for k = 3. 

Box-Behnken design is three-level (3k) incomplete factorial design which is 

formed by combining 2k factorials with incomplete block designs for the estimation of 

the parameters in a second-order model. Box-Behnken design is a spherical or 

rotatable design, with all points located on a sphere of radius 2 . Box-Behnken 

design does not consist of any points at vertices of the cubic region resulted by upper 

and lower limits for each variable. It is favored if the points on the corners of the cube 

indicate factor-level combinations that are expensive or impossible to test due to 

physical process restraints [102, 103]. Figure 2.3 displays Box-Behnken design for k 

= 3. 

 

Figure 2.3: Box-Behnken design for k = 3 with a center [103] 

A full 23 factorial central composite design had been applied in transesterification 

of rapeseed oil with methanol catalyzed by potassium hydroxide. Tri-, di-, and mono-

glyceride concentrations were as response, whereas factors were catalyst 

concentrations, reaction temperature and time [104]. The same design of experiment 

was employed in transesterification of Raphanus sativus oil, refined and bleached 

lard, and crude mahua oil. In these researches, the molar ratio of oil to alcohol, 

catalyst concentration, and reaction temperature became independent variables to 

estimate the yield of biodiesel [101].  

Haas, et al. [24] investigated in situ alkaline transesterification of flaked soybeans 

with methanol catalyzed by sodium hydroxide. Central Composite Response Surface 
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design methods were applied to determine the effects and interactions of the volume 

of alkaline methanol, the NaOH concentration, and reaction time on the yields of fatty 

acid methyl ester (FAME), free fatty acid (FFA) content, and unreacted acylglycerol 

(AG). Best-fit equations correlating the experimental data with the composition of the 

reactions were constructed using SAS/STAT software. The maximal FAME yield 

with minimal contaminating FFA and AG was identified by numerical analysis of the 

equations and examination of the corresponding 3-D surfaces. The reactions were 

carried out at two different reaction temperatures of 23 0C and 60 0C. The highest 

methyl ester yields with minimal contamination of FFA and AG were predicted at 

226:1:1.6 molar ratio of methanol/AG/NaOH during approximately 8-h incubation at 

60C reaction temperature. At room temperature of 23C higher predicted methyl 

ester yield than at 60C was obtained with 543:1:2.0 molar ratio of 

methanol/AG/NaOH during 8-h incubation. At this optimum condition 95% lipid in 

flaked soybeans was extracted and 84% lipid was transesterified into FAME. 

Optimization of reactive extraction of castor seed to produce biodiesel had been 

carried out with methanol catalyzed by potassium hydroxide. During reaction, n-

hexane (15 v/v % of methanol) was added as co-solvent to enhance oil extraction. A 

24 full-factorial central composite design was used as a design of experiment with 

four factors including methanol to oil molar ratio (100:1–350:1), potassium hydroxide 

concentration (0.5–1.5%), different rotations (100–600 rpm) and reaction temperature 

(45–65C) during 3 h reaction time to achieve the maximum yields of methyl ester. A 

total number of experiments of 30 were conducted and the results were analyzed by 

multiple regressions to construct a quadratic polynomial model which predicted the 

methyl ester yield. The predicted optimum conditions, comprising 225:1 methanol to 

oil molar ratio, 1.0 wt.% potassium hydroxide concentration, reaction temperature 

55C and mixing intensity of 350 rpm, which maximized the methyl ester yield of 

88.4% were obtained by employing the second-order model. This predicted methyl 

ester yield had been verified by conducting experiment at optimum conditions and a 

very close methyl ester yield of 88.2% to prediction value was obtained [86]. 

The effects of molar ratio of alcohol to oil, catalyst concentration, reaction 

temperature and reaction time as well as the interactions between them on the yield of 

biodiesel had been studied in transesterification of soybean oil [105], waste rapeseed 
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oil [106], pomace oil [107], waste cooking palm oil [108], Jatropha curcas oil [109], 

palm oil [110] using a full 24 factorial central composite design to estimate the 

response of biodiesel yield and parameters of the second-order empirical model. 

Two step transesterification of waste frying oil with high free fatty acid had been 

carried out by utilizing a 33 factorial Box-Behnken design. In the first step, sulfuric 

acid concentration, reaction temperature, and reaction time were factors of the 

experimental design, whereas molar ratio of methanol to oil, potassium hydroxide 

concentration, and reaction temperature became factors in the second step. The 

second-order models were determined by fitting the experimental data to estimate 

their parameters and the response of fatty acid methyl ester content [111].  

2.7 Reaction mechanism and kinetics of in-situ transesterification 

In-situ transesterification of oil in seeds with alcohol is a complex process. Haas, et 

al. [24] and Qian, et al. [32] investigated in-situ (reactive extraction) 

transesterification of flaked soybean and cotton seed and observed that alkaline 

catalyst could destroy the cell walls and intracellular compartmentalization resulting 

in cellular solubilisation and subsequent transesterificaton of triglyceride. Zakaria and 

Harvey [27] investigated progress of in-situ methanolysis of rapeseed particles by 

observing them under a microscope before and after the reaction; the particles were 

stained with Sudan Black B. They reported that the addition of sodium hydroxide into 

the solvent does not destroy the cell wall structure and the lipid does not move 

radially outward into the bulk liquid. There was a reaction front that consumes the 

lipid similar to a shrinking core process as discussed by Levenspiel [112]. The alcohol 

in the bulk needs to reach oil in the particle by diffusion to react with oil in the 

particle. Solid-liquid reactions may be modeled in terms of shrinking core model 

concept developed for solid-gas non catalytic reactions. Resistance for the reaction 

include external mass transfer between bulk of liquid and particle surface, diffusion 

through particle pores to reach the unreacted core and reaction between the alcohol 

and oil. As alcohol and oil are sparingly soluble, the liquid-liquid reaction can be 

analyzed by the concept of phase transfer catalysis.  
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Starks, et al. [113] explained phase transfer mechanism as shown in Figure 2.4. 

Reaction between two immiscible liquids (RY and MX) to form (RX and MY) is 

made possible due to phase transfer catalyst forming an ion complex Q+X- which can 

react with RY to form RX and ion complex Q+Y- which can move to the other phase 

by mass transfer; the complex (Q+Y-) reacts in the other phase to form MY and 

another ion complex Q+X- which can mass transfer back to the first phase to continue 

the reaction.  

 

Figure 2.4: Starks extraction mechanism of phase transfer catalyst [113] 

Hailegiorgis, et al. [114] proposed a reaction mechanism for transesterification of 

oil with alcohol using phase transfer catalysts. 

2.8 Summary 

Based on the literature, it is necessary to use non-edible oilseeds as the preferred 

feedstock for biodiesel. In-situ transesterification of non-edible oilseeds can be 

beneficial to keep the costs under control. It is necessary to identify optimal operating 

conditions to reduce reaction time. Understanding the reaction mechanism is a key to 

identify the factors affecting reaction time. Applicability of the information obtained 

in the laboratory scale units for a packed bed operation need to be investigated to help 

in design of large scale units. An attempt in these directions is presented in this thesis.



 

CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter discusses about the description of the materials, equipment set-up, the 

experimental approach, and the details of analysis techniques. 

3.1 Materials and Chemicals 

In this work, the raw material used was Jatropha curcas which was obtained from 

Yogyakarta and Medan, Indonesia. To produce biodiesel some analytical grade 

chemicals were needed, such as methanol (> 99%), ethanol (>99%, denatured), 2-

propanol (>99%), n-hexane (>99%), sodium hydroxide (>99%), and potassium 

hydroxide (85%), diethyl ether, n-heptane, acetic acid which had been purchased from 

Merck Sdn. Bhd., Malaysia. The following chemicals were supplied by Sigma-

Aldrich Chemical Company, Malaysia: sodium methoxide 30 wt.% solution in 

methanol, pyridine (99%), glycerin, methyl palmitate, methyl stearate, methyl oleate, 

methyl linoleate,  N-Methyl-N-trimethyl-silyltriflouroacetamide (MSTFA), mono-, 

di-, tri-olein and tricaprin used for gas chromatography analysis. 

3.2 Experimental Approach 

The experiment was devided into two sections, the preliminary and main experiments. 

The preliminary experiments consists of the preparation of Jatropha curcas seeds up 

to the characterization of Jatropha curcas oil, that were determination of the acid 

value, solubility of alcohols in vegetable oil and extractability of oil in Jatropha 

curcas seeds by various alcohols. The main experiment involves in-situ 

transesterification of Jatropha curcas seeds, the biodiesel analysis, and reaction 

mechanism and kinetics studies. 
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3.2.1 Preliminary experiments 

3.2.1.1 Preparation of Jatropha curcas seed 

Before using in the process of in-situ transesterification, Jatropha curcas seeds must 

be prepared to obtain an appropriate form for experiment. The seeds were dehulled 

from their shells and dried in the oven at 80C within 24 hours to remove the water 

contained inside the seeds. The seeds were ground using the household grinder to 

certain size and dried again in the oven at 80C within 1 hour. The seeds were sieved 

using sieve shaker. The seeds were kept at 60C in the oven to avoid the moisture 

absorption from the surrounding humidity level during experiment. Before used in the 

process of in-situ transesterification, the ground seeds were dried in the microwave at 

the maximum microwave power for 3 minutes in order to minimize the moisture 

content in the seeds. Microwave heating on the ground seeds could cause the cracking 

of biomass of seeds and could facilitate the extraction of oil from seeds. 

3.2.1.2 Oil Extraction 

The Jatropha curcas oil was extracted to characterize its properties. The oil extraction 

was carried out in Soxhlet extractor. Jatropha curcas seed was weighed 10, 20, and 

30 grams without microwave heating pretreatment and placed in the thimble. Non-

polar solvent, n-hexane with the purity more than 99% and the volume of 150 mL was 

used to extract Jatropha curcas oil and placed in round-bottom flask. Figure 3.1 

shows the schematic of Soxhlet extraction for extracting Jatropha curcas oil. 

The extraction time started when the n-hexane temperature reached its boiling 

point and stopped after 2, 4, and 6 hours to obtain more accurate data. The oil was 

separated from n-hexane using rotary evaporator and the oil content could be 

determined as presented in Eq. (3.1). 
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Figure 3.1: The schematic of Soxhlet extraction 

 

%100
seed

oil

W

W
OC  (3.1) 

where, 

OC : oil content (%) 

Woil  : Jatropha curcas oil weight (g) 

Wseed : Jatropha curcas seed weight (g) 

3.2.1.3 Acid Value Determination 

Acid value determination was conducted according to Official Methods and 

Recommended Practices of The American Oil Chemists’ Society (AOCS Cd 3d-63), 

which is defined as the number of milligrams of potassium hydroxide necessary to 

neutralize the free acids in 1 g sample. Based on AOCS Cd 3d-63 the acid value is 

determined as, 
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 

spl

BA
V

W

NVV
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1.56
  (3.2) 

where, 

AV : Acid value (mg KOH·(g sample)-1) 

VA : Volume of standard alkali used in the titration (mL) 

VB : Volume of standard alkali used in the titrating the blank (mL) 

N : Normality of standard alkali 

Wspl : mass of sample (g) 

Procedure to determine acid value based on AOCS Cd 3d-63 is as follows. 

Phenolphthalein indicator solution (1.0% in 2-propanol) of 2 mL was added to 125 

mL solvent mixture consisting of equal parts by volume of 2-propanol and toluene in 

Erlenmeyer flask, and neutralized with standard alkali (potassium hydroxide) to a 

faint, permanent pink color (B). Ten grams  Jatropha curcas oil was dissolved in 

these mixture and titrated with standard alkali to the first permanent pink color (A). 

The color must persist for 30 s. 

3.2.1.4 Solubility of alcohols in vegetable oils 

The equipment consists of 50 mL customized glassware equipped with a magnetic 

stirrer and thermometer, a burette, and a HACH portable turbidimeter Model 2100P. 

In order to determine the solubility of methanol, ethanol and isopropanol, 20 mL 

of oil was poured into 50 mL customized glassware at 25C and atmospheric pressure. 

The alcohol was transferred to a burette. Adding of alcohol into the oil was carried out 

by opening burette valve to take out a few drops of alcohol and the mixture was 

stirred for 10 minutes at 400 rpm of stirring speed. The mixture was left for 5 minutes. 

This step was repeated until the mixture was turbid. Figure 3.2 describes the 

schematic of solubility determination of alcohols in vegetable oil. 



 

39 

 

Figure 3.2: The schematic of solubility determination of alcohol 

 

Figure 3.3: Turbidity value of the mixture of oil and alcohol, point A was the endpoint 

of alcohol solubility in oil 

When the turbidity value of the mixture, measured by turbidimeter, exceeded its 

blank, the adding of alcohol was stopped because the alcohol did not dissolve in the 

oil anymore and some alcohol droplets appeared on the oil surface. Figure 3.3 shows 

turbidity value of the mixture of oil and alcohol. Point A was the endpoint of alcohol 
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solubility in oil. The alcohol volume dissolved in the oil could be measured. The same 

method had been carried out to determine the alcohol solubility in the other types of 

oil for different temperatures (40C and 60C). The solubility determination of 

methanol at 60C was carried out using the 50 mL customized and closed glassware 

equipped with a magnetic stirrer and thermometer to prevent the methanol loss. The 

experiment was conducted triplicate for every variable. 

Table 3.1 presents the properties of vegetable oils, including the molecular 

weight, the density and the acid value of oils. 

Table 3.1: The properties of vegetable oils 

Types of oil Mr (g·mol-1) 

[3,7,8,9] 

Density (g·mL-1) Acid value  

(mg KOH·(g sample)-1)  

Palm oil 842.946 0.919 0.27 

Corn oil 872.887 0.922 0.85 

Sunflower oil 876.386 0.917 0.12 

Canola oil 874.191 0.920 1.09 

J. carcass oil 868.343 0.899 1.13 

3.2.1.5 Extractability of oil in Jatropha curcas seeds by various alcohols 

In order to determine the extractability of alcohols to Jatropha curcas oil, the soxhlet 

extractor with the same procedure as discussed in section 2 (oil extraction) was used. 

However, n-hexane was replaced with alcohols, methanol, ethanol, 2-propanol, the 

mixture of methanol and n-hexane, the mixture of methanol and 2-propanol as 

extraction solvents. Twenty grams Jatropha curcas seed was placed in the thimble 

and 150 mL extraction solvent was poured to the round-bottom flask. The extraction 

was carried out during 2 hours. The oil was separated from the extraction solvent 

using rotary evaporator and the oil content was determined by Eq. (3.1). 
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Figure 3.4: Scheme of in-situ transesterification procedures 

3.2.2 In-situ Transesterification of Jatropha curcas seeds 

Based on the result of solubility and extractability of alcohols to oil, in-situ 

transesterification of Jatropha curcas seed in stirred-flask was conducted in three 

different alcohols catalyzed by sodium hydroxide, 

 2-propanol/isopropanol (IPA) 

 methanol (MeOH) 
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 the mixture of methanol and 2-propanol (MeOH+IPA) 

The scheme of in-situ  transesterification procedures involved in the present research 

is shown in Figure 3.4. 

A certain amount of ground seeds was transferred into a 250 mL two-neck round-

bottom flask. Sodium hydroxide as alkaline catalysts was dissolved into the alcohol. 

After the mixture was heated at the setting temperature, the solution was poured into 

the flask. The reaction was kept at reaction temperature, certain stirring speed during 

certain reaction time. Figure 3.5 describes in-situ transesterification in two-neck 

round-bottom flask. At the end of reaction, the mixture was separated by vacuum-

filter. The filtrate obtained was transferred into separator funnel, added with water and 

extracted with n-hexane. Meanwhile, the seeds were disposed and the content of 

residual oil in seeds was not determined.  The solution was left in separator funnel for 

24 hours. Two layers were formed; the upper layer which contained biodiesel, n-

hexane and a few of impurities was separated from lower layer which contained 

alcohol, glycerol, catalyst, and water. The upper layer was washed with water and 

evaporated using rotary evaporator. Biodiesel was placed in the oven at 70C during 

12 hours to remove residual water and n-hexane. The biodiesel was kept in dry bottle 

at room temperature for further analysis. 

 

Figure 3.5: The schematic of in-situ transesterification in two-neck round-bottom 

flask 



 

43 

3.2.2.1 In-situ transesterification with isopropanol 

The experiments of in-situ transesterification with isopropanol were performed by 

changing one independent variable at a time while holding the other independent 

variables constant. Three independent variables were investigated which including 

ratio of isopropanol volume to seed weight, NaOH concentration, and reaction 

temperature. In order to determine the effect of the ratio of isopropanol volume to 

seed weight on the biodiesel yield, in-situ transesterification of Jatropha curcas seeds 

with the particle size of less than 600 µm was carried out by varying the ratio of 

isopropanol volume to seed weight into 100:20 (5), 125:20 (6.25), 150:20 (7.5), 

175:20 (8.75), 200:20 (10) using the constant of NaOH concentration of 1.0 wt.% at 

the constant of reaction temperature of 60C for 2 h. The influences of sodium 

hydroxide concentration and reaction temperature on biodiesel yield were investigated 

by varying NaOH concentration of 0.5; 1.0; 1.25; 1.50; 1.75; and 2.0 wt.% with the 

constant of ratio of isopropanol volume to seed weight of 7.5 (150:20), at different 

reaction temperatures in the range of 30C to 70C during 2 h reaction time. The 

experiments were performed with the constant of stirring speed of 500 rpm. 

3.2.2.2 In-situ transesterification with methanol 

The preliminary experiments were done by testing three independent variables which 

were ratio of methanol volume to seed weight (6.25, 7.5, 8.75), NaOH concentration 

(1 wt.%, 1.5 wt.%, 2 wt.%), and reaction temperature (40C, 50C, 60C). 

Meanwhile, variables of stirring speed, particle size, and reaction time were set at the 

constant values of 500 rpm, less than 600 µm, and 2 h, respectively. The experiments 

were carried out by changing one independent variable at a time while keeping the 

other independent variables constant. 

Based on the preliminary experiment, the optimum reaction conditions which 

maximized the yield of biodiesel were determined by designing the experiments with 

response surface methodology, a central composite design (CCD) which tested three 

factors included the ratio of methanol volume to seed weight (6.25 - 8.75 mL·g-1), 

sodium hydroxide concentration (1.0 - 2.0 wt.%), and reaction temperature (40 - 



 

44 

60C). The design of experiments are shown in Table 3.2. Variables of the stirring 

speed, the particle size, and reaction time were set at the constant values of 500 rpm, 

less than 600 µm, and 2 h, respectively. 

Table 3.2: Test condition of the full 23 factorial design of methanol 

Test Treatment 

combination 

Coded factors A B C 

A B C VMeOH: Wseed  [NaOH] T (C) 

1 0 0 0 0 7.50 1.5 50 

2 (1) -1 -1 -1 6.25 1.0 40 

3 A 1 -1 -1 8.75 1.0 40 

4 B -1 1 -1 6.25 2.0 40 

5 Ab 1 1 -1 8.75 2.0 40 

6 C -1 -1 1 6.25 1.0 60 

7 Ac 1 -1 1 8.75 1.0 60 

8 Bc -1 1 1 6.25 2.0 60 

9 0 0 0 0 7.50 1.5 50 

10 Abc 1 1 1 8.75 2.0 60 

11 - -1.68 0 0 5.40 1.5 50 

12 - 1.68 0 0 9.60 1.5 50 

13 - 0 -1.68 0 7.50 0.66 50 

14 - 0 1.68 0 7.50 2.34 50 

15 - 0 0 -1.68 7.50 1.5 33.18 

16 - 0 0 1.68 7.50 1.5 66.82 

17 0 0 0 0 7.50 1.5 50 

The effect of stirring speed on the biodiesel yield was studied by conducting in-

situ transesterification with methanol at optimum conditions. The stirring speed was 

varied into 300, 400, 500, and 600 rpm for different reaction time up to 2 h at the 

optimum conditions of the ratio of methanol volume to seed weight, NaOH 

concentration, and reaction temperature. The particle size less than 600 µm was set to 

be constant. 
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The influences of reaction temperature for different reaction time on the yield of 

biodiesel were carried out by altering the reaction temperature of 40, 50, 55, and 60C 

during reaction time of 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min. The 

other reaction variables were set to be constant, including the ratio of methanol 

volume to seed weight, NaOH concentration, 500 rpm stirring speed, less than 600 

µm particle sizes. 

The effect of particle size on the methyl ester yield was investigated by 

conducting in-situ transesterification for different particle size of Dp < 425 µm, 425 < 

Dp < 600 µm, 600 < Dp <1180 µm, and 1180 < Dp < 2000 µm during reaction time 

of 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 75, 90, 120, 150, 180, 210, and 240 min at 

the optimum reaction conditions with 500 rpm stirring speed. 

3.2.2.3 In-situ transesterification with the mixture of methanol and isopropanol 

In the experiments of the mixture of methanol and isopropanol, design of experiment 

using response surface methodology, based on a central composite design was used to 

test four independent variables, which were the ratio of the mixture volume to seed 

weight (7.5 – 10 mL·g-1), NaOH concentration (1.0 - 2.0 wt.%),  the  ratio of 

methanol volume to mixture volume (0.3 - 0.7 mL·mL-1), and reaction temperature 

(50C - 70C). Variables of stirring speed of 500 rpm, particle size less than 600 µm, 

and reaction time of 2 h were set to be constant. Thus, a full 24 factorial design was 

applied as presented in Table 3.3. 

The influences of reaction temperature for different reaction time on the biodiesel 

yield were undertaken by altering the reaction temperature of 40, 50, 60, 65, and 70 

C during reaction time of 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min. 

The other reaction variables were set to be constant, including the ratio of the mixture 

volume to seed weight, NaOH concentration, 500 rpm stirring speed, particle size less 

than 600 µm. 
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Table 3.3: Test condition of 24 central composite design of the mixture of methanol 

and isopropanol 

Test Treatment 

combination 

Coded Factor A 

Vmix: 

Wseed 

B 

[NaOH] 

wt.% 

C 

VMeOH

: VMix 

D 

T (C) A B C D 

1 (1) -1 -1 -1 -1 7.5 1.0 0.3 50 

2 a 1 -1 -1 -1 10 1.0 0.3 50 

3 b -1 1 -1 -1 7.5 2.0 0.3 50 

4 ab 1 1 -1 -1 10 2.0 0.3 50 

5 c -1 -1 1 -1 7.5 1.0 0.7 50 

6 ac 1 -1 1 -1 10 1.0 0.7 50 

7 bc -1 1 1 -1 7.5 2.0 0.7 50 

8 abc 1 1 1 -1 10 2.0 0.7 50 

9 d -1 -1 -1 1 7.5 1.0 0.3 70 

10 ad 1 -1 -1 1 10 1.0 0.3 70 

11 bd -1 1 -1 1 7.5 2.0 0.3 70 

12 abd 1 1 -1 1 10 2.0 0.3 70 

13 cd -1 -1 1 1 7.5 1.0 0.7 70 

14 acd 1 -1 1 1 10 1.0 0.7 70 

15 bcd -1 1 1 1 7.5 2.0 0.7 70 

16 abcd 1 1 1 1 10 2.0 0.7 70 

17 0 0 0 0 0 8.75 1.5 0.5 60 

18 0 0 0 0 0 8.75 1.5 0.5 60 

19 0 0 0 0 0 8.75 1.5 0.5 60 

20 - -2 0 0 0 6.25 1.5 0.5 60 

21 - 2 0 0 0 11.25 1.5 0.5 60 

22 - 0 -2 0 0 8.75 0.5 0.5 60 

23 - 0 2 0 0 8.75 2.5 0.5 60 

24 - 0 0 -2 0 8.75 1.5 0.1 60 

25 - 0 0 2 0 8.75 1.5 0.9 60 

26 - 0 0 0 -2 8.75 1.5 0.5 40 

27 - 0 0 0 2 8.75 1.5 0.5 80 
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The effect of particle size on the methyl ester yield was investigated by 

conducting in-situ transesterification for different particle size of Dp < 425 µm, 425 < 

Dp < 600 µm, and 600 < Dp <1180 µm during reaction time of 1, 2, 4, 6, 8, 10, 15, 

20, 25, 30, 45, 60, 75, 90, and 120 min at the optimum reaction conditions with 500 

rpm stirring speed. 

3.2.2.4 In-situ transesterification with the mixture of methanol and n-hexane in 

Soxhlet extractor 

Besides used to extract an oil and determine the extractability of alcohols to oil, 

Soxhlet extractor was employed to conduct in-situ transesterification of Jatropha 

curcas seed as presented in Figure 3.6.  

