

SIRIUS: Cost Effective Smart Video Surveillance System with Object

Recognition Feature

by

Chong Hui Qing

14781

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

JANUARY 2015

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

SIRIUS: Cost Effective Smart Video Surveillance System with Object

Recognition Feature

by

Chong Hui Qing

14781

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONIC ENGINEERING)

Approved by,

(Dr. Mohd Zuki B Yusoff)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2015

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

CHONG HUI QING

iii

ABSTRACT

Sirius is a Linux based real time smart video surveillance system implemented

mainly using software programs. Yocto Project is used as the base operating system

because of its less memory footprint and lower storage requirement compared to other

Linux distributions. Sirius uses the concept of Machine to Machine (M2M) and

Internet of Things (IoT) since two machines, server and client are connected to each

other via Ethernet. Sirius is done to improve the effectiveness and efficiency of current

surveillance systems which are costly and lack of features. Instead of turning on the

camera all the time, Passive Infrared (PIR) sensor is used to trigger video capturing.

Message is sent from client to server using Message Queue Telemetry Transport

(MQTT) protocol to inform that someone or something has intruded the observing

region. Real time video captured is displayed at the server so that object recognition

can be performed using Speeded-Up Robust Features (SURF) algorithm found in Open

Source Computer Vision (OpenCV) libraries. Object recognition feature in Sirius helps

to remove human eyes in identifying object being captured. The identity of object

captured is displayed in table format after analyzing each video. Sirius Project will be

delivered as a running system made up of two machines, with accurate results of object

recognition. Waterfall Model, which involves several phases is used as the

methodology to complete Sirius Project. Open source tools are fully utilized including

image building for the operating system. Sirius Project is fully related to IoT especially

in the part of machines communication. The accuracy of the system is always higher than

85%

iv

ACKNOWLEDGEMENT

I, Chong Hui Qing, matrix ID 14781, from the department of Electrical and

Electronic Engineering would like to express my greatest appreciation to those who

gave me the opportunity to complete my Final Year Project (FYP). I would like to thank

Universiti Teknologi PETRONAS (UTP) for giving me an opportunity to use what I

have learnt in the last few years on a real industrial application.

First and foremost, I would like to acknowledge with much gratitude the

continuous guidance and patience from my FYP supervisor, Dr. Mohd Zuki B Yusoff.

His constant motivation and encouragement were vital for the completion of this

project. Furthermore, I am given the opportunity to expose to new knowledge through

this project.

I have to further thank my lecturers who provided me guidance and support to

go ahead with my project. They provided not only technical knowledge, but also

encouragements and suggestions while I am facing difficulties in completing the

project. Last but not least, I would like to give my special thanks to my family and

course-mates whose support and love enabled me to complete the project.