 

Figure 3.6: The schematic of in-situ transesterification in Soxhlet extractor 

For this purpose, certain amount of seed was placed in thimble. Sodium hydroxide as 

alkaline catalyst was dissolved in the alcohol. Methanol was investigated for these in-

situ transesterification. Due to the low extractability of methanol to Jatropha curcas 

oil, n-hexane was added to enhance the extractability to oil. The volume of mixture of 
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catalyzed methanol and n-hexane was kept constant at 150 mL then was poured in the 

round-bottom flask. The extraction and transesterification was carried out in one step 

during 60 min at the temperature above the boiling point of the mixture of methanol 

and n-hexane. After that, the mixture in round-bottom flask was transfer into vacuum 

filter to separate the filtrate from the precipitate. The filtrate was placed in the 

separator funnel, added the water, and the solution was left for at least 3 hours. Two 

layers was formed, upper layer contained biodiesel, n-hexane, and a few of impurities 

(catalyst, alcohol, and glycerol) was separated from lower layer which consisted of 

alcohol, glycerol, and catalyst. Upper layer was washed with the warm water several 

times to remove the impurities up to the solution was clear. Biodiesel was separated 

from n-hexane by rotary evaporator and placed in the oven at 70C during 12 hours to 

remove residual water and n-hexane. The biodiesel was kept in dry bottle at room 

temperature for further analysis.  

Table 3.4: Test condition of Box Behnken design for the mixture of methanol  

and n-Hexane 

Test Coded factors A B C 

A B C Vmix: Wseed  [NaOH] VMeOH:Vmix 

1 -1 0 -1 7.5 2.0 0.3 

2 +1 0 -1 12.5 2.0 0.3 

3 0 -1 +1 10 1.75 0.7 

4 -1 -1 0 7.5 1.75 0.5 

5 0 +1 +1 10 2.25 0.7 

6 0 0 0 10 2.0 0.5 

7 0 -1 -1 10 1.75 0.3 

8 +1 -1 0 12.5 1.75 0.5 

9 0 0 0 10 2.0 0.5 

10 -1 +1 0 7.5 2.25 0.5 

11 +1 +1 0 12.5 2.25 0.5 

12 -1 0 +1 7.5 2.0 0.7 

13 +1 0 +1 12.5 2.0 0.7 

14 0 0 0 10 2.0 0.5 

15 0 +1 -1 10 2.25 0.3 
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Three level design for the mixture of methanol and n-hexane was applied with 

factors: ratio of methanol volume (VMeOH) to seed weight (Wseed) (7.5 - 12.5 mL·g-1), 

sodium hydroxide concentration (1.75 - 2.25 wt.%) and volume ratio of methanol to 

mixture (0.3 - 0.7 mL·mL-1). Response surface methodology, Box-Behnken design, a 

mathematical-statistical tool, was used for modeling the biodiesel yield. Tabel 3.4 

presents design of this experiment. 

3.2.3 Statistical design of experiments for optimization of in-situ 

transesterification 

Each test of in-situ transesterification was replicated twice. Response surface 

methodology, a mathematical-statistical tool, was used to determine the biodiesel 

yield [22]. Second-order polynomials were used to describe the response surface for 

biodiesel yield. 
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where Y is predicted response, 0 is intercept coefficient, i is linear coefficient, ii is 

quadratic coefficient, ij is interaction coefficient, xi and xj are independent factors. 

The central point test was replicated three times to produce a good estimation of 

experimental error. Portable Statgraphics Centurion 15.2.11.0 statistical software (by 

StatPoint Inc.) was employed to estimate the response of dependent variable and to 

determine the interaction between factors, the effects, coefficients, standard deviation 

of coefficients and other parameters of the model. By fitting the experiment data to 

construct the second-order polynomials using multiple regressions, the response 

surface graph and contour plot can be obtained to determine the optimum condition of 

experiments. 
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3.3 Analysis of biodiesel using gas chromatography 

The analysis of biodiesel was conducted to ensure the quality of biodiesel produced 

based on ASTM D 6584. Gas chromatography, QP 5000 series, Shimadzu Japan, 

2100, was utilized to analyze the quality of biodiesel. The GC was equipped with an 

on-column injection, HT-5, with a diameter of 0.32 mm, a film thickness of 0.1 m, a 

length of 30 m and flame ionization detector (FID). The temperature of column was 

set at initial temperature of 50C for 1 minute. Then, it was increased to 180C with 

the rate of 15C·min-1, followed by 7C·min-1 up to 230C. The rate was increased to 

30C·min-1 until the temperature of 380 0C and it was held for 10 minutes. The FID 

was set at 380C and helium was used as carrier gas with the flow rate of 3 mL·min-1. 

In order to analyze the quality of biodiesel, standard solutions consist of glycerin, 

monoolein, diolein, triolein, and internal standards (tricaprin) were prepared 

according to Table 3.5. The components were weighed directly into the volumetric 

flasks and were diluted with pyridine to mark of the volumetric flasks. 

Table 3.5: Stock solution for analyzing biodiesel quality 

Compound Approximate 
mass (mg) 

Volumetric 
flask size 

(mL) 

Concentration 
(mmol/L) 

Glycerin 25 50 10.86 

1-Mono [cis-9-octadecenoyl]-
racglycerol (monoolein) 

50 10 14.02 

1,3-Di [cis-octadecenoyl]glycerol 
(diolein) 

50 10 8.05 

1,2,3-Tri [cis-
octadecenoyl]glycerol (triolein) 

50 10 5.65 

1,2,3-Tridecanolylglycerol 
(tricaprin)- 
(internal standard 2) 

50 10 9.01 

Using stock solution, five standard solutions in Table 3.6 were prepared by 

transferring the specific volumes by microliter syringes to 10 mL septa vials. Each of 

the five standard solutions was added 100 µl of MSTFA. The vial was closed and 
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shaken. The vial was allowed to stand for 15 to 20 min at room temperature. The 

solution was added approximately 8 mL n-Heptane to the vial and it was shaken. 

Table 3.6: Standard solutions 

Standard solution number 1 2 3 4 5 

µl of glycerin stock solution 10 30 50 70 100 

µl of monoolein stock solution 20 50 100 150 200 

µl of diolein stock solution 10 20 40 70 100 

µl of triolein stock solution 10 20 40 70 100 

µl of tricaprin stock solution 100 100 100 100 100 

The calibration standards were analyzed under the same operating conditions as the 

sample solutions. The reaction mixture of 1 µl was injected into the cool on-column 

injection port and the analysis was started. The chromatogram and peak integration 

were obtained. The calibration curve for each reference component could be prepared 

as presented in Figure 3.4. Table 3.7 describes the response factor and y-intercept of 

the calibration functions. 

Table 3.7: Response factor and y-intercept of the calibration functions 

Standard Response factor y-intercept 

Glycerin 0.3003 0.0013 

Monoolein 0.7864 0.0203 

diolein 0.9838 0.0121 

triolein 2.7076 0.0184 

The ester, mono-, di-, and triglyceride content of the transesterification product 

were determined by gas chromatography (GC). The sample of 100 mg was weighed to 

the nearest 0.1 mg into 10 mL septa vial. The sample was added with 100 µl internal 

standard and 100 µl MSTFA. After shaking, the sample was allowed to stand for 15 to 

20 min at room temperature. The sample was added with 8 mL n-Heptane and the vial 
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was shaken. The reaction mixture of 1 µl was injected into the cool on-column 

injection port and the analysis was started. The chromatogram and peak integration 

were obtained. Peaks of chromatogram were identified by comparison of retention 

time to the standards as listed in Table 3.8. 

Table 3.8: Relative retention time of reference standards 

Component Relative retention time 

Glycerin 0.85 

Monoolein 0.83-0.86 

Tricaprin (internal standard 2) 1.00 

Diglyceride 1.05-1.09 

Triglyceride 1.16-1.31 

 

After identifying the peaks, the areas of the peaks were measured and identified as 

glycerin, monoglyceride, diglyceride, and triglyceride. Using the slope and y-intercept 

of calibration functions, the mass of each component was calculated as follows. 
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where, 

Gi : mass percentage of individual glyceride in sample  

Agi : peak area of individual glyceride  

Ais : peak area of internal standard 

Wis : weight of internal standard (mg)  

W : weight of sample (mg)  

ao : slope of calibration function of mono-, di-, and triolein  

bo : intercept of calibration function of mono-, di-, and triolein 
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Figure 3.7: Calibration curve for the reference standards of (a) glycerin, (b) 

monoolein, (c) diolein, (d) triolein 

Total glycerin and bound glycerin are defined as, 

BoundFreeTotal GGG   (3.5) 

TDMBound GGGG  1044.01488.02591.0  (3.6) 

where, 

GM : mass percentage of monoglyceride  

GD : mass percentage of diglyceride  

GT : mass percentage of triglyceride  

y = 0.3003x + 0.0013
R² = 0.9987

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

W
i/

W
is

Ai/Ais

(a)

y = 0.7864x + 0.0203
R² = 0.9998

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

W
i/

W
is

Ai/Ais

(b)

y = 0.9838x + 0.0121
R² = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8

W
i/

W
is

Ai/Ais

(c)

y = 2.7076x + 0.0184
R² = 0.9983

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3

W
i/

W
is

Ai/Ais

(d)



 

54 

The yield of biodiesel was determined as the ratio of actual biodiesel yield to 

theoretical biodiesel weight and can be expressed as, 

 %100(%) 
ltheoritica
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BD
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W
Y  (3.7) 
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3.4 Analysis of Biodiesel using gas chromatography/mass spectroscopy (GCMS) 

The analysis of biodiesel using gas chromatography/mass spectroscopy was 

conducted to analyse the composition of fatty acids. The sample of 20 mg was 

accurately weighed and placed in a sample vial. Tricaprin solution (0.5 mg·mL-1) of 

100 L and 20 L of MSTFA were added to the sample vial. The solution was left to 

silylate for 15 min after that 0.5 ml of n-heptane was added. The GC was equipped with an 

on-column injection with a diameter of 0.32 mm, a film thickness of 0.1 m, a length 

of 30 m. The temperature of column was set at initial temperature of 50C for 1 

minute. Then, it was heated to 180C with the rate of 15C·min-1, followed by 

7C·min-1 to 230C. The rate was increased to 10C·min-1 until the temperature of 

370 0C and it was held for 10 minutes for a total run time of 31.5 min. Helium was 

used as carrier gas with the flow rate of 1 mL·min-1. The inlet line to the MS was kept 

at 270°C while the MS source temperature was kept at 250°C. The mass range 

scanned was 35 to 600 m/z. Peak identification was carried out by comparing mass 

spectra to the National Institute of Standards and Technology (NIST) 2005 mass 

spectral library (NIST, Gaithersburg, MD).  



 

CHAPTER 4 

RESULTS AND DISCUSSIONS 

This chapter comprises the result of the experiments conducted according to previous 

chapter and discussions. Section 4.1 discusses characterization of Jatropha curcas 

including the properties of Jatropha curcas oil, solubility of alcohols in vegetable oils 

and extractability of Jatropha curcas oil by alcohols. In-situ transesterification of 

Jatropha curcas seeds with isopropanol is presented in section 4.2. Sections 4.3 and 

4.4 demonstrate in-situ transesterification of Jatropha curcas seeds with methanol and 

that with the mixture of methanol and isopropanol, respectively. The designs of 

experiment based on central composite design are employed in these sections to 

determine the optimum reaction condition. Section 4.5 explains the results of in-situ 

transesterification of Jatropha curcas seeds with the mixture of methanol and n-

hexane in Soxhlet extractor. 

4.1 Characterization of Jatropha curcas 

4.1.1 Properties of Jatropha curcas Oil 

The properties of oil consist of the oil content, density, acid value, and composition of 

fatty acid. The oil content was obtained by extracting oil from Jatropha curcas seed 

in Soxhlet extractor and determined using Eq. (3.1). The oil extraction was carried out 

with different seed weights of 10, 20, and 30 g without microwave heating 

pretreatment and extraction time of 2, 4, and 6 h to obtain an accurate value. Figure 

4.1 depicts Jatropha curcas oil contents at various seed weights and extraction time. 

The effects of seed weight and extraction time on oil content were insignificant. The 

average oil contents resulted from seed weight of 10 g, 20 g, and 30 g  were (49.48  

0.69)%, (49.43  0.77)%, and (50.26  0.86)% respectively. The average of all oil 
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contents was (49.72  1.34) %. This oil content was higher than that reported by 

Islam, et al. [115] which obtained the oil content of Jatropha curcas in the range of 

40.0 to 48.4 wt.%. This oil content discrepancy was influenced by the difference in 

seed source or plant, cultivation climate, ripening stage, and the harvesting time of the 

seed. 

 

Figure 4.1: Jatropha curcas oil content without microwave pretreatment 

The density of Jatropha curcas oil was measured using picnometer at room 

temperature three times with the average density of (0.8995   0.0007) g·mL-1. This 

density was in the range of  0.860 to 0.933 g·mL-1 that were the densities of Jatropha 

curcas oil which were obtained by Achten, et al. [116].  

Acid value of Jatropha curcas oil was determined according to AOCS Cd 3d-63, 

that was (1.13  0.10) mg KOH·g-1 which showed low free fatty acid content in 

Jatropha curcas oil as a feedstock in this research, which was 0.57%. This value was 

lower than the acid values of Jatropha curcas oil used by Kaul et al. [34], Sahoo and 

Das [74] which were 3.8 mg KOH·g-1, Corro, et al [117] in the amount of 36.10 mg 

KOH·g-1, Vyas, et al [118] and Qian, et al. [119] with the value around 10 mg 

KOH·g-1, Berchmans and Hirata [48], Tiwari, et al. [120] that was around 28 mg 

KOH·g-1. Thus, alkaline catalyst can be employed in the process of in-situ 

transesterification. 

Figure 4.2 shows GCMS chromatogram of fatty acid composition of Jatropha 

curcas oil which comprised palmitic acid, palmitoleic acid, stearic acid, oleic acid, 
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and linoleic acid. This Jatropha curcas oil contained 26.99% saturated fatty acids 

(palmitic and stearic acids), 39.53% mono-unsaturated fatty acids (palmitoleic and 

oleic acids), and 33.48% poly-unsaturated fatty acid (linoleic acid). 

 

Figure 4.2: GCMS chromatogram of fatty acid composition of Jatropha curcas oil 

This fatty acid composition was similar to another research conducted by Rathore 

and Madras [121] and in the range of fatty acid composition obtained by Berchmans 

and Hirata [48]. The properties of Jatropha curcas oil is summarized in Table 4.1. 
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Table 4.1: The properties of Jatropha curcas oil 

1. Fatty acid composition :  

Palmitic acid (C16H32O2) 17.58 % 

Palmitoleic acid (C16H30O2)   1.31 % 

Stearic acid (C18H36O2)   9.41 % 

Oleic acid (C18H34O2) 38.22 % 

Linoleic acid (C18H32O2) 33.48 % 

2. Density (g·mL-1) (0.8995  0.0007)  

3. Acid value (mg KOH·g-1) (1.13  0.10) 

4. Oil content (wt.%) (49.72  1.34) 

4.1.2 Solubility of Alcohols in Vegetable Oils 

In this research, the solubility of methanol, ethanol and isopropanol in palm oil, 

sunflower seed oil, canola oil, corn oil and Jatropha curcas oil was carried out at 

temperatures 25, 40, 60C and the results are presented in Figure 4.3. 
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Figure 4.3: The solubility (molar ratio of alcohol to oil) of methanol (---) and ethanol 

() in palm oil (PO), sunflower seed oil (SO), canola oil (CaO), corn oil (CO) and 

Jatropha curcas (JO) oil at temperatures 25, 40, 60C 

It can be observed that the solubility of methanol and ethanol in vegetable oils 

enhanced with increasing temperature. Factors affected the solubility of a solute in a 

solvent are the strength of intermolecular force and the speed of molecules. High 

temperature or heating solution caused the molecules moving easier and faster 

between solvent and solute molecules. It led the molecules to be more disordered and 

more highly dispersed in structure. Intermolecular interactions between solute and 

solvent molecules will be formed and the solubility of a solute in a solvent will 

increase. However, the isopropanol solubility indicated a different result. Isopropanol 

was totally soluble in the vegetable oil. In this work, when 20 mL of vegetable oil was 

added with several drops of isopropanol, these were dissolved directly in the oil for a 

few minutes of slow stirring speed. The further isopropanol addition up to 40 mL 

(twice of oil volume) into the oil showed that it was totally dissolved. This 

isopropanol solubility occurred for all types of oil and temperatures. 

The length of carbon chain in alcohol influences in the solubility. The solubility of 

methanol in vegetable oils was lower than the solubility of ethanol and the solubility 
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ethanol was lower than the solubility of isopropanol in the same oil. In alcohol, the 

hydroxyl group (-OH) is a polar functional group because it has electronegativity 

difference between hydrogen and oxygen atoms in a bond. Meanwhile, the bonding of 

carbon and hydrogen, such as hydrocarbons or the hydrocarbon portion of a molecule 

with a functional group, is always non-polar. Thus, the longer carbon chains in 

alcohol, the more non-polar the alcohol [98].  

Methanol has only one carbon atom, ethanol has two carbon atoms, and 

isopropanol has three carbon atoms. Therefore, methanol is more polar than ethanol 

and isopropanol, and ethanol is more polar than isopropanol. A polar solute can be 

soluble easily in a polar solvent and vice versa. Because the vegetable oils are non-

polar compound, methanol is only slightly soluble in oil, compared to other alcohols. 

Isopropanol is a non-polar alcohol, in such a way that it can be dissolved easily in 

vegetable oils. 

In transesterification process, the molar ratio of oil to alcohol stoichiometrically is 

1:3; however the higher molar ratio is required to drive the reaction toward the 

product side in order to obtain a high ester conversion in a shorter time. In Figure 4.3, 

the solubility is defined as molar ratio of alcohol to oil. The solubility of methanol in 

vegetable oils are in the range of 1.12:1 to 1.53:1 at 25C,  2.11:1 to 3.10:1 at 40C, 

2.41:1 to 4.12:1 at 60C. Meanwhile, the solubility of ethanol in vegetable oils in the 

range of 2.08:1 to 2.67:1 at 25C, 2.45:1 to 2.96:1 at 40C, and 3.31:1 to 4.65:1 at 

60C. Based on this solubility, molar ratios of alcohol to vegetables oils over 3:1 were 

obtain at temperature above 40C, thus transesterification of palm oil, corn oil, and 

Jatropha curcas oil could be conducted at temperature beyond 40C if methanol or 

ethanol was used in this reaction, whereas for sunflower seed oil, the reaction only 

could be carried out at temperature more than 60C.  For canola oil, the reaction only 

could be performed using ethanol at temperature more than 60C, since the solubility 

of methanol in canola oil at temperature up to 60C was low, that was 2.41:1 molar 

ratio of methanol to canola oil. Because isopropanol was totally soluble in vegetable 

oils and of all temperatures, transesterification using isopropanol could be carried out 

at lower temperature than using methanol and ethanol. Although isopropanol could be 

dissolved easily in vegetable oils, using it in transesterification and separation process 
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still required to be proven and compared with the other alcohols performance in 

biodiesel production. 

4.1.3 Extractability of alcohols to Jatropha curcas oil 

Another important factor in the process of in-situ transesterification of vegetable oil 

than the solubility of alcohol in vegetable oil is the ability of alcohol to extract oil 

from the vegetable oilseed (the extractability of oil by alcohol). In this study, 

methanol, ethanol, isopropanol, the mixture of methanol and n-hexane, the mixture of 

methanol and isopropanol were examined to extract oil from Jatropha curcas seeds 

and the oil contents were compared to theoretical oil content, that was oil content 

obtained from extraction using n-hexane in Soxhlet equipment. The results of the 

extractability of Jatropha curcas oil by alcohols and n-hexane are presented in Figure 

4.4. 

 

Figure 4.4: Jatropha curcas oil content (wt.%) extracted by some solvents 
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Oil extractability is higher with non-polar solvent compared to polar solvent since 

vegetable oil is a non-polar compound. N-hexane as a non-polar solvent was the best 

solvent to extract Jatropha curcas oil, the oil content (49.72 ± 1.34) % was achieved 

and the oil had high quality than oil extracted by the other solvents. Oil extracted by 

alcohols was turbid and resulted in precipitate. Alcohols with hydroxide group are 

polar solvent, thus polar compounds in oil such as phospholipids were extracted as 

well. Phospholipids are amphiphilic due to contain negatively charged phosphate 

group and other polar groups which can lead a strong emulsion [122]. In addition, 

during extraction process due to heating, oil came out from the seeds to the 

surrounding alcohol. Since alcohol is insoluble in oil, the oil-alcohol mixture became 

turbid.  

Methanol is the strongest polar alcohol and shows the lowest oil extracted of (7.21 

± 0.52) %. Mass of oil extracted of 0.8 grams or 8 wt.% oil extracted was reported by 

Kasim and Harvey [37] when they extracted 10 g Jatropha curcas seed with 400:1 

molar ratio of methanol to oil, 400 rpm mixing speed at 60C for 60 min. Zeng, et. al 

[89] used methanol to extract 20 g milled sunflower oilseed using 200 mL methanol 

in 400 rpm magnetic stirring for 60 min at 25C and oil extracted of ≤ 0.8621 grams 

or ≤ 4.31 wt.% oil content was obtained. On the contrary, among short chain alcohols, 

isopropanol was the highest oil extractability and (47.54 ± 0.85) % oil was extracted 

from Jatropha curcas seed, since isopropanol was less polar than methanol and 

ethanol.  

The poor oil extractability of methanol could be enhanced by mixing methanol 

with non-polar solvent. The mixture of methanol and isopropanol with 1:1 volume 

ratio enhanced the oil extracted to be (37.50 ± 1.06) %. Methanol mixed with n-

hexane in the same volume proportion considerably increased the oil extractability of 

(43.94 ± 1.04) %.  

In-situ transesterifications of Jatropha curcas seeds catalyzed by sodium 

hydroxide as an alkaline catalyst were carried out in isopropanol, methanol, the 

mixture of isopropanol and methanol, and the mixture of methanol and n-hexane. 
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4.2 In-situ Transesterification of Jatropha curcas seed in isopropanol 

Due to the highest solubility in oil and oil extractability of isopropanol, it was 

examined to conduct in-situ transesterification of Jatropha curcas seed catalyzed by 

sodium hydroxide. In-situ transesterification of Jatropha curcas seeds was carried out 

by placing 20 g of ground seeds in a three-neck round-bottom flask as a batch reactor 

and adding with 150 mL of isopropanol which was mixed previously with a certain 

weight fraction of sodium hydroxide. An excess amount of isopropanol was needed 

since it must extract oil from the seed and transesterify oil in one step. The 

experiments were performed by changing one independent variable at a time while 

holding the other independent variables constant. 

 

Figure 4.5: Effect of ratio of isopropanol volume to seed weight on biodiesel yield 

using 1 wt.% NaOH for 2 h reaction time at 60C and 500 rpm stirring speed 

4.2.1 Effect of ratio of isopropanol volume to seed weight on biodiesel yield 

The effect of different ratio of isopropanol volume to seed weight (v/w in mL·g-1) of 

100:20 (5), 125:20 (6.25), 150:20 (7.5), 175:20 (8.75), and 200:20 (10) on biodiesel 

yield had been studied at 60C using 1 wt.% NaOH for 2 h as presented in Figure 4.5. 
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Increasing ratio of isopropanol volume to seed weight from 5 to 7.5 enhanced the 

conversion of oil to biodiesel from (58.72 ± 1.01)% to (84.84 ± 1.02)%. At ratio 5 and 

6.25 the volume of isopropanol was 100 mL and 125 mL. These volumes were not 

sufficient to extract oil in seeds and to break the linkage of glycerin and fatty acid. 

Therefore the crude biodiesel yields were not high. Excess isopropanol volume 175 

mL and 200 mL reduced the biodiesel yield to (80.18 ± 0.97)% and (74.70 ± 2.20)%, 

respectively since biodiesel could be dissolved in excess isopropanol, settled down to 

the lower layer and separated out from biodiesel layer. Additionally, in this 

experiment sodium hydroxide remained constant in the amount of 1 wt.%, increasing 

volume of isopropanol diluted the catalyst concentration in reactant which led 

reducing the conversion of oil to isopropyl ester. The maximum biodiesel yield of 

(84.84 ± 1.02) % was attained with 7.5 ratio of isopropanol volume to seed weight, 1 

wt.% sodium hydroxide concentration at 60C during 2 h reaction time. 

Although isopropanol is the best solvent to extract oil from the ground seeds 

among short-chain alcohols and it has higher solubility in oils, it is not proper to 

transesterify oil catalyzed by alkaline catalyst. The main problem of using isopropanol 

in the process of in-situ transesterification of Jatropha curcas seed was in the 

separation process between biodiesel layer and glycerol layer as well as the washing 

process with water. In preliminary experiment, after in-situ transesterification process, 

the solution was separated from ground seeds and then followed by separation of 

isopropanol from crude biodiesel using rotary evaporator. However, at the end of this 

separation only a small amount of crude biodiesel obtained which mixed with 

impurities to form a gel. Therefore, the separation of biodiesel was carried out in 

separator funnel. Due to the very high solubility of isopropanol in non-polar 

compounds, there was only one phase in separator funnel which it should be two 

phases, biodiesel-rich phase and glycerol-rich phase. Nevertheless, when n-hexane 

and water in the volume ratio of 3:2 were added, two phases appeared. After 

overnight settling, the lower layer of glycerol-rich phase was separated out from the 

upper layer of biodiesel-rich phase followed by washing the upper layer with room 

temperature water. When water was added into the biodiesel-rich phase, soaps were 

formed in the interface between biodiesel layer and water layer. It indicated that there 

was isopropanol catalyzed by sodium hydroxide and contained unreacted triglyceride 
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which was dissolved in biodiesel-rich phase. The presence of water caused 

saponification that was the base (sodium hydroxide) hydrolysis of triglyceride, 

isopropanol, water and alkaline catalyst. During biodiesel washing, saponification 

took place for several times and washing with water was stopped after no soaps 

formed. The use of warm or hot water in washing step increased the saponification 

and reduced the yield of biodiesel. A large water consumption and saponification in 

the biodiesel washing step were the main drawbacks of in-situ transesterification of 

Jatropha curcas seed using isopropanol catalyzed by sodium hydroxide. 

4.2.2 Effect of sodium hydroxide (NaOH) concentration on biodiesel yield 

Figure 4.6 presents biodiesel yield (%) for various NaOH concentration 0.5; 1.0; 1.25; 

1.50; 1.75; and 2.0 wt.% with isopropanol/seed (v/w) ratio of 7.5 (150:20), at different 

reaction temperatures in the range of 30C to 70C and reaction time 2 h. 

The catalyst percentage was based on the weight of the oil used for in-situ 

transesterification. It was observed that at certain temperature, addition of NaOH 

concentration from 0.5 wt.% to 1.0 wt.% increased the conversion to isopropyl ester. 

The concentration of NaOH 0.5 wt.% was not sufficient to convert Jatropha curcas 

oil into isopropyl ester. It can be observed as well from the isopropyl ester content 

which indicated biodiesel purity as described in Figure 4.7. The isopropyl ester 

contents at NaOH concentration of 0.5 wt.% were less than that at NaOH 

concentration of 1 wt.%. Generally, catalyst concentration of 0.5 to 1.0 wt.% of the oil 

was employed in conventional transesterification. Nevertheless, this range was not 

sufficient to in-situ transesterification since of the physical difference in the reaction 

phase, such as the presence of solid and the large amount of solvent used [27]. Kaul, 

et al. [34] had carried out reactive extraction of Jatropha curcas seed to produce 

biodiesel using seed/methanol (w/w) ratio of 1:7.8 at 65C for 1 h. They varied NaOH 

concentration to 0.05, 0.075, and 0.1 M. It was observed that increasing NaOH 

concentration raised the conversion of oil to biodiesel. It occurred for all seed sizes. In 

the present study, due to higher solubility of isopropanol in non-polar substances 

which led saponification during biodiesel separation as explained previously, 

increasing concentration of NaOH over 1.0 wt.% decreased the conversions of oil to 
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isopropyl ester and lowered the biodiesel yields. Addition NaOH concentration 

exceeded 2.0 wt.% (to 2.5 wt.%) caused more soap formed, interfered the separation 

of isopropyl ester from glycerol, and diminished the conversion of oil to isopropyl 

ester. The highest conversion to isopropyl ester of (85.32 ± 0.30)% was attained with 

NaOH concentration of 1.0 wt.% at 70C for 2 h reaction time. 

 

Figure 4.6: Effect of catalyst concentration on biodiesel yield with isopropanol/seed 

(v/w) ratio of 7.5 for 2 h reaction time at reaction temperatures of 30 - 70C and 

stirring speed of 500 rpm  

4.2.3 Effect of reaction temperature on biodiesel yield 

In-situ transesterification of Jatropha curcas seeds with isopropanol was done at 

various reaction temperatures (30, 40, 50, 60, and 70C). Temperature can affect the 

completion of oil extraction and its conversion to biodiesel, as well as the yield of 

biodiesel. 
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Figure 4.7: Effect of catalyst concentration and reaction temperature on isopropyl 

ester content at VIPA:Wseed of 7.5 for 2 h reaction time and stirring speed of 500 rpm 

Figure 4.6 presents the yield of biodiesel at various temperature with 

isopropanol/seed (v/w) 150:20, different amount of catalyst in the range of 0.5 – 2.0 

wt.%, reaction time of 2 h, whereas the influence of reaction temperature on the 

content of isopropyl ester is depicted in Figure 4.7.  

The results show that the yield of biodiesel rose as increasing temperature for all 

catalyst concentration. The maximum oil extracted during in-situ transesterification 

was (91.11 ± 0.32) % at 70C and 1.0 wt.% NaOH using 7.5 ratio of isopropanol 

volume to seed weight and 93.64% of the extracted oil was converted to isopropyl 

ester (biodiesel). Higher temperature can accelerate the oil extraction from seeds and 

speed up the conversion of oil to isopropyl ester. However, reaction temperature could 

not be adjusted at higher temperature exceeding the boiling point of isopropanol, 

since at this temperature isopropanol could vaporize, many bubbles were formed 

which could inhibit the reaction. Moreover, saponification by NaOH catalyst would 
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be occurred faster than transesterification. Therefore, the reaction temperature must be 

selected below boiling point of isopropanol. 

Isopropyl ester contents produced in this study were in the range of 82.25% to 

93.64% that were less than 96.5% ester content based on EN 14214 standards. 

Moreover, the density of isopropyl ester at 15C of 910.4 kg·m-3 was slightly higher 

than the density range of 860–900 kg·m-3 according to EN 14214 standards. Its 

kinematic viscosity at 40C was 6.75 mm2·s-1 that was slightly higher than ASTM 

D6751 standards for kinematic viscosity at 40C with the value of 1.9–6.0 mm2·s-1. 

4.3 In-situ Transesterification of Jatropha curcas Seeds with Methanol 

Methanol is the shortest-chain alcohol which has the lowest solubility in vegetable 

oils and lowest extractability of Jatropha curcas oil due to the most polar among 

alcohols. Methanol is the most frequently used to transesterify vegetable oils into 

biodiesel because it has low cost and biodiesel produced can be separated from 

glycerol easily. 

The preliminary experiment was done to examine that methanol could be used in 

the process of in-situ transesterification of Jatropha curcas seed. Kildiran, et al. [25] 

reported that only 20% oil could be extracted from the ground soybean and dissolved 

in methanol, further only 42% of oil could be converted to methyl ester. Maceration 

before in-situ methanolysis improved the oil extraction to be 40% and enhanced the 

conversion of the oil to methyl ester of 55%. Ginting, et al. [123] reported that in-situ 

methanolysis of Jatropha curcas seed only could produce 40.23% methyl ester yield 

with the ratio of methanol to Jatropha curcas seed of 140:10 (mL·g-1), in the presence 

of 1 wt.% NaOH, with stirring speed of 600 rpm, at 60C reaction temperature even 

during 24 h reaction time. 

The preliminary experiments were done by testing three independent variables 

which were ratio of methanol volume to seed weight (6.25, 7.5, 8.75 mL·g-1), NaOH 

concentration (1 wt.%, 1.5 wt.%, 2 wt.%), and reaction temperature (40C, 50C, 

60C). The experiments were carried out by changing one independent variable at a 
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time while keeping the other independent variables constant. The results are displayed 

in Figure 4.8. 

 

Figure 4.8: Effect of ratio of VMeOH:Wseed, NaOH concentration, and reaction 

temperature on biodiesel yield with 400 rpm stirring speed for 2 h reaction time 

It can be observed that increasing ratio of methanol volume to seed weight, NaOH 

concentration and reaction temperature enhanced biodiesel yield. Without adding the 

catalyst, 150 mL methanol could extract only a few amount of oil of (7.21 ± 0.52)% 

from 20 g seeds at boiling point of methanol. By mixing 150 mL of methanol with 1 

wt.% NaOH (oil weight based) at 40C, (12.73 ± 0.16)% oil could be extracted from 

20 g seeds and transesterified to methyl ester. Increasing NaOH amount to 2 wt.% 

enhanced the oil extraction and transesterification to be (68.30 ± 0.49)% at 40C. The 

rise in reaction temperature to 60C augmented the oil extraction and 

transesterification to be (77.11 ± 0.46)%. The maximum biodiesel yield of (89.50 ± 

0.33)% was obtained with 8.75 ratio of methanol volume to seed weight, 2 wt.% 

NaOH concentrations at 60C reaction temperature during 2 h reaction time. This 

yield was higher than the previous research by Ginting, et al [123]. 
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4.3.1 Optimization of In-situ Transesterification of Jatropha curcas Seeds with 

Methanol 

4.3.1.1 ANOVA and regression analysis 

Based on the preliminary experiments, the important parameters influencing the yield 

of methyl ester were ratio of methanol volume to seed weight, NaOH concentration, 

and reaction temperature. The optimum condition of experiments which produced the 

maximum biodiesel yield and the interaction between the independent variables were 

determined by employing the design of experiment using response surface 

methodology, central composite design. Low and high level for experimental design 

were taken from the low and high value of preliminary experiments. The experimental 

design used in this study was a full 23 factorial design, in which three central points 

(test 1, 9, and 17) and six star points (test 11-16) were added to evaluate experimental 

errors. Based on Table 3.4 in previous chapter, the experiments were performed. The 

observed response of factorial design, biodiesel yield, is presented in Table 4.2. 

The observed response of the full factorial central composite design was fitted by 

empirical second-order polynomial model to predict biodiesel yield, as a function of 

significant variables and showed in Eq. (4.1). Positive sign in front of the terms 

indicates synergistic effect and negative sign indicates antagonistic effect. 

22
Na

2

04.052.0C54.59        

14.098.508.529.18281.10416.654

TTC

TRRTCRY

Na

VWVWNaVW
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
    

where, 

Y :  predicted biodiesel yield (%) 

RVW : ratio of methanol volume to seed weight (mL·g-1) 

CNa : sodium hydroxide concentration (wt.%) 

T : reaction temperature (C) 
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Table 4.2: The response of factorial design of in-situ transesterification of Jatropha 

curcas seeds with methanol 

Test A 

VMeOH: Wseed 

(mL·g-1) 

B 

[NaOH] 

(Wt.%) 

C 

T  

(C) 

Obsv. 

value 

(%) 

Fitted 

value 

(%) 

obs-fitted 

(%) 

1 7.50 1.5 50 78.34 77.24 1.10 

2 6.25 1.0 40 13.29 13.95 -0.66 

3 8.75 1.0 40 36.88 37.42 -0.54 

4 6.25 2.0 40 54.86 53.31 1.55 

5 8.75 2.0 40 75.28 76.78 -1.50 

6 6.25 1.0 60 21.09 21.49 -0.40 

7 8.75 1.0 60 35.15 37.73 -2.58 

8 6.25 2.0 60 70.79 71.28 -0.49 

9 7.50 1.5 50 76.48 77.24 -0.76 

10 8.75 2.0 60 86.27 87.52 -1.25 

11 5.40 1.5 50 33.44 34,14 -0.70 

12 9.60 1.5 50 70.31 67.53 2.78 

13 7.50 0.66 50 2.94 1.16 1.78 

14 7.50 2.34 50 76.42 76.12 0.30 

15 7.50 1.5 33 57.32 57.34 -0.02 

16 7.50 1.5 67 74.80 72.70 2.10 

17 7.50 1.5 50 76.55 77.24 -0.69 

Based on a 95% confidence level, the significance of terms was determined by 

comparing the computed F value to the theoretical F0.05 (1, 2) value and from the P-

value. The fitted model and regression coefficients have significant effect on the 

response if the computed F value was higher than the theoretical F0.05 (1, 2) value and 

the P-value less than 0.05. Table 4.3 describes the analysis of variance for the 

regression model. As the F-value and P-value of fitted model were 502.75 and 

≤0.0001 respectively, the model indicated significant and sufficient for predicting the 

biodiesel yield. The computed F value of fitted model (502.75) was much higher than 

the theoretical F value of 3.44. To test the fit of the model, the determination 
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coefficient was evaluated. Figure 4.9 shows the predicted versus observed value for 

biodiesel yield with the determination coefficient of 0.9971, that was, the second 

order model explained 99.71% of the variability in biodiesel yield and only 0.29% of 

the total variations were not explained by the model. 

 

Figure 4.9: Predicted versus observed biodiesel yield 

The value of adjusted determination coefficient (adjusted R2), which was more 

suitable for comparing model with different numbers of independent variables, was 

also very high 0.9941. 

Each regression coefficients of the model was tested to be significant at 

confidence level of 95%. The model terms of A, B, C, AA, AC, BB, CC and BC had 

significant effects on the methyl ester yield because the computed F values for the 

respective terms were higher than the theoretical F0.05(1,8) value of 5.32 and very low 

P-values less than 0.05 (5%). According to the F-value, the most significant term in 

the regression was catalyst concentration. Its positive value shows that increasing 

catalyst concentration enhanced the methyl ester yield. The quadratic term of catalyst 

concentration was negative which indicated that the methyl ester yield reached a 

maximum after certain addition of catalyst concentration. However, further addition 

of catalyst concentration decreased the yield. 
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Table 4.3: Analysis of Variance for response surface of quadratic model in Eq. (4.1) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 12126.96 8 1515.87 502.75 < 0.0001 

A:VMeOH:Wseed 1345.54 1 1345.54 334.84 0.0000 

B:[NaOH] 6783.43 1 6783.43 1688.04 0.0000 

C:Temp 285.002 1 285.002 70.92 0.0000 

AA 982.686 1 982.686 244.54 0.0000 

AC 26.1726 1 26.1726 6.51 0.0341 

BB 2099.88 1 2099.88 522.55 0.0000 

BC 54.3403 1 54.3403 13.52 0.0062 

CC 210.511 1 210.511 52.39 0.0001 

Total error 32.1482 8 4.01852   

Total (corr.) 10985.1 16    

The effect of methanol volume to seed weight ratio was lower than that of catalyst 

concentration, whereas it was higher than that of reaction temperature. The positive 

signs of catalyst concentration and reaction temperature parameters demonstrated that 

increasing in these improved the methyl ester yield. Their quadratic terms were 

negative which revealed that the methyl ester yield attained a maximum after certain 

ratio of methanol volume to seed weight at definite reaction temperature. Nonetheless, 

the yield was diminished at further rising of these parameters. The interaction terms of 

methanol volume to seed weight ratio and reaction temperature and that of catalyst 

concentration and reaction temperature had significant effects on the methyl ester 

yield. Meanwhile, the interaction between ratio of methanol volume to seed weight 

and NaOH concentration (AB) showed insignificant effect on the response of methyl 

ester yield due to the F-value of 0.08 and P-value of 0.7799 higher than 0.05. Thus 

this term (AB) should be excluded from the analysis of variance and it was not 

appeared in the second-order model of Eq. (4.1). Moreover, by excluding the AB term 

the determination coefficient and adjusted determination coefficient increased. 
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4.3.1.2 Effect of the ratio of methanol volume to seed weight and reaction 

temperature on the yield of methyl ester 

The ratio of methanol volume to seed weight is one of the important factors in 

biodiesel production. In-situ transesterification needs excess methanol than 

conventional transesterification because in this process methanol was employed as 

solvent extraction and transesterification reagent. Therefore, in this work ratio of 

methanol volume to seed weight was used instead of molar ratio of methanol to oil. 

Figures 4.10 and 4.11 depict the effect of interaction between ratio of methanol 

volume to seed weight and reaction temperature on methyl ester yield at 1.94 wt.% 

NaOH concentration. As can be seen, increasing ratio of methanol volume to seed 

weight from 6.25 to 8.08 and reaction temperature from 33C to 56.98C enhanced 

the conversion of oil to methyl ester. At ratio 6.25 the methanol volume was 108 mL. 

The oil extracted and transesterified into methyl ester was only in a small quantity. 

Therefore, the biodiesel yields were not high. At low ratio of methanol volume to seed 

weight, increment reaction temperature enhanced the yield of methyl ester, as a result 

of positive effect of T term in Eq. (4.1). At moderate to higher ratio of methanol 

volume to seed weight, rising temperature above 40C to higher temperature only 

slightly improved the methyl ester yield. Further increasing ratio of methanol volume 

to seed weight and higher reaction temperature, the methyl ester yield decreased, as a 

result of negative interaction term of RVW and T in Eq. (4.1). At this condition, rising 

methanol volume could dilute the catalyst and oil concentrations in the reaction 

system. The interactions between them decreased and reduced the oil conversion to 

methyl ester. 
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Figure 4.10: Estimated response surface of methyl ester yield at 1.94 wt.% NaOH 

concentration 

 

Figure 4.11: Contour of methyl ester yield at 1.94 wt.% NaOH concentration 

Wahlen, et al. [40] examined the effect of methanol volume on the weight of fatty 

acid methyl ester produced by simultaneous extraction and conversion of total lipids 

from microalgae, cyanobacteria, and wild mixed-cultures. Increasing the volume of 

methanol did not result in an increase in the yield of FAME. Siler-Marinkovic and  

Tomasevic [28] reported that the  molar  ratio was strongly relied on the  amount  of  

sulfuric  acid  and  the  time  of  reaction during investigating in situ 

transesterification of sunflower oilseed. They varied the molar ratio of methanol to 

oil, sulfuric acid concentration, and reaction time at 64.5C. A lower molar ratio of 

methanol to oil of 100:1 was not enough to extract and transesterify the oil. However, 
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with 200:1 molar  ratio and  4 h  of  heating  in  the  presence  of  100% sulfuric acid 

(on  oil  basis) a  good  conversion  and  quality  of methyl esters had been obtained. 

Increasing molar ratio to 300:1 with the same amount of catalyst could achieve the 

similar conversion and quality of methyl ester in a shorter reaction time of 1 h. 

4.3.1.3 Effect of catalyst concentration and reaction temperature on the methyl ester 

yield 

The catalyst concentration affects the biodiesel yield. Figures 4.12 and 4.13 indicate 

biodiesel yield (%) for various NaOH concentration from 1.0 to 2.5 wt.% and various 

reaction temperature from 40C to 65C. The catalyst percentage was based on the 

weight of the oil used for in-situ transesterification. It was observed that raising 

NaOH concentration from 1.0 wt.% to 1.94 wt.% and reaction temperature from 33C 

to 56.98C increased the conversion of Jatropha curcas oil to biodiesel. Low 

concentration of NaOH was not sufficient to convert Jatropha curcas oil into fatty 

acid alkyl ester. This result was in accordance with the research by Ginting et al. [36]. 

They reported that in alkaline in situ ethanolysis of Jatropha curcas, at concentration 

of sodium methoxide and sodium hydroxide in the range of 0.5 wt.% to 1.0 wt.% the 

yield of ethyl ester obtained were around 80 %. Nevertheless, when the catalyst 

concentration increased to 2 wt.% sodium methoxide concentration or 2.5 wt.% 

sodium hydroxide concentration, over 99% yield of ethyl ester was achieved with 

ratio of ethanol volume to seed weight of 7:1 at 70C for 2 h of reaction time. 

However, addition of NaOH more than 1.94 wt.% decreased the conversion of oil 

to biodiesel because of emulsion formation. Addition NaOH concentration exceeding 

2.0 wt.% caused the mixture of reactant more viscous, disturbed the mixing and 

separation of biodiesel, and lowered the conversion to biodiesel toward around 60% 

methyl ester yield. Water could be formed due to reaction between methanol and 

NaOH. The presence of water and NaOH led hydrolysis of triglyceride to form 

sodium salt of carboxylate (crude soap). Kasim and Harvey [37] reported that in 

reactive extraction of Jatropha curcas using molar ratio of methanol to oil of 400:1 at 

60C for 1 h, increasing NaOH concentration of 0.1 N to 0.15 N enhanced the methyl 
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ester yield from 76.2% to 87.8%. Nevertheless, further increasing to 0.2 N decreased 

the methyl ester yield to 80.8% due to the formation of soaps. 

 

Figure 4.12: Estimated response surface of methyl ester yield at VMeOH : Wseed of 8.08 

(mL·g-1) 

 

Figure 4.13: Methyl ester yield contour at VMeOH : Wseed of 8.08 (mL·g-1) 

Higher temperature can accelerate the reaction. However, if reaction was carried 

out at high temperature exceeded the boiling point of methanol; it caused methanol 

evaporation and its loss. Moreover, saponification by NaOH catalyst occurred faster 

and reduced the yield of methyl ester. It also can be observed from Figure 4.13, at 

high NaOH concentration, the increment of temperature beyond 65C diminished the 

methyl ester yield. 
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4.3.1.4 Optimization analysis 

Table 4.4 explains the high, low limit experimental region and the optimum factors. 

The predictions of biodiesel yield obtained from optimization of the experimental 

design were 90.98%. This value was compared to the methyl ester yield obtained 

from experiment as shown in Table 4.5. The optimum biodiesel yields obtained from 

experiment was (90.45  0.25)%. The experiment methyl ester yield showed 

insignificant difference than predicted yield. This experimental optimum methyl ester 

yield was in agreement with Jain and Sharma work [124]. They conducted two-step 

sulfuric acid-sodium hydroxide catalyzed transesterification of Jatropha curcas oil 

with 21.5% free fatty acid content. The reaction time of 6 h was required to achieve 

reaction completion with the maximum methyl ester yield of 90.1%. This optimum 

yield of methyl ester was also comparable with research work investigated by 

Berchmans and Hirata [48]. They carried out two-step sulfuric acid-sodium hydroxide 

catalyzed methanolysis of Jatropha curcas oil due to high free fatty acid of 14.9%. 

The yield of methyl esters of fatty acids was achieved around 90% in 3 h reaction 

time. 

The methyl ester yield of this work was higher than that produced by Vyas, et al. 

[118] who conducted transesterification of Jatropha curcas oil with KNO3 loaded in 

Al2O3 as catalyst in amount of 6 wt.%. Methanol was used in ratio of 12:1 to the oil. 

The maximum conversion of oil to methyl ester of 84% was reached with 600 rpm 

agitation speed at 70C for 6 h reaction time. Another methanolysis of Jatropha 

curcas oil with solid catalyst of 4 wt.% calcium-based mixed oxide produced the oil 

conversion more than 80% using 15 molar ratio of methanol/oil at 65C during 6 h 

reaction time [125]. 

Table 4.4: The combination of factor levels which maximize biodiesel yield 

Factor Low High Optimum 

VMeOH: Wseed (mL/g) 5.4 9.6 8.08 

[NaOH] (Wt.%) 0.66 2.34 1.94 

T (0 C) 33 69 56.98 
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Table 4.5: Optimum condition for methanol 

Test Factors Response (%) Residual 

(%) V: W 

(mL/g) 

[NaOH] 

(wt.%) 

T  

(0 C) 

Obsv Predc 

1 8.08 1.94 57 90.73 90.98 -0.25 

2 8.08 1.94 57 90.27 90.98 -0.71 

3 8.08 1.94 57 90.34 90.98 -0.64 

In comparison with other previous research works of in-situ transesterification 

with methanol and homogeneous catalysts, the optimum biodiesel yield of this work 

was higher than other methyl ester yields [24, 27, 94]. It was caused by conducting 

microwave heating during seeds pretreatment, which led to facilitate the oil 

extraction. Haas, et al. [24] performed in-situ transesterification of soy flakes 

catalyzed by sodium hydroxide. The reaction time of 8 h was required to complete the 

reaction at 60C for the molar ratio of methanol/triglyceride/NaOH of 226:1:1.6 and 

at 23C for 543:1:2.0 molar ratio of methanol/triglyceride/NaOH. At this condition, 

95% removal of oil from the soy flakes and an 84% efficiency of conversion of this 

solubilized lipid to fatty acid methyl ester or around 79% fatty acid methyl ester yield 

were obtained. Zakaria and Harvey [27] examined the influences of process 

parameters on the yield, conversion and reaction rate of in-situ transesterification of 

rapeseed with methanol catalyzed by sodium hydroxide. The ester concentration of 

(90.3 ± 1.3)% and ester yield of (88.8 ± 0.1)% were accomplished with the molar ratio 

of methanol to oil of 475, NaOH concentration of 0.1 molal, 300–500 μm particle 

size, 25 g seed at 60C for 60 min reaction time. Hailegiorgis, et al. [94] reported that 

in the process of in-situ transesterification of Jatropha curcas L. with methanol 

catalyzed by sodium hydroxide, the maximum fatty acid methyl ester of 47.9% was 

gained after 3.5 h reaction time which much lower compared to the optimum methyl 

ester yield achieved in this work. To enhance the methyl ester yield, 

benzyltrimethylammonium hydroxide as a phase transfer catalyst was added in NaOH 
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to catalyze methanol before the reaction was initiated. The methyl ester yield 

increased considerably to be (89 ± 0.7)% which was slightly lower than (90.45  

0.25)% obtained from this work. 

4.3.2 Effect of stirring speed 

The continuous stirring and adequate reaction time were required in the process of in-

situ transesterification where oil extraction and transesterification occurred 

simultaneously. The oil extraction could be improved by increasing the stirring speed; 

moreover the continuous stirring could facilitate the initial reaction and mass transfer 

between triglyceride and reagent in order to complete the reaction.  

The effect of stirring speed on biodiesel yield was conducted up to 2 h reaction 

time at stirring speed of 300, 400, 500, and 600 rpm. Other parameters were set at 

optimum condition, ratio of methanol volume to seed weight of  8.08 : 1 (mL·g-1), 

NaOH concentration of 1.94 wt.%, particle size less than 600 m, and reaction 

temperature of 57C. The biodiesel yields at various stirring speed are presented in 

Figure 4.14. 