v

TABLE OF CONTENTS

CERTIFICATION i

ABSTRACT iii

ACKNOWLEDGEMENT iv

CHAPTER 1: INTRODUCTION 1

 1.1 Background of Study 1

 1.2 Problem Statement 2

 1.3 Objectives and Scope of Study . . . 3

 1.3.1 Objectives 3

1.3.2 Scope of Study 3

1.3.3 Relevancy of Study 4

1.3.4 Feasibility of the Project within the Scope and

 Time Frame 4

CHAPTER 2: LITERATURE REVIEW AND/OR THEORY . . 5

 2.1 Yocto Project 5

 2.2 Messaging Queue Telemetry Transport . . 5

 2.3 Real Time Intelligent Video Surveillance System . 6

 2.4 Speeded Up Robust Features (SURF) in Open

 Source Computer Vision (OpenCV) . . . 7

 2.5 Relevancy and Recentness of Literature . . 9

CHAPTER 3: METHODOLOGY/PROJECT WORK . . . 10

 3.1 Methodology 10

 3.2 Key Milestone 10

 3.2.1 Identifying Problem Statement and Goals . 11

 3.2.2 Software and Hardware Research . . 11

 3.2.3 System Design 11

 3.2.4 Hardware Connection 12

 3.2.5 Software Implementation . . . 12

 3.2.6 Benchmarking/Validation and Maintenance . 12

 3.3 System Flow Chart 13

 3.4 Tools and Equipment Required . . . 15

 3.5 Gantt Chart 17

CHAPTER 4: RESULTS AND DISCUSSION 18

 4.1 Results 18

 4.1.1 Build Yocto Image 18

 4.1.2 Prepare Template Images . . . 22

 4.1.3 Obtain Input from PIR Sensor . . 23

 4.1.4 Trigger USB Camera for Image Capturing . 24

 4.1.5 Publish Message to Server and Transfer

 Image 25

 4.1.6 Object Recognition 25

 4.1.7 Save Video and Display Result . . 28

 4.2 Discussions 30

 4.3 Project Deliverables 36

vi

CHAPTER 5: CONCLUSION AND RECOMMENDATION . . 37

 5.1 Conclusion 37

 5.2 Recommendations 38

REFERENCES 40

vii

LIST OF FIGURES

Figure 1.1 Sirius Project 2

Figure 2.1 Yocto Project Work Flow 5

Figure 2.2 MQTT Protocol Model 6

Figure 2.3 Real Time Video Surveillance System 7

Figure 2.4 Process of Encoding and Decoding in Video Surveillance System 7

Figure 2.5 SURF Algorithm Pipeline 8

Figure 3.1 Waterfall Model 10

Figure 3.2 Client System Flow Chart 13

Figure 3.3 Server System Flow Chart 14

Figure 3.4 Ubuntu 12.04 LTS 15

Figure 3.5 Raspberry Pi B+ 15

Figure 3.6 PIR Sensor 15

Figure 3.7 Logitech USB Webcam 16

Figure 3.8 Ethernet Switch 16

Figure 3.9 Ethernet Cables 16

Figure 3.10 USB Ethernet Adaptor 16

Figure 3.11 Gantt Chart 17

Figure 4.1 Desktop of Yocto OS 19

Figure 4.2 Disk Usage of Yocto OS 19

Figure 4.3 Disk Usage of Raspbian Image 20

Figure 4.4 Memory Usage of Yocto OS 20

Figure 4.5 Memory Usage of Raspbian Image 21

Figure 4.6 Aeon Card Template Image 22

Figure 4.7 KimGary Card Template Image 22

Figure 4.8 Watson Card Template Image 22

Figure 4.9 Hardware Connection 23

viii

Figure 4.10 Commands to Configure GPIO Pin 24

Figure 4.11 Image Frame Captured 24

Figure 4.12 Successful Object Recognition 1 26

Figure 4.13 Successful Object Recognition 2 26

Figure 4.14 Successful Recognition for Rotated Object 27

Figure 4.15 Successful Recognition for Upside Down Object 27

Figure 4.16 Result of Object Recognition 29

Figure 4.17 Blur Image Recognition 1 31

Figure 4.18 Blur Image Recognition 2 31

Figure 4.19 Wrong Location Detected 32

Figure 4.20 Object Recognition Validation Flow Chart 33

Figure 4.21 Video Frame with Template Image Inserted 34

Figure 4.22 Video Frame 2 with Template Image Inserted 34

LIST OF TABLES

Table 2.1 SCP Command 6

Table 2.2 Comparison between SIFT, PCA-SIFT and SURF 9

Table 4.1 Comparison between Yocto OS and Raspbian Image 21

Table 4.2 Summary of Accuracy 35

ix

ABBREVIATIONS AND NOMENCLATURES

API Application Programming Interface

CCTV Closed-Circuit Television

FYP Final Year Project

GPIO General Purpose Input/Output

GPU Graphical Processing Unit

HD High Definition

IoT Internet of Things

LTS Long Term Support

M2M Machine to Machine

MQTT Message Queue Telemetry Transport

OE Open Embedded

OpenCV Open Source Computer Vision

OS Operating System

PCA Principal Component Analysis

PIR Passive Infrared

RTSP Real Time Streaming Protocol

SCP Secure Copy Protocol

SIFT Scale-Invariant Feature Transform

SQDIFF Squared Difference

SSH Secure Shell

SURF Speeded-Up Robust Feature

USB Universal Serial Bus

UTP Universiti Teknologi PETRONAS

YP Yocto Project

1

CHAPTER 1

INTRODUCTION

1.1 Background

Sirius is a binary star system consisting two bright stars located next to each

other. This Linux-based project is known as “Sirius” because it consists of two

machines, the server and client, connecting to each other via Ethernet for messaging

and data transferring. The main purpose of Sirius Project is to improve the

effectiveness and efficiency of the security system at workplace. Passive Infrared (PIR)

sensor is used to trigger video capturing only when there is change in infrared radiation

under the observing region. The client performs video capturing while the server

performs object recognition using Speeded-Up Robust Feature (SURF) algorithm,

which is one of the algorithms under Open Source Computer Vision (OpenCV) library.

Real time streaming is performed between two machines using and messages are sent

from the client to server using Message Queue Telemetry Transport (MQTT) Protocol.

Yocto Project (YP) is used as the base operating system (OS) of Sirius. YP

helps to reduce the memory footprint and the storage requirement of the system. In

ensuing chapter, an OS built by using YP is loosely called “Yocto OS” for brevity.

Sirius is a project related to Internet of Things (IoT), which is now one of the trends in

the world of embedded system. IoT is defined as “the interconnection of embedded

devices with the help of Internet”. Hence, instead of being a standalone system, Sirius

involves connection and communication between machines as well as real time

streaming. This connection is not limited to only two machines, but can be unlimited

according to the user’s requirement. However, in order to satisfy the feasibility of

project, Sirius only requires the connection between two machines. After completing

2

this project, student is expected to have more knowledge on YP, Machine to Machine

(M2M), OpenCV, and MQTT. Figure 1.1 shows the general idea of Sirius Project.

FIGURE 1.1. Sirius Project

1.2 Problem Statement

Nowadays, several kinds of embedded system using different operating

systems are developed. The memory footprint and storage requirement of the Linux

distributions are large. Larger capacity storage is needed to store the system image and

the extra data generated in the system. Furthermore, a large memory system is needed

to ensure the system is functioning fast and smoothly. Hence, the initial cost of the

system is increased.

The existing CCTVs have high power consumption since the cameras are

turned on all the time to capture a region regardless of any change of event has

happened. Recently, video filtering feature is added to reduce the storage size.

However, such design is sub-optimal because video camera is still need to be on at all

time and processing power is consumed to filter off meaningless video frame.

Furthermore, object recognition feature is not included in existing CCTV

systems. Users need to watch all the videos to determine what had happened at a

particular time. The involvement of human in detecting object for long duration often

causes fatigue. Such fatigue typically causes users to skip video frame by fast-

forwarding and important event may be skipped.