Increasing stirring speed raised the extraction of oil from seeds. The biodiesel 

yields increased considerably within 10 minutes reaction time and these yields were 

almost the same for all stirring speed. Further reaction time showed that increasing 

stirring speed up to 500 rpm enhanced slightly the yield of biodiesel up to 90 min 

reaction time where the maximum yield was achieved in the range of 87.24% to 

90.38%. Increasing stirring speed could enhance the homogeneity of Jatropha curcas 

seeds and the reagent. However biodiesel yield was decreased by additional stirring 

speed over 500 rpm. At higher stirring speed (600 rpm), there was unstable condition 

since some of methanol evaporated and there was insufficient contact between seeds 

and the methoxide solution [126]. Hence, oil extraction, oil transesterification and the 

yield of biodiesel decreased. 



 

81 

 

Figure 4.14: Methyl ester yield for different stirring speed and reaction time with ratio 

of methanol volume to seed weight of 8.08:1, NaOH concentration of 1.94 wt.%, < 

600 m particle size at 57C 

The yields were almost constant after 90 min reaction time, which described that the 

reaction was completed. Different stirring speeds had no effect on the reaction 

completion. Zeng, et al. [89] investigated that the agitation speed only had a few 

effect on the biodiesel yield and its purity. In their research the agitation speeds of 

150, 300, 450, and 600 rpm were employed and the agitation speed of 150 rpm was 

selected to carry out the reaction. Kasim and Harvey [37] explained that increasing 

mixing speed from 100 rpm to 300 rpm improved the biodiesel yield significantly 

from 37.2% to 94.8% as seed distribution was more uniform at higher mixing speed. 

The yield at 400 rpm stirring speed only increased very slightly. Ginting, et al. [123] 

reported that at higher stirrer speed, more conversion of oil to methyl ester was 

obtained since increasing the stirrer speed, more oil could be extracted and promoted 

the homogenization of the reactants. In their work, the influence of the stirrer speed 

on the in situ methanolysis of Jatropha curcas was carried out by varying the stirrer 

speed from 100, 200, 400, and 600 rpm with the ratio of methanol to the seed of 7 
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(v/w), NaOH concentration of 1 wt.% at 60C for 24 h. The stirrer speed of 600 rpm 

resulted in the maximum weight of biodiesel. In this condition, mass transfer occurred 

because of different concentration which enhanced the reaction rate. 

4.3.3 Effect of reaction time and reaction temperature 

The effect of reaction time on biodiesel yield was conducted up to 180 min at various 

reaction temperatures of 30, 40, 50, and 60C. Other parameters were set at optimum 

condition, ratio of methanol volume to seed weight of 8.08 (mL·g-1), catalyst 

concentration of 1.94 wt.%, stirring speed of 500 rpm and particle size of less than 

600 m. The biodiesel yields at various reaction times and temperature are presented 

in Figure 4.15. 

At 30 0C, reaction proceeded slowly. The methyl ester yield of (70.31 ± 1.36)% 

was obtained after 180 min reaction time. The biodiesel yield increased with the 

increment of reaction time. At the first 15 min, over 60% of the oil was extracted from 

the seed and converted to methyl ester at reaction temperature above 40C, as 

reported by other works [34, 37]. The methyl ester yield improved significantly up to 

60 min which indicated that the oil extraction rate and oil conversion rate increased at 

this reaction period. During the early stage of the reaction, the oil extraction rate and 

the oil conversion rate were very high at all reaction temperature which revealed the 

reduction of mass transfer effect. Further reaction time, the oil extraction rate and the 

oil conversion rate decreased tremendously. It represented that the reaction changed to 

equilibrium state condition and the methyl ester yield slightly increased. The 

prolonged reaction time decreased insignificantly the methyl ester yield since it might 

be saponification and reverse reaction occurred. 

Rising reaction temperature from 30C to 60C enhanced methyl ester yields. The 

oil extraction and oil conversion can be accelerated by increasing reaction 

temperature to reach reaction completion in a shorter time. At 30C, the reaction was 

completed after 180 min reaction time. The increment of reaction temperature to 

40C-50C shortened the reaction completion to 120 min. At 60C reaction 

temperature, there was insignificantly difference between the methyl ester yields after  
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Figure 4.15: Methyl ester yield for different reaction time and temperature with ratio 

of methanol volume to seed weight of 8.08:1, NaOH concentration of 1.94 wt.%, less 

than 600 m particle size 

90 min reaction time and that after 120 min. It revealed that the reaction equilibrium 

was obtained after 90 min reaction time. However the methyl ester yield and reaction 

completion reduced at higher reaction temperature due to boiling point of methanol 

exceeded. At this temperature, the reaction tended to speed up the saponification of 

the triglycerides by the alkaline catalyst before completion of the transesterification 

[127]. The maximum methyl ester yield of 90.17% was obtained after 120 min 

reaction time at 60C. 

Figure 4.16 shows the effect of reaction time on intermediate product of in-situ 

transesterification, mono- and di-glyceride concentration at reaction temperature of 

40, 50, and 60C. In biodiesel production, mono-, di-, and triglyceride content were 

bound glycerin content whereas glycerol was free glycerin which was the impurities 

of biodiesel. The presence of the impurities must be at a very low content. 
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Figure 4.16: The effect of reaction time on concentration of mono- and di-glyceride at 

40, 50, and 60C reaction temperature 

During the first 4 min reaction time, the conversion of triglyceride to diglyceride 

and followed by conversion of diglyceride to monoglyceride enhanced with increase 

in reaction time indicated by augmenting sharply the concentrations of mono- and di-

glyceride. The maximum monoglyceride concentration of less than 2.8 wt.% was 

reached for 2 min reaction time at 60C, while the highest diglyceride concentration 

of 3.82 wt.% was obtained after 4 min reaction time at 60C. Thereafter the 

concentrations of mono- and di-glyceride decreased as they were converted into 

methyl ester and glycerol. At this condition, their concentrations were almost constant 

toward equilibrium state after 60 min reaction time. 

These results were in conformity with other research works. In methanolysis of 

palm oil, the highest concentrations of monoglycerides and diglycerides, about 10 

wt.%, were observed during the first 2 min of reaction at 50C; then, their values 

decreased and were approximately constant [128]. Darnoko and Cheryan [129] 

reported that the maximum monoglyceride concentration of 6 wt.% and diglyceride 
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concentration of 5.6 wt.% were achieved after 4 min reaction time when they carried 

out transesterification of palm oil with methanol at 50C. In kinetic study of 

hydroxide-catalyzed methanolysis of Jatropha curcas–waste food oil mixture for 

biodiesel production, during the first 2 min of reaction time, the triglyceride 

concentration decreased sharply as the sudden increase of methyl ester concentration. 

The highest concentrations of diglyceride and monoglyceride observed were visible at 

the first 3 min of reaction time. Their levels then decreased when reaction time 

increased [130]. The maximum of about 6 wt.% of mono-, di- and triglycerides in 

total in the ester phase, was observed very early in the reaction (1 min reaction time) 

during in-situ transesterification of rapeseed with methanol at 60C [27]. 

Reaction temperature provided significant effect on the concentration of mono- 

and di-glyceride. The increment of reaction temperature raised the intermediate 

products. It can be observed that rising temperature from 40C to 50C, the maximum 

concentration of diglyceride enhanced slightly from 2.89 wt.% to 3.12 wt.%. It 

occurred also with increase in reaction temperature from 50C to 60C, its maximum 

concentration raised insignificantly to 3.82 wt.%. There was a small increase in the 

concentration of monoglyceride by enhancing reaction temperature from 40C to 

60C, that were in the range of 2.13 to 2.76 wt.%. It demonstrated that the purity of 

biodiesel decreased by increasing reaction temperature. It was in accordance with 

other works by Ginting, et al. [36, 123]. They reported that the highest conversion of 

Jatropha curcas oil to ethyl ester, revealed the highest biodiesel purity, was achieved 

at 30C and rising reaction temperature diminished the purity of ethyl ester. 

4.3.4 Effect of particle size 

In the process of in-situ transesterification, the yield of biodiesel depends on the 

efficiency of extraction and the yield of transesterification [32, 35]. The efficiency of 

solvent extraction process is affected by several factors, such as the type of solvent 

used, the extraction temperature, particle size, and solvent to oilseed ratio [131]. 

Particle size is an important factor in in-situ transesterification since it can be 

overcome the mass transfer limitation during reaction. Decreasing the size of particle 
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could enhance the contact surface area. The effect of particle size on biodiesel yield  

was conducted at various reaction time up to 240 minutes with the particle sizes of 

DP<0.425 mm, 0.425<DP<0.600 mm, 0.600<DP<1.18 mm, and 1.18<DP<2 mm. Other 

parameters were set at optimum condition, ratio of methanol volume to seed weight of 

8.08 (mL·g-1), catalyst concentration of 1.94 wt.%, stirring speed of 500 rpm, and 

reaction temperature of 57C. The biodiesel yields at various particle sizes are 

presented in Figure 4.17. 

It was observed that decreasing particle size from 1.18<DP<2 mm up to 

0.425<DP<0.600 mm enhanced the biodiesel yield at all reaction time. Particle size 

reduction not only increases the specific area (surface area to volume ratio) of oilseed 

but also ruptures its cell walls. In small particles which have large specific areas, more 

oil is available on the surface than in inner, unbroken cells. Therefore, the yield of 

extracted oil is higher from the smaller particles than the larger particles as there is 

apparently no diffusion through undamaged cell walls [132]. 

However the yield was diminished at smaller particle size than 0.425 mm since at 

this condition, seeds agglomerated to become bigger size and reduced the contact 

surface area of particles and inhibited the oil extraction. Moreover, due to high 

polarity of methanol, the smallest particle size of seeds did not only extract the oil but 

also extract polar compounds such as phospholipids. It can disturb the reaction and 

reduce the conversion of oil to methyl ester. 

At initial reaction time (10 minutes) biodiesel yield of the biggest particle size of 

1.18<DP<2 mm was 22.12%. It increased appreciably to 51.55% at particle size of 

0.600<DP<1.18 mm and reached the maximum yield of 63.89% at 0.425<DP<0.600 

mm particle size. 

Reducing particle size of DP<0.425 mm, the yield decreased significantly into 

36.55%. Particle size affected the reaction completion. At 0.425<DP<0.600 mm 

particle size, the yield was almost constant after 60 min reaction time. It showed that 

the reaction was completed and the maximum yield of 90.97% was obtained. 
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Figure 4.17: Methyl ester yield for different particle size with ratio of methanol 

volume to seed weight of 8.08:1, NaOH concentration of 1.94 wt.% at 57C 

Meanwhile for the other particle sizes, the reactions were accomplished at longer 

reaction time that was 90 minutes. At this reaction time, the biodiesel yield of 

0.600<DP<1.18 mm particle size differed insignificantly from particle size of 

0.425<DP<0.600 mm, and only these particle sizes produced biodiesel yields more 

than 85%. 

On the contrary of this study, Kaul, et al. [34] obtained that the biggest seed size 

more than 2.46 mm produced the maximum conversion into biodiesel of 

approximately 98% within 60 minutes reaction time. Kasim and Harvey [37] 

evaluated the effect of particle sizes of <0.5 mm, 0.5-0.71 mm, 0.71-1 mm, 1-2 mm, 

and 2-4 mm on the biodiesel yields. They mentioned that the highest yield of 86.1% 

was achieved at the smallest particle size (<0.5 mm) within 60 minutes reaction time, 

followed by particle size of 0.5-0.71 mm with the yield of 83.7%. The other particle 
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sizes produced lowered biodiesel yield, less than 80%. Zakaria and Harvey [27] 

reported that using particle size of 300-500 m could attain the maximum yield of 

methyl ester around 1 h. Nonetheless, increasing the particle size to 1000-1400 m 

prolonged the reaction completion to be more than 3 h. 

4.3.5 The properties of fatty acid methyl ester 

In comparison with fatty acid isopropyl ester produced by in-situ transesterification of 

Jatropha curcas with isopropanol, the yield of fatty acid methyl ester was higher and 

its quality much better since methanol was more polar than isopropanol, thus its 

biodiesel could be separated and washed easier from the by-product and impurities 

with lower saponification and lower water consumption. The drawback of methanol 

was the lower ability to extract Jatropha curcas oil from the seeds. The properties of 

methyl ester produced at optimum condition including the ratio of methanol to seed 

weight of 8.08, NaOH concentration of 1.94 wt.%, 0.425<DP<0.600 mm particle size, 

500 rpm stirring speed at 57C for 120 min are presented in Table 4.6. The properties 

were in the range of standard requirements of EN 14214 and ASTM D6751. 

4.4 In-situ Transesterification of Jatropha curcas Seeds with Methanol and 

Isopropanol 

Based on the extractability of alcohols to Jatropha curcas oil, low capacity of 

methanol in extracting oil can be improved by adding isopropanol. By adding 

isopropanol in the volume ratio of 1:1 to methanol, its extractability to be 5.4 times 

larger than without the addition of isopropanol. In-situ transesterification of Jatropha 

curcas seeds with isopropanol produced lower biodiesel yield of (85.32 ± 0.30)% and 

poorer its properties than that with methanol which provided (90.45  0.25)% 

biodiesel yield and better properties. Therefore, in-situ transesterification Jatropha 

curcas seeds were conducted using the mixture of methanol and isopropanol in order 

to enhance the biodiesel yield by maintaining the better properties of biodiesel 

produced. Four independent variables which were tested included the ratio of the 
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mixture volume to seed weight, NaOH concentration, and volume ratio of methanol to 

the mixture of methanol and isopropanol, and reaction temperature. 

 

Table 4.6: The properties of fatty acid methyl ester 

Parameter Unit Value Method Limits 

Density at 15C kg/m3 880 ASTM D-4052 860-900 

Kinematic viscosity 

at 40C 

mm2/s 4.99 ASTM D-445 1.9-6.0 

Acid value mg KOH/g 0.1940  ASTM D-664 0.8 max 

Ester content % mass 99.80 EN 14103 96.5 min 

Total glycerin % mass 0.198 ASTM D-6584 0.240 max 

Free glycerin % mass 0.00082 ASTM D-6584 0.020 max 

Flash point (closed 

cup) 

C 176 ASTM D-93 130 min 

Cloud point C 8 ASTM D-2500 Report to 

customer 

Pour point C -3 ASTM D-97 -15 to 10 

 

Meanwhile, variables which were kept constant during the reaction comprised stirring 

speed of 500 rpm (based on the previous experiment with methanol), the particle size 

of less than 600 m, the seed weight of 20 g, and reaction time of 120 min. To 

determine the optimum condition of this process with a minimum number of 

experimental runs, response surface methodology, a central composite design was 

employed. 
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4.4.1 Optimization of in-situ transesterification of Jatropha curcas seed with the 

mixture of methanol and isopropanol 

4.4.1.1 ANOVA and regression analysis 

The relation between the response of methyl-isopropyl ester yield and four 

independent variables of reaction (the ratio of mixture volume to seed weight, NaOH 

concentration, and Volume ratio of methanol to the mixture of methanol and 

isopropanol, and reaction temperature) were estimated using response surface 

methodology. Twenty seven experimental runs were conducted according to the full 

24 central composite design and the results of each test are presented in Table 4.7. 

The yields of methyl-isopropyl ester varied in the range of 29.10% to 89.05%. 

The minimum yield of 29.10 was obtained with 8.75 ratio of the mixture volume to 

seed weight, 0.5 wt.% NaOH concentrations, and 0.5 volume ratio of methanol to the 

mixture at 60C. Meanwhile, the maximum yield of 89.05% was reached at 10 ratio 

of mixture volume/seed weight, 2 wt.% NaOH concentration, 0.3 ratio of methanol 

volume to the mixture volume at 70C. Multiple regression was used to construct the 

empirical second-order polynomial model based on the observed response of the full 

factorial central composite design to predict biodiesel yield, as a function of 

significant variables and was depicted in Eq. (4.2) (with positive sign in front of the 

terms indicates synergistic effect and negative sign indicates antagonistic effect): 

2
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 (4.2) 
where, 

Y : predicted biodiesel yield (%) 

RVW : ratio of methanol and isopropanol volume to seed weight (mL·g-1) 

CNaOH : sodium hydroxide concentration (wt.%) 

RV : volume ratio of methanol to the mixture of methanol and isopropanol 

T : reaction temperature (C) 
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Table 4.7: The difference between the observed and fitted value (obs-fitted) of biodiesel 

yield (%) for the mixture of methanol and isopropanol 

Test A B C D observed Fitted obs-fitted 

     value (%) value (%) (%) 

1 8.75 1.5 0.5 60 85.35 84.97 0.38 

2 6.25 1.5 0.5 60 62.33 59.71 2.62 

3 10 2 0.3 50 78.16 77.18 0.98 

4 10 2 0.7 50 74.54 72.89 1.65 

5 7.5 1 0.7 70 50.43 52.59 -2.16 

6 11.25 1.5 0.5 60 80.12 83.54 -3.42 

7 7.5 1 0.3 50 45.40 45.15 0.25 

8 8.75 1.5 0.1 60 44.78 46.79 -2.01 

9 8.75 1.5 0.5 60 84.68 84.97 -0.29 

10 7.5 2 0.7 50 72.98 73.41 -0.43 

11 7.5 2 0.3 70 48.75 50.38 -1.63 

12 7.5 1 0.7 50 54.39 56.91 -2.52 

13 10 2 0.7 70 87.38 88.81 -1.43 

14 10 2 0.3 70 89.05 84.55 4.50 

15 10 1 0.7 50 47.02 46.57 0.45 

16 10 1 0.3 50 63.84 63.14 0.71 

17 10 1 0.7 70 50.15 48.62 1.53 

18 8.75 1.5 0.5 60 84.89 84.97 -0.08 

19 8.75 0.5 0.5 60 29.10 27.62 1.48 

20 8.75 1.5 0.5 80 70.21 70.64 -0.43 

21 10 1 0.3 70 55.88 56.63 -0.75 

22 7.5 2 0.3 50 49.83 49.38 0.45 

23 7.5 1 0.3 70 32.62 32.29 0.33 

24 8.75 1.5 0.5 40 67.22 67.59 -0.37 

25 7.5 2 0.7 70 84.24 82.96 1.28 

26 8.75 2.5 0.5 60 69.75 72.03 -2.28 

27 8.75 1.5 0.9 60 64.01 62.80 1.21 

Notes:  A = VMix: Wseed (mL/g),  B = [NaOH] (wt.%),  C = VMeOH:Vmix (mL/mL), and  D = T (C) 
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The empirical second-order polynomial model was tested against the empirical 

data to determine the level of significance and the level of the fit according to test 

procedure of analysis of variance. The confidence level of 95% was selected to 

determine the significance level of the empirical model and each term in it. Table 4.8 

presents the analysis of variance for the regression model. The computed F-value of 

143.24 was larger than the theoritical F-value of 2.64 and the P-value of fitted model 

of < 0.0001 was lower than 0.05, which demonstrated that the empirical model had 

high significance and could be dependable to predict the yield of methyl-isopropyl 

ester. 

Each regression coefficients of the second-order polynomial model was tested at 

confidence level of 95% to determine its significance. The empirical model terms of 

A, B, C, AA, AB, AC, AD, BB, BC, BD, CC, CD, and DD had significant effects on 

the methyl-isopropyl ester yield because the computed F-values for the respective 

terms were higher than the theoretical F0.05(1,12) value of 4.75 and P-values lower than 

0.05 (5%). According to the F-value, the term of NaOH concentration was the most 

significant variable to the yield of methyl-isopropyl ester, consequently the quadratic 

term of NaOH concentration also had high significant effect to methyl-isopropyl ester 

yield. The linear term of ratio of the mixture volume to seed weight, the interaction 

term between ratio of Vmixure to Wseed and the ratio of  VMeOH to Vmixture, the quadratic 

term of the ratio of  VMeOH to Vmixture had large effect on the methyl-isopropyl ester 

yield since their F-values were very high and their P-values were very low. 

Meanwhile, the reaction temperature (D) term indicated insignificant effect on the 

response of methyl-isopropyl ester yield as the F-value of 2.17 was lower than the 

theoretical F0.05(1,12) value of 4.75 and P-value of 0.1668 was higher than 0.05. This 

reaction temperature term should be excluded from the analysis of variance and it 

should not be appeared in the second-order model of Eq. (4.2). However, this term 

was not excluded from the analysis of variance and from the empirical model since 

the interaction between reaction temperature (D) and other variables as well as the 

quadratic term of reaction temperature had larger the computed F-values than the 

theoretical one and lower P-values than 0.05 which demonstrated that these terms had 

significant effects on methyl-isopropyl ester yield. Consequently, by including the D 
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term the adjusted coefficient of multiple determinations was slightly lower than the 

coefficient of multiple determinations. 

Table 4.8: Analysis of Variance for the empirical second-order polynomial model in 

Eq. (4.2) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 8930.00 14 637.86 143.24 < 0.0001 

A: Vmix : Wseed 851.565 1 851.565 131.89 0.0000 

B:[NaOH] 2959.26 1 2959.26 458.32 0.0000 

C: VMeOH:Vmix 384.48 1 384.48 59.55 0.0000 

D:Temp 13.9843 1 13.9843 2.17 0.1668 

AA 237.541 1 237.541 36.79 0.0001 

AB 96.4324 1 96.4324 14.94 0.0022 

AC 802.022 1 802.022 124.22 0.0000 

AD 40.5132 1 40.5132 6.27 0.0277 

BB 1647.13 1 1647.13 255.10 0.0000 

BC 150.676 1 150.676 23.34 0.0004 

BD 192.377 1 192.377 29.79 0.0001 

CC 1214.24 1 1214.24 188.06 0.0000 

CD 73.1025 1 73.1025 11.32 0.0056 

DD 335.28 1 335.28 51.93 0.0000 

Total error 77.4803 12 6.45669   

Total (corr.) 7814.54 26    

In order to test the fit of the model, the determination coefficient was evaluated. 

Figure 4.18 shows the predicted versus observed value for methyl-isopropyl ester 

yield with high coefficient of multiple determination of 0.99. The empirical second-

order polynomial model could explain 99% of the variability in biodiesel yield and 
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only 1% of the total variations were not explained by this model. The value of 

adjusted coefficient of multiple determinations (adjusted R2), which was more 

suitable for comparing model with different numbers of independent variables, was 

also high of 0.9785. A high R2 and adj-R2 reveals that the empirical model can be 

applied to predict the response of biodiesel yield with high precision. 

 

Figure 4.18: Predicted versus observed methyl-isopropyl yield 

4.4.1.2 Effect of the ratio of methanol and isopropanol volume to seed weight 

(V(MeOH+IPA)/Wseed) on the yield of methyl-isopropyl ester 

Discussion the effect of the mixture volume to seed weight ratio on the methyl-

isopropyl yield must involve the influences of other independent variables, namely 

NaOH concentration, volume ratio of methanol to the mixture of methanol and 

isopropanol, and reaction temperature, since the interactions between the mixture 

R
2
 = 0.99

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Observed value (%)

P
re

d
ic

te
d

 v
a

lu
e 

(%
)



 

95 

volume to seed weight ratio and these variables had significant influences on the yield 

of methyl-isopropyl ester. 

 

 

Figure 4.19: The estimated response surface (a) and contour plot (b) of methyl- 

isopropyl ester yield with the constant of VMeOH/V(MeOH+IPA) = 0.46 at 68C 

Figure 4.19 shows the estimated response surfaces and contours of methyl-

isopropyl yield at 68C and the constant of methanol volume to the mixture volume 

ratio of 0.46. In in-situ transesterification with methanol, the interaction term of 

VMeOH/Wseed ratio and NaOH concentration had insignificant effect on methyl ester 

yield since the computed F-value was lower than the theoretical one and the P-value 

was more than 0.05, thus it was not included in the empirical model of methanol of 
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Eq. (4.1). Meanwhile, in this process, the interaction term of V(MeOH+IPA)/Wseed ratio 

had significant influence on the methyl-isopropyl ester yield, according to the 

computed F-value of 14.94, which was higher than the theoretical F-value of 2.17 and 

the P-value of 0.0022 was lower than 0.05.  

Increasing the ratio of V(MeOH+IPA)/Wseed from 7.5 to 10.8 and rising NaOH 

concentration from 1 wt.% to 1.99 wt.% enhanced the methyl-isopropyl ester yield, in 

line with positive interaction term of RVW and CNaOH in Eq. (4.2). 

However, further augmenting in V(MeOH+IPA)/Wseed ratio and NaOH concentration 

diminished slightly the biodiesel yield. In this condition, the formation of soap was 

observed during separation process of the ester-rich phase from the glycerol-rich 

phase, although the formation of soap in this process was not as much as in the 

previous process of in-situ transesterification with isopropanol. 

Increasing V(MeOH+IPA)/Wseed ratio augmented the mixture volume of methanol and 

isopropanol, since the seed weight was kept constant. It was observed during the 

biodiesel separation that higher the mixture volume enhanced the volume of glycerol-

rich phase or lower layer and decreased the volume of biodiesel-rich phase or upper 

layer. To examine it, the lower layer was drawn out and placed in another separator 

funnel. It was added with water and shaken several minutes, thereafter two layers 

were formed which showed that some part of biodiesel-rich phase was dissolved in 

the glycerol-rich phase. It was conformed with another research work conducted by 

Zakaria and Harvey [27]. They added n-hexane instead of water to observe the 

dissolution of biodiesel in glycerol layer at high molar ratio of methanol to oil. It can 

be inferred that higher ratio of V(MeOH+IPA)/Wseed decreased the yield of biodiesel due 

to some part of biodiesel was dissolved in glycerol-rich layer and separated out from 

its layer. Besides that, higher volume of methanol and isopropanol could dilute NaOH 

catalyst and the oil which lessened the interaction between them during 

transesterification. Consequently, the oil conversion to methyl-isopropyl ester 

decreased. 

Figure 4.20 depicts the estimated response surface of biodiesel yield and its 

contour of the interaction between V(MeOH+IPA)/Wseed ratio and VMeOH/V(MeOH+IPA) ratio. 
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The interaction between the ratio of V(MeOH+IPA)/Wseed and VMeOH/V(MeOH+IPA) ratio 

provided a very significant effect on the methyl-isopropyl ester yield due to its larger 

F-value of 124.22 than other interaction terms. 

 

 

Figure 4.20: The estimated response surface (a) and contour plot (b) of methyl- 

isopropyl ester yield with the constant of [NaOH] = 1.99 wt.% at 68C 

Rising the ratio of V(MeOH+IPA)/Wseed from 7.5 to 10.8 and enhancing the ratio of 

VMeOH/V(MeOH+IPA) from 0.3 to 0.46 increased the extraction of oil and the methyl-

isopropyl ester yield. Subsequently, raising the ratio of V(MeOH+IPA)/Wseed above 10.8 

along with increase in the ratio of VMeOH/V(MeOH+IPA) decreased the yield of methyl-
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isopropyl ester, as resulted the negative interaction term of RVW and RV in Eq. (4.2). 

Increasing VMeOH/V(MeOH+IPA) ratio revealed rising the volume of methanol and 

decreasing isopropanol in the mixture. Due to the lowest ability of methanol to extract 

oil, the higher V(MeOH+IPA)/Wseed ratio along with the higher VMeOH/V(MeOH+IPA) reduced 

the extracted oil from the seed and the conversion of oil to methyl-isopropyl ester as 

well as the yield. Moreover, diluting effect of catalyst and the extracted oil due to 

increase in V(MeOH+IPA)/Wseed ratio contributed to diminish the oil conversion to the 

yield of ester. In order to obtain high ester yield, one variable should be set at low 

value while another variable adjusted at high value. 

Figure 4.21 presents the estimated response surface of biodiesel yield and its 

contour of the interaction between V(MeOH+IPA)/Wseed ratio and reaction temperature. 

This interaction was the term which had the least influence on the yield of methyl-

isopropyl ester, due to the lowest of the computed F-value of 6.27 than other terms. 

Raising the ratio of V(MeOH+IPA)/Wseed from 7.5 to 10.8 along with the increment of 

reaction temperature from 50C to 68C elevated the methyl-isopropyl ester yield. 

Further increasing V(MeOH+IPA)/Wseed ratio beyond 10.8 and reaction temperature above 

68C lowered insignificantly its yield. At low V(MeOH+IPA)/Wseed ratio, increasing 

reaction temperature up to 68C only enhanced slightly the yield of biodiesel. Next 

rising reaction temperature reduced inconsiderable the ester yield, corresponding to 

the small positive interaction term of RVW and T in Eq. (4.2). Over 12 of 

V(MeOH+IPA)/Wseed ratio, the increment of reaction temperature did not affect the 

conversion of oil to methyl-isopropyl ester. 

It was in accordance with the analysis of variance where the linear term of 

reaction temperature had lower computed F-value than theoretical one which revealed 

the reaction temperature had insignificant effect on the response of methyl-isopropyl 

ester yield. The minor enhancement of oil conversion to ester which was gained from 

increasing the temperature in the range of 30C to 65C were reported by other 

research works [24, 27, 32]. 
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Figure 4.21: The estimated response surface (a) and contour plot (b) of methyl- 

isopropyl ester yield with the constant of [NaOH] = 1.99 wt.% and 

VMeOH/V(MeOH+IPA)=0.46 effect of NaOH 

4.4.1.3 Effect of sodium hydroxide concentration on the yield of methyl-isopropyl 

ester 

The effect of NaOH concentration on the methyl-isopropyl ester yield was associated 

with its interaction with VMeOH/V(MeOH+IPA) ratio and reaction temperature besides with 

V(MeOH+IPA)/Wseed ratio which has discussed previously. Figure 4.22 displays the 

interactive effect of NaOH concentration and VMeOH/V(MeOH+IPA) ratio. 
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Figure 4.22: The estimated response surface (a) and contour plot (b) of methyl- 

isopropyl ester yield with the constant of V(MeOH+IPA)/Wseed  = 10.8 at 68C 

 Increase in NaOH concentration from 1 wt.% to 1.99 wt.% associated with rising 

VMeOH/V(MeOH+IPA) ratio from 0.1 to 0.46 enhanced significantly the extraction of oil 

from the seeds and its conversion to methyl-isopropyl ester, which in line with the 

positive interaction term of CNaOH and RV in second-order polynomial model. Kasim 

and Harvey [37] stated that the presence of NaOH in the alcohol significantly 

enhanced the extraction efficiency of Jatropha curcas oil, almost all of the 

triglycerides in the seeds were removed.  

Nevertheless, excess NaOH concentration addition followed by higher 

VMeOH/V(MeOH+IPA) ratio lowered the oil extraction as well as its conversion to methyl-
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isopropyl ester. Higher VMeOH/V(MeOH+IPA) ratio showed the volume of methanol 

increased, inversely, the isopropanol volume reduced which affected in the oil 

extracted from the seeds to be lessened. 

 

 

Figure 4.23: The estimated response surface (a) and contour plot (b) of methyl- 

isopropyl ester yield with the constant of V(MeOH+IPA)/Wseed  = 10.8 and 

VMeOH/V(MeOH+IPA)=0.46 

Figure 4.23 describes the effect of interaction between NaOH concentration and 

reaction temperature on biodiesel yield. It can be observed that raising NaOH 

concentration from 1 wt.% to 1.99 wt.% as well as the increment of reaction 

temperature from 50C to 68C augmented greatly the oil extraction and its 

conversion to methyl-isopropyl ester. It indicated that sufficient NaOH concentration 
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had to be added in reaction to complete the conversion of oil to ester. At lower adding 

of NaOH concentration, elevating reaction temperature improved indifferently the 

yield of methyl-isopropyl ester. On the contrary, at higher NaOH concentration than 

1.99 wt.%, rising reaction temperature over 68C decreased inconsiderable the ester 

yield, complying the minor effect of reaction temperature on the yield of ester. 

Higher NaOH amount addition in the reaction led the formation of soaps. When 

NaOH reacted with methanol and isopropanol, the water was formed besides the 

alkoxide. Water could hydrolyse triglycerides in the presence of NaOH to produce 

sodium soaps. The soap inhibits separation of the methyl-isopropyl esters and 

glycerol. During wash step with water, soaps caused the emulsion formation. The 

formation of soaps and its separation from biodiesel in in-situ transesterification with 

the mixture of methanol and isopropanol was less than that with isopropanol. 

However, it was slightly higher than that with methanol. The amount of water 

consumption in wash step was in the range between its consumption in the process 

with methanol and that in the process with isopropanol. The formation of soaps 

increased when the reaction carried out at higher reaction temperature and higher 

NaOH concentration. In this condition, hydrolysis of triglyceride was accelerated. 

4.4.1.4 Optimization analysis 

The optimum conditions of four independent variables, the ratio of V(MeOH+IPA)/Wseed, 

NaOH concentration, the ratio of VMeOH/V(MeOH+IPA), and reaction temperature, which 

maximized the methyl-isopropyl yield were attained by numerical optimization using 

Statgraph Centurion 15.2.11.0 software (by StatPoint Inc.). Table 4.9 shows the high 

and low limit experimental region as well as the optimum factors. The optimum 

conditions obtained by design of experiment included 10.82 V(MeOH+IPA)/Wseed ratio, 

1.99 wt.% NaOH concentration, 0.46 volume ratio of methanol to the mixture of 

methanol and isopropanol at 68C reaction temperature. At these optimum conditions, 

the predicted maximum methyl-isopropyl yield obtained was 95.31%. 
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Table 4.9: The combination of factor levels which maximized methyl-isopropyl yield 

Factor Low High Optimum 

V(MeOH+IPA) : Wseed ratio (mL/g) 6.25 11.25 10.82 

[NaOH] wt.% 0.5 2.5 1.99 

VMeOH : V(MeOH+IPA) ratio (mL/mL) 0.1 0.9 0.46 

T (0C) 40.0 80.0 68 

In order to verify the predicted maximum methyl-isopropyl yield, in-situ 

transeterification of Jatropha curcas seeds was performed at optimum conditions 

triplicate. Table 4.10 presents the comparison of the predicted and experimental 

(observed) maximum methyl-isopropyl yield. 

Table 4.10: The comparison of the predicted and observed maximum methyl- 

isopropyl yield 

Test Factors Response (%) Residual 

obs-predc VMix:Wseed 

(mL/g) 

CNaOH 

(wt.%) 

VMeOH: VMix 

(mL/mL) 

T (0C) Obsv. Predc 

1 10.82 1.99 0.46 68 95.02 95.31 -0.29 

2 10.82 1.99 0.46 68 94.87 95.31 -0.44 

3 10.82 1.99 0.46 68 94.46 95.31 -0.85 

The maximum biodiesel yields obtained from experiment was (94.78  0.29)% 

indicated that there was insignificantly difference between the predicted maximum 

methyl-isopropyl yield and the experimental one. This optimum ester yield was 

slightly higher than the maximum biodiesel yield achieved by Lee, et al. [133] who 

explored transesterification of Jatropha curcas oil using CaO–MgO mixed oxide 

catalyst. They determined the optimum conditions of reaction by employing response 

surface methodology in conjunction with the central composite design, which 

included methanol/oil molar ratio of 38.67, reaction time of 3.44 h, catalyst amount of 

3.70 wt.% at 115.87C reaction temperature, to obtain 93.55% biodiesel yield, less 2% 

than the predicted one. Sahoo and Das [74] examined the biodiesel production from 

Jatropha curcas oil which compared with karanja and polanga oils. They applied 
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triple stage transesterification to transesterify the high free fatty acid oils. Ortho-

phosphoric acid, sulfuric acid, and potassium hydroxide were used to convert the oils 

into fatty acid methyl esters. The conversion of Jatropha curcas oil to biodiesel of 

93% was produced which had 2% difference from the biodiesel yield of this work.  

However, the biodiesel production from Jatropha curcas by in-situ 

transesterification which had been done were more economical than the previous 

transesterification performed by Lee, et al. as well as by Sahoo and Das since in the 

process of in-situ transesterification, the step of pre-extracted oil and oil refining were 

not necessary. The Jatropha curcas seeds were subjected as a feedstock and reacted 

directly with methanol-isopropanol catalyzed by sodium hydroxide, a low-cost 

catalyst, to achieve the higher yield of biodiesel. Thus the cost of process and 

chemicals could be reduced. 

In optimization of biodiesel production from edible and non-edible vegetable oils, 

a two-step transesterification of Jatropha curcas oil, which had initial acid value of 28 

mg KOH/g, was undertaken. Two hours reaction time for each step or 4 h total 

reaction time was required to complete the oil conversion to biodiesel and 90-95% 

methyl ester yield was attained which was comparable to the methyl ester yield 

obtained in this research work [78]. 

Lei, et al. [31] reported that in biodiesel production from low quality rice bran 

through in-situ extraction, esterification and transesterification process, the rate of 

esterification and the transesterification rate reached 98.83% and 80.47%. , using 75 

mL of absolute methanol, 150 mL of petroleum ether, 0.75 g of concentrated sulfuric 

acid and 0.71 g of sodium hydroxyl. The methyl ester yield of 95.16%, which was 

similar to the biodiesel yield of this work, was calculated based on the esterification 

and transesterification rates as well as the free fatty acid and triglyceride contents of 

the extracted rice bran oil. 

The optimum methyl-isopropyl ester yield of (94.78  0.29)% was higher than the 

optimum methyl ester yield of (90.45  0.25)% which revealed that the addition of 

isopropanol to methanol could improve the Jatropha curcas oil conversion to 

biodiesel and its yield. This was in accordance with the solubility and extractability of 
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alcohols to the Jatropha curcas oil. Methanol was only slightly soluble in the oil, 

whereas isopropanol could be dissolved easily in the oil. The oil extractability was 

higher with non-polar solvent compared to polar solvent due to vegetable oil was non-

polar. Isopropanol was a short-chain alcohol with the highest oil extractability (47.54 

± 0.85)%, because it was less polarity than methanol. Therefore, the addition of 

isopropanol in methanol could increase the extracted oil followed by oil conversion to 

biodiesel. However, in-situ transesterification of Jatropha curcas seeds with the 

mixture of methanol and isopropanol required more solvent volume than that with 

methanol. In this study, the optimum variable of alcohol volume to seed weight ratio 

for methanol was 8.08 that was 162 mL methanol volume to 20 g seed weight, while 

for the mixture of methanol and isopropanol the ratio was 10.82, which was 216 mL 

the mixture volume to 20 g seed weight. The mixture volume of 216 mL comprised 

methanol volume of 99.36 mL and isopropanol volume of 116.64 mL. 

The volume of isopropanol was higher than methanol to extract Jatropha curcas 

oil from seeds, and then the extracted oil was mainly transesterified by methanol to be 

converted to biodiesel. There was a small portion of extracted oil which was 

transesterified by isopropanol to be biodiesel, with the isopropyl ester yield of 6.17%.  

Figure 4.24 depicts the result of gas chromatography-mass spectroscopy (GCMS) 

of methyl-isopropyl ester at optimum condition. Higher peaks were methyl ester 

peaks indicated that methyl ester contributed the major composition of biodiesel of 

93.83%, whereas isopropyl ester only composed 6.17% of total biodiesel. 

The amount of catalyst required was higher for in-situ transesterification with the 

mixture of methanol and isopropanol, that was 1.99 wt.%, than that with methanol of 

1.94 wt.%, since the solvent volume also higher in the process with the mixture of 

methanol and isopropanol. The boiling point of methanol is 64.7C and boiling point 

of isopropanol is 82.5C, then the boiling point of the mixture of methanol and 

isopropanol lies between those values. Generally, transesterification is conducted at 

below boiling point of the solvent. Therefore the optimum reaction temperature of in-

situ transesterification with the mixture of methanol and isopropanol (68C) was 

higher than that with methanol (57C). 
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Figure 4.24: GCMS chromatogram of methyl-isopropyl ester produced at optimum 

condition 

4.4.2 Effect of reaction temperature 

Figure 4.25 depicts the effect of reaction temperature of 40, 50, 60, 65, and 70C on 

the yield of methyl-isopropyl ester for various reaction times at the optimum reaction 

parameters. The reaction temperature influenced the rate of extraction and 

transesterification. At the first 30 min of reaction time, the biodiesel yield enhanced 

by increasing reaction time for all reaction temperature. Further increasing reaction 
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Figure 4.25: Effect of reaction temperature on the yield of methyl-isopropyl ester at 

various reaction time 

time, the yield of biodiesel improved slightly and more than 60 min the biodiesel 

yield was almost constant. At this condition, the reaction temperature did not affect on 

enhancing the biodiesel yield, the amount of oil extracted was similar at all reaction 

temperature and transesterification was almost completed. This result was in 

conformity with other works [24, 27, 32, 37]. The insignificant effect of reaction 

temperature occurred at the first 4 min reaction time as well. At this reaction period, 

the oil extraction occurred through removal of oil by washing/dilution and the 

alcoholysis showed a lag time before significant amount of biodiesel resulted [134]. 

Hence, the effect of reaction temperature on extraction rate and on alcoholysis 

(transeterification) rate could be neglected. 

The reaction temperature influenced the methyl-isopropyl ester yield at the 

reaction time between 4 min and before 60 min. At this condition, the oil extraction 

which was controlled by diffusion of the oil from capillary channel and molecular 

diffusion occurred faster at higher reaction temperature. The solubility of alcohol in 

an oil and rate of alcoholysis increased by increment of reaction temperature and 
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enhance the conversion of triglyceride to biodiesel to achieve the maximum 

conversion in shorter time [27, 37].  

The methyl-isopropanol ester yields were higher than the methyl ester yields for 

the same reaction time at temperature of 40, 50, 60C. The oil conversion to methyl-

isopropyl ester was completed in shorter time than oil conversion to methyl ester. It 

indicated that the addition of isopropanol to methanol could be facilitated the oil 

extraction to be converted into biodiesel. 

4.4.3 Effect of particle size 

Effect of particle size was determine at the optimum reaction conditions, 10.82 

V(MeOH+IPA)/Wseed ratio, 1.99 wt.% NaOH concentration, 0.46 volume ratio of 

methanol to the mixture of methanol and isopropanol at 68 C reaction temperature 

and different reaction time. Drying seeds were ground and sieved to obtain three 

different size of particles, which were 0.600 mm < DP < 1.800 mm, 0.425 < DP < 

0.600 mm, and DP <0.425 mm. 

Figure 4.26 presents effect of different particle size on the yield of methyl-

isopropyl ester at various reaction times. It was different from in-situ 

transesterification of Jatropha curcas seeds with methanol which demonstrated 

diminishing particle size from 1.18<DP<2 mm up to 0.425<DP<0.600 mm enhanced 

the biodiesel yield at all reaction time. Nevertheless, the yield was reduced when the 

smaller particle size than 0.425 mm was used. In the process of in-situ 

transesterification of Jatropha curcas seeds with the mixture of methanol and 

isopropanol, reducing the particle size from 0.600<DP<1.180 mm to DP<0.425 mm 

increased the yield of biodiesel. The yield of biodiesel produced from particle size of 

0.425<DP<0.600 mm was insignificantly different from one of DP<0.425 mm. Kasim 

and Harvey [37] evaluated the effect of particle sizes of <0.5 mm, 0.5-0.71 mm, 0.71-

1 mm, 1-2 mm, and 2-4 mm on the biodiesel yields. They reported that the highest 

yield of 86.1% was achieved at the smallest particle size (<0.5 mm) within 60 minutes 

reaction time, which was slightly different with the yield of 83.7% produced from 

particle size of 0.5-0.71 mm. The other particle sizes produced lower the biodiesel 

yield, less than 80%. 
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Figure 4.26: Effect of different particle size on the yield of methyl-isopropyl ester at 

optimum reaction conditions 

At the first 30 min for smaller particle size of 0.425 < Dp < 0.600 mm, and Dp 

<0.425 mm, the yield of methyl-isopropyl ester enhanced sharply indicated that the oil 

extraction and transesterification proceeded in fast reaction rate and reached the 

reaction completion in this time. Meanwhile, for particle size of 0.600 mm < Dp < 

1.800 mm, the yield improved by increasing reaction time and achieved its 

completion after 75 min. At the first 4 min and after 75 min of reaction time, the oil 

extraction and oil conversion rate were almost the same for all particle size indicated 

by the similar yield of biodiesel, which meant at this reaction period, the seed particle 

size had no influence on the oil extraction and its conversion to biodiesel. Shuit, et al. 

[35] investigated that the different particle size affected the extraction efficiency and 

fatty acid methyl ester yield. During 8 h reaction time, the different particle sizes in 

the range of 0.335 to 1 mm and less than 0.335 mm did not influence the extraction 

efficiency and fatty acid methyl ester yield which showed increasing gradually. 

Prolong reaction time more than 8 h, the extraction efficiency and methyl ester yield 
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resulted from particle size less than 0.335 mm enhanced and reached the maximum 

extraction efficiency of 90% and the maximum methyl ester yield of 99.8% after 24 h 

reaction period. Meanwhile, the extraction efficiency and methyl ester yield resulted 

from bigger particle size in the range of 0.335 to 1 mm gave almost constant up to 24 

h reaction time. 

The highest methyl-isopropyl ester yield of (95.03 ± 1.90)% was achieved at the 

optimum reaction parameters with the particle size less than 0.425 mm after 2 h 

reaction time. Generally, the yields of methyl-isopropyl ester were higher than the 

yield of methyl ester at the same particle size. Moreover, the equilibrium condition of 

in-situ transesterification with the mixture of methanol and isopropanol was reached 

in a shorter time than one with methanol. 

4.4.4 The properties of fatty acid methyl-isopropyl ester 

In comparison with fatty acid isopropyl ester produced by in-situ transesterification of 

Jatropha curcas with isopropanol, the yield of fatty acid methyl-isopropyl ester was 

higher and better in its quality. However, the properties of fatty acid methyl-isopropyl 

ester were similar to the properties of fatty acid methyl ester. The properties of 

methyl-isopropyl ester produced at optimum condition including the ratio of the 

mixture volume to seed weight of 10.82, NaOH concentration of 1.99 wt.%, Dp < 

0.425 mm particle size, 500 rpm stirring speed at 68C for 120 min are presented in 

Table 4.11. The properties met with the standard requirements of EN 14214 and 

ASTM D6751. 

Table 4.11: The properties of fatty acid methyl-isopropyl ester 

Parameter Unit Value Method Limits 

Density at 15C  kg·m-3 880 ASTM D-

4052 

860-900 

Kinematic viscosity at 

40C 

mm2·s-1 5.06 ASTM D-445 1.9-6.0 

Acid value mg KOH·g-1 0.1851  ASTM D-664 0.8 max 

Ester content % mass 99.33 EN 14103 96.5 min 
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Parameter Unit Value Method Limits 

Total glycerin % mass 0.186 ASTM D-

6584 

0.240 max 

Free glycerin % mass 0.0022 ASTM D-

6584 

0.020 max 

Flash point (closed 

cup) 

C 177 ASTM D-93 130 min 

Cloud point C 9 ASTM D-

2500 

Report to 

customer 

Pour point C -2 ASTM D-97 -15 to 10 

4.5 In-situ Transesterification of Jatropha curcas seed in Soxhlet Reactor 

In-situ alkaline transesterification proceeds through dissolution and alcoholysis of oil 

successively. The overall reaction rate is determined by the extraction and 

transesterification rate [32]. The ability of methanol to extract Jatropha curcas oil 

from its seeds was very low and its solubility was low in oil, n-hexane was mixed in 

methanol to improve the oil extraction and to speed up the reaction. Qian, et al. [32] 

added petroleum ether as a co-solvent to accelerate in-situ alkaline methanolysis of 

cottonseed. Meanwhile, Zeng, et al. [89] used diethoxymethane to enhance in-situ 

transesterification of sunflower oilseed. The high oil conversion was achieved in a 

very short reaction time. The co-solvent of n-hexane was utilized by Shuit, et al. [35] 

to improve the yield of methyl ester in reactive extraction and in-situ esterification of 

Jatropha curcas L. seeds.  

In this study, in-situ transesterification of Jatropha curcas seeds was performed in 

Soxhlet extractor without agitation, as a packed bed reactor. Since methanol had the 

lowest extractability to Jatropha curcas oil, the n-hexane was added to enhance the 

ability to extract its oil from the seeds. The seeds were placed in thimble, while the 

mixture of methanol and n-hexane catalyzed by sodium hydroxide was poured in the 

round-bottom flask as a reactor. The heating mantle was used to heat the solvent and 

vaporized it. The solvent vapour was cooled by condenser and condensate dripped 
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down into the thimble contained seeds in a chamber housing solid. Non-volatile 

compound in seeds was dissolved in the solvent. When chamber was full with solvent 

condensate, chamber was emptied and solvent flew down to the flask. In the flask, the 

solvent was heated and vaporized again, and then it was cooled by condenser. This 

process took place several times until certain reaction time. Three reaction 

parameters, including the ratio of the mixture volume to seed weight (RVW), sodium 

hydroxide concentration (CNaOH), and the volume ratio of methanol to the mixture of 

methanol to n-hexane (RV), were tested to obtain the optimum condition which 

maximized the methyl ester yield. Response surface methodology with Box-Behnken 

design was employed to determine the empirical models, to optimize the reaction 

factors, and to predict the maximum of yield. 

4.5.1 Optimization of In-situ transesterification of Jatropha curcas seeds with the 

mixture of methanol and n-hexane in Soxhlet Reactor 

4.5.1.1 Analysis of variance and regression analysis 

The experimental data of three parameters and the response yield are presented in 

Table 4.12. Each result was expressed as arithmetic mean of duplicate. Experimental 

results of this analysis were used to develop a second-order polynomial equation 

which demonstrated the relation between the methyl ester yield, ratio of the mixture 

volume to seed weight, sodium hydroxide concentration, and volume ratio of 

methanol to the mixture of methanol and n-hexane. Hence, the data was fitted to the 

second-order polynomial model and the model parameters were determined by 

multiple regression analysis as presented in Eq. (4.3).  

22
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 (4.3) 

where, 

Y : predicted biodiesel yield (%) 

RVW : ratio of methanol and n-hexane volume to seed weight (mL·g-1) 
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CNaOH : sodium hydroxide concentration (wt.%) 

RV : volume ratio of methanol to mixture of methanol and n-hexane 

(mL·mL-1) 

Positive sign in front of the terms indicates synergistic effect which increases the 

yield of methyl ester and negative sign indicates antagonistic effect. 