3

1.3 Objectives And Scope Of Study

1.3.1 Objectives

Sirius Project is mainly used in industry its objectives are:

i. To capture video of a region to ensure the safety of industry.

ii. To improve the effectiveness and efficiency of the security in industry

by reducing the power consumption.

iii. To remove human eyes from object recognition with the help of

machine vision object recognition at the server end.

iv. To assist police in searching suspects in different areas.

v. To reduce initial cost of system by reducing memory footprint and

storage requirement using open source development tools.

1.3.2 Scope of Study

This project focuses on an embedded system being run in Yocto OS. This study

covers the background, function and the advantages of YP. The work flow of YP needs

to be understood in order to apply it correctly based on the requirement of Sirius.

Furthermore, the scope of Sirius project includes the concept of M2M. Since

Sirius Project consists of a server and a client, communication between two machines

is required. MQTT protocol helps to connect two machines in terms of message

transferring. Besides, files transferring and real time streaming are done in network

data path using several protocols.

In addition, Sirius project focuses on video capturing and processing. All these

processes are done using OpenCV Application Programming Interface (API). OpenCV

consists of image processing algorithms such as object recognition algorithm.

Different types of algorithms are learned and compared so that the best method is used.

4

1.3.3 Relevancy of Project

The research of Sirius Project is relevant to current inefficient security system

available in the market. Several tools and functions need to be integrated not only to

reduce the initial cost, but also increase the efficiency of the security systems. Hence,

the objectives of Sirius Project are relevant to the current challenges faced by the

society especially in terms of security.

1.3.4 Feasibility of the Project within the Scope and Time Frame

This project is feasible within the scope of study because all the information

can be found in open source websites. Tutorials can be easily found in Internet websites.

Although several researches need to be done, however, students are not required to

create the tools and protocols from scratch. By only integrating all the software

packages, libraries and functions available in Internet, Sirius Project can be done as an

individual project of a student within 28 weeks.

5

CHAPTER 2

LITERATURE REVIEW AND/OR THEORY

2.1 Yocto Project

Yocto Project (YP) is an open source tool kit consisting of recipes to create a

custom Linux distribution for different hardware architectures [1]. “Poky”, which is

the core of YP, consists of tools, Open Embedded (OE) packages and metadata to build

an image to boot up a target device. The “Bitbake” tool found in Poky helps to

download, patch, install and build an image [2]. Packages found in projects other than

Poky and OE can be installed using YP. Figure 2.1 shows the work flow of YP [3].

FIGURE 2.1. Yocto Project Work Flow

2.2 Messaging Queue Telemetry Transport

Messaging Queue Telemetry Transport (MQTT) is a protocol that consists of

a publish-subscribe system to transfer messages from a server to a client [4], [5].

MQTT protocol allows several parties to publish and subscribe on a same topic for

communication. A server named “broker” manages the connections between

publishers and subscribers and transfers messages to the subscribers according to their

6

subscribed topics. Without subscribing to the same topic, message will not be received

by the subscriber. Figure 2.2 shows the MQTT protocol model [5].

FIGURE 2.2. MQTT Protocol Model

2.3 Real Time Intelligent Video Surveillance System

Recently, the cameras are equipped with several features such as automatic

focus, face detection, smile detection, etc. All these features play an important role

especially in monitoring the security of a place. Algorithms in computer vision help to

achieve this purpose. However, the scenarios should be executed in real time or with

a small latency [6]. This can be done with either using Secure Copy Protocol (SCP) to

transfer computer files between two machines in a fast speed or Real Time Streaming

Protocol (RSTP).

SCP is a network protocol which helps the hosts on a network to transfer files

between each other. The data transferring is done by using Secure Shell (SSH) and

some mechanisms for authentication. Hence, permissions are needed so that the clients

can download the files from the server. The syntax of SCP command is shown in Table

2.1 [7].

TABLE 2.1. SCP Command

Direction of Transmission Command

Copying file to host scp Source_file user@hostIP:Target_directory

Copying file from host scp user@hostIP:directory/Target_file Target_folder

7

Streaming media technology such as RTSP is included in the system. The raw

data being captured by the camera is encoded into signal and being sent to the network

by the server. The client can connect to the network and receive the signal. Then, the

signal will be decoded back into a video. Figures 2.3 and 2.4 show the structure of a

video surveillance system [8].

FIGURE 2.3. Real Time Video Surveillance System

FIGURE 2.4. Process of Encoding and Decoding in Video Surveillance System

2.4 Speeded Up Robust Features (SURF) in Open Source Computer Vision

(OpenCV)

Computer Vision helps to program a computer to process images and videos.

Open Source Computer Vision (OpenCV) is launched in year 1999. OpenCV library

consists of image and video processing algorithms. The functions and algorithms are

able to capture images and videos, access pixel values, analyze images, edit images

and so on [9].

8

Recently, researches on real time smart video surveillance system which

includes object tracking and detection features without human intervention are done.

Although background subtraction has been widely used in several video surveillance

systems, object recognition cannot be done using background subtraction algorithm

[10]. The purpose of object recognition is to verify the presence and identity of an

object in an image. An algorithm named Speeded-Up Robust Features (SURF), which

uses Hessian matrix approximation extracts key points, from both template and

captured images and describes them as feature vectors [11], [12], [13]. The feature

vectors of template and captured images are learned and compared with each other to

determine if the object is being captured and recognized [11]. Figure 2.5 shows the

pipeline of SURF algorithm [13].