Table 4.12: The response of factorial design for the mixture of methanol  

and n- Hexane 

Test A B C Observed  Predicted  obs-predc 

    value (%) value (%) (%) 

1. 7.5 2.0 0.3 46.89 46.54 0.35 

2. 12.5 2.0 0.7 24.67 25.02 -0.35 

3. 7.5 2.25 0.5 47.93 49.19 -1.26 

4. 12.5 1.75 0.5 17.21 15.97 1.24 

5. 10 1.75 0.7 41.89 42.79 -0.9 

6. 7.5 1.75 0.5 81.27 80.33 0.94 

7. 10 2.25 0.7 52.48 51.19 1.29 

8. 10 2.0 0.5 79.89 79.9 -0.01 

9. 10 2.0 0.5 78.93 79.9 -0.97 

10. 7.5 2.0 0.7 62.58 62.62 -0.04 

11. 10 2.0 0.5 80.88 79.9 0.98 

12. 12.5 2.25 0.5 54.78 55.72 -0.94 

13. 10 2.25 0.3 40.62 39.72 0.9 

14. 12.5 2.0 0.3 26.37 26.33 0.04 

15. 10 1.75 0.3 38.21 39.5 -1.29 

Notes:  A = VMix: Wseed (mL·g-1),  B = [NaOH] (wt.%), and  C = VMeOH:Vmix (mL·mL-1) 

Table 4.13 presents the analysis of variance for the regression model, which was 

conducted to analyze the significance and goodness of the second-order polynomial 

model.  
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Table 4.13: ANOVA for the regression model of Eq. (4.3) 

Source Sum of 

squares 

DF Mean 

square 

F-value P-value 

Model 7822.36 9 869.15 467.37 < 0.0001 

A: Vmix:Wseed 
1671.58 1 1671.58 696.17 0.0000 

B: [NaOH] 37.1091 1 37.1091 15.46 0.0111 

C: VMeOH : Vmix 
109.003 1 109.003 45.40 0.0011 

AA 993.386 1 993.386 413.72 0.0000 

AB 1257.06 1 1257.06 523.53 0.0000 

AC 75.603 1 75.603 31.49 0.0025 

BB 646.275 1 646.275 269.16 0.0000 

BC 16.7281 1 16.7281 6.97 0.0460 

CC 2021.76 1 2021.76 842.02 0.0000 

Total error 12.0055 5 2.40109   

Total (corr.) 6395.64 14    

Based on a 95% confidence level, the model F-value and P-value were 467.37 and < 

0.0001 respectively, indicated that the model was significant and sufficient for 

predicting the biodiesel yield. Each regression coefficients of the model was tested to 

be significant at confidence level of 95%. P-value less than 0.05 showed that the 

regression coefficient was statistically significant. All model terms of A, B, C, AA, 

AB, AC, BB, BC, and CC had significant effect on the biodiesel yield as the p-values 

were less than 0.05 and the computed F-values were higher than the theoretical F-

values. The linear and quadratic regression coefficients of the mixture volume to seed 

weight ratio and volume ratio of methanol to the mixture of methanol and n-hexane 

(A, AA, C and CC) had very high significance effects on the response since the 

computed F-values were higher than theoretical F-values and the p-values were lower 

than 0.05. The linear regression coefficient of sodium hydroxide concentration had 
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computed F-value not very high, however, its quadratic term and its interaction term 

with ratio of the mixture volume to seed weight indicated highly significance effects 

on the response of methyl ester yield. 

 

Figure 4.27: Predicted versus observed biodiesel yield 

Figure 4.27 shows observed values versus the predicted values of biodiesel yield 

using the second-order model equation developed. The regression model equation 

provided a very accurate description of the experimental data, revealing that it was 

successful in capturing the correlation between the three process parameters to the 

methyl ester yield [135]. The determination coefficient of 0.9981 showed that the 

variability in biodiesel yield of 99.81% could be explained by the second-order 

polynomial model and only 0.19% of the total biodiesel yield variations were not 

explained by the independent variables. The adjusted determination coefficient 

(adjusted R2) was 99.47%. 
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4.5.1.2 Effects of parameters 

The interaction effect between ratio of the mixture volume to seed weight (V(MeOH+n-

hexane)/ Wseed) and sodium hydroxide concentration [NaOH] is presented in Figure 

4.28. This term had substantial effect on the methyl ester yield due to its large F-value 

of 523.53. 

 

 

Figure 4.28: The estimated response surface (a) and contour plot (b) of methyl ester 

yield at constant ratio of VMeOH/V(MeOH+n-hexane) of 0.52 

At constant ratio of VMeOH/V(MeOH+n-hexane) of 0.52, raising ratio of V(MeOH+n-

hexane)/Wseed from 7.5 to 8.4 along with increasing [NaOH] from 1.75 wt.% to 1.92 
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wt.% enhanced the conversion of oil to biodiesel from 80.91% to 84.67%, in 

conformity with positive interaction term of RVW and CNaOH in Eq. (4.3). In this work, 

to obtain various ratio of V(MeOH+n-hexane)/Wseed, the seed weight was varied while the 

mixture volume was kept constant at 150 mL. At ratio of 7.5, the mixture volume was 

150 mL and the seed weight was 20 g. This volume could extract the part of Jatropha 

curcas oil in 20 g seeds and convert it into methyl ester. Hence, the maximum 

biodiesel yield was not reached. At ratio of 12.45, the mixture volume of 150 mL was 

adequate to extract the most of oil in 12 g seeds. In this condition, the highest 

biodiesel yield of 84.67% was achieved. 

Nevertheless, further increasing ratio of V(MeOH+IPA)/Wseed and [NaOH] 

concentration significantly decreased the methyl ester yield. In-situ transesterification 

was proceeded in the Soxhlet extractor at higher reaction temperature than its boiling 

point, and then rising [NaOH] concentration led the formation of soaps easier which 

lowered the oil conversion to methyl ester.  

Figure 4.29 describes the interaction effect between the mixture volume to seed 

weight ratio (V(MeOH+IPA)/Wseed) and the methanol volume to the mixture volume ratio 

(VMeOH/V(MeOH+IPA)) on the methyl ester yield at the constant of [NaOH] concentration 

of 1.92 wt.%. This term (AC) had significant influence on the methyl ester yield as 

the computed F-value was 31.49 and P-value of 0.0008 was less than 0.05. 

Raising the ratio of V(MeOH+n-hexane)/Wseed from 7.5 to 8.4 and enhancing the ratio 

of VMeOH/V(MeOH+n-hexane) from 0.3 to 0.52 gained the extraction of oil and the 

conversion of the oil to methyl ester. Then, the increase in ratio of V(MeOH+n-

hexane)/Wseed above 8.4 and the raise in ratio of VMeOH/V(MeOH+n-hexane) decreased the 

yield of methyl ester, as resulted the negative interaction term of RVW and RV in Eq. 

(4.3). The increment of volume ratio demonstrated increasing methanol volume and 

decreasing n-hexane volume. Methanol, as the most polar alcohol, could extract not 

only Jatropha curcas oil from the seeds in a very small quantity but also the seed 

polar compound such as phospholipid, whereas n-hexane was a much better solvent. 

Therefore, decreasing n-hexane volume reduced the extracted oil from the seed and 

lowered the oil conversion to biodiesel. In addition, raising the ratio of V(MeOH+n-

hexane)/Wseed attributed to the dilution of NaOH catalyst and the oil extracted from 



 

118 

seeds which decreased their interaction in reaction system, thus the oil conversion to 

methyl ester was diminished. 

 

Figure 4.29: The estimated response surface (a) and contour plot (b) of methyl ester 

yield at the constant of [NaOH] of 1.92 wt.% 

Figure 4.30 depicts the interactive effect between sodium hydroxide concentration 

and the volume ratio of methanol to the mixture of methanol and n-hexane. This term 

(BC) had the least significance effect on the methyl ester yield due to the lowest of 

computed F-value of 6.97 than other interaction terms and its P-value was 0.0077. 
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Figure 4.30: The estimated response surface (a) and contour plot (b) of methyl ester 

yield at the constant of V(MeOH+IPA)/Wseed  of 8.4 

Enhancing NaOH concentration from 1.75 wt.% to 1.92 wt.% associated with 

rising VMeOH/V(MeOH+n-hexane) ratio from 0.3 to 0.52 augmented significantly the 

extraction of oil from seeds and its conversion to methyl ester, which in accordance 

with the positive interaction term of CNaOH and RV in second-order polynomial model. 

The presence of NaOH catalyst in the mixture of methanol and n-hexane significantly 

enhanced the extraction efficiency of Jatropha curcas oil, almost all of the 

triglycerides in the seeds were removed [37].  
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However, excess NaOH concentration addition followed by higher 

VMeOH/V(MeOH+IPA) ratio was able to decrease the oil extraction as well as its 

conversion to methyl-isopropyl ester. Higher VMeOH/V(MeOH+IPA) ratio showed the 

volume of methanol increased, inversely, the n-hexane volume reduced which 

affected the quantity of oil extracted from the seeds. 

4.5.1.3 Optimization analysis 

Table 4.14 and Table 4.15 explain the high, low limit experimental region and the 

optimum factors resulted from optimization analysis of experimental design by the 

Statgraph Centurion XV. 

Table 4.14: The combination of factor levels which maximize the methyl ester yield 

Factor Low High Optimum 

VMix : Wseed (mL/g) 7.5 12.5 8.4 

[NaOH] (wt.%) 1.75 2.25 1.92 

VMeOH:Vmix 0.3 0.7 0.52 

 

Table 4.15: Optimum condition of the mixture of methanol and n-Hexane 

Test Factors Response (%) Residual 

(%) V: W 

(mL/g) 

[NaOH] 

(wt.%) 

VM:Vmix 

(mL/mL) 

Obsv Predc 

1 8.4 1.92 0.52 83.75 84.67 -0.92 

2 8.4 1.92 0.52 84.09 84.67 -0.58 

3 8.4 1.92 0.52 82.98 84.67 -1.69 

The predictions of biodiesel yield obtained from numerical optimization of design 

of the experiment were 84.67%. The experiment was conducted at the optimum 

reaction condition to test the predictions of biodiesel yield. The average optimum 
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biodiesel yield obtained from experiment was (83.61  0.57)% which was comparable 

to the predicted one, with the average residual of -1.06%. 

4.5.2 Effect of reaction time 

The effect of reaction time on biodiesel yield was carried out up to 4 hours at reaction 

temperature 50C, 55C and 60C. Other parameters were set at optimum condition, 

ratio of the mixture volume to seed weight of 8.4, catalyst concentration of 1.92 wt.%, 

volume ratio of methanol to the mixture of 0.52. The biodiesel yields at various 

reaction times are presented in Figure 4.31. 

 

Figure 4.31: Biodiesel yield for different reaction time at 50C, 55C and 60C 

It was observed that the biodiesel yield increased with increase in reaction time. 

The methyl ester yield enhanced significantly at the first hour, after that increasing 

reaction time, raised slightly the methyl ester yield and reached the maximum yield at 

3 hours. The maximum biodiesel yields were obtained after 3 hours reaction time 

75.89% at 50C, 83.78% at 55C and 90.74% at 60C, where the maximum oil 
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extraction and transesterification into biodiesel occurred. The methyl ester yield 

insignificantly decreased at longer reaction time. It might be due to the occuring  

saponification. In addition, methanol could extract more polar substances from the 

seeds. Reaction temperature affected the biodiesel yield after reaction time of 0.5 

hours, increasing temperature from 50C to 60C, the methyl ester yield enhanced 

significantly. However, raising reaction temperature did not influence the reaction 

completion. The equilibrium stages were reached after 3 h reaction time at 50C, 

55C, and 60C. 

In comparison to in-situ transesterification with methanol and with the mixture of 

methanol and isopropanol, the biodiesel yield produced from in-situ transesterification 

with the mixture of methanol and n-hexane in Soxhlet extractor was lower than the 

methyl ester yields produced from other solvents. In-situ transesterification in Soxhlet 

extractor was carried out without agitation, thus the mass transfer limitation was 

higher than others which inhibited the oil extraction and reaction and led in reducing 

the methyl ester yield, the reaction completion was longer than others as well. 

4.5.3 Effect of particle size 

Effect of particle size was determine at the optimum reaction conditions, 

V(MeOH+IPA)/Wseed ratio of 8.4, NaOH concentration of 1.92 wt.%, volume ratio of 

methanol to the mixture of methanol and n-hexane of 0.52 at 60C reaction 

temperature for different reaction times. Drying seeds were ground and sieved to 

obtain three different sizes of particle, which were 0.600 mm < DP < 1.800 mm, 0.425 

< DP < 0.600 mm, and DP <0.425 mm. 

Figure 4.32 depicts the effect of particle size on the yield of methyl ester at various 

reaction times. It was observed that in-situ transesterification of Jatropha curcas 

seeds with the mixture of methanol and n-hexane demonstrated similar trend to that 

with the mixture of methanol and isopropanol. Decreasing particle size from 

1.18<DP<2 mm to DP <0.425 mm enhanced the biodiesel yield at all reaction time. 

The yield of biodiesel produced from particle size of 0.425<DP<0.600 mm was 

insignificantly different from one of DP<0.425 mm after reaction time of 3 h. 

Reducing particle size could shorten the reaction time to reach the reaction 
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completion. Decreasing particle size into DP < 0.425 mm reduced reaction time to 

reach the equilibrium stage from 3 h to 2 h at 60C. 

  

Figure 4.32: Biodiesel yield for different sizes of particle at 60C 

4.6 Summary 

Jatropha curcas seeds with the size range of Dp < 0.425 mm to Dp < 1.180 mm, oil 

content of (49.72  1.34)%, oil density of (0.8995  0.0007) g·mL-3, and acid value of 

(1.13  0.10) mg KOH·g, were used to investigate in-situ transesterification of 

Jatropha curcas seeds catalyzed by sodium hydroxide with isopropanol, methanol, 

the mixture of methanol and isopropanol, the mixture of methanol and n-hexane. 

The maximum yield of isopropyl ester of (85.32 ± 0.30)% was obtained with the 

ratio of isopropanol volume to seed weight of 7.5 (mL·g-1) and sodium hydroxide 

concentration of 1.0 wt.% at 70C for 2 h reaction time. This yield was not high since 

isopropanol was less polarity than methanol which led saponification during biodiesel 

separation from the impurities of glycerol, isopropanol, NaOH, and water. 
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Response surface methodology was employed to determine the optimum 

conditions of in-situ transesterification of Jatropha curcas seeds with methanol, the 

mixture of methanol and isopropanol, the mixture of methanol and n-hexane. For in-

situ transesterification of Jatropha curcas seeds with methanol, NaOH concentration, 

methanol volume to seed weight ratio, and reaction temperature are the important 

factors affecting methyl ester yield. Increasing values of these factors up to a certain 

level enhanced the yield of methyl ester. However, further increasing these factors 

decreased methyl ester yield. For in-situ transesterification of Jatropha curcas seeds 

with the mixture of methanol and isopropanol, NaOH concentration had the most 

significant effect on the methyl-isopropyl ester yield, followed by the ratio of mixture 

volume to seed weight and the volume ratio of methanol to the mixture of methanol 

and isopropanol. Elevating these parameters into certain values gained the yield of 

methyl-isopropyl ester. Next increasing these parameters, lower yield of methyl-

isopropyl ester was obtained. For in-situ transesterification of Jatropha curcas seeds 

with the mixture of methanol and n-hexane, mixture volume to seed weight ratio, 

volume ratio of methanol to the mixture and NaOH concentration had significant 

effects on methyl ester yield. Raising these independent variables increased the yield 

up to certain values. The methyl ester yield diminished when these variables rose 

subsequently. The optimum conditions and maximum yields obtained are as follows. 

Table 4.16: Optimum condition and maximum yield of in-situ transesterification of 

Jatropha curcas seeds 

Factor Methanol Methanol-

isopropanol 

Methanol- 

n-hexane 

Valcohol:Wseed (mL·g-1) 8.08 10.82 8.4 

[NaOH] (wt.%) 1.94 1.99 1.92 

VMeOH:Vmixture (mL·mL-1) - 0.46 0.52 

T (C) 57 68 - 

T (h) 2 2 1 

Maximum yield (%) (90.45 ± 0.25) (94.78 ± 0.29) (83.61 ± 0.57) 
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Decreasing particle size could reduce the reaction time to reach the equilibrium 

condition, 

 For methanol, at the particle size of 0.425 < Dp < 0.600 mm the equilibrium 

condition decreased from 90 min to 60 min reaction time. 

 For the mixture of methanol and isopropanol, at the particle size of Dp < 0.425 

mm the reaction time to achieve equilibrium state was reduced from 60 min to 

30 min. 



 

CHAPTER 5  

REACTION MECHANISM AND KINETICS STUDIES 

In-situ transesterification of Jatropha curcas seed is a complex reaction involving 

reaction between a liquid and another immiscible liquid embedded in an inert solid 

matrix. The concept of Shrinking Core Model for in-situ transesterification is 

presented in section 5.1 and is utilized in Section 5.2 to evaluate the importance of 

solid matrix. Section 5.3 explores to explain the Liquid-Liquid catalytic 

transesterification reaction through the mechanism of phase transfer catalysis. 

5.1 Shrinking Core Model for Liquid-Liquid-Solid non Catalytic Reaction 

Shrinking Core Model [112] was developed to explain the reactions of the kind 

 

Products Gaseous       matrix      solidInert an in reactant  Solid       Gas

Products                                                    B                           A      




  (5.1) 

 

Reaction proceeds by  

- mass transfer of A from bulk gas to particle surface by external mass transfer 

- reaction of A with solid B at the interface 

- diffusion of A through pores in the particle inert matrix to reach B as it gets 

consumed by reaction and recedes into the depth of particle. 

Conversion of B can be related to the radius of the unconverted core of radius rc in 

a particle of radius R 
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For each of these steps, the progress of the reaction in terms of conversion X were 

obtained as 
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 The parameter “t” can be recognized as the time required for total conversion. 

Slowest of these three steps is expected to control the reaction. Increasing bulk fluid 

velocity/ increased stirring/ promoting turbulence can improve external mass transfer 

to minimize its importance. Reducing particle size can minimize the resistance due to 

pore resistance. Thus, observed rate of reaction will be controlled by true reaction 

kinetics for data collected at sufficiently high stirring speed using smaller particle 

size. Strong effect of temperature indicates importance of true reaction kinetics due to 

exponential dependence of reaction rate constant on temperature through Arrhenius 

equation.   

By plotting (1-X) versus the ratio of reaction time to the time for complete 

conversion of a particle (t/t) and by comparing those curves to curves in Figure 5.1, 

the rate-controlling step could be recognized. If the curve is linear, then diffusion 

through liquid film controls the reaction. However, if the curve is non-linear, the 

reaction mechanism can be controlled by internal diffusion or chemical reaction. 

However, the difference of curves between internal diffusion and chemical reaction as 

controlling steps is insignificant.  
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Figure 5.1: The progressive conversion of spherical solid [112] 

 

This technique needs to be adopted to in-situ transesterification of oil in the seed 

with alcohol in the bulk.  

 

 

 

In-situ transesterification reaction proceeds by  

- mass transfer of alcohol from bulk liquid to particle surface by external mass 

transfer 

- react at the interface of alcohol and oil in solid matrix 

- diffusion of alcohol through pores in the particle inert matrix to reach oil as it 

gets consumed by reaction and recedes into the depth of particle. 

Slowest of these three steps is expected to control the reaction. External mass transfer 

is improved by increasing stirring speed. 

Products Liquid    matrix     solidInert an in reactant  Liquid          Liquid  

Products                                        Seedin  Oil                            Alcohol




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5.2 Evaluation of in-situ transesterification through Shrinking Core Model  

Effect of particle size and reaction temperature on the progress of the in-situ 

transesterification with methanol alone as well as with a mixture of methanol and 

isopropanol are explored to identify controlling steps.  The loss of biodiesel during 

separation process was too small, less than 0.1%, and it could be neglected. Hence, 

the biodiesel yields obtained at various reaction temperatures, particle sizes and 

reaction times were converted into fractional conversions of oil (X). By plotting (1-X) 

versus (t/t), the ratio of reaction time “t” to the time “t” for complete conversion of a 

particle,  and comparing those curves to curves in Figure 5.1, the rate-controlling step 

could be identified. If the curve is linear, then diffusion through liquid film controls 

the reaction. However, if the curve is non-linear, the reaction mechanism can be 

controlled by internal diffusion or chemical reaction. However, the difference in the 

curves for internal diffusion and chemical reaction as controlling steps is not easy to 

distinguish. Graphs of [1-3(1-X)2/3+2(1-X)] versus reaction time for internal diffusion 

control and [1-(1-X)1/3] versus reaction time for chemical reaction control may be 

plotted; data which fit as straight line through the origin point of (0,0) with high 

linearity coefficient will be the rate-controlling step. 

5.2.1 Effect of reaction temperature 

The effect of reaction temperature on the reaction mechanism and kinetics of in-situ 

transesterification of Jatropha curcas seeds were determined using the data presented 

in section 4.3.3 for methanol and section 4.4.2 for the mixture of methanol and 

isopropanol. 

5.2.1.1 In-situ transesterification with methanol 

Figure 5.2 presents the progress reaction of spherical particle of Jatropha curcas 

seeds with surrounding methanol at different reaction temperature. There were two 

regimes in this graph. The first regime was irreversible regime, which occurred 

between 0 min to 30 min reaction time or t/t of 0.25. At this regime, increasing 
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reaction time enhanced the oil extraction and oil conversion, the biodiesel yield 

augmented as well. The second regime was equilibrium regime which was achieved 

after 45 min (or t/t of 0.375) to 120 min (or t/t of 1.0) reaction time. At the 

equilibrium regime, the oil extraction and oil conversion were completed. Increasing 

reaction time did not affect the biodiesel yield. According to Figure 5.1, the 

mechanism of in-situ transesterification of Jatropha curcas seeds with methanol was 

not controlled by external mass transfer since the curves in Figure 5.2 were not linear. 

Hence, the reaction mechanism might be internal diffusion control or chemical 

reaction control. 

 

 

Figure 5.2: Progress reaction of spherical particle of Jatropha curcas seeds with 

surrounding methanol 

Next determination of reaction mechanism was carried out using the values of 

biodiesel fractional conversion as plotted in Figure 5.3 and Figure 5.4, respectively. 
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Figure 5.3: Plot of [1-3(1-X)2/3+2(1-X)] versus reaction time at different reaction 

temperature for methanol during 30 min reaction time or t/t = 0.25 

 

Figure 5.4: Plot of [1- (1-X)1/3] versus reaction time at different reaction temperature 

for methanol during 30 min reaction time or t/t = 0.25 
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Table 5.1 shows the comparison of slope (1/t) and correlation coefficient (R2) of 

linear curves of internal diffusion control and chemical reaction control. The linear 

curves of chemical reaction control had higher correlation coefficients than that of 

internal diffusion control. Hence, it can be concluded that the mechanism of in-situ 

transesterification of Jatropha curcas seeds with methanol was chemical reaction 

control. 

Table 5.1: Slope (1/t) and regression coefficient (R2) of linear curves at different 

temperature 

T Internal diffusion control Chemical reaction control 

(0C) Slope (1/t) R2 Slope (1/t) R2 

40 0.0045 0.9123 0.0087 0.9864 

50 0.0062 0.8654 0.0104 0.9861 

55 0.0085 0.8998 0.0124 0.9860 

60 0.0113 0.8479 0.0148 0.9817 

The first-order rate constant for the surface reaction (k”) was determined using the 

values of slope according to the Eq. (5.2), 
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 (5.2) 

Table 5.2 presents the values of the first-order rate constant for the surface 

reaction (k”) at various reaction temperatures. The activation energy (Ea) for in-situ 

methanolysis of Jatropha curcas seeds could be calculated using the Arrhenius 

equation, 

RT

Ea

ekk


 0  (5.3) 

   
RT

E
kk a 0lnln  (5.4) 
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Table 5.2: The first-order rate constant for the surface reaction for methanol 

T (0C) 1/t k” (m.s-1) 

40 0.0087 5.1479.10-9 

50 0.0104 6.1538.10-9 

55 0.0124 7.3372.10-9 

60 0.0148 8.7573.10-9 

Using the data in Table 5.2, ln (k”) could be plotted against 1/T to obtain the 

linear curve with the slope of Ea/R and intercept of ln (k0) or pre-exponential factor of 

1.813. Figure 5.5 shows a good linearity between ln (k”) and 1/T. Using the slope of 

2726, the activation energy (Ea) could be determined which was 22.66 kJ·mol-1. This 

activation energy was less than the activation energy for transesterification of oil with 

base catalyst which was in the range of 33.6 – 84 kJ·mol-1 [136]. 

 

Figure 5.5: Reaction rate constant versus reaction temperature to determine activation 

energy 

The empirical equation of biodiesel yield could be derived as a function of 

reaction temperature and reaction time according to the shrinking core model with the 

reaction mechanism of chemical reaction control, as presented in Eq. (5.6). 
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Figure 5.6 shows the comparison of biodiesel yield between experimental yield 

and model yield obtained from Eq. (5.6). The model yield compared well to the 

experimental results up to 80% biodiesel yield. More than 80% biodiesel yield, the 

significant deviations of the model yield from experimental results were observed, 

since the fitting data to derive this model yield conducted for 30 min reaction time 

that was the irreversible reaction region. 

 

Figure 5.6: Comparison of experimental yield to model yield obtained from Eq. (5.6) 
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5.2.1.2 In-situ Transesterification with the mixture of methanol and isopropanol 

The rate-controlling step was predicted from the graph of the progress reaction of 

Jatropha curcas particles with surrounding the mixture of methanol and isopropanol 

at different reaction temperature as shown in Figure 5.7. The graph demonstrates that 

the mechanism of internal diffusion and chemical reaction could be controlled the 

reaction rate. Meanwhile the mechanism of external mass transfer was not controlled 

the reaction rate due to the data of (1-X) was not fitted linearly against t/t. 

 

Figure 5.7: Progress reaction of Jatropha curcas particles with surrounding the 

mixture of methanol and isopropanol at different reaction temperature 

Figures 5.8 and 5.9 describe linear regression through the origin of the data as a 

function of biodiesel fractional conversion according to the mechanism of internal 

diffusion (Eq. (5.1)) and chemical reaction (Eq. (5.2)). 
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Figure 5.8: Plot of [1-3(1-X)2/3+2(1-X)] versus reaction time 

 

Figure 5.9: Plot of [1-(1-X)1/3] versus reaction time at different reaction temperature 
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Based on the values of correlation coefficient of the fitting curves as presented in 

Table 5.3, the mechanism of in-situ transesterification of Jatropha curcas seeds with 

the mixture of methanol and isopropanol was controlled by chemical reaction. 

Table 5.3: Slope (1/t) and correlation coefficient of fitted linear curves 

T Internal diffusion control Chemical reaction control 

(0C) Slope (1/t) R2 Slope (1/t) R2 

40 0.0065 0.8219 0.0104 0.9795 

50 0.01 0.905 0.0136 0.9852 

60 0.0145 0.9378 0.0171 0.9966 

65 0.0159 0.9492 0.0182 0.9911 

70 0.0181 0.9675 0.0199 0.9825 

The first-order rate constant for the surface reaction (k”) was determined using the 

values of slope according to the Eq. (5.2). Table 5.4 indicates values of the first-order 

rate constant for the surface reaction (k”) at various reaction temperatures. These first-

order rate constants were higher than the first-order rate constant resulted from in-situ 

methanolysis of Jatropha curcas seeds. It revealed that in-situ transesterification of 

Jatropha curcas seeds with the mixture of methanol and isopropanol could be 

proceeded faster than that with methanol. 

Table 5.4: The first-order rate constant for the surface reaction 

T (0C) 1/t k” (m.s-1) 

40 0.0104 7.7242.10-9 

50 0.0136 1.0101.10-8 

60 0.0171 1.2700.10-8 

65 0.0182 1.3517.10-8 

70 0.0199 1.4780.10-8 
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Figure 5.10: Reaction rate constant versus reaction temperature to determine the 

activation energy 

The activation energy (Ea) for in-situ transesterification of Jatropha curcas seeds 

could be calculated using the Arrhenius equation. By plotting ln (k”) versus 1/T and 

fitting the data as the linear curve, the activation energy could be obtained from the 

slope of Ea/R. Figure 5.10 shows a high linearity between ln (k”) and 1/T. Using the 

slope of 2447.4, the activation energy (Ea) of 20.35 kJ/mole and pre-exponential 

factor of 1.380 could be determined, which was lower than the activation energy 

resulted from in-situ transesterification with methanol. 

The empirical equation of biodiesel yield could be expressed as a function of 

reaction temperature and reaction time according to the shrinking core model with the 

reaction mechanism of chemical reaction control as shown in Eq. (5.8). 
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Figure 5.11 demonstrates the comparison of biodiesel yields between 

experimental yield and model yield obtained from Eq. (5.8). The model yield 

compared well to the experimental results up to around 90% biodiesel yield. More 

than 90% biodiesel yield, the model yields were significantly difference from the 

experimental yields, since the fitting data to derive the model yield conducted for 30 

min reaction time or in the region of irreversible reaction. 

 

Figure 5.11: Comparison of experimental yield to model yield 
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The effect of particle size on biodiesel yield was used to determine the mechanism 

and kinetics of in-situ methanolysis of Jatropha curcas seeds using shrinking core 

model. The yields of biodiesel from three difference particle size of 600<DP<1180 

m, 425<DP<600 m, and DP<425 m discussed in section 4.3.4 for methanol and in 
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5.2.2.1 In-situ transesterification with methanol 

Figure 5.12 describes the progress reaction of spherical particle of Jatropha curcas 

seeds with surrounding methanol for different particle size. The mechanism of in-situ 

transesterification of Jatropha curcas seeds with methanol was not controlled by 

external mass transfer since the curves in Figure 5.12 were not linear. The reaction 

mechanism might be controlled by internal diffusion or chemical reaction. 

Figure 5.13, Figure 5.14 and Table 5.4 demonstrate that the mechanism of in-situ 

transesterification of Jatropha curcas seeds with methanol for different particle size 

was chemical reaction control according to its higher correlation coefficients than that 

of internal diffusion control. 

 

Figure 5.12: Progress reaction of spherical particle of Jatropha curcas seeds with 

surrounding methanol for different particle size for methanol 
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Figure 5.13: Plot of [1-3(1-X)2/3+2(1-X)] versus reaction time for different particle 

size 

 

Figure 5.14: Plot of [1-(1-X)1/3] versus reaction time for different particle size 
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Table 5.5: Slope (1/t) and correlation coefficients (R2) of linear curve for different 

particle size 

Dp Internal diffusion control Chemical reaction control 

(mm) Slope (1/t) R2 Slope (1/t) R2 

0.600<Dp<1.180 0.0073 0.9309 0.0115 0.9625 

0.425<Dp<0.600 0.0107 0.9458 0.0143 0.9797 

Dp<0.425 0.0053 0.9257 0.0096 0.9797 

The first-order rate constant for the surface reaction (k”) should be determined 

from the correlation between 1/t (slope) and 1/Rp, with Rp as particle radius in Eq. 

(5.2). By plotting 1/t versus 1/Rp and fitting the data into linear curve through origin 

point of (0,0), the first-order rate constant could be obtained directly from the slope of 

the curve. However, Figure 5.15 reveals that the first-order rate constant could not be 

determined from in-situ methanolysis of Jatropha curcas seeds with different particle 

size, since the highest biodiesel yield was achieved from the middle particle size 

(0.425 < DP < 0.600 mm), not from the smallest one (DP<0.425 mm). Hence, the 

linear curve of 1/t and 1/R was not obtained and the first-order rate constant could not 

be determined. 

 

Figure 5.15: Effect of particle size on the time required for complete the reaction 
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5.2.2.2 In-situ transesterification with the mixture of methanol and isopropanol 

The effect of particle size on the yield of biodiesel could be used to study the 

mechanism and kinetics of in-situ transesterification of Jatropha curcas seeds using 

the mixture of methanol and isopropanol. The steps of reaction mechanism 

determination were the same as previous discussions. The biodiesel yields which are 

displayed in Figure 5.16 could be expressed as biodiesel fractional conversion (X). 

The prediction of reaction mechanism was determined by plotting (1-X) versus 

reaction time, and then the curves were compared to Figure 5.1. The mechanism of in-

situ transesterification was likely controlled by internal diffusion or chemical reaction. 

Further study was required to ascertain the rate-controlling step by fitting the data 

as a function of fractional conversion of biodiesel according to Eq. (5.1) for internal 

diffusion control and Eq. (5.2) for chemical reaction control, which are presented in 

Figures 5.17 and 5.18, respectively. 

 

Figure 5.16: Progress reaction of Jatropha curcas seeds with surrounding methanol 

and isopropanol 
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Figure 5.17: Plot of [1-3(1-X)2/3+2(1-X)] versus reaction time for different particle 

size 

 

Figure 5.18: Plot of [1-(1-X)1/3] versus reaction time for different particle size 
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According to the values of correlation coefficient (R2) as shown in Table 5.6, the 

mechanism of in-situ transesterification was chemical reaction control. 

Table 5.6: Slope (1/t) and correlation coefficients (R2) of linear curve for different 

particle size 

Dp Internal diffusion control Chemical reaction control 

(mm) Slope (1/t) R2 Slope (1/t) R2 

0.600<Dp<1.180 0.0038 0.9158 0.008 0.9586 

0.425<Dp<0.600 0.0075 0.8423 0.0114 0.9854 

Dp<0.425 0.0185 0.8689 0.0201 0.9733 

The first-order rate constant could be determined at this condition by plotting 1/t 

versus 1/Rp and by fitting data into linear curve through origin point of (0,0). From 

Eq. (5.2), the first-order rate constant could be obtained directly from the slope of the 

curve. 

R

Cbk

B

Al

t

"1
  (5.2) 

Figure 5.19 shows the plot of 1/t versus 1/Rp to determine the first-order rate 

constant. The linear curve has a slope of 0.0026. Using Eq. (5.2) then the first-order 

rate constant (k”) of 8.7378.10-9 m.s-1 is obtained. 

 

Figure 5.19: Effect of particle radius on determination of the first-order rate constant 
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The empirical model of biodiesel yield could be obtained by substituting the 

constant variables and the first-order rate constant into Eq. (5.2) and was expressed as 

a function of particle size and reaction time according to the shrinking core model 

with the reaction mechanism of chemical reaction control. 
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Figure 5.20 shows the comparison of biodiesel yield between experimental yield 

and model yield obtained from Eq. (5.9). The model yield fitted to the experimental 

results up to around 90% biodiesel yield. More than 90% biodiesel yield, the model 

yields were significantly difference from the experimental yields, since the fitting data 

to obtain the model yield conducted for 30 min reaction time that was in the region of 

irreversible reaction. 

 

Figure 5.20: Comparison of experimental yield to model yield of Eq. (5.9) 
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5.3 Mechanism of two phase catalytic transesterification 

Reaction between two liquids depends on their relative solubility. Solubility of 

methanol in oil phase is limited while isopropanol is more readily soluble. In spite of 

their solubility, oil and alcohol do not react to form biodiesel without an alkali or acid 

catalyst. Understanding the mechanism of how the catalyst acts to achieve the 

conversion is required to develop reaction kinetic model.    

It is well recognized that alcohol in presence of an alkali forms NaOR alkoxide 

complex. Transfer of alkoxide complex in alcohol phase to oil phase could trigger the 

conversion of triglycerides in oil phase to biodiesel and formation of another complex 

NaDG which can in turn diffuse back to alcohol phase. The complex NaDG in alcohol 

phase could initiate reactions with alcohol to produce diglycerides, monoglycerides 

and glycerin along with biodiesel while releasing the NaOR complex. Thus, the 

transfer of reaction complexes NaOR and NaDG between the two phases leads to 

conversion to biodiesel. A schematic of the proposed mechanism of alkaline-

catalyzed transesterification of Jatropha curcas oil in seeds with alcohols is presented 

in Figure 5.21, which was adapted from a reaction mechanism for transesterification 

of oil with alcohol using phase transfer catalysts proposed by Hailegiorgis, et al. 

[114]. 
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Figure 5.21: Schematic representation of the mechanism of alkaline-catalyzed in-situ 

transesterification of Jatropha curcas seeds 

Possible reaction steps are described in the following subsections. 

Step 1: Formation of NaOR in alcohol phase 

Sodium hydroxide reacts with alcohol to form the reactant complex of sodium 

alkoxide (NaOR). 

 (5.10) 

The complex NaOR in alcohol phase diffuses into oil phase by mass transfer.  

Step 2:  Diffusion of NaOR into Oil phase   

NaOR reacts with triglyceride (TG) to produce biodiesel (BD) and sodium-

diglyceride complex (NaDG)  

 (5.11) 

 

ROH + NaOH 
k1 

NaOR + H2O 

NaOR + TG 

k2 

BD + NaDG 
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Step 3:  Diffusion of NaDG to alcohol phase 

The complex NaDG diffuses to alcohol phase and reacts with ROH to form biodiesel 

and another complex NaMG. 

 

 (5.12) 

Step 4: Conversion of NaMG in alcohol phase  

The complex NaMG in alcohol phase further reacts with alcohol to produce sodium-

glycerol complex (NaG) and biodiesel (BD). 

 (5.13) 

 

Step 5:   Conversion of NaG in alcohol Phase 

Furthermore, NaG complex reacts with water which is produced from (5.8) to form 

sodium hydroxide (NaOH) and glycerol (G).  

 (5.14) 

The ratio of concentration of the complex in oil phase to that in alcohol phase is 

defined as partition coefficient. 

a

o
NaOR

[NaOR]

[NaOR]
M   (5.15) 

a

o
NaDG

[NaDG]

[NaDG]
M   (5.16) 

The process of in-situ transesterification relies on the transfer rate of the complexes 

between two phases. 

 

ROH + NaMG 
k4 

NaG + BD 

H2O + NaG 

k5 

NaOH + G 

ROH + NaDG 

k3 

NaMG + BD 
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5.3.1 Model equation of reaction kinetics 

Model equation of reaction kinetics is discussed in the following section. 

a) The rate of triglyceride conversion in oil phase is  

oo2
o [NaOR][TG]k

dt

d[TG]
  (5.17) 

b) The overall mass balance of the active complexes, NaOR in the oil phase and the 

alcohol phase can be expressed as follows. 

 
 
 

 

    



















































NaOR

o
aNaORaaa1

aa

ao
a

a

M

[NaOR]
[NaOR]Ak      -   NaOHROHVk              

dt

[NaOR]dV
 

                                   
aNaOR  of

 transfermass of Rate
      -    

NaOHfrom

aNaOR  of

formation of Rate

        
aNaOR  of

Change of Rate

  

 (5.18) 

ooo2

NaOR

o
a

'
NaOR

oo

oaooo

[NaOR][TG]Vk  
M

[NaOR]
[NaOR]Ak      

dt

[NaOR]dV

phase oilin 

nConsumptio of Rate
          

phase alcohol from

Transfer Mass of Rate
  

(NaOR) of

change of Rate






































 (5.19) 

c) The overall mass balance of the active complexes, NaDG in the oil phase and the 

alcohol phase can be expressed as follows. 
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d) The overall mass balance of the active complexes, NaMG in the oil phase and the 

alcohol phase can be expressed as follows. 
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e) The overall mass balance of the active complexes, NaG in the oil phase and the 

alcohol phase can be expressed as follows. 
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The initial amount of sodium hydroxide added to the system is given by Eq. (5.24). 
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The initial condition of the species, at t = 0, can be written as, 

[TG]0 = [TG]o,0 

[NaOH]a = [NaOH]a,0   

[NaOR]a,0 = [NaDG]a,0 = 0 

[NaOR]o,0 = [NaDG]o,0 = 0 

[NaMG]a,0 = 0 

[NaG]a,0 = 0 

At excess amount of alcohol, the catalyst reactant complexes are dispersed steadily 

between the phases. 
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 (5.25) 

Then Eq. (5.18) to Eq. (5.23) can be expressed as, 
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0][ROH][NaMGVk][ROH][NaDGVk aa4aa3   (5.30) 

0O][NaG][HVk][ROH][NaMGVk a2a5aa4   (5.31) 
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Combining Eq. (5.28) and (5.29) and rearranging, the concentration of sodium 

diglyceride in the oil phase and the alcohol phase can be obtained as, 
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Using Eq. (5.32) then Eq. (5.30) can be rewritten to be, 
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By substituting [NaMG]a with Eq. (5.34), Eq. (5.31) can be expressed as, 
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Eq. (5.26) can be rearranged to be, 
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According to reaction (5.10), consumption of [NaOH] to form [NaOR]a, and reaction 

(5.14), formation of [NaOH] from [NaG]a, the concentration of sodium hydroxide can 

be obtained. 
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Using Eq. (5.35) to be substituted into Eq. (5.37), then Eq. (5.36) can be expressed as, 
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Eq. (5.32) to Eq. (5.38) is substituted into Eq. (5.24) to obtain the concentration of 

sodium hydroxide as a function of sodium alkoxide concentration in the oil phase. 
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     (5.39) 

Eq. (5.17) shows the equation of triglyceride consumption in the oil phase to produce 

biodiesel. 
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    oapp
o [TG]k

dt

d[TG]
  (5.41) 

The conversion of triglyceride is defined as, 

    
o,0

o
TG

[TG]

[TG]
1X   (5.42) 

The reaction rate can be expressed as a function of triglyceride conversion. 

    tk)Xln(1 appTG   (5.43) 

The value of kapp can be obtained from the slope of linear regression curve of 

experimental results through the origin by plotting – ln (1-XTG) versus reaction time at 
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various reaction condition. Hence, Eq. (5.39) can be rearranged by substituting Eq. 

(5.40). 
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Eq. (5.44) can be simplified to be Eq. (5.45). 
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5.3.2 Effect of ratio of alcohol volume to seed weight (φ) 

5.3.2.1 In-situ transesterification with methanol 

In-situ transesterification with methanol was conducted at different ratio of alcohol 

volume to seed weight of 5 to 10 (mL·g-1). Figure 5.22 presents plots of – ln (1-X) 

versus reaction time and the slope of linear curve of – ln (1-X) versus reaction time 

through the origin demonstrated the value of kapp, which depicted in Table 5.7. 

 

Table 5.7: Effect of ratio of methanol to Jatropha curcas seeds on the apparent rate 

constant (kapp) 

Ratio of methanol volume 

to seed weight (mL/g) 

Volume ratio of oil to 

methanol 

kapp 

5 0.110 0.0301 

6 0.092 0.0338 

7 0.079 0.0352 

8 0.069 0.0361 

9 0.061 0.0343 

10 0.055 0.0319 
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Figure 5.22: Plot of – ln (1-X) versus reaction time for methanol 

Data in Table 5.7 is presented in Figure 5.23. The second-order polynomial equations 

are obtained by fitting the experimental data as presented in Figure 5.24. 

 

Figure 5.23: Effect of Vo/Va on kapp for methanol 
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The regression coefficients in the second-order polynomial equations are used in 

Eq. (5.45) to obtain the unknown model parameters. 

     59.258799.875131.9
k

1 2
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Using the experimental parameter values, the unknown parameters can be 

expressed as follows. 
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The values of second-order reaction rate constant of k2, k3, k4, and k5 are large 

since the reactions are ionic in nature. Value of MNaOR is also expected to be 

extremely low as the concentration of [NaOR]o in oil phase is very low due to its 

consumption by the very fast reaction with triglycerides in oil phase [TG]o.  Hence, 

Eq. (5.47) to Eq. (5.49) can be written as  
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The mass transfer coefficients kNaOR and kNaDG are expected to be function of their 

diffusion coefficients which in turn are expected to be inversely proportional to their 

molecular weights. Molecular weight of NaOR and NaDG are 54 and 631.78 

respectively. Then, 
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This observation corresponds to a value of 0.76 for n which is generally expected to 

be in the range of 0.5 to 1. 

Model equation of reaction kinetics of two phases catalytic of transesterification 

can be written as, 
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 (5.52) 

Figure 5.24 shows the comparison between experimental 1/kapp and model 1/kapp 

obtained from Eq. (5.52). The model 1/kapp fitted to the experimental 1/kapp with the 

correlation coefficient of 0.9158. 

According to Eq. (5.43), the conversion of triglycerides to biodiesel can be written 

as, 

    � = 1 − ������∙�  (5.53) 
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Figure 5.24: Comparison between model 1/kapp and experimental 1/kapp for methanol 

Using Eq. (5.52) to substitute kapp in Eq. (5.53), the model predicted biodiesel 

yield could be evaluated. 
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Figure 5.25 shows the comparison of the experimental observed biodiesel yield to 

the model predicted biodiesel yield obtained from Eq. (5.54). 
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Figure 5.25: Model biodiesel yield versus observed biodiesel yield for methanol 

The predicted biodiesel yields obtained from Eq. (5.54) were fitted well to the 

experimental observed biodiesel yield. Some data demonstrated that the model yields 

deviated from the experimental one. These deviations might be due to soap formation 

from saponification at high temperature or lack conversion of diglyceride and 

monoglyceride at shorter reaction time. 

5.3.2.2 In-situ transesterification with the mixture of methanol and isopropanol 

In-situ transesterification with the mixture of methanol and isopropanol was 

conducted at various ratio of alcohol volume to seed weight of 8 to 13 (mL·g-1). 

Figure 5.26 shows plots of – ln (1-X) versus reaction time and the slope of linear 

curve of – ln (1-X) versus reaction time through the origin revealed the value of kapp, 

which depicted in Table 5.8. 
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Figure 5.26: Plot of – ln (1-X) versus reaction time for the mixture of methanol and 

isopropanol 

 

Table 5.8: Effect of ratio of the mixture of methanol and isopropanol to Jatropha 

curcas seeds on the apparent rate constant (kapp) 

Ratio of mixture volume to 

seed weight (mL/g) 

Volume ratio of oil to the 

mixture MeOH and IPA 

kapp 

8 0.068 0.0441 

9 0.061 0.0494 

10 0.054 0.0522 

11 0.050 0.0542 

12 0.045 0.0502 

13 0.042 0.0452 

Data in Table 5.8 is presented in Figure 5.27. The second-order polynomial 

equations are obtained by fitting the experimental data as presented in Figure 5.27. 
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Figure 5.27: Effect of Vo/Va on kapp for the mixture of methanol and isopropanol 

The regression coefficients in the second-order polynomial equations are used in 

Eq. (5.45) to obtain the unknown model parameters. 
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Using the experimental parameter values, the unknown parameters can be 

expressed as follows. 
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The values of second-order reaction rate constant of k2, k3, k4, and k5 are large 

since the reactions proceed fast. Value of MNaOR is also expected to be extremely low 

as the concentration of [NaOR]o in oil phase is very low due to its consumption by 

the very fast reaction with triglycerides in oil phase [TG]o. It may be noted that 

[1/k2MNaOR] is same for methanol alone as well as the present case. Hence, Eq. (5.55) 

to Eq. (5.58) can be written as  
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It may be noted that the mass transfer coefficients for kNaOR and kNaDG for the 

mixture of methanol and isopropanol system are smaller compared to the values 

obtained for methanol alone.  

Model equation of reaction kinetics of two phases catalytic of transesterification 

can be written as, 
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Figure 5.28 shows the comparison between experimental 1/kapp and model 1/kapp 

obtained from Eq. (5.60). The model 1/kapp fitted well to the experimental 1/kapp. 

 

Figure 5.28: Comparison between Model 1/kapp and experimental 1/kapp 

Using Eq. (5.43) and substituting Eq. (5.60) to kapp, the model predicted biodiesel 

yield for methanol and isopropanol can be determined. 
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 (5.61)

 

Experimental observed biodiesel yields were compared to the predicted biodiesel 

yield obtained from the model equation (5.61) as presented in Figure 5.29. The 

predicted biodiesel yields by model equation (5.58) are fitted well to the experimental 

biodiesel yields. Less deviation of predicted biodiesel yields from the experimental 

one are observed than that for methanol. 
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Figure 5.29: Model biodiesel yield of Eq. (5.59) versus experimental biodiesel yield 

5.3.3 Effect of sodium hydroxide concentration 

The effects of sodium hydroxide concentration on the apparent rate constant are 

displayed in Figure 5.30 for methanol and Figure 5.32 for the mixture of methanol 

and isopropanol. Increasing sodium hydroxide concentration enhanced the conversion 

of triglyceride to produce biodiesel up to concentration of 2 wt.% shown by the 

maximum kapp of 0.0383 min-1 at 2 wt.% sodium hydroxide concentration for 

methanol and 0.056 for the mixture of methanol and isopropanol. However rising 

sodium hydroxide concentration, more than 2 wt.%, the kapp decreased. It was 

observed at this condition the higher sodium hydroxide concentration led the 

saponification which consumed sodium hydroxide to produced soaps instead of 

biodiesel. Soaps disturbed the separation of biodiesel from the impurities. Thus, the 

parabolic curve was obtained in graph of 1/kapp versus 1/[NaOH]. 
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5.3.3.1 In-situ transesterification with methanol 

In order to study the effect of sodium hydroxide on the conversion of triglyceride to 

biodiesel, the reaction was conducted at different concentration of sodium hydroxide 

from 1.25 wt.% to 2.5 wt.% at the constant of Vo/Va of 0.068 for methanol. The plot 

of – ln (1-X) versus reaction time at different sodium hydroxide concentration for 

methanol is shown in Figure 5.30. 

 

Figure 5.30: Plot of – ln (1-X) versus reaction time at different sodium hydroxide 

concentration for methanol 

Table 5.9 describes the effect of various sodium hydroxide concentrations on the 

value of the first-order apparent rate constant (kapp) for methanol. 
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Table 5.9: Effect of sodium hydroxide concentration on the first-order apparent rate 

constant (kapp) 

Sodium hydroxide 

concentration (wt.%) 

kapp 

1.25 0.0262 

1.50 0.0357 

1.75 0.0378 

2.00 0.0383 

2.25 0.0309 

2.50 0.0258 

Data in Table 5.9 is presented in Figure 5.31. The first-order polynomial 

equations are obtained by fitting the experimental data for sodium hydroxide 

concentration of 1.25 wt.% to 2 wt.% as presented in Figure 5.31. Data of sodium 

hydroxide concentration more than 2 wt.% was not used in curve fitting due to 

saponification process occurred and this condition must be avoided in biodiesel 

production. 