FIGURE 2.5. SURF Algorithm Pipeline

Several researches are done to compare different algorithms for object

recognition. The comparison is done on several factors such as speed as well as

variance in scale, rotation and so on. However, SURF is proven to be the best algorithm

among all. Table 2.2 shows the comparison between Scale-Invariant Feature

Transform (SIFT), Principal Component Analysis (PCA)-SIFT and SURF [12], [14].

9

TABLE 2.2. Comparison between SIFT, PCA-SIFT and SURF

Method Time Scale Rotation Blur Illumination Affine

SIFT Common Best Best Best Common Good

PCA-

SIFT

Good Common Good Common Good Good

SURF Best Good Common Good Best Good

2.5 Relevancy and Recentness of Literature

The literature is relevant to the project since similar algorithms, theories and

studies are done by other researches. Furthermore, the literature referred are done

within these six years. Hence, the literatures are useful and reliable for Sirius Project.

10

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 Methodology

Sirius is done mainly using software implementation. Only a small part

involves hardware implementation. Hence, Waterfall Model which is a sequential

design process mainly used in software development is used to complete this project.

The term “Waterfall” indicates that a phase in the development process cannot start if

the previous phase is not completed. Besides, this method does not allow developers

to make changes in the previous phase [15]. The advantage of Waterfall Model is that

it is easy to be understood. The phases are clear defined. Hence, developers can easily

arrange their tasks so that everything can be done smoothly [16]. Figure 3.1 shows the

phases of Waterfall Model.

FIGURE 3.1. Waterfall Model

3.2 Key Milestone

 Sirius is a project consists of the process of planning, designing, implementing,

testing and improving. Similar to Waterfall Model, this project has a few key

milestones need to be achieved to complete the whole project. The milestones are:

11

3.2.1 Identifying Problem Statement and Goals

Before starting the project, it is important to identify the problem statement and

why this project is needed to be implemented. Researches about the current systems

and user demand are required to be done. Besides, comparison should be made

between the new system and the current system available in the market. The strengths

and weaknesses of the systems have to be evaluated. Furthermore, goals of this project

are needed to be set clearly. It helps developers to plan the schedule and the design of

the system so that this project is feasible within the scope and time frame.

3.2.2 Software and Hardware Research

Sirius Project involves several software developments such as building Yocto

image, OpenCV and MQTT protocols. Hence, researches are needed before any

implementation is started. Students need to research about Yocto Project, how to build

a Yocto OS and what extra software packages are needed. Besides, OpenCV and

MQTT protocols as well as their applications need to be understood. Furthermore,

several methods about object recognition are compared so that the most suitable

method is chosen. On the other hand, datasheets and schematic diagrams of hardware

components are studied so that all the requirements are met and the connections are

correct.

3.2.3 System Design

System design is important before any implementation is made. The high level

design of the project should be done. All the conditions are considered and should be

included in the design. For example, how long should the video being recorded once

the camera is being triggered, what is the suitable frame per second, what is the

threshold value needed for object recognition, what criteria should the system consider

during the process of object recognition, etc. The flow of system is planned well and

flow chart is drawn to ease the implementation. Furthermore, Gantt chart is prepared

to estimate the time needed for each phase. It ensures everything is done within the

time given.

12

3.2.4 Hardware Connection

Sirius Project involves both software and hardware implementation. Before

starting software development, the hardware components have to be connected

correctly. Schematics and datasheets are being referred while connecting the

components. The functionality of components are tested before software

implementation is started. This helps to narrow down the scope of debugging if error

is found during the implementation phase.

3.2.5 Software Implementation

At client side, C++ language source codes are written to trigger video capturing

depending on the input of PIR sensor and publish message to the server. Real time

streaming is done between two machines. On the other hand, Python script is written

at server to subscribe MQTT topic and read the message. Then, object recognition is

performed. A table containing the identity and location of object is displayed at the

end of each video analytic. Necessary testing are done so that the result obtained is

accurate.

3.2.6 Benchmarking/Validation and Maintenance

After the Sirius Project has done, it is tested to ensure that it is user friendly

and the accuracy is high. There are some factors considered during the process of

testing such as sensitivity of sensor, resolution of image, the speed of communication

between both machines as well as the speed of image transferring. Furthermore, a

validation algorithm is written to calculate the accuracy of the object recognition

algorithm. Theoretical results are generated and it is compared with the experimental

results. Maintenance is needed when there is any fault or bugs found in the system. If

the accuracy obtained from the benchmarking process is low, the system needs to be

modified. Changes made include using different threshold values or combining

different object recognition methods. If the resolution of video is bad, a better USB

camera should be used.

13

3.3 System Flow Chart

FIGURE 3.2. Client System Flow Chart

14

FIGURE 3.3. Server System Flow Chart

15

3.4 Tools and Equipment Required

There are several components and equipment are used for Sirius Project. The tools

used and the functions are shown below.

 Local Virtual Machine (Server) - The operation system of the server is Linux

and Ubuntu 12.04 LTS is used in this development machine. This machine is

used to stream the video captured and perform object recognition.

FIGURE 3.4. Ubuntu 12.04 LTS

 Raspberry Pi with Yocto Image (Client) - The client is operated by Yocto

Project with software packages needed installed. The client consists of

Raspberry Pi platform, PIR sensor and USB camera.

FIGURE 3.5. Raspberry Pi B+

 Passive Infrared (PIR) Sensor – Used to detect changes in infrared radiation

so that the camera will be triggered when the output of sensor shows there is

object detected in a certain distance.

FIGURE 3.6. PIR Sensor

16

 Logitech HD USB Camera – Used to capture video in high definition mode.

FIGURE 3.7. Logitech USB Webcam

 Ethernet Switch - Used to connect both the server and the client via Ethernet.

IP address is set for both machines so that they are able to be connected.

FIGURE 3.8. Ethernet Switch

 Ethernet Cables - Used to connect both server and client machines to Ethernet

switch.

FIGURE 3.9. Ethernet Cables

 USB Ethernet Adaptor - Used to connect server to Ethernet switch.

FIGURE 3.10. USB Ethernet Adaptor

17

3.5 Gantt Chart

Figure 3.11 illustrates the Gantt chart for the completion of Sirius Project.

FIGURE 3.11. Gantt Chart

18

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

 Sirius Project mainly focuses on integrating sensors, machines and

communication systems. It is a project related to Internet of Things and it consists of

a few main parts, which are:

 Build Yocto image

 Prepare template images

 Obtain input from PIR sensor

 Trigger USB camera for image capturing

 Publish message to server and transfer image

 Object recognition

 Save video and display result

 4.1.1 Build Yocto Image

 Sirius Project is started with building Yocto image. Yocto Project is a reference

operating system which ease developers to build an operating system. Compared to

other Linux distros, Yocto OS requires smaller storage size and it has lesser memory

footprint. There are a few types of images that are compatible to Raspberry Pi platform.

The images include rpi-hwup-image, rpi-basic-image, rpi-test-image, core-image-

minimal, core-image-sato, core-image-sato-sdk, etc. In this project, core-image-sato is

used because it is able to show pop-out window containing captured images on the

screen. The extra software packages such as OpenCV, Gstreamer, ffmpeg, and

Mosquitto are installed successfully in the image. Hence, all the libraries can be used.

19

Similar to Windows or Linux OS, Yocto OS consists of terminal, keyboard settings,

appearance configuration, shutdown button, etc. Figure 4.1 shows the desktop of

Yocto OS.

FIGURE 4.1. Desktop of Yocto OS

A comparison is made between Yocto OS and Raspbian Image to determine their

storage requirement and memory footprint. It is proven that Yocto OS requires smaller

storage requirement compared to Raspbian Image. Furthermore, after booting up the

image, the memory used is determined. The result shows that Yocto OS uses lesser

memory when the image capturing process is running. Figures 4.2 to 4.5 show the

storage requirement and memory used for both Yocto OS and Raspbian Image while

Table 4.1 shows the comparison between both images.

FIGURE 4.2. Disk Usage of Yocto OS

20

FIGURE 4.3. Disk Usage of Raspbian Image

FIGURE 4.4. Memory Usage of Yocto OS

21

FIGURE 4.5. Memory Usage of Raspbian Image

TABLE 4.1. Comparison between Yocto OS and Raspbian Image

Parameter Yocto OS Raspbian Image

Disk Usage 501 MB 9.81GB

Memory Usage 97𝑀𝐵

448𝑀𝐵
× 100% = 21.65%

124𝑀𝐵

373𝑀𝐵
× 100% = 33.24%

22

 4.1.2 Prepare Template Images

 Before object recognition can be carried out, the machine needs to learn the

objects which are needed to be recognized. The number of template images will affect

the processing speed of object recognition. The larger number of template images, the

longer the time needed to complete the process. In this project, three template images

are used. Figures 4.6 to 4.8 show the template images.

FIGURE 4.6. Aeon Card Template Image

FIGURE 4.7. KimGary Card Template Image

FIGURE 4.8. Watson Card Template Image

23

 4.1.3 Obtain Input from PIR Sensor

 PIR sensor and USB camera are connected successfully to Raspberry Pi platform.

The voltage source of PIR sensor is connected to 3.3V while the output is connected

to the General Purpose Input Output (GPIO) Pin 26 so that the USB camera can start

capturing image depending on the input from the pin. The sensitivity knob on the PIR

sensor is adjusted so that it is sensitive enough to detect infrared changes. On the other

hand, the delay is reduced to its minimum so that the GPIO value can be changed

almost instantly. Once the PIR Sensor detects any change in infrared radiation, the

GPIO value will become HIGH for around 3 seconds. Then the value will become

LOW again. If there is changes in infrared radiation within the 3 seconds, the GPIO

value will keep HIGH until there is no changes detected. Figure 4.9 shows the

hardware connections of the client of Sirius.

FIGURE 4.9. Hardware Connections

When the machine is booted up, the GPIO pin that is used is not initialized yet. Hence,

several commands are needed to initialize the GPIO pin and indicate the direction

whether it is an input or an output. In this case, GPIO pin 26 is used. The commands

are:

Raspberry Pi

GPIO Pin

26

Vcc (3.3V)

Ground (0V)

USB Webcam

PIR Sensor

24

FIGURE 4.10. Commands to Configure GPIO Pin

4.1.4 Trigger USB Camera for Image Capturing

 Source codes is written in C++ language to read the value of GPIO pin so that

the camera can be triggered depending on the input of sensor. When there is change in

infrared, PIR sensor will output a logic “1” to the GPIO pin, while logic “0” indicates

there is no event happening. Besides, image can be captured successfully using

OpenCV libraries. The image is captured and saved in jpg format. Besides, since the

GPIO value becomes low after three seconds if there is no change in infrared radiation,

which causes the USB camera to turn off. Hence, the algorithm is written to ensure

that the camera will continue capturing images for 20 seconds. If there is change in

infrared within the 20 seconds, the capture time will be increased. Figure 4.11 shows

one of the images captured by the USB camera.