 

Figure 5.31: Effect of NaOH concentration on the apparent rate constant for methanol 
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By substituting parameters with the experimental data, then Eq. (5.52) could be 

expressed as a function of sodium hydroxide concentration as shown in Eq. (5.62). 

           
[NaOH]

1
54.840

k

1

0app


 (5.62) 

It can be observed that there is a difference between the value of slope obtained from 

curve fitting and that from model equation. 

5.3.3.2 In-situ transesterification with the mixture of methanol and isopropanol 

In order to study the effect of sodium hydroxide on the conversion of triglyceride to 

biodiesel, the reaction was carried out at various concentration of sodium hydroxide 

from 1 wt.% to 2.5 wt.% at the constant of Vo/Va of 0.0504 for the mixture of 

methanol and isopropanol. The plots of – ln (1-X) versus reaction time at different 

sodium hydroxide concentration displays in Figure 5.32 for the mixture of methanol 

and isopropanol. Table 5.10 describes the effect of various sodium hydroxide 

concentrations on the value of the first-order apparent rate constant (kapp) for the 

mixture of methanol and isopropanol. 

Table 5.10: Effect of sodium hydroxide concentration  

on the first-order apparent rate constant (kapp) 

Sodium hydroxide 

concentration (wt.%) 

kapp 

1.00 0.034 

1.25 0.044 

1.50 0.0504 

1.75 0.0535 

2.00 0.056 

2.25 0.051 

2.50 0.045 
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Figure 5.32: Plot of – ln (1-X) versus reaction time at different sodium hydroxide 

concentration for the mixture of methanol and isopropanol 

Data in Table 5.10 was fitted linearly as described in Figure 5.33. The first-order 

polynomial equations are obtained by fitting the experimental data for sodium 

hydroxide concentration of 1 wt.% to 2 wt.% as presented in Figure 5.33. Data of 

sodium hydroxide concentration of 2.25 wt.% and 2.5 wt.% were not used in curve 

fitting since in this concentration, saponification process occurred and it must be 

avoided in biodiesel production. 

By substituting parameters with the experimental data, then Eq. (5.60) could be 

expressed as a function of sodium hydroxide concentration as shown in Eq. (5.63). 
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It can be observed that there is a difference between the value of slope obtained from 

curve fitting and that from model equation. 
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Figure 5.33: Effect of NaOH concentration on the apparent rate constant for the 

mixture of methanol and isopropanol 

5.4 Summary 

Reaction mechanism and kinetics of alkaline-catalyzed in-situ methanolysis and in-

situ transesterification of Jatropha curcas seeds with the mixture of methanol and 

isopropanol in a batch reactor at different reaction temperature and particle size had 

been investigated by applying the shrinking core model.  

The mechanism of in-situ methanolysis and in-situ transesterification of the 

mixture of methanol and isopropanol were chemical reaction controls. Both of in-situ 

transesterification had the first-order reaction rate with the reaction rate constant from 

5.15x10-9 to 8.76x10-9 m·s-1 and from 7.72x10-9 to 1.49x10-8 m·s-1, respectively. 

Arrhenius activation energies of the reactions were determined to be 2266 J·mol-1 for 

in-situ methanolysis and 2035 J·mol-1 for in-situ transesterification of the mixture of 

methanol and isopropanol.  
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Based on the reaction mechanism studied for two phase catalytic 

transesterification of Jatropha curcas oil, alkaline-catalyzed transesterification 

kinetics model equations were developed. The effects of alcohol volume to seed 

weight ratio and NaOH concentration on triglyceride conversion were evaluated using 

the model equations. The results were compared well with the experimental 

observation. The prediction of model equation on the apparent reaction rate constant 

and the yield of biodiesel were fitted well with the experimental results. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The following conclusions can be drawn from the present research on optimization 

and reaction kinetics of in-situ transesterification of Jatropha curcas seeds, 

1. In-situ transesterification of Jatropha curcas seeds to produce biodiesel catalyzed 

by sodium hydroxide was investigated with isopropanol, methanol, the mixture of 

methanol and isopropanol. 

a. The maximum yield of isopropyl ester of (85.32 ± 0.30)% was obtained. This 

yield was not high since isopropanol was less polarity than methanol which 

led saponification during biodiesel separation from the impurities of glycerol, 

isopropanol, NaOH, and water. 

b. Sodium hydroxide concentration, methanol volume to seed weight ratio, and 

reaction temperature are the important factors affecting methyl ester yield. 

Increasing values of these factors up to a certain level enhanced the yield of 

methyl ester. However, further increasing these factors decreased methyl ester 

yield. The maximum methyl ester yield was achieved at optimum reaction 

conditions including NaOH concentration of 1.94 wt.%, methanol volume to 

seed weight ratio of 8.08 (mL·g-1) at 57C reaction temperature. The particle 

size had significant effect on the methyl ester yield. Grinding Jatropha curcas 

seeds into particle size of 425< Dp <600 µm, the reaction time to obtain the 

equilibrium condition could be reduced from 90 min to 60 min. 

c. Mixing methanol with isopropanol could enhance the yield of biodiesel. The 

most significant variable affected methyl-isopropyl yield was NaOH 

concentration followed by the ratio of mixture volume to seed weight and the 

volume ratio of methanol to the mixture of methanol and isopropanol. Raising 
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these parameters into certain values augmented the yield of methyl-isopropyl 

ester. Subsequent increasing these parameters reduced the yield of methyl-

isopropyl ester. The maximum methyl-isopropyl ester yield of (94.78  

0.29)% that was insignificantly difference from the predicted yield of  95.31% 

was obtained at the optimum conditions included 1.99 wt.% NaOH 

concentration, 10.82 (mL·g-1) the mixture volume to seed weight ratio, 0.46 

volume ratio of methanol to the mixture of methanol and isopropanol at 68C 

reaction temperature. Reducing the particle size to less than 425 µm could 

shorten reaction time to reach the equilibrium condition from 60 min to 30 

min. The properties of methyl-isopropyl ester were similar to the properties of 

methyl ester which were in agreement with the standards of EN 14214 and 

ASTM D6751.  

2. In-situ transesterification is a catalytic liquid-liquid reaction in the presence of 

inert solid phase. Reaction mechanism and kinetics of in-situ methanolysis and in-

situ transesterification of Jatropha curcas seeds with the mixture of methanol and 

isopropanol in a batch reactor at different reaction temperature and particle size 

had been investigated by applying the shrinking core model. The mechanism of 

in-situ methanolysis and in-situ transesterification of the mixture of methanol and 

isopropanol were chemical reaction controls.  

a. For in-situ methanolysis, the reaction was first order with the rate constant 

from 5.1510-9 to 8.7610-9 ms-1, Arrhenius activation energy of 22.66 

kJmol-1 and pre-exponential factor of 1.813 ms-1.  

b. For in-situ transesterification with mixture of methanol and isopropanol, the 

reaction was also first order with the rate constant from 7.7210-9 to 

1.4910-8 ms-1, Arrhenius activation energy of 20.35 kJmol-1 and pre-

exponential factor of 1.380 ms-1.   

Based on the reaction mechanism studied for two phase catalytic 

transesterification of Jatropha curcas oil, alkaline-catalyzed transesterification 

kinetics model equations were developed. The effects of alcohol volume to seed 

weight ratio and NaOH concentration on triglyceride conversion were evaluated 
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using the model equations. The results were compared with the experimental 

observation. The prediction of model equation on the apparent reaction rate 

constant and the yield of biodiesel were comparable with the experimental results.  

3. In-situ transesterification of Jatropha curcas seeds using methanol mixed with n-

hexane to enhance the oil extraction had been investigated in Soxhlet extractor. 

The methyl ester yield of (83.61  0.57)% which was insignificant to the predicted 

methyl ester yield of 84.67% was obtained at the optimum conditions of 8.4 

(mL·g-1) mixture volume to seed weight ratio, 1.92 wt.% NaOH concentration, 

0.52 (mL·mL-1) volume ratio of methanol to mixture at 60C reaction temperature 

for 1 h reaction time. Prolong reaction time to 3 h; higher methyl ester yield of 

90.74% was achieved. 

6.2 Recommendations 

The following recommendations are proposed: 

1. In the present study, the experiments have been conducted in batch reactor. One 

experiment has been performed in Soxhlet extractor which almost similar to the 

packed bed reactor. Therefore, designing and building-up the efficient and 

economical continuous reactor to produce biodiesel by in-situ transesterification 

of non-edible oilseeds or algae is important to be investigated since the volume of 

actual commercial biodiesel production is very large. 

2. The reaction mechanism and kinetics of batch process differs from the 

continuous process. Hence, developing the reaction mechanism and kinetics of 

continuous reactor should be conducted as well. 
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APPENDIX 

Table A 1: Alkaline-catalyzed transesterification 

Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Beef fat methanol 1 : 6 KOH 1.25  65 120 87.4  

Chicken fat methanol 1 : 6 KOH 1.25  65 120 89 

Used cooking oil methanol 1 : 6 KOH 1.25  65 120 88.3 

Hoque, et al., 2011 [137]        

        

Tucum oil (Astrocaryum vulgare) Methanol 5 : 1 w/w NaOH 1.0 60 30 92 

Lima, et al., 2008 [138] ethanol 5 : 2 w/w NaOH 1.0 60 30 90 

        

Mixed soybean oil and  

rapeseed oil 

50:50 weight ratio of oils; n-hexane was 

used as co-solvent 

Methanol 1 : 5 NaOH 0.8  55 120 94 

Qiu, et al., 2011 [139]        

        

Waste cooking oil 

Phan, et al., 2008 [140] 

methanol 1 : 7 – 1 : 8 KOH 0.75  30-50 80-90  88-90 
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Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Iranian bitter almond oil methanol 1 : 7 KOH 0.9 50 60 90.8 

Atapour and Kariminia, 2011 [141]        

        

Palm kernel oil 

blender was used as reactor 

ethanol 5 : 1 w/w KOH 1.0  60 120 96  

Alamu, et al., 2008 [142]        

        

Used cooking oil 

NaOCH3, KOCH3, NaOH, KOH were test 

as catalyst, Encinar, et al., 2007 [127] 

ethanol 1 : 12 KOH 1.0  78 120 74.2 

        

Sunflower oil methanol 1 : 25 KOH 1.4 23 3 99.3 

tetrahydrofuran (THF) was used ethanol 1 : 25 KOH 1.4 23 6-7 98.4 

as co-solvent ethanol 1 : 25 KOH 1.4 60 2 98.8 

Zhou, et al., 2003 [64] 1-butanol 1 : 25 KOH 1.4 23 30 98.0 

        

Soybean oil 

tetrahydrofuran (THF) as co-solvent (0.87 

v/v), Boocock, et al., 1998 [134] 

methanol 1 : 27 NaOH 1.0 23 7 99.4 
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Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Rapeseed (Brasica napus) oil 

NaOCH3, KOCH3, NaOH were tested as 

catalyst as well, Rashid and Anwar, 2008 

[58] 

methanol 1 : 6 KOH 1.0 65 120 95-96 

        

Neat canola oil, ester content = 98 wt.% methanol 1 : 6 NaOH 1.0 40-45 60 93.5 

Used canola frying oil,  

ester content = 94.6 wt.% 

methanol 1 : 7 NaOH 1.1 60 20 88.8 

Leung and Guo, 2006 [59]        

        

Milkweed (Asclepsia) seed oil methanol 1 : 6 NaOCH3 1.1 60 60 >99 

Holser and Harry-O’Kuru, 2006[60] ethanol 1 ; 6 NaOC2H5 1.1 60 60 97.7 

        

Moringa Oliefera oil methanol 30 wt.% KOH 1.0  60 60  82 

Kafuku and Mbarawa, 2010 [143]        

        

Malaysian RBD palm oil 

ester content = 88%  

methanol 1 : 6 NaOH 1.0 60 60 81 

Shahbazi, et al., 2012 [144]   KOH 1.0 60 60 90 
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Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Rice bran oil methanol 1 : 9 NaOH 0.75 55 60 90.18 

Sinha, et al., 2008 [145]        

        

Dairy waste scum methanol 1 : 6 KOH 1.2 75 30 96.7 

Sivakumar, et al., 2011 [61]        

        

mixtures of canola and used cooking oil, 

40:60 weight ratio of used cooking oil to 

canola oil, Issariyakul, et al., 2008 [62] 

ethanol 1 : 6 KOH 1.0 50 120 97.7 

        

Muskmelon (Cucumis melo) seed oil methanol 1 : 5.8 KOH 0.79 55 72.5 89.5 

Rashid, et al., 2011 [146]        

        

Karanja (Pongamia pinnata) oil 

initial AV is 5.06 mg KOH/g 

methanol 1 : 6 KOH 1.0 65 180 97-98 

Meher, et al., 2006 [63]        

        

Jatropha curcas oil methanol 1 : 5 NaOH 1.0 60 90 98 

Chitra, et al., 2005 [147]        
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Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Cottonseed (Gossypium hirsutum L.) oil, 

NaOH, KOH, KOCH3 were tested as 

catalyst as well, Rashid, et al., 2009 [66] 

methanol 1 : 6 NaOCH3 0.75 65 120 96.9 

        

Mahua (Madhuca Indica) oil 

Engine performance test show that methyl 

ester as a fuel does not differ greatly from 

that of diesel, Puhan, et al., 2005 [148]. 

methanol 9 : 2 w/v NaOH 0.75 60 120 92 

        

Spent coffee ground oil 

oil content : 15.28% 

Al-Hamamre, et al., 2012 [149] 

methanol 1 : 9 KOH 2.5 65 240 85 

        

Okra (Hibiscus esculentus) seed oil; oil 

content : 12%; Anwar, et al., 2010 [150] 

methanol 1 : 7 NaOCH3 1.0 65 120 96.8 

        

Canola oil methanol 1 : 9 KOH 1.0 60 60 95 

Corn oil methanol 1 : 9 KOH 2.0 80 60 96 

Patil and Deng, 2009 [78]        
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Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Pongamia pinnata oil 

oil content : 25% 

methanol 1 : 10 KOH 1.0 60 90 92 

Karmee and Chadha, 2005 [151]        

        

Idesia polycarpa var. vestita fruit oil; oil 

content: 26.26%; Yang, et al., 2009 [152] 

methanol 1 : 6 KOH 1.0 30 40 >99 

        

Sunflower oil;  

oil content: 45-50%; Rashid, et al., 2008 

[153] 

methanol 1 : 6 NaOH 1.0 60 120 97.1 

        

Pumpkin (Cucurbita pepo L.) seed oil; oil 

content: 45%; Schinas, et al., 2009 [154] 

methanol 1 : 6 NaOH 1.0 65 60  97.5 

        

Roselle (Hibiscus sabdariffa L.) oil; oil 

content: 18% 

methanol 1 : 8 KOH 1.5 60 60 99.4 

Nakpong and Wootthikanokkhan, 2010 

[155] 

       

        



 

 199

Feedstock Alcohol Alcohol:oil Catalyst Cat. amount  

(wt.%) 

T (C) t (min) BD  
References yield (%) 

Palm oil; Reaction in continuous stirred-

tank reactor (CSTR) 

Darnoko and Cheryan, 2000 [129] 

methanol 1 : 6 KOH 1.0 60 60 97.3 

        

Sunflower oil methanol 1 : 6 NaOH 1.0 65 240 85.9 

all catalysts have methyl ester concentration 

of near 100 wt.% 

methanol 1 : 6 KOH 1.0 65 240 91.67 

Vicente, et al., 2004 [65] methanol 1 : 6 NaOCH3 1.0 65 240 > 98 

 methanol 1 : 6 KOCH3 1.0 65 240 > 98 

        

Sunflower oil methanol 1 : 6 NaOCH3 0.5 60 60 98 

Freedman, et al., 1984 [15] ethanol 1 : 6 NaOCH3 0.5 75 60 97 

 1-butanol 1 : 6 NaOCH3 0.5 114 60 96 

        

Coconut oil methanol 0.25% v/v KOH 0.5% w/v 58 20 98-99 

palm oil 

Satyanarayana and Muraleedharan, 2011 

[156] 

methanol 0.25% v/v KOH 0.5% w/v 60 20 98-99 
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APPENDIX III 

Table A 2: Acid-catalyzed transesterification 

Feedstock Alcohol Molar 
ratio Oil to 
alcohol 

Catalyst Cat. 
amount  

(wt.%) 

Reaction condition BD yield Acid value 
References Temp time Stirring 

speed 
(%) Initial Final 

Sunflower oil 

Berrios, et al., 2007 [67] 

methanol 1 : 60 H2SO4 5.0 60C 2 h - - 5-7 1 

           

Zanthoxylum bungeanum  

seed oil 

methanol 1 : 24 H2SO4 2.0 60C 80 min 600 rpm - 45.51 1.16 

Zhang and Jiang, 2008 [68]           

           

Oleic acid 

applied ultrasonic irradiation 

Hanh, et al., 2009 [69] 

ethanol 1 : 3 H2SO4 5.0 60C 2 h 1800 

rpm 

> 95   

           

Waste frying oil methanol 1 : 245 H2SO4 3.8 mole% 70C 4 h 400 rpm 99 ± 1 12 2 

Zheng, et al., 2006 [70]           
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Feedstock Alcohol Molar 
ratio Oil to 
alcohol 

Catalyst Cat. 
amount  

(wt.%) 

Reaction condition BD yield Acid value 
References Temp time Stirring 

speed 
(%) Initial Final 

Soybean Oil 

hydrochloric, formic, acetic, and 

nitric acids were evaluated 

methanol 1 : 9 H2SO4 0.5 100

C 

8 h - > 99 - - 

Goff, et al., 2004 [71]           

           

Corn oil 

dimethyl ether (DME) as co-

solvent; shaking speed of 2.6 Hz 

methanol 1 : 6 p-toluene 

sulfonic 

acid 

4.0 80C 2 h - 97.1 7.5 - 

Guan, et al., 2009 [72]   (PTSA)        

           

Crude karanj oil methanol 1 : 6 H2SO4 2.0 65C 5 h 600 rpm 89.8 15.62 0.09 

water content: 10.2%  1 : 6 H3PO4 2.0 65C 5 h 600 rpm 20 15.62 0.09 

Khayoon, et al., 2012 [73]           
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Table A.3: Two steps homogeneous catalyzed transesterification 

 

Feedstock Alcohol molar ratio Catalyst amount  Reaction condition AV (mg Y 

References  oil : alcohol  (wt.%) Temp. time stir speed KOH/g) (%) 

          

Polanga (Calophyllum   methanol 1 : 6 H2SO4 0.65 v.% 65C 4 h 450 rpm 18  

inophyllum L.) oil methanol 1 : 9 KOH 1.5 65C 4 h 450 rpm < 4 85 

Sahoo, et al., 2007          

          

Zanthoxylum bungeanum  

seed oil 

methanol 1 : 24 H2SO4 2.0 60C 80 min 600 rpm 45.51  

Zhang and Jiang, 2008 [68] methanol 6.5:1 KOH 0.9 60C 90 min 600 rpm 1.16 98 

          

Rice bran oil methanol 1 : 5 H2SO4 1.0 – 5.0 60C 2 h 300 rpm > 40 55 - 90 

Zullaikah, et al., 2005 [75] methanol 1 : 5 H2SO4 2.0 60C 2 h 300 rpm 1.6 > 98 

          

Rubber seed oil methanol 1 : 6 H2SO4 0.5 45C 30 min - 34 - 

Ramadhas, et al., 2005 [52] methanol 1 : 9 NaOH 0.5 45C 30 min - 0.118 > 99 

          

Tobacco (Nicotiana tabacum L.)  methanol 1 : 18 H2SO4 2.0 60C 25 min 400 rpm 70  
seed oil Veljkovic, 2006 [76] methanol 1 : 6 KOH 1.0 60C 30 min 400 rpm < 4 91 
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Feedstock Alcohol molar ratio Catalyst amount  Reaction condition AV (mg Y 

References  oil : alcohol  (wt.%) Temp. time stir speed KOH/g) (%) 

Chicken tallow methanol 1 : 30 H2SO4 1.25 50C 24 h 130 rpm  99.01 
Bhatti, et al., 2008 [157] methanol 3.58:1 

(g·mL-1) 
KOH 1.5 30C 1 h   88.14 

          

Mutton tallow methanol 1 : 30 H2SO4 2.5 60C 24 h 130 rpm  93.21 
Bhatti, et al., 2008 [157] methanol 3.58:1 

(g·mL-1) 
KOH 1.5 30C 1 h   78.33 

          

Castor seed oil methanol 1 : 40 H2SO4 1.0 60C 1 h 300 rpm 3.3  
Hincapié, et al., 2011 [33] methanol 1 : 20 KOH 1.0 60C 1 h 300 rpm < 1.0 98 
          

Used cooking oils methanol 7.14:1 
(g·mL-1) 

NaOH 0.42 25C 30 min  6.5 73 

Çaylı and Küsefoğlu, 2008 [77] methanol 17:1  
(g·mL-1) 

NaOH 0.18 25C 30 min  - 94 

          

Karanja (Pongamia glabra) oil methanol 1 : 6 H2SO4 1.0 60C 45 min - 28  

Patil and Deng, 2009 [78] methanol 1 : 9 KOH 0.5 60C 30 min  2 80 

          

Jatropha curcas oil methanol 1 : 6 H2SO4 0.5 60C 2 h - 36  

Patil and Deng, 2009 [78] methanol 1 : 9 KOH 2.0 600C 2 h  2 90–95 

          

Jatropha curcas L. seed oil methanol 0.60 (w/w) H2SO4 1.0 500C 1 h 400 rpm 30  
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Feedstock Alcohol molar ratio Catalyst amount  Reaction condition AV (mg Y 

References  oil : alcohol  (wt.%) Temp. time stir speed KOH/g) (%) 

Berchmans and Hirata, 2008 [48] methanol 0.24 w/w NaOH 1.4 65C 2 h 400 rpm 2 90 

          

Mahua (Madhuca indica) oil methanol 0.35 v/v H2SO4 1.0% v/v 60C 1 h - 38  

Ghadge and Raheman, 2005 [79] methanol 0.25 v/v KOH 0.7% 

w/v 

60C 1 h - 4.84 98 

          

Rubber (Heava brasiliensis) 

seed oil 

methanol 0.75 v/v H2SO4 1.0% v/v 63(±2) 1 h - 48  

Satyanarayana and 

Muraleedharan, 2011 [156] 

methanol 0.30 v/v KOH 0.5 w/v 55(±2) 1 h - 1.72 98-99 

          

Kusum (Schleichera triguga) oil methanol 1 : 10 H2SO4 1.0% v/v 50± 

0.5 

1 h - 21.30  

Sharma and Bhaskar Singh, 2010 

[81] 

methanol 1 : 8 KOH 0.7% 

w/w 

50± 

0.5 

1 h - 0.94 95 

          

Ceiba pentandra oil methanol 1 : 8 H2SO4 1.834 65C 140 m 600 rpm 28.71  

Sivakumar, et al., 2013 [158] methanol 1 : 9 KOH 1.0 65C 45 min 600 rpm 1.68 99.5 
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Feedstock Alcohol molar ratio Catalyst amount  Reaction condition AV (mg Y 

References  oil : alcohol  (wt.%) Temp. time stir speed KOH/g) (%) 

Jatropha curcas L. oil methanol 12% w/w H2SO4 1.0 70C 2 h  14  

Lu, et al., 2009 [82] methanol 1 ; 6 KOH 1.3 64C 20 min  1 98 

          

Waste frying sunflower oil methanol 1 : 6 KOH 1.0 30C 30 min 400 rpm -  

Predojevic, 2008 [159] methanol 1 : 6 KOH 1.0 60C 30 min 400 rpm - 88.92-

92.45 

          

Karanja (Pongamia pinnata) oil methanol 1 : 6 H2SO4 0.5 65C 1 h - 41.9  

Naik, et al. [160] methanol 1 : 6 KOH 1.0 65C 1 h - 3.9 96.6–97 

          

Euphorbia lathyris L methanol 1:10 H2SO4 0.8 60C 45 min 600 rpm 25.4  

OC: 43.31 wt.%; convr: 97.9% methanol 1:6 KOH 0.8 60C 30 min 600 rpm 1.29 86.2 

Sapium sebiferum L. methanol 1:8 H2SO4 0.4 60C 30 min 600 rpm 4.83  

OC: 24.93 wt.%; convr: 97.9% methanol 1:6 KOH 1.0 60C 30 min 600 rpm 0.68 88.3 

Jatropha curcas L. methanol 1:8 H2SO4 0.4 60C 30 min 600 rpm 9.37  

OC: 38.09 wt.%; convr: 98.3% methanol 1:6 KOH 1.0 60C 30 min 600 rpm 0.72 86.2 

Wang, et al., 2011 [161]          

          

 