FIGURE 4.11. Image Frame Captured

// Export GPIO pin 26
echo 26 > /sys/class/gpio/export

// Set the output of PIR sensor as the input of Raspberry Pi
echo in > /sys/class/gpio/gpio26/direction

25

4.1.5 Publish Message to Server and Transfer Image

 The protocol used to publish and receive message between two machines is

MQTT. A message is sent to the broker under the topic “huiqing/sirius”. The purpose

is to inform the server that someone or something has intruded the observation region.

On server side, it is set to be always connected to the broker and subscribed to the topic

name. By doing this, the server will be able to receive the message sent by the client.

Even if the server is not connected, the message will still be able to be received once

it is connected to the broker.

 On the other hand, while the camera is capturing images, the image is sent to

the server one by one using SCP protocol. With a 640 × 480 pixels image, the sending

time is less than 1 second. Once the image is sent to the server, the server will open it

and start the object recognition process. Since no password is set for the Yocto OS,

SCP command will not prompt user to key in the password.

4.1.6 Object Recognition

Apart from running in Yocto OS, the value of Sirius Project is that object

recognition feature is included in the system. This helps the users to determine what is

happening during a particular time without watching the entire video. Object captured

will be recognized if the template object has been learnt by the machine. In Sirius

Project, SURF method is used to perform object recognition. After receiving messages

and images from the client, the images will be opened one by one for further processing.

Key points and descriptors of both image source and template images are extracted.

Then, the similarities between image source and template images are determined using

K-nearest neighbor method. The number of key points matched will be recorded.

These steps will be repeated for all the templates. If the maximum number of key

points among all templates is higher than the threshold value, it can be concluded that

the object is captured. Figures 4.12 and 4.13 show the image when the object is

recognized successfully.

26

FIGURE 4.12. Successful Object Recognition 1

FIGURE 4.13. Successful Object Recognition 2

The red color points represents the common key points of both image source

and template image. Threshold value is set to be 700 by trial and error and if the

number of red color points exceeds the threshold value, it can be concluded that the

object in template image is being captured in the video. However, SURF method has

its own weaknesses. SURF method does not work well for rotated images. If the object

captured is rotated with a large angle, the object will not be recognized. Hence, each

template image is being rotated from 0° to 360° so that rotated object can be recognized.

However, this takes longer time for the process to be done. Figure 4.14 shows the

27

successful recognition for a rotated object while Figure 4.115 shows the successful

recognition for an upside down object.

FIGURE 4.14. Successful Recognition for Rotated Object

FIGURE 4.15. Successful Recognition for Upside Down Object

Apart from object recognition, the algorithm is able to determine the location

of the object being detected. This process is done by scanning through all the pixels of

the frame in order to determine if there is similar key point. If similar key point is

found, the coordinate will be recorded. Once the scanning process is done, the mean

of both x and y coordinates will be calculated and the result will be the object location.

However, the coordinate found is not necessary the center of the object. It is because

the key points are located at some interesting points such as corner or colorful spots.

28

Hence, the coordinate found depends on the location of key points. The following

figures show the coordinate found for the object. The green spot represents the

coordinate calculated while red spot represents the similar key point. The location of

green spot is located at the center of red spots. Hence, if the red spots only locate at

certain part of the object, for example the bottom part of the object, the green spot will

be shown at the bottom part as well. This scenario is shown in Figure 4.12.

4.1.7 Save Video and Display Result

Images are sent one by one instead of sending the whole video from the client

to the server. Although there are latency compared to real time streaming, but it is still

acceptable. Hence, after analyzing all the images, the images will be saved as a whole

video using date and time as the video name. This is to ensure that different videos

will not overlap with each other. Furthermore, if the user wants to trace something

from the video, they can easily decide which video to be opened. Video saving can be

achieved by using the function “VideoWriter” available in OpenCV library.

After the analytic, the result of object recognition is saved as a table in a text

file. The contents include frame number, object recognized, location of object as well

as a summary showing the number of frames an object is recognized. Figure 4.16

shows an example of the result of object recognition.

29

FIGURE 4.16. Result of Object Recognition

Based on Figure 4.16, “N/A” indicates “Not Available”, which means object

is not detected for that particular frame. This scenario is caused by the following

reasons:

 No object is captured in the video.

 Number of key points matched is less than the threshold value.

 Object is captured but its template image is not learnt by the machine.

30

4.2 Discussions

In order to complete Sirius Project which gives a high accuracy in object

recognition, several experiments are done. Firstly, a few template matching methods

such as SURF and Squared Difference (SQDIFF) template matching are used in order

to compare the accuracy of object recognition. It is found that SURF method produces

results with higher accuracy compared to SQDIFF method. Experiment is also done

by combining both SURF and SQDIFF methods. However, the accuracy becomes

worse. Besides, background subtraction is tried to combine with SURF to increase the

accuracy. It is planned to extract the moving object from the static video before

analyzing the moving object. But similar to SQDIFF, the desired accuracy is not met.

Hence, it is decided to use only SURF method for object recognition.

However, there are some other factors which affect the accuracy of object

recognition using SURF method. All these factors become the limitation of Sirius

Project. However, the accuracy of Sirius Project is still high. It is because the factors

do not affect the accuracy as much as the factor of rotation. Firstly, the scale of the

object will slightly affect the accuracy. When the object is captured from far, it appears

very small in the image. Hence, number of key points will decrease and they scatter to

the background images. Besides, since the frame rate is high, many frames will be

captured and if the object is moving fast, it causes the image to be blur. Therefore, the

object cannot be recognized. Another factor is affined image. If the object captured is

significantly distorted, it is difficult for it to be recognized. Figures 4.17 and 4.18 show

the failed object detection cases due to different factors. It can be seen that there are

only a few red color points in the image and the number of red color points does not

exceed the threshold value set.

31

FIGURE 4.17. Blur Image Recognition 1

FIGURE 4.18. Blur Image Recognition 2

Apart from that, SURF algorithm is dependent on the complexity of

background. Since the key points are extracted according to the colorful spots, corners,

etc, a complex background might cause the result to be inaccurate. Figure 4.19 shows

an inaccurate location detection due to the complex background. It can be seen that the

green dot is totally out of the object. Even though the identity of object is recognized

correctly, the location might give some error.

32

FIGURE 4.19. Wrong Location Detected

To make the system more user friendly, the source codes are included in the

init-scripts so that the source code will start running as soon as the machine is booted

up. The source code includes the process of setting up IP address and initializing GPIO

pin. Hence, at the client side, monitor is not needed once the source code is completely

done. Besides, multiple videos can be opened during the process of object recognition.

There are cases when the new images are captured while the previous video is still in

the progress of analytic. Therefore, in order to reduce the delay time, multiple windows

will pop out so that two or more videos can be analyzed at the same time. However,

the increase of number of windows will increase the processing time because the

processor is too busy to manage all the tasks. On the other hand, in terms of time spent,

building a Yocto OS which is compatible to Raspberry Pi needs around three hours

depending on the speed of internet connection. On the other hand, 5 minutes are needed

to complete the object recognition process for one video which contains of 50 frames.

However, the processing time will increase if the number of template image increases.

Furthermore, in order to determine the accuracy of the object recognition

algorithm, a validation process is done. Different template images are inserted into a

static background video randomly. The resolution, size, rotation angle and the location

of the template images are also adjusted randomly. While inserting the template

33

images frame by frame, an expected result of the objects’ identity is generated. The

modified video is then being fed into the object recognition algorithm to get the real

result. Both results are compared to calculate the accuracy of the system. Figure 4.20

shows the flow chart of the validation process while Figures 4.21 and 4.22 illustrate

the video frames which the template image has already being inserted randomly.

FIGURE 4.20. Object Recognition Validation Flow Chart

34

FIGURE 4.21. Video Frame with Template Image Inserted

FIGURE 4.22. Video Frame 2 with Template Image Inserted

35

Based on the comparison between expected and real result, it is found that there

are four scenarios that will occur during the process of object recognition. The

percentage of four scenarios are analyzed and the accuracy of object recognition

algorithm is calculated using a video consisting 242 frames. It is found that the

accuracy for each run varies due to the random properties of template image. However,

the accuracy is always above 85%. In this case, the accuracy is 88.43% while the

percentage error is 11.57%. The summary of accuracy is shown in Table 4.2.

TABLE 4.2. Summary of Accuracy

Scenario Description Percentage

Correct

Recognition

- No object is captured and results show

“N/A”.

- Object is captured and the exact object

is recognized.

214

242
× 100%

= 𝟖𝟖. 𝟒𝟑%

Wrong

Recognition

- No object is captured but results show

that something is recognized.

2

242
× 100%

= 𝟎. 𝟖𝟑%

Missed

Recognition

- Object is captured but results show

“N/A”.

0

242
× 100%

= 𝟎%

Extra

Recognition

- Object is captured but results show

another object is being recognized.

26

242
× 100%

= 𝟏𝟎. 𝟕𝟒%

36

4.3 Project Deliverables

Sirius Project is delivered as a system controlled by software programs.

Although hardware components are needed, Sirius Project is still depending on the

source code so that it can be run successfully. Sirius Project needs to be completed by

a specific deadline, which is the period of 28 weeks. Therefore, there are still

limitations in the system. However, Sirius Project can be improved in the future and

delivered in phases or releases. Different features can be added into the system to

enhance the function of the project.

 After Sirius Project is done, a presentation is conducted in order to demonstrate

the system functionality to the project supervisor as well as internal and external

examiners. The usage, strengths and weaknesses of the system are explained to the

audiences. Besides, all the files and source code are well version controlled by “git”

tool.

37

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 Sirius Project involves both software and hardware implementations. Two

machines are connected to each other for the purpose of messaging and data

transferring. This connection relates to the concept of M2M communication. Sirius

Project is able to improve the effectiveness and efficiency of current video surveillance

system available in the market by reducing the initial cost and including the feature of

object recognition. Human eyes are removed from object recognition since it is

performed automatically by the system. The system helps in assisting police to find the

suspects all around the world. Sirius Project will be delivered as a full-fledged

functioning system controlled by software programs written in both C++ language and

Python scripts. At the end of this project, student is expected to have well

understanding about Yocto Project, Raspberry Pi, M2M, MQTT, OpenCV, SURF

algorithm, etc. All hardware connections are done completely. It is proven that the

storage and memory requirement of Yocto OS are smaller than the Raspbian Image.

This helps to reduce the initial cost of the system. Besides, sensor inputs can be read

successfully and the image capturing process is performed successfully. The validation

results show that the accuracy of object recognition algorithm is always higher than

85%. All the objectives are achieved.

38

5.2 Recommendations

 Sirius Project can be further enhanced in the future by:

 Improving the accuracy of object recognition

Based on the result of validation process, it is found that the accuracy of object

detection algorithm is always higher than 85%. Although the accuracy is high,

it should be improved to a better system. Since there are several methods in

template matching, feature matching and object recognition, the suitable

methods can be tried to combine so that a better result can be yield. The

percentage of Wrong Detection, Missed Detection and Extra Detection should

be reduced. After future expansion, Sirius Project should be able to handle the

case of low resolution and affined object. Besides, it should be able to

differentiate objects even though they are similar in appearance such as shape

and color.

 Improving the processing speed of object recognition

The processing speed of object recognition algorithm takes some time. Multi-

thread or Graphics Processing Unit (GPU) are some of the techniques to speed

up the whole process. This helps to reduce the delay time so that actions can

be taken immediately.

 Adding user alarm/alert feature

Similar to the current alarm system, if the alarm rings for a certain time, a

message will be sent to the user or even the police. Hence, this type of feature

should be included in Sirius so that if certain objects or features are recognized,

the user and security guard will be informed so that actions can be taken

immediately.

39

 Adding voice recording feature

Voice recording feature helps in determining what is happening in the video.

If the video captured is silent, users can only see the movement and actions of

the object or person being captured. Everything is only a prediction. If voice is

recorded together with the video, users can hear the sound and if someone is

talking, users will be able to understand the contents of the dialogue. Hence, it

helps in investigating the scenario more easily.

40

REFERENCES

[1] LINUX FOUNDATION. (2013). Yocto Project. [Online]. Available:

https://www.yoctoproject.org/about

[2] Rudolf Streif. (2011, Aug.). Yocto Project – Big in Embedded Linux. [Online].

Available: http://eecatalog.com/embeddedlinux/2011/08/23/yocto-project-big-

in-embedded-linux/

[3] Linux Foundation. (2014). Yocto Project Quick Start. [Online]. Available:

https://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-

qs.html

[4] U. Hunkeler, T. Hong Linh, and A. Stanford-Clark, "MQTT-S — A

publish/subscribe protocol for Wireless Sensor Networks," in Communication

Systems Software and Middleware and Workshops, 2008. COMSWARE 2008.

3rd International Conference on, 2008, pp. 791-798.

[5] G. Nalin, “Orchestration of smart objects with MQTT for the Internet of

Things,” master degree dissertation, Dept. Information Engineering, University

of Padua, Padoba, Italy, 2014.

[6] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov. (2012, June). Real-

Time Computer Vision with OpenCV. Communications of the ACM. [Online].

50 (6), pp. 61-69. Available:

http://dl.acm.org/citation.cfm?id=2184337&picked=formats&CFID=6307813

23&CFTOKEN=61987775

[7] Secure copy. (n.d.) In Wikipedia. Retrieved February 10, 2015, from

http://en.wikipedia.org/wiki/Secure_copy

[8] C. Dian, J. Chun-hua, H. Zong-bo, and J. Wei, "The Design and

Implementation of Video Surveillance System Based on H.264, SIP,

RTP/RTCP and RTSP," in Computational Intelligence and Design (ISCID),

2013 Sixth International Symposium on, 2013, pp. 39-43.

[9] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, "A brief

introduction to OpenCV," in MIPRO, 2012 Proceedings of the 35th

International Convention, 2012, pp. 1725-1730.

41

[10] Y. Caiyan, Z. Xiaoshi, Z. Yanling, L. Guangqi, and L. Na, "Review of

intelligent video surveillance technology research," in Electronic and

Mechanical Engineering and Information Technology (EMEIT), 2011

International Conference on, 2011, pp. 230-233.

[11] I. Masmoudi, M. El'arbi, and C. B. Amar, "Vocabulary Tree schema based on

SURF descriptor for real time object detection and recognition in video," in

Hybrid Intelligent Systems (HIS), 2013 13th International Conference on, 2013,

pp. 134-139.

[12] P. M. Panchal, S. R. Panchal and S. K. Shah. (2013, Apr.). A Comparison of

SIFT and SURF. International Journal of Innovative Research in Computer

and Communication Engineering. [Online]. 1 (2), pp. 323-327. Available:

http://www.ijircce.com/upload/2013/april/21_V1204057_A%20Comparison_

H.pdf

[13] A. Ganesh, and K. Vudata. (2012). SCAVENGAR HUNT. [Online]. Available:

https://www.ece.cmu.edu/~ee551/projects/S12/Final_Report_Group7.pdf

[14] L. Juan, and O. Gwun. (2009). A Comparison of SIFT, PCA-SIFT and SURF.

International Journal of Image Processing (IJIP). [Online]. 3 (4), pp. 143-152.

Available: http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJIP-

51

[15] Abhinab Choudhury. (2011, Dec.). Waterfall Model. [Online]. Available:

http://www.sdlc.ws/waterfall-model/

[16] Tutorialspoint. (2014). SDLC Waterfall Model. [Online]. Available:

http://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm

