

Video Object Avoidance Implementation on Embedded Platform

By

Yeong Ming Keat

 16469

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronics)

JANUARY 2015

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Video Object Avoidance Implementation On Embedded Platform

by

Yeong Ming Keat

16469

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronics)

Approved by,

 Mr Patrick Sebastian

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JAN 2015

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contained herein have not been undertaken or done by unspecified sources or

persons.

YEONG MING KEAT

iii

ABSTRACT

Motion detection is fundamental in various computer vision related applications. In this project, there

are two motion detection techniques being studied, namely optical flow and motion templates. This is

to detect the moving obstacles as well as to classify the direction of the moving obstacles. Optical

flow is the computation to approximate the image motion, while motion templates use the motion-

history-image (MHI) to keep track of the most recent movement with the timestamp. Besides, this

project also covers the static object detection, where HSV color model classification technique is

used to detect the static obstacles. This technique is based on filtration of color, which depending on

the HSV values of the static objects. Both motion and static detection algorithms will be tested in

Window Visual Studio 2010, before implementing them into the embedded platform, which is

Raspberry Pi. Meanwhile, OpenCV is used as the computer vision library throughout the project. At

the end of this project object, motion templates is selected as a more suitable motion detection

techniques due to its extra information, which is the angle. The HSV technique can detect the static

objects but limited to the calibrated color only.

iv

ACKNOWLEDGEMENT

I would like to thanks my respectable supervisor, Mr Patrick Sebastian, for all his helps and

guidance given to me in the process of completing my Final Year Project.

I had learnt a lot of priceless experience through the working on OpenCV, which is focusing on

the development of the image and video algorithm to detect the static and moving objects.

As the saying goes, “No pain, go gain”. I feel grateful that at the end I am able to implement the

algorithms into the Raspberry Pi and I really enjoy throughout the learning process in exploring

the embedded system.

Once again, I appreciate the chance and trust given to me in completing this Final Year Project.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL………………………………….i

CERTIFICATION OF ORIGINALITY……………………………...ii

ABSTRACT ……………………………………………………………iii

ACKNOWLEDGEMENT …………………………………………….iv

LIST OF FIGURES…………………………………………………….vii

LIST OF TABLES……………………………………………………...viii

LIST OF EQUATION………………………………………………….viii

CHAPTER 1: INTRODUCTION
1.1 Background of Study . ……………………………………………….1

1.2 Problem Statement . . . ……………………………………………….1

1.3 Objectives and Scope of Study . ……………………………………..2

CHAPTER 2: LITERATURE REVIEW ………………………3

CHAPTER 3: METHODOLOGY

3.1 Overall Project Methodology …………………………………..…...12

3.2 Motion Objects Detection………… ………………………………...13

3.3 Static Objects Detection…………………………………………..…16

CHAPTER 4: RESULTS AND DISCUSSION
4.1 Optical Flow (Window Visual Studio 2010)…………………………17

4.2 Motion Templates (Window Visual Studio 2010)……………………22

4.3 Comparison between Optical Flow and Motion Templates……….….26

4.4 Static Object Detection (Window Visual Studio 2010)………………27

4.5 Raspberry Pi (Embedded System in Linux Platform)……………..….30

CHAPTER 5: CONCLUSION AND RECOMMENDATION
5.1 Conclusion . . ………………………………………………………. . 34

5.2 Recommendations . . . ………………………………………………..35

REFERENCES ………………………………………………...36

APPENDICES

Appendix 1: Sparse Optical Flow………………………………………...38

Appendix 2: Dense Optical Flow…………………………………………44

Appendix 3: Motion Templates…………………………………………...46

vi

Appendix 4: HSV Color Model Classification (Fruit.h)…………………..51

Appendix 5: HSV Color Model Classification (HSV Main codes 1)……..52

Appendix 6: HSV Color Model Classification (HSV Main codes 2)……..54

Appendix 7: CMakeLists.txt ………………………………………………60

vii

LIST OF FIGURES

Figure 1 Velocity Space…………5

Figure 2 Aperture………………..6

Figure 3 Aperture Problem………7

Figure 4 Corner Region………….8

Figure 5 Optical Flow 1…………17

Figure 6 Optical Flow 2…………17

Figure 7 Optical Flow 3…………18

Figure 8 Optical Flow 4…………18

Figure 9 Optical Flow 5 ..……….19

Figure 10 Optical Flow 6 ………..19

Figure 11 Optical Flow 7…………20

Figure 12 Optical Flow 8…………20

Figure 13 Optical Flow9………….20

Figure 14 Optical Flow 10----------20

Figure 15 Optical Flow 11………..21

Figure 16 Optical Flow 12………..21

Figure 17 Optical Flow 13………..21

Figure 18 Optical Flow 14………..21

Figure 19 Optical Flow 15………. 22

Figure 20 Optical Flow 16……….22

Figure 21 Motion Templates 1..….23

Figure 22 Motion Templates 2…...24

Figure 23 Motion Templates 3..….24

Figure 24 Motion Templates 4..….24

Figure 25 Motion Templates 5…...25

Figure 26 Motion Templates 6…...25

Figure 27 HSV 1…………….……27

Figure 28 HSV 2………………….27

Figure 29 HSV 3………………….27

Figure 30 HSV 4………………….28

Figure 31 Raspberry Pi…………...31

Figure 32 Raspberry Pi…………...31

viii

 LIST OF TABLES

Table 1 Comparison between Optical Flow and Motion Templates………………...28

Table 2 Comparison of Build Time for each technique in Window Visual Studio….29

Table 3 Gantt Chart (FYP1)………………………………………………………….32

Table 4 Gantt Chart (FYP2)………………………………………………………….33

 LIST OF EQUATIONS
Equation 1 Optical flow constraint equation…………………………………… 5

Equation 2 Line of velocity space……………………………………………….5

Equation 3 Shi-Tomasi Algorithm Equation…………………………………….7

1

CHAPTER 1

INTRODUCTION

Object avoidance is important for any moving objects such as vehicles, to avoid

collision. In this project, object avoidance is implemented by using video and image

processing approaches on embedded platform. The obstacles will be detected and

captured by a camera. Besides, the obstacles detected will be analyzed and classified

into 2 categories, which is either static or moving. The moving objects will be further

classified into two categories, which are moving to the left and moving to the right.

Throughout this project, the camera which is used to capture the image is static. The

entire accuracy of the static and moving objects detection will be affected if the

camera itself is also moving, which the problem is known as motion blur.

Nowadays, most of the motion detection algorithms implemented on the vehicles

only show the moving objects detected, but it does not acknowledge the drivers

about the direction of the moving obstacles, which can be either crossing to the left

or right on the road.

Thus, in this project the algorithms are developed to run the video and image

processing which can analyze the obstacle whether it is static or moving and further

classifying the moving obstacles into either moving to the left or right, within the

vision of the camera. There are several situations for the condition of obstacles:

i. The obstacle is static.

ii. The obstacle is moving while the camera itself is static.

iii. The obstacle is moving while the camera is also moving.

Besides, the obstacle may be crossing the road, thus the design of the width of the

camera’s vision should be wide enough to capture the potential obstacle. For the

camera, the light intensity of the captured environment can be classified into 3

categories:

i. Dark

ii. Dim

ii. Bright

2

The camera may face challenges when capturing the pictures of the real environment,

under different light intensities.

1.3 Objectives and Scope of Study

1.3.1 Objectives

i. To implement real-time image and video processing algorithm on embedded

computing platform.

ii To implement object avoidance algorithm which is capable of classifying the

obstacles’ behavior, whether they are moving or static.

1.3.2 Scope of Study

This project will cover the embedded system which is focusing on C language

programming in Raspberry Pi’s Raspbian Linux platform. Real-time image and

video processing will be studied and applied throughout this project. Besides,

OpenCV library will be used as a computer vision library while optical flow is used

as the approach in performing the video processing. The image and video inputs will

be acquired through the Raspberry Pi Camera, which can capture 5MP resolution

images and deliver HD 1080p HD video recording [4]. The camera used will be fixed

at a static location throughout the project.

3

CHAPTER 2

LITERATURE REVIEW

In this project, the video object avoidance system consists of 4 functional blocks,

namely the image and video inputs, obstacle detection, classification of obstacles’

behaviors and object avoidance. The Raspberry Pi Board is used as a computer

while the HD Pi camera is used to capture the obstacle’s images and videos.

One of the open sources for the operating system is used in this project, which is

known as Raspbian. Raspbian is an Linux operating system which is customized for

Raspberry Pi [5]. Before that, a user friendly NOOBS (New Out Of Box Software)

had to be installed into the formatted SD card to create a bootable SD card [6]. The

bootable SD card will enable the launching of the Raspberry Pi system when it is

plugged into the Raspberry Pi board, while the power is turned on. The HDMI LED

screen will display the Raspbian Linux Operating System.

On the other hand, this video object avoidance system on embedded platform will be

designed by using OpenCV library. OpenCV is an open source computer vision

library for C or C++ programming language and it is suitable to be used in the

Raspbian Linux platform [7]. While the optical flow is a computer vision technique

which comparing two successive image frames to detect the motion of the obstacles

[8]. This is important in video analysis which can apply to the object tracking,

motion detection or robot navigation [9]. The main reason of studying about the

optical flow in this project is because of the capability of optical flow in detecting

moving objects.

Optical Flow

The general principle of optical flow is to make use of the projected two dimensional

(2D) image motion on an image plane, from the three dimensional (3D) motion of an

object which is relative to the visual sensor. Through the sequencing of images in

time order, the two dimensional image motion can be estimated as the discrete

images displacement or instantaneous image velocity [3]. There are basically three

4

main models developed for the motion and scene structure, which are used to

perform estimation on the image motion, namely velocity, disparity and intensity.

Based on the 2D velocity field, by relating the parameters of motion and structure

with the optical flow, 3D motion and the scene structure can be deduced. These

parameters include the instantaneous displacement, the rate of rotation, the

environment surface parameters and relative depth. While the disparity is used to get

the 3D translational vectors, the matrices of rotation and surface attribute. Disparity

can be established through the local correlation or image feature correspondence.

Lastly, the intensity is used to compute the parameters of motion and structure [3].

However, the motion field and optical flow are not equivalent. For instance, a sphere

which fixed at a point is rotating under a light source. We can observe that the

shading part of sphere is constant due to the static light source, but the sphere is

actually rotating. In this case, the optical flow is zero but motion field is not zero. If

now the sphere is completely stationary, the light source is moving. Now, we can

observe that the shading part of the sphere is moving due to the moving light source.

In this case, the motion field is zero, but the optical flow is not zero. Nonetheless,

most of the case, assumption is made that the motion field is similar to the optical

flow [10].

There are two estimation method for optical flow analysis, namely Horn-Schunck

method and Lucas-Kanade’s method. These two gradient-based methods are

performed through calculation of brightness gradient of image locally [9]. The

Lucas-Kanade’s method is a local method that applying a local constraint for each

pixel [10]. First assumption needed is the intensity of an image pixel remains the

same through the transition in time [10]. Second, the transition of image between

frames is assumed to be small, about one pixel per frame of sub-pixel order. This is

to enhance the accuracy of the optical flow as its detection sensitivity will drop

significantly with the increasing in the image displacement [9]. The displacement of

the image can be made smaller by reducing the resolution of the image [11]. In

5

addition, pyramid based Lucas Kanade is used to extend the estimation of motion

from corners to edges and inner region [12].

Meanwhile, Horn-Schunck’s method is a global method which introduces a global

smoothness constraint. The assumption made in Horn-Schunck’s method is that the

variation of optical flow is smooth or in other words, not too large. It is justified by

claiming that the neighboring velocities which are similar to the same object surface

should be identical [3]. This is a conventional standard for the whole image [10].

Thus, according to the first assumption, let’s I(x,t) be the image intensity function,

 () () Equation (1)

where,

 is the local image region displacement at (x, t), after time .

Another important equation which is derived from Equation (1) is known as optical

flow constraint equation [3], which defines the single local constraint on image

motion, as shown below:

 Equation (2)

where, () is the spatial intensity gradient, v = (u, v) is the velocity of

image.

Figure (1) shows the equation (2) defines a line in the velocity space. [3]

Figure (1)

6

From Figure (1), is the vector which is perpendicular to the constraint line, but it

is not sufficient to obtain both v components. This means that which is located in

the direction of the local gradient of the image intensity function can be estimated.

This situation is also known as aperture problem [3]. This means unless the motion

component is at the intensity structure which is sufficient, the motion component

cannot be fully estimated with the Equation (2), which is the optical flow constraint

equation.

The optical flow’s problem or known as aperture problem when the optical flow is

not able to estimate motion or flow, which is perpendicular to the image gradient.

Optical flow can only measure its components which is in the direction of the

intensity gradient, but not the components that are tangential to the intensity gradient

[2]. In this condition, an assumption is made that the optical flow sees somewhere at

the corner and the flow is smooth [11]. This is the situation that needs some

constraints, which includes the global method, Horn-Schunck’s method and local

method, Locus-Kanade’s method [10]. Besides, the spatial integration is required in

the computing the optical flow due to the aperture problem as well as the noise at the

local signals [12].

Figure (2) In aperture 1 and 3, due to the lack of local structure, only the normal

motions of the edges which can form the square can be estimated. In the aperture 2

which is located at the corner has sufficient local structure, thus both normal motions

are visible [3].

Figure (2)

7

Another algorithm which is known as Shi-Tomasi Algorithm is being used as the

corner detector. It is originated from Harris corner detector, but a slight modification

has been made on the corner selection criteria. This makes Shi-Tomasi algorithm is

better than the Harris corner detector algorithm. Shi-Tomasi proposed that only

eigenvalues should be used to check whether the pixel is a corner and it is calculated

by using the equation below:

where ,

Based on the equation above, if R is larger than the set value, the pixel can be

marked as a corner [1]. All the corners which are below the set value will be rejected.

Thus, Shi-Tomasi will only take the strongest corner. The overall objective of Shi—

Tomasi algorithm is to choose the good features to track and enhance the tracking

accuracy. A good feature will have big eigenvalues which implies two qualities,

namely texture and corner. Lacking of texture and corner will lead to ambiguity in

tracking and aperture problem respectively [13].

Figure (3) above shows the aperture problem: We can only

measure the component b which is in the direction of intensity

gradient [2].

Equation (3): Shi-Tomasi Algorithm Equation [1]

Figure (3)

Equation (3)

8

From Figure (4), those eigenvalues, with large positive values are

indicated as the corner. For eigenvalues, which have some positive values,

but either one is less than the , for instance the purple and grey regions are

considered as ―edge‖ , while the eigenvalues, which are both below ,

for instance the red region, has no features of interest or considered as ―flat‖ area, in

Harris corner detector [1].

The Lucas-Kanade and Shi-Tomasi methods are used in performing sparse optical

flow, where only some pixels which have good features are analyzed. This causes the

inaccuracy when measuring the motion. In this case, there is another algorithm that

compute the optical flow for each pixel in the frame, which is known as dense optical

flow or Farnaback algorithm [14]. Farneback algorithm is based on the two frame

motion estimation based on polynomial expansion [14].

Besides, the obstacles detected need further analysis to find out whether they are

stationary or dynamic. One of the techniques to classify the motion is though the

statistic of optical flow orientation [15]. The prerequisite of this technique is to get

the dense optical flow. Through the dense optical flow, the region of coherent flow

will be grouped together in the RoI (Region of Interest). From these selected subset

Figure (4) above shows that a corner is found in the green region where both

𝜆 𝑎𝑛𝑑 𝜆 are greater than a certain value, which is 𝜆𝑚𝑖𝑛. [1].

Figure (4)

9

of samples, Motion Orientation Histogram (MOH) is calculated, which normally

comprised 32 directions. Then, the criteria of determining an important motion is the

norm of the flow vector. The level of the importance of a certain motion is

proportional to this criterion. At the end, the features of each direction are classified

by the motion descriptor via simple statistics on the temporal series to capture the

nature of the motion [15].

Thus, constructing the coherent motion field is essential for identifying the coherent

motion which can then be used to group and classify the coherent motion [16]. One

technique which can produce the precise coherent motion field is Thermal-Diffusion-

Based Approach. This technique involves the transfer of the motion input to the

thermal energy field (TEF) which can encode the motion correlation and its trends

among the particles [16]. Then, the semantic regions are found by using the two

clustering techniques based on the relationships between the coherent motions. In

short, thermal energy field (TEF) is a more accurate motion field compared to the

original motion field from the dense optical flow. Basically, calculation on each pixel

for its motion vector, which is a sub pixel of x and y movement has to be performed

[17].

Motion Templates

Besides optical flow, another technique known as ―Motion Templates‖ can be used

to detect the motion and its direction [18]. Motion Templates technique consisted of

four parts, namely updating the motion history image (MHI), computing the gradient

orientation of the motion history image, computing the global orientation of the

motion in the region of interest and segmentation of motion [18]. The motion history

image is updated via moving silhouettes. Silhouette is the essential requirement in

motion template for detecting the motion as it can provide the geometric information

for the computer vision analysis [19].

Silhouette is created by extracting the exact difference between the two consecutive

images from the buffer [20]. This output is then converted to binary image. As the

time passing, the number of silhouette created will increase as long as there are

10

movements in the images. In OpenCV, a function known as ―timestamp‖ is used to

measure the recency of the image. The most recent silhouette and the older silhouette

will be compared to figure out the motion detection. Thus, the motion history image

(MHI) is the sequence of silhouettes along with the timestamp [20].

The overall motion can be detected by calculating the gradient of the MHI. In

OpenCV, the gradient of MHI is classified based on the upper limit and lower limit

of the gradient. Thus, the unacceptable gradient such as the high gradient at the edge

can be eliminated. By having the information of MHI, upper and lower limit of MHI

gradient and the variable aperture size which depend on the size of the gradient

operator, the OpenCV function ―cvCalcMotionGradient‖ can output a mask, which

contains the valid gradient and also the direction angle of the detected motion, which

is known as the orientation [20]. From this output, the global orientation can also be

calculated.

In OpenCV, Motion Templates can also calculate the local orientation. This was

done by taking the most recent silhouette from MHI to find its perimeter. ―Floodfill‖,

which is a function to fill the connected region is done to highlight the motion found

[21]. From this finding, the local motion gradient direction can be computed.

Consequently, the motion is displayed on the image.

Cascade Classifier

As the name implies, the motion detection techniques are used to detect the moving

objects, but not the static object. Thus, one of the techniques which can be used is the

object detection method, for instance, cascade classifier class which also supports

HAAR cascade classifier in the form of cross link. In this technique, the classifier is

trained with hundreds of views of sample of a target object, for example, faces, cars

and building, then scale them into the same size. This kind of sample views of an

object is known as positive example. Besides, the classifier also trained with the

negative examples, which can consist of any samples which don’t have the target

object. After the training procedure, the classifier can be applied to an input image,

towards the region of interest (ROI). The classifier will output ―1‖ to indicate the

existence of the target object in the region, otherwise ―0‖ will be the output [22].

11

HSV Color Model Classification Techniques

Another method for object detection is to use the HSV (Hue, Saturation and Value)

color model classification. ―Hue‖ represents the number from 0 to 360 degrees,

where the hues of red starts at 0 degree, yellow starts at 60 degrees, green starts at

120 degrees, cyan starts at 180 degrees, blue starts at 240 degrees, and magenta starts

at 300 degrees. ―Saturation‖ represents the amount of gray in the color while ―Value‖

describes the color brightness [23]. HSV describes the relationships among the color

in three dimensions. HSV is like a cone, the center axis comprises the white at the

top to black at the bottom, with other neutral colors in between. The angle which

extending from the center axis represents the hue, while the distance from the center

axis describes the saturation, and the distance along the axis is the value [24].

Static and Moving Camera

Currently, stationary sensors are being used in most of the surveillance system [25].

However, this project takes the motion of the camera itself into consideration to

make this obstacles detection system more stable. Thus, one of the challenges in this

project is to solve the problem of motion blur. This problem occurs when capturing

the images of moving obstacles, while the camera itself is also moving

simultaneously. Consequently, this motion blur distorts the image captured [26]. One

of the methods of solving this is through the technology of motion stabilization [27].

The motion stabilization has two approaches in solving motion blur, which are

through correction and prevention. In this project, the prevention approach of motion

stabilization is applied, which is known as multi-frame image stabilization. This

involves the multiple capturing of short exposed images for the same object and then

fusing them together to produce zero motion blur image [27]. On the other hand,

video stabilization method is used to de-blur the distorted video captured due to the

camera shaking. This method involves the processing of many video images and data

extraction from the unstable video captured, for instance, the features of the video

images [28].

12

CHAPTER 3

METHODOLOGY

3.1 Overall Project Methodology

Below is the list of tools and software which are needed in this project.

i. OpenCV software

ii. Raspberry Pi

iii. Pi Camera

iv. HDMI Monitor

v. Window Visual Studio

The methodology for implementing the algorithm into Raspberry Pi is as shown

below:

i. A bootable 16 GB microsd card for Raspberry Pi is set up by using the NOOBS. Pi

Camera and OpenCV computer vision library is installed into Raspberry Pi.

ii. The algorithm is developed which can detect the objects in front of the Pi camera.

The techniques of image processing and video processing are applied.

iii. The algorithm is developed which can classify objects in front of the Pi Camera,

whether they are moving or static.

iv. Write the code to enable the camera to adapt to unstable condition, for instance,

the camera itself is moving while capturing the objects or obstacles.

Decision Making

(Techniques)

Conclusion

Testing and
Troubleshooting

(Window Platform:
Window Visual Studio

2010)

Design of Algorithms
Problem

Identification

Testing and Troubleshooting

(Embedded Platform:
Raspberry Pi)

13

3.2 Motion Objects Detection

3.2.1 Optical Flow Methodology

Step 1: Open Input Video

CvCapture *input_video = cvCsptureFromFile(“filename”.avi);

This is to get a video file input for optical flow analysis. ―filename‖ is the name of

the input video. This step will not be successful if the file is not exist in the computer

or the AVI video uses a codec that OpenCV cannot read.

Codec is a program which is capable of compressing a video or audio file when

storing it into the disk file and able to decompress the video or audio file when it is

being played. The objective is to minimize the storage space for the video or audio

file [29].

Step 2: Get a Video Frame

cvQueryFrame(input_video);

This step is to look into the internal information of the AVI video. To do this,

OpenCV needs to get a video frame first.

Step 3: Read AVI Video Properties

CvSize Frame_size;

Frame_size.height = cvGetCaptureProperty(input_video,

CV_CAP_PROP_FRAME_HEIGHT);

This is to get the width and number of frames of the avi video.

Step 4: Create a Window.

cvNamedWindow(“Optical Flow”, CV_WINDOW_AUTOSIZE);

This is the place to display the output of the optical flow analysis and for

visualization and debugging purposes.

Step 5: Loop Through Frames

Go to certain number of frame, Frame N.

cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES, N);

Get Frame N:

IpImage *frame = cvQueryFrame(Input_video);

14

This is important to note that cvQueryFrame always returns a pointer to the same

location in memory.

Step 6: Convert/Allocate

Convert input frame to 8-bit monochrome. This is image format that most of the time

OpenCV algorithms operate on.

Step 7: Run Shi and Tomasi

CvPoint2D32 frame1_features[N];

cvGoodFeaturesToTrack(

frame1, eig_image, temp_image,

frame1_features, &N, .01, .01, NULL);

The ―frame1_1C" is the input image. "eig_image" and "temp_image" are just

workspace for the algorithm.

These algorithms will return ―frame1_features" which contains the feature points.

Step 8: Run Optical Flow

This step is to perform the optical flow analysis.

Step 9: Visualize the Output

The direction of displacement of image points will be drawn by using the arrows.

Step 10: Make an AVI Output

Finally, the output will be displayed in a window.

15

3.2.2 Motion Templates Methodology

Step 1: Finding Object Silhouettes

This is done by taking the exact difference between two images frames, by using

―cvAbsDiff‖ function of OpenCV. The images is then converted to binary form via

―cvThreshold‖ function.

Step 2: Motion History Image (MHI)

―Timestamp‖ is used to identify the most recent silhouette image which will be

compared with the older silhouette image, to perform motion detection. The

sequence of silhouette images and the record of the preceding motion is known as

MHI. The function that updates the MHI is ―cvUpdateMotionHistory‖.

Step 3: Calculation of Motion Gradient

Overall motion is detected through the MHI gradient. High gradient which is

unacceptable will be rejected by referring to the upper boundary and lower boundary

of the MHI gradient set. By having these gradients as inputs, orientation of the

motion can be generated which will show the information of the gradients’ direction

angle. The OpenCV function that calculates the motion gradient is

―cvCalcMotionGradient‖.

Step 4: Calculation of Global Orientation

The orientation of the motion can be classified into two, namely local and global.

Global orientation can be computed based on the output from the previous step, from

the ―cvCalcMotionGradient‖ function of OpenCV.

In this step, ―cvCalcGlobalOrientation‖ function which uses the output from Step 3

produce the global orientation. The input for this function includes orientation, mask

along the timestamp and computation time for producing a MHI template and the

MHI.

Step 5: Detecting Local motion using Segmentation

Besides the global orientation, local motion is calculated within the regions of

interest (ROI) through segmentation.

16

This is done via ―cvSegmentMotion‖ function from OpenCV, which requires the

inputs of MHI, timestamp, segmentation threshold and the storage object. The output

will be the segmentation of each motion. While for every local segments, motion is

calculated using ―cvCalcGlobalOrientation‖ function of OpenCV.

3.3 Static Objects Detection

3.3.1 HSV Color Model Classification Methodology

Step 1: Calibration of color threshold

The colour of the target object is determined for its values in Hue, Saturation and

Value respectively.

Step 2:Classification of objects based on colour threshold.

The target object is detected through the HSV colour model filtration from the other

objects. This is done through the calibrating the values of each H (Hue), S

(Saturation) and V (Value).

Step 3: Classification based on salient properties.

Look for objects with same salient properties and group them together.

Step 4: Allocation of vector for similar objects.

Push back similar objects into a C++ vector.

Step 5: Hardcore the setting of the color threshold.

This is to make the program run without calibration of the color threshold again

every time when running the program.

Step 6: Display the found objects.

Unpack the vector to display the found objects stored inside it.

Step 7: Track multiple objects.

Repeat Step 1 to Step 6 to track different target objects with different color

thresholds.

.

17

CHAPTER 4

RESULT AND DISCUSSION

4.1 Optical Flow (Window Visual Studio 2010)

4.1.1 Sparse Optical Flow

Before implementing the video processing in Raspberry Pi, the optical flow analysis

is implemented on window platform, through the Window Visual Studio which acts

as the compiler for the OpenCV.

The following figure shows the result of the simulation of the optical flow.

 Figure (6) shows that the output window of the optical flow, in Window Visual Studio is

actually flipped vertically. This is because the OpenCV reads the AVI upside-down by default.

Figure (5) shows the original first frame of the AVI video.

Figure (5)

Figure (6)

18

Through this comparison, we know that the arrows in Figure (viii) is actually

pointing towards the direction of the displacement of each image points on the AVI

video frame that is making some displacement, as the frame makes the transition to

the next frame.

In optical flow analysis, given the set of points in an image, it will find those points

in another image. Through this tracking of the points, or features of the image pixel,

we can find any object from one image to the other and determine the direction of the

object moved. This serves the purpose of this project, which is to detect any object or

obstacle, whether it is crossing over the road or static in front of the camera.

The output window in the Window Visual Studio is the result of comparing the

displacement taken place from the first frame to the second frame of the AVI video.

Figures (7) and (8) above shows the comparison of the original first frame of the AVI input

and the output window of the optical flow in Window Visual Studio respectively. Figure (8)

of the output window of the optical flow has been flipped vertically for this comparison

purpose.

Figure (7) Figure (8)

19

To make the program more flexible, some delay has been added to allow the user to

have sufficient time to look at the image. In OpenCV, the delay can be implemented

through ―cvWaitKey(x)‖, where x is the argument for the duration of delay.

When the argument is 0, the program will wait forever, in this case, the output frame

will forever stay at second frame, as the output frame shown in the output window is

the result of comparison between the first frame and second frame of the input video.

Otherwise, if x > 0, the frame will be forwarding to the next frame after time = x

until the final frame of the input video.

To call a video which is the stored in laptop to this OpenCV program, the function of

―CvCapture *input_video = cvCaptureFromFile("D:\\opticalFlow.avi");‖ is

used, where the input_video is the name of the video input variable and

―D:\\opticalFlow.avi” is the memory location in the laptop where the video named

as ―opticalFlow‖ is stored. In OpenCV, ―CvCapture‖ is used as a parameter for video

capturing function while ―cvCaptureFromFile‖ is to initialize the captured video

from the laptop [30].

Now, to change the input video from the laptop to the life video input, the function of

―cvCaptureFromCAM(CV_CAP_ANY)‖ is used instead of “cvCaptureFromFile‖.

The result of using the life video input which is captured from the webcam of the

laptop is as shown below.

 Figure(9) Figure(10)

20

 Figure(11) Figure(12)

Since the life video input is no longer of avi format, thus just need to change the

argument in the OpenCV function ―cvConvertImage‖ to make the capture image

unflipped. (Format: void cvConvertImage(const CvArr* src, CvArr* dst, int

flags=0);)

Therefore, original ―cvConvertImage(frame, frame1_1C, CV_CVTIMG_FLIP);‖ is

changed to ―cvConvertImage(frame, frame1_1C, 0); ―, which means the operation

flag is equal to zero indicates that no flipping operation is required. The result of no

flipping to the captured image is as shown below.

 Figure(13) Figure(14)

However, the optical flow shown by these results are scattering throughout the whole

image and seem to be difficult when further motion classification has to be carried

out. From the observation of the images shown above, some unnecessary optical

flow are displayed for the very small motion, for example the optical flow for the

21

little vibrations on clothes. Part of the reasons for this is because the optical flow

method used is implementing Lucas-Kanade and Shi-Tomasi, where only some

pixels from the image are being processed, via the processes of features identification,

tracking and extraction from the images. This kind of optical flow approach is known

as sparse optical flow.

4.1.2 Dense Optical Flow

Thus, another method has been attempted, which is the dense optical flow (or

Farneback optical flow). The main different between the sparse optical flow and

dense optical flow is that the dense optical flow analyse every pixel of the capture

image while the sparse optical flow only selecting specific good feature to detect the

motion in the capture image. Therefore, the dense optical flow can provide greater

sensitivity to motion detection of the objects or obstacles. The figures below show

the computation of dense optical flow by Window Visual Studio.

 Figure(15) Figure(16)

 Figure(17) Figure(18)

22

However, the drawback of dense optical flow is that it has a longer computation time

compare to sparse optical flow. This may be due to the increased computation work

of dense optical flow compared to the sparse optical flow. This is because the dense

optical flow detects the motion at every pixel of the image, while the sparse optical

flow selects the certain good features to track and detect the motion at that particular

region. The comparison between Sparse Optical Flow and Dense Optical Flow is as

shown in Figure (19) and Figure (20).

4.2 Motion Templates (Window Visual Studio 2010)

Later on, another technique which is known as ―Motion Templates‖ also has the

capability to detect the motion. By comparing Motion Templates to the Sparse and

Dense Optical Flow, Motion Templates has an added advantage as this technique can

display the direction of the motion by circling the motion detected and displaying the

angle of each motion in red colour, as shown in Figure (21). The bigger white colour

circle and angle displays are belonging to the global orientation, which takes the

average of the all motion detected to give the information of overall motion and the

direction in the image.

Figure(19): Sparse Optical Flow which

only selects good features to track and

detects the motion in that region.

Figure(20): Dense Optical Flow will detect

the motion in each pixel of the image. This

dense optical flow is modified that the output

image is in RGB form as compared to earlier

version in the discussion which shows the

threshold image.

23

Thus, this method is useful in the case of classifying the moving obstacles because

the moving objects or obstacles in front of the camera can be either crossing to the

left or right. The C codes ―motempl.c‖ in the OpenCV samples file is being used for

detecting motion as well as classifying the moving object’s orientation. Figure (21)

shows the computation of motion templates in Window Visual Studio.

 Figure(21)

However, the original ―motemp1.c‖ has no labeling about the direction of the

moving objects. Thus, modification has been made to label the direction on the

detected motion of the obstacles or objects. Compared to the original motion

template, now the label of ―left‖ or ―right‖ is indicated in each red circle that

surrounding the moving objects. On the top left side of the window, the labels of

―Object(s) moving to the left‖ or/and ―Object(s) moving to the right‖ are shown to

inform users about the existence of the moving objects and their directions.

With the labeling added to the original Motion Templates codes, now the user can

know the information of the motion orientation clearly, as shown in Figure (22),

Figure (23) and Figure (24).

24

 Figure(22): Objects/potential obstacles moving to the right.

 Figure(23): Objects/potential obstacles moving to the left.

 Figure(24): There are objects/potential obstacles moving to the right and left.

25

In order to make the display of Motion Templates in RGB (Red, Green and Blue),

instead of black and blue, some modification had been done. With reference to the

coding of the motion templates, the original frame captured by the camera is used,

instead of black background. This is done by replacing ―cvZero(dst)‖ with the

―cvCopy(img, dst, NULL)‖. Besides, the blue mask is not drawn by removing the

call to cvMerge() [31]. The result of this modification is as shown in Figure (25) and

Figure (26).

 Figure(25) Figure(26)

Overall, all the three techniques mentioned earlier, namely sparse and dense optical

flow and the motion templates can perform the motion detection as well as the

motion direction.

However, the real time computation of motion estimation and its direction is very

slow for the dense optical flow technique, compared to the sparse optical flow and

the motion templates, due to the large computation of each motion at every pixel of

the frame.

With the labeling of the direction on each moving object in the modified version of

Motion Templates, this make the user easier and efficient in analyzing the direction,

compared to both dense and sparse optical flow techniques. Table 1 below shows the

comparison of three motion detection techniques, namely sparse and dense optical

flow and the motion templates.

26

4.3 Comparison between Optical Flow and Motion Templates

Comparison of Three Different Techniques of Motion Detection In OpenCV

Table 1

Comparison of Build Time for each technique in Window Visual Studio

 Techniques

Program

Testing

Sparse Optical

Flow

Dense Optical

Flow

Motion Templates

1 4.93 seconds 4.63 seconds 3.84 seconds

2 5.36 seconds 4.59 seconds 3.63 seconds

3 4.58 seconds 4.85 seconds 3.48 seconds

4 5.22 seconds 4.44 seconds 3.68 seconds

5 4.80seconds 4.81 seconds 3.54 seconds

Average Build Time for

five testing for each

technique

4.98 seconds 4.66 seconds 3.63 seconds

 Table 2

 Sparse Optical

Flow

Dense Optical

Flow

Motion Templates

Algorithm i. Lucas Kanade

To determine the

features of one

frame in another

frame.

ii. Shi-Tomasi

To select the good

features to track.

i. Gunner

Farneback

To compute the

optical flow for

every point in the

frame

Update Motion

History image

(MHI), calculate

motion gradient,

global orientation

and motion

segmentation.

Characteristics Only compute the

motion ay some

pixels on the

frame.

All the motion at

each pixel of the

frame is computed.

Only moving

object(s) will

update MHI.

Functionality Motion Detection and Computation of the Motion Direction

Assumption i. The pixel intensities of an object is

constant between consecutive frames.

ii. The adjacent pixels have similar

motion.

No

27

Building is a process for creating one or more new files, known as ―target‖, from the

source code text file, so that they can be used when the application (the program or

technique) is run [33]. In this case, the build time is used as a parameter to compare

the speed of the building process for the techniques mentioned above.

For each technique, its program is test run for 5 times, the build time for each test run

is recorded and the average of the build time is calculated. This is to get the mean of

its build time of the technique’s source codes. The building time is computed by the

Window Visual Studio and displayed at the output window after the source codes of

the technique is built.

From the results, this is obvious that the computation time for the Motion Templates

technique is the lowest. In short, Motion Templates is the technique which can

perform the motion analysis in the shortest time.

In short, due to the more advantages of motion templates technique compared to the

optical flow techniques, motion templates technique is chosen as the method to

accomplish the task of detecting the moving objects, as well as to classify the moving

objects into either moving to the left or moving to the right.

4.4 Static Object Detection (Window Visual Studio 2010)

Previous techniques which including the optical flow and motion templates are for

motion detection. This means that the detection of static objects or obstacles is not

within the functionality of these motion detection techniques.

In this project, a technique known as HSV (Hue, Saturation and Value) is used to

detect the static object. This is done through the classification of the color of the

static object. Once the color threshold of a target object is set, it can be filtered out

from the rest objects in an image. Then, any object with this kind of color threshold

can be detected and grouped into a vector. This is to enable the detection of more

than one of the similar objects with that particular color threshold. At the end, the

vector just needs to be unpacked to display the found objects at the output window

[32].

28

The same methodology can be applied to other target objects with other color

thresholds. Thus, this HSV color model classification concept is suitable to be

applied to detect the static objects. This can compensate the limited functionality of

the motion detection techniques discussed earlier, which is to detect only the moving

objects. Although the HSV color model classification technique can also be used to

track the targets objects in case they are moving, it will not be able to describe the

moving objects as detail as the motion detection techniques, for instance Motion

Templates.

The figures below show the simulation of the HSV color model classification in

Window Visual Studio 2010. For Figure(27) to Figure (29), the left and right picture

show the output window of the real time image of the static obstacles detected and

the threshold image of the object filtered through calibration of HSV value of the

object respectively.

Figure (27) : Calibration for yellow color to detect yellow static obstacles. The value

of HSV for yellow: minimum HSV= (26,81,153), maximum HSV=(91,186,256).

Figure (28) : Calibration for orange color to detect orange static obstacles. The value

of HSV for orange: minimum HSV= (5,163,117), maximum HSV=(23,231,256).

29

Figure (29): Calibration for blue color to detect blue static obstacles. The value of

HSV for blue: minimum HSV= (100,84,68), maximum HSV=(128,256,168).

Figure (30): Hard code the calibration made to the HSV color model of the target

objects to detect multiple static obstacles simultaneously.

30

4.5 Raspberry Pi (Embedded System in Linux Platform)

Once the C++ coding of the motion detection techniques is checked and verified that

no error occurred in Window Visual Studio 2010, the code is then transferred to the

embedded platform, which is Raspberry Pi. The camera used is the 5MP, 1080HD Pi

camera.

The code will not function straightaway in Raspberry Pi as the Window Visual

Studio 2010 did. Parts of the reason is that in Window Visual Studio 2010, the code

is running at the window platform, the compiler will search for the default camera in

the laptop, which is the built-in webcam. While in the Raspberry Pi which is using

the Linux platform, the user has to acknowledge the compiler so that it can link the

code with the Pi camera.

To do this, a library which is known as Raspicam library is needed to be installed to

the Raspberry Pi. In this project, the latest version of Raspicam-0.1.6 had been

installed into the Raspberry Pi. By using this Raspicam library, the code can run with

or without the OpenCV library and Raspicam library does its job of linking to the Pi

camera quite well. The user just needs to include the Raspicam library header library

to the motion templates code, which is being transferred from Window Visual Studio

2010.

Before running the code, another software ―CMake‖ needed to be installed in

Raspberry Pi, through the command ―sudo apt-get install cmake‖. CMake is an open

source cross platform build system that allow the developers to work on different

platforms, rather than just compiling the codes with Window Visual Studio in

window platform or GNU Make in Linux platform [34]. CMake is controlled by the

―CMakeLists.txt‖ text file which contains a set of instruction. These instruction will

be used as the input to the CMake for building the codes [35].

Then, a new directory, named as ―build‖ is required to be created under the project

directory. The CMake is called in the ―build‖ directory to point the top-level

CMakeLists.txt, which is in the project directory. CMake will process the

CMakeLists.txt files, linking to the location of all libraries and include paths and

producing the configuration information, for instance, Makefile in the build directory.

The next operation will be compiling the codes in the make system [36]. After that,

31

by writing the command ―./(the project_code_name)‖ in the build directory, the

motion templates code will run just the same as in Window Visual Studio 2010.

However, there is a problem in displaying the result of the Motion Templates in

Raspberry Pi. This is because the angles are displayed on the output window are

always zero. The OpenCV function which calculates the angle of the moving objects

is ―cvCalcGlobalOrientation()‖. Thus, a hypothesis is made that the problem of zero

angle for every moving object is caused by the malfunction of

―cvCalcGlobalOrientation()‖ function in Linux platform. Further studies are required

to figure out the root cause of this issue in running the code of Motion Templates in

Raspberry Pi, which is Linux platform. Figure (xxvii) and Figure (xxviii) show the

Motion Templates which is running in Raspberry Pi.

Figure (31): Modified Motion Templates with

labeling which displayed in blue and black

background.

Figure (32): Modified Motion Templates with

labeling which displayed in normal color image.

32

Gantt Chart 1

FYP1

Project Flow

Week (September 2014- December 2014)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Decide

which

project to be

chosen

Consultation

with

supervisor

Research and

data

collection

Identification

of potential

problem

Prepare

Extended

report

Submit

Extend

Proposal/

Report

(31/10)

FYP

Proposal

Defense

Preparation

(17-21/10)

Presentation

using power

point

Draft Interim

Report

(Hardcopy)

Interim

report

 Table 3

33

Gantt Chart 2

FYP2 Project

Flow

Week (January 2015 – May 2015)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Optical flow

analysis in

continuous

image frames

Optical flow

analysis with

life video input

(Window

Visual Studio)

Optical flow

analysis with

life video input

(Raspberry Pi)

Identification

of potential

problem

Prepare and

submit

Progress

Report

Prepare and

submit

Technical

Paper

Prepare and

submit

Dissertation

FYP Viva

 Table 4

34

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

At the end of this project, the following objectives are achieved:

i. Real-time image and video processing algorithm can be implemented on an

embedded computing platform, which is Raspberry Pi.

ii. Classification of detected object into static and moving is done and can be applied

to the object avoidance or collision avoidance system.

After comparing the advantages and the disadvantages of the motion detection

techniques, Motion Templates technique is being selected as the appropriate method

to accomplish the objective of this object, which is to detect and classify the objects

or obstacles into stationary and dynamic, while the dynamic objects detected are

further classified into the left and right movement. By comparing the Motion

Templates to the Optical Flow technique, Motion Templates have extra information

at the output, which is the angle. This makes Motion Templates technique more user

friendly as the angle information can be used directly to indicate the direction of the

moving objects.

Although the optical flow technique does not have the angle in its output information,

the moving objects detected with the direction arrows can be segmented through the

motion segmentation technique. This allow optical flow technique to define the

direction of the moving objects and classify the moving objects in more detail, for

instance the moving objects can be human, bus, cars, bicycles and others. However,

this approach will be more complicated than directly using the angle information of

the motion templates to describe the moving objects. This approach can be explored

in future to further describing the objects detected.

For the static object detection, the HSV color model classification technique used is

working well but more calibration of different colors are necessary to increase the

sensitivity of the static object detection. The approach can also be applied in

detecting the moving objects since once the color of the target object is calibrated for

its HSV value, the target object will be marked and tracked, regardless of whether it

is moving or static. In spite of that, HSV color model classification technique will

35

not able to describe the moving objects in detail, for example their moving direction.

Thus, this HSV color model classification techniques will be more appropriate to be

used in detecting the static objects.

The difficulties in implementing the algorithms of static and motion object detection

techniques, namely optical flow, motion templates and HSV color model

classification is the linking between the Pi Camera with the Raspberry Pi. This is

because the platform of Window and Linux are completely different. In the Window

Visual Studio 2010, the C++ codes of the techniques discussed above will search for

the default webcam in the laptop. This will not happen in Raspberry Pi as the C++

codes running in Linux platform of Raspberry Pi need extra instruction so that the

compiler can link the C++ code with the Pi camera. Luckily, there is one library

which is known as Raspicam can be installed into the Raspberry Pi. The Raspicam

library speeds up the complicated procedures in linking the Pi Camera with the

compiler. Thus, by including the Raspicam library into the C++ codes in Raspberry

Pi, it will run just the same as the Window Visual Studio 2010.

Nonetheless, there is a mystery in running the Motion Templates code in Raspberry

Pi which remains unsolved till now. The motion templates works the same as in

Window Visual Studio 2010, but the angles returned for the detected moving objects

are always zero. The OpenCV function which responsible in computing the angle is

the cvCalGlobalOrientation(). As the hypothesis for this issue, this OpenCV function

is not functioning correctly when it is run in Linux platform.

5.2 Recommendation

Throughout this project, the camera which is the main tool to capture the objects is

static. Due to the time constraint, this project has not cover the situation where the

camera itself is also moving. Besides, to find out the better algorithm for static

objects detection, the current static object detection technique, which is HSV color

model classification can be compared with another object detection techniques,

which is known as cascade classifier. In short, future studies can improve the current

project by implementing the algorithm which is more robust in detecting the moving

and static objects and capable to overcome the problem caused by the moving

camera or so-called camera shaking, for instance motion blur.

36

REFERENCE

[1] U. Sinha, "The Shi-Tomasi Corner Detector."

[2] R. Owens, "Optical flow," 1997.

[3] J. L. B. S. S. Beauchemin, "The Computation of Optical Flow," ACM

Computing Surveys, vol. 27 (3), pp. 433-467, September 1995 1995.

[4] MODMYPI, "Raspberry Pi Camera Board (5MP, 1080p, v1.3)."

[5] A. M. Milenkovic, I. M. Markovic, D. S. Jankovic, and P. J. Rajkovic, "Using

of Raspberry Pi for data acquisition from biochemical analyzers," in

Telecommunication in Modern Satellite, Cable and Broadcasting Services

(TELSIKS), 2013 11th International Conference on, 2013, pp. 389-392.

[6] R. Connect. Raspberry Connect – Noobs – New Out of The Box Software

[Online]. Available: http://www.raspberryconnect.com/operating-system-

s/item/143-noobs-new-out-of-the-box-software

[7] M. Marengoni and D. Stringhini, "High Level Computer Vision Using

OpenCV," in Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2011

24th SIBGRAPI Conference on, 2011, pp. 11-24.

[8] A. E. Ortiz and N. Neogi, "Color Optic Flow: A Computer Vision Approach

for Object Detection on UAVs," in 25th Digital Avionics Systems Conference,

2006 IEEE/AIAA, 2006, pp. 1-12.

[9] C. Lei, Y. Hua, T. Takaki, and I. Ishii, "Real-time frame-straddling-based

optical flow detection," in Robotics and Biomimetics (ROBIO), 2011 IEEE

International Conference on, 2011, pp. 2447-2452.

[10] Y. Wu, "Optical Flow and Motion Analysis," pp. 1-12.

[11] "Lecture 17: Optical Flow," 2010.

[12] X. Ren, "Local Grouping for Optical Flow."

[13] S. K. Min Sun, "Optical Flow."

[14] O. D. Team. Optical Flow [Online]. Available:

http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_lucas_kanade/py_

lucas_kanade.html

[15] A. M. Fabio Martínez1, Eduardo Romero, "A motion descriptor based on

statistics of optical flow

orientations for action classification in video-surveillance," 2011.

[16] W. L. Weiyue Wang, , Yuanzhe Chen, Jianxin Wu, and a. B. S. Jingdong

Wang, "Finding Coherent Motions

and Semantic Regions in Crowd Scenes:

A Diffusion and Clustering Approach," pp. 756-771, 2014.

[17] M. Seymour, "Art of Optical Flow," ed, 2006.

[18] Motion Templates [Online]. Available:

http://docs.opencv.org/trunk/modules/optflow/doc/motion_templates.html

[19] L. Q. Gang ZENG. SILHOUETTE EXTRACTION

FROM MULTIPLE IMAGES OF AN UNKNOWN BACKGROUND [Online].

Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.2993&rep=rep

1&type=pdf

[20] P. K. P. N. OpenCV: Implementing Motion Detection using Motion

Templates [Online]. Available: http://tech-

http://www.raspberryconnect.com/operating-system-s/item/143-noobs-new-out-of-the-box-software
http://www.raspberryconnect.com/operating-system-s/item/143-noobs-new-out-of-the-box-software
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html
http://docs.opencv.org/trunk/modules/optflow/doc/motion_templates.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.2993&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.2993&rep=rep1&type=pdf
http://tech-lightenment.blogspot.com/2012/05/implementing-motion-detection-using.html

37

lightenment.blogspot.com/2012/05/implementing-motion-detection-

using.html

[21] Miscellaneous Image Transformations [Online]. Available:

http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.

html

[22] O. D. Team. (2014). Cascade Classification. Available:

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html

[23] J. H. Bear. (2015). HSV. Available:

http://desktoppub.about.com/od/glossary/g/HSV.htm

[24] Color Theory. Available: http://learn.colorotate.org/color-

models/#.VSsTGfmUfSk

[25] C. Chung-Hao, C. Chang, D. Page, A. Koschan, and M. Abidi, "A Moving

Object Tracked by A Mobile Robot with Real-Time Obstacles Avoidance

Capacity," in Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, 2006, pp. 1091-1094.

[26] M. Tico and M. Vehvilainen, "Robust method of digital image stabilization,"

in Communications, Control and Signal Processing, 2008. ISCCSP 2008. 3rd

International Symposium on, 2008, pp. 316-321.

[27] M. Tico, "Adaptive block-based approach to image stabilization," in Image

Processing, 2008. ICIP 2008. 15th IEEE International Conference on, 2008,

pp. 521-524.

[28] Z. Gang, Y. Luming, and W. Wenlong, "Video stabilization algorithm based

on video object segmentation," in Future Computer and Communication

(ICFCC), 2010 2nd International Conference on, 2010, pp. V2-509-V2-512.

[29] TechTerms.com, "Codec," 2014.

[30] "HighGUI Reference Manual."

[31] ButterCookies. (2011, 10 February 2011). Motion Templates. Available:

http://experienceopencv.blogspot.com/2011/02/motion-templates.html

[32] K. Hounslow, "OpenCV Tutorial: Multiple Object Tracking in Real Time,"

ed, 2013.

[33] Getting Started with Visual Studio [Online]. Available:

http://www.cs.tufts.edu/research/graphics/resources/vs_getting_started/vs_get

ting_started.htm

[34] J. Lamp. (2014). CMake Tutorial. Available:

https://www.johnlamp.net/cmake-tutorial.html

[35] O. S. R. Foundation. (2015). catkin and CMakeLists.txt. Available:

http://wiki.ros.org/catkin/CMakeLists.txt

[36] (2011). Cmake. Available:

http://www.cs.swarthmore.edu/~adanner/tips/cmake.php

http://tech-lightenment.blogspot.com/2012/05/implementing-motion-detection-using.html
http://tech-lightenment.blogspot.com/2012/05/implementing-motion-detection-using.html
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html
http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
http://desktoppub.about.com/od/glossary/g/HSV.htm
http://learn.colorotate.org/color-models/#.VSsTGfmUfSk
http://learn.colorotate.org/color-models/#.VSsTGfmUfSk
http://experienceopencv.blogspot.com/2011/02/motion-templates.html
http://www.cs.tufts.edu/research/graphics/resources/vs_getting_started/vs_getting_started.htm
http://www.cs.tufts.edu/research/graphics/resources/vs_getting_started/vs_getting_started.htm
http://www.johnlamp.net/cmake-tutorial.html
http://wiki.ros.org/catkin/CMakeLists.txt
http://www.cs.swarthmore.edu/~adanner/tips/cmake.php

38

APPENDICES

Appendix 1: Sparse Optical Flow

#include "opencv/highgui.h"

#include "opencv/cv.h"

#include "stdio.h"

#include <math.h>

static const double pi = 3.14159265358979323846;

inline static double square(int a)

{

 return a * a;

}

/* This is just an inline that allocates images. I did this to reduce clutter in the

 * actual computer vision algorithmic code. Basically it allocates the requested

image

 * unless that image is already non-NULL. It always leaves a non-NULL image as-is

even

 * if that image's size, depth, and/or channels are different than the request.

 */

inline static void allocateOnDemand(IplImage **img, CvSize size, int depth, int

channels)

{

 if (*img != NULL) return;

 *img = cvCreateImage(size, depth, channels);

 if (*img == NULL)

 {

 fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n");

 exit(-1);

 }

}

/*int main (int argc, char** argv) { */

int main(void){

 IplImage* frame = 0;

 //cvNamedWindow("Example2", CV_WINDOW_AUTOSIZE);

 CvCapture* input_video =0;

 input_video = cvCaptureFromCAM(CV_CAP_ANY);

 /* Read the video's frame size out of the AVI. */

 CvSize frame_size;

 frame_size.height =

 (int) cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_HEIGHT);

 frame_size.width =

 (int) cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_WIDTH);

 /* Determine the number of frames in the AVI. */

 long number_of_frames;

39

 /* Go to the end of the AVI (ie: the fraction is "1") */

 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_AVI_RATIO, 1.);

 /* Now that we're at the end, read the AVI position in frames */

 number_of_frames = (int) cvGetCaptureProperty(input_video,

CV_CAP_PROP_POS_FRAMES);

 /* Return to the beginning */

 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES, 0.);

 /* Create a windows called "Optical Flow" for visualizing the output.

 * Have the window automatically change its size to match the output.

 */

 cvNamedWindow("Optical Flow", CV_WINDOW_AUTOSIZE);

 long current_frame = 0;

 while(true)

 {

 static IplImage *frame = NULL, *frame1 = NULL, *frame1_1C = NULL,

*frame2_1C = NULL, *eig_image = NULL, *temp_image = NULL, *pyramid1 = NULL, *pyramid2

= NULL;

 /* Go to the frame we want. Important if multiple frames are queried

in

 * the loop which they of course are for optical flow. Note that the

very

 * first call to this is actually not needed. (Because the correct

position

 * is set outsite the for() loop.)

 */

 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES,

current_frame);

 /* Get the next frame of the video.

 * IMPORTANT! cvQueryFrame() always returns a pointer to the _same_

 * memory location. So successive calls:

 * frame1 = cvQueryFrame();

 * frame2 = cvQueryFrame();

 * frame3 = cvQueryFrame();

 * will result in (frame1 == frame2 && frame2 == frame3) being true.

 * The solution is to make a copy of the cvQueryFrame() output.

 */

 frame = cvQueryFrame(input_video);

 if (frame == NULL)

 {

 /* Why did we get a NULL frame? We shouldn't be at the end. */

 fprintf(stderr, "Error: Hmm. The end came sooner than we

thought.\n");

 return -1;

 }

 /* Allocate another image if not already allocated.

 * Image has ONE channel of color (ie: monochrome) with 8-bit "color"

depth.

 * This is the image format OpenCV algorithms actually operate on

(mostly).

 */

 allocateOnDemand(&frame1_1C, frame_size, IPL_DEPTH_8U, 1);

40

 /* Convert whatever the AVI image format is into OpenCV's preferred

format.

 * AND flip the image vertically. Flip is a shameless hack. OpenCV

reads

 * in AVIs upside-down by default. (No comment :-))

 */

 //cvConvertImage(frame, frame1_1C, CV_CVTIMG_FLIP);

 cvConvertImage(frame, frame1_1C, 0);

 /* We'll make a full color backup of this frame so that we can draw on

it.

 * (It's not the best idea to draw on the static memory space of

cvQueryFrame().)

 */

 allocateOnDemand(&frame1, frame_size, IPL_DEPTH_8U, 3);

 //cvConvertImage(frame, frame1, CV_CVTIMG_FLIP);

 cvConvertImage(frame, frame1, 0);

 /* Get the second frame of video. Same principles as the first. */

 frame = cvQueryFrame(input_video);

 if (frame == NULL)

 {

 fprintf(stderr, "Error: Hmm. The end came sooner than we

thought.\n");

 return -1;

 }

 allocateOnDemand(&frame2_1C, frame_size, IPL_DEPTH_8U, 1);

 //cvConvertImage(frame, frame2_1C, CV_CVTIMG_FLIP);

 cvConvertImage(frame, frame2_1C, 0);

 /* Shi and Tomasi Feature Tracking! */

 /* Preparation: Allocate the necessary storage. */

 allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);

 allocateOnDemand(&temp_image, frame_size, IPL_DEPTH_32F, 1);

 /* Preparation: This array will contain the features found in frame 1.

*/

 CvPoint2D32f frame1_features[400];

 /* Preparation: BEFORE the function call this variable is the array

size

 * (or the maximum number of features to find). AFTER the function

call

 * this variable is the number of features actually found.

 */

 int number_of_features;

 /* I'm hardcoding this at 400. But you should make this a #define so

that you can

 * change the number of features you use for an accuracy/speed tradeoff

analysis.

 */

 number_of_features = 400;

 /* Actually run the Shi and Tomasi algorithm!!

 * "frame1_1C" is the input image.

41

 * "eig_image" and "temp_image" are just workspace for the algorithm.

 * The first ".01" specifies the minimum quality of the features (based

on the eigenvalues).

 * The second ".01" specifies the minimum Euclidean distance between

features.

 * "NULL" means use the entire input image. You could point to a part

of the image.

 * WHEN THE ALGORITHM RETURNS:

 * "frame1_features" will contain the feature points.

 * "number_of_features" will be set to a value <= 400 indicating the

number of feature points found.

 */

 cvGoodFeaturesToTrack(frame1_1C, eig_image, temp_image, frame1_features,

&number_of_features, .01, .01, NULL);

 /* Pyramidal Lucas Kanade Optical Flow! */

 /* This array will contain the locations of the points from frame 1 in

frame 2. */

 CvPoint2D32f frame2_features[400];

 /* The i-th element of this array will be non-zero if and only if the

i-th feature of

 * frame 1 was found in frame 2.

 */

 char optical_flow_found_feature[400];

 /* The i-th element of this array is the error in the optical flow for

the i-th feature

 * of frame1 as found in frame 2. If the i-th feature was not found

(see the array above)

 * I think the i-th entry in this array is undefined.

 */

 float optical_flow_feature_error[400];

 /* This is the window size to use to avoid the aperture problem (see

slide "Optical Flow: Overview"). */

 CvSize optical_flow_window = cvSize(3,3);

 /* This termination criteria tells the algorithm to stop when it has

either done 20 iterations or when

 * epsilon is better than .3. You can play with these parameters for

speed vs. accuracy but these values

 * work pretty well in many situations.

 */

 CvTermCriteria optical_flow_termination_criteria

 = cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3);

 /* This is some workspace for the algorithm.

 * (The algorithm actually carves the image into pyramids of different

resolutions.)

 */

 allocateOnDemand(&pyramid1, frame_size, IPL_DEPTH_8U, 1);

 allocateOnDemand(&pyramid2, frame_size, IPL_DEPTH_8U, 1);

 /* Actually run Pyramidal Lucas Kanade Optical Flow!!

 * "frame1_1C" is the first frame with the known features.

42

 * "frame2_1C" is the second frame where we want to find the first

frame's features.

 * "pyramid1" and "pyramid2" are workspace for the algorithm.

 * "frame1_features" are the features from the first frame.

 * "frame2_features" is the (outputted) locations of those features in

the second frame.

 * "number_of_features" is the number of features in the

frame1_features array.

 * "optical_flow_window" is the size of the window to use to avoid the

aperture problem.

 * "5" is the maximum number of pyramids to use. 0 would be just one

level.

 * "optical_flow_found_feature" is as described above (non-zero iff

feature found by the flow).

 * "optical_flow_feature_error" is as described above (error in the

flow for this feature).

 * "optical_flow_termination_criteria" is as described above (how long

the algorithm should look).

 * "0" means disable enhancements. (For example, the second array

isn't pre-initialized with guesses.)

 */

 cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2,

frame1_features, frame2_features, number_of_features, optical_flow_window, 5,

optical_flow_found_feature, optical_flow_feature_error,

optical_flow_termination_criteria, 0);

 /* For fun (and debugging :)), let's draw the flow field. */

 for(int i = 0; i < number_of_features; i++)

 {

 /* If Pyramidal Lucas Kanade didn't really find the feature,

skip it. */

 if (optical_flow_found_feature[i] == 0) continue;

 int line_thickness; line_thickness = 1;

 /* CV_RGB(red, green, blue) is the red, green, and blue

components

 * of the color you want, each out of 255.

 */

 CvScalar line_color; line_color =

CV_RGB(255,0,0);

 /* Let's make the flow field look nice with arrows. */

 /* The arrows will be a bit too short for a nice visualization

because of the high framerate

 * (ie: there's not much motion between the frames). So let's

lengthen them by a factor of 3.

 */

 CvPoint p,q;

 p.x = (int) frame1_features[i].x;

 p.y = (int) frame1_features[i].y;

 q.x = (int) frame2_features[i].x;

 q.y = (int) frame2_features[i].y;

 double angle; angle = atan2((double) p.y - q.y,

(double) p.x - q.x);

 double hypotenuse; hypotenuse = sqrt(square(p.y - q.y) +

square(p.x - q.x));

43

 /* Here we lengthen the arrow by a factor of three. */

 q.x = (int) (p.x - 3 * hypotenuse * cos(angle));

 q.y = (int) (p.y - 3 * hypotenuse * sin(angle));

 /* Now we draw the main line of the arrow. */

 /* "frame1" is the frame to draw on.

 * "p" is the point where the line begins.

 * "q" is the point where the line stops.

 * "CV_AA" means antialiased drawing.

 * "0" means no fractional bits in the center cooridinate or

radius.

 */

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 /* Now draw the tips of the arrow. I do some scaling so that

the

 * tips look proportional to the main line of the arrow.

 */

 p.x = (int) (q.x + 9 * cos(angle + pi / 4));

 p.y = (int) (q.y + 9 * sin(angle + pi / 4));

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 p.x = (int) (q.x + 9 * cos(angle - pi / 4));

 p.y = (int) (q.y + 9 * sin(angle - pi / 4));

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 }

 /* Now display the image we drew on. Recall that "Optical Flow" is the

name of

 * the window we created above.

 */

 cvShowImage("Optical Flow", frame1);

 /* And wait for the user to press a key (so the user has time to look

at the image).

 * If the argument is 0 then it waits forever otherwise it waits that

number of milliseconds.

 * The return value is the key the user pressed.

 */

 int key_pressed;

 key_pressed = cvWaitKey(33);

 /* If the users pushes "b" or "B" go back one frame.

 * Otherwise go forward one frame.

 */

 if (key_pressed == 'b' || key_pressed == 'B') current_frame--;

 else

 current_frame++;

 /* Don't run past the front/end of the AVI. */

 if (current_frame < 0)

 current_frame = 0;

 if (current_frame >= number_of_frames - 1) current_frame =

number_of_frames - 2;

 }

}

44

Appendix 2: Dense Optical Flow

#include <opencv2/opencv.hpp>

#include "opencv2/video/tracking.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc_c.h"

#include <time.h>

#include <stdio.h>

#include <ctype.h>

using namespace cv;

void drawOptFlowMap(const cv::Mat& flow,

 cv::Mat& cflowmap,

 int step,

 const cv::Scalar& color

)

{

 for(int y = 0; y < cflowmap.rows; y += step)

 for(int x = 0; x < cflowmap.cols; x += step)

 {

 const cv::Point2f& fxy = flow.at<cv::Point2f>(y, x);

 cv::line(cflowmap,

 cv::Point(x,y),

 cv::Point(cvRound(x+fxy.x),cvRound(y+fxy.y)),

 color);

 cv::circle(cflowmap, cv::Point(x,y), 2, color, -1);

 }

}

*/

int main(int argc, char **argv) {

 VideoCapture cap(0); // open the default camera

 if(!cap.isOpened()) // check if we succeeded

 return -1;

 Mat newFrame, newGray, prevGray;

 // Mat NEWFRAME;

 cap >> newFrame; // get a new frame from camera, for fback.cpp

 //cap >> NEWFRAME;

 //CvCapture* NEWFRAME = 0;// for Motempl.cpp

 CvCapture* capture = 0; //for Motemp1.cpp not yet merged with the fback.cpp

 //NEWFRAME = cvCaptureFromCAM(CV_CAP_ANY);

 cvtColor(newFrame, newGray, CV_BGR2GRAY);

 prevGray = newGray.clone();

 double pyr_scale = 0.5;

 int levels = 3;

 int winsize = 5;

 int iterations = 5;

45

 int poly_n = 5;

 double poly_sigma = 1.1;

 int flags = 0;

 while(1) {

 Mat forcoherent;

 cap >> newFrame;

 if(newFrame.empty()) break;

 cvtColor(newFrame, newGray, CV_BGR2GRAY);

 cvtColor(newFrame, forcoherent, CV_BGR2GRAY);

 Mat flow = Mat(newGray.size(), CV_32FC2);

 Mat flowa = Mat(forcoherent.size(), CV_32FC2);

 /* Do optical flow computation */

 calcOpticalFlowFarneback(

 prevGray,

 newGray,

 flow,

 pyr_scale,

 levels,

 winsize,

 iterations,

 poly_n,

 poly_sigma,

 flags

);

 drawOptFlowMap(flow, newFrame, 20, CV_RGB(0,255,0));

 namedWindow("Dense Optical Flow", 1);

 imshow("Dense Optical Flow", newFrame);

 waitKey(1);

 prevGray = newGray.clone();

 }

// }

 return 0;

}

#ifdef _EiC

main(1,"motempl.c");

#endif

46

Appendix 3: Motion Templates

#include "opencv2/video/tracking.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc_c.h"

#include <time.h>

#include <stdio.h>

#include <ctype.h>

#include <math.h>

#include <iostream>

#include <sstream>

#include <string>

//#include <raspicam/raspicam_cv.h> //include this if run the code in Raspberry Pi

//#include <raspicam/raspicam.h> //include this if run the code in Raspberry Pi

using namespace cv;

static void help(void)

{

 printf(

 "\nThis program demonstrated the use of motion templates -- basically

using the gradients\n"

 "of thresholded layers of decaying frame differencing. New movements are

stamped on top with floating system\n"

 "time code and motions too old are thresholded away. This is the 'motion

history file'. The program reads from the camera of your choice or from\n"

 "a file. Gradients of motion history are used to detect direction of

motoin etc\n"

 "Usage :\n"

 "./motempl [camera number 0-n or file name, default is camera 0]\n"

);

}

// various tracking parameters (in seconds)

const double MHI_DURATION = 1;

const double MAX_TIME_DELTA = 0.5;

const double MIN_TIME_DELTA = 0.05;

// number of cyclic frame buffer used for motion detection

// (should, probably, depend on FPS)

const int N = 4;

// ring image buffer

IplImage **buf = 0;

int last = 0;

// temporary images

IplImage *mhi = 0; // MHI

IplImage *orient = 0; // orientation

IplImage *mask = 0; // valid orientation mask

IplImage *segmask = 0; // motion segmentation map

CvMemStorage* storage = 0; // temporary storage

Mat im;

//****************** Helper function to put text in the center of a

rectangle***********************

static void set_label(cv::Mat& im, cv::Rect r, const std::string label)

47

{

 //IplImage* img;

 //Mat im(img);

 int fontface = cv::FONT_HERSHEY_SIMPLEX;

 double scale = 0.7;

 int thickness = 1;

 int baseline = 0;

 cv::Size text = cv::getTextSize(label, fontface, scale, thickness, &baseline);

 cv::Point pt(r.x + (r.width-text.width)/2, r.y + (r.height+text.height)/2);

 cv::rectangle(

 im,

 pt + cv::Point(0, baseline),

 pt + cv::Point(text.width, -text.height),

 CV_RGB(255,0,0), CV_FILLED

);

 cv::putText(im, label, pt, fontface, scale, CV_RGB(255,255,255), thickness, 8);

}

//************************for labelling purpose on

cv::Rec*******************************

// parameters:

// img - input video frame

// dst - resultant motion picture

// args - optional parameters

static void update_mhi(IplImage* img, IplImage* dst, int diff_threshold)

{

 double timestamp = (double)clock()/CLOCKS_PER_SEC; // get current time in seconds

 CvSize size = cvSize(img->width,img->height); // get current frame size

 int i, idx1 = last, idx2;

 IplImage* silh;

 CvSeq* seq;

 CvRect comp_rect;

 double count;

 double angle;

 CvPoint center;

 double magnitude;

 CvScalar color;

 Mat images(dst); //convert IplImage to Mat iamge

 // allocate images at the beginning or

 // reallocate them if the frame size is changed

 if(!mhi || mhi->width != size.width || mhi->height != size.height) {

 if(buf == 0) {

 buf = (IplImage**)malloc(N*sizeof(buf[0]));

 memset(buf, 0, N*sizeof(buf[0]));

 }

 for(i = 0; i < N; i++) {

 cvReleaseImage(&buf[i]);

 buf[i] = cvCreateImage(size, IPL_DEPTH_8U, 1);

 cvZero(buf[i]);

 }

 cvReleaseImage(&mhi);

 cvReleaseImage(&orient);

48

 cvReleaseImage(&segmask);

 cvReleaseImage(&mask);

 mhi = cvCreateImage(size, IPL_DEPTH_32F, 1);

 cvZero(mhi); // clear MHI at the beginning

 orient = cvCreateImage(size, IPL_DEPTH_32F, 1);

 segmask = cvCreateImage(size, IPL_DEPTH_32F, 1);

 mask = cvCreateImage(size, IPL_DEPTH_8U, 1);

 }

 cvCvtColor(img, buf[last], CV_BGR2GRAY); // convert frame to grayscale

 idx2 = (last + 1) % N; // index of (last - (N-1))th frame

 last = idx2;

 silh = buf[idx2];

 cvAbsDiff(buf[idx1], buf[idx2], silh); // get difference between frames

 cvThreshold(silh, silh, diff_threshold, 1, CV_THRESH_BINARY); // and threshold

it

 cvUpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION); // update MHI

 // convert MHI to blue 8u image

 cvCvtScale(mhi, mask, 255./MHI_DURATION,

 (MHI_DURATION - timestamp)*255./MHI_DURATION);

 //cvZero(dst); //updated 30032015, Monday, 539pm.

 cvCopy(img, dst, NULL);

 //cvMerge(mask, 0, 0, 0, dst);

 // calculate motion gradient orientation and valid orientation mask

 cvCalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3);

 if(!storage)

 storage = cvCreateMemStorage(0);

 else

 cvClearMemStorage(storage);

 // segment motion: get sequence of motion components

 // segmask is marked motion components map. It is not used further

 seq = cvSegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA);

 // iterate through the motion components,

 // One more iteration (i == -1) corresponds to the whole image (global motion)

 for(i = -1; i < seq->total; i++) {

 if(i < 0) { // case of the whole image

 comp_rect = cvRect(0, 0, size.width, size.height);

 color = CV_RGB(255,255,255);

 magnitude = 0;

 }

 else { // i-th motion component

 comp_rect = ((CvConnectedComp*)cvGetSeqElem(seq, i))->rect;

 if(comp_rect.width + comp_rect.height < 100) // reject very small

components

 continue;

 //putText(images, "testing", Point2f(x,y), FONT_HERSHEY_PLAIN,

3, Scalar(255,255,255,255));

49

 color = CV_RGB(255,0,0);

 magnitude = 30;

 }

 // select component ROI

 cvSetImageROI(silh, comp_rect);

 cvSetImageROI(mhi, comp_rect);

 cvSetImageROI(orient, comp_rect);

 cvSetImageROI(mask, comp_rect);

 // calculate orientation

 angle = cvCalcGlobalOrientation(orient, mask, mhi, timestamp, MHI_DURATION);

 angle = 360.0 - angle; // adjust for images with top-left origin

 if(angle>90 && angle<270){

 set_label(images, comp_rect, "right");

 putText(images, "Object(s) crossing to right! ", Point2f(30,50),

FONT_HERSHEY_PLAIN, 1.5, Scalar(255,255,255,255));

 }

 else if((angle>270 && angle<360)|| (angle<90 && angle>0)){

 set_label(images, comp_rect, "left");

 putText(images, "Object(s) crossing to left!", Point2f(30,100),

FONT_HERSHEY_PLAIN, 1.5, Scalar(255,255,255,255));

 }

 else{

 set_label(images, comp_rect, "No moving object!");}

 count = cvNorm(silh, 0, CV_L1, 0); // calculate number of points within

silhouette ROI

 cvResetImageROI(mhi);

 cvResetImageROI(orient);

 cvResetImageROI(mask);

 cvResetImageROI(silh);

 // check for the case of little motion

 if(count < comp_rect.width*comp_rect.height * 0.05)

 continue;

 // draw a clock with arrow indicating the direction

 center = cvPoint((comp_rect.x + comp_rect.width/2),

 (comp_rect.y + comp_rect.height/2));

 cvCircle(dst, center, cvRound(magnitude*1.2), color, 3, CV_AA, 0);

 cvLine(dst, center, cvPoint(cvRound(center.x +

magnitude*cos(angle*CV_PI/180)),

 cvRound(center.y - magnitude*sin(angle*CV_PI/180))), color, 3, CV_AA,

0);

 }

}

int main(int argc, char** argv)

{

 IplImage* motion = 0;

 CvCapture* capture = 0;

50

 help();

 if(argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))

 capture = cvCaptureFromCAM(argc == 2 ? argv[1][0] - '0' : 0);

 else if(argc == 2)

 capture = cvCaptureFromFile(argv[1]);

 if(capture)

 {

 cvNamedWindow("Motion", 1);

 //cvResizeWindow("Motion",500,500);

 for(;;)

 {

 IplImage* image = cvQueryFrame(capture);

 if(!image)

 break;

 if(!motion)

 {

 motion = cvCreateImage(cvSize(image->width,image->height), 8, 3);

 cvZero(motion);

 //cvCopy(img, dst, NULL)

 motion->origin = image->origin;

 }

 update_mhi(image, motion, 30);

 cvShowImage("Motion", motion);

 if(cvWaitKey(10) >= 0)

 break;

 }

 cvReleaseCapture(&capture);

 cvDestroyWindow("Motion");

 }

 return 0;

}

#ifdef _EiC

main(1,"motempl.c");

#endif

51

Appendix 4: HSV Color Model Classification (Fruit.h)

#pragma once

#include <string>

#include <opencv\cv.h>

#include <opencv\highgui.h>

using namespace std;

using namespace cv; //since declared, the following "cv::" can be removed.

class Fruit

{

public:

 Fruit(void);

 ~Fruit(void);

 Fruit(string name);

 int getXPos(); //redefined the function

 void setXPos(int x);

 int getYPos(); //redefined the function

 void setYPos(int y);

 //cv::Scalar getHSVmin();

 //cv::Scalar getHSVmax();

 Scalar getHSVmin();

 Scalar getHSVmax();

 void setHSVmin(Scalar min);

 void setHSVmax(Scalar max);

 string getType(){ return type;}

 void setType(string t){ type = t;}

 Scalar getColour(){

 return Colour;

 }

 void setColour(Scalar c){

 Colour = c;

 }

private:

 int xPos, yPos;

 string type;

 //cv::Scalar HSVmin, HSVmax;

 Scalar HSVmin, HSVmax;

 Scalar Colour;

};

52

Appendix 5: HSV Color Model Classification (Fruit.cpp (Main codes 1))

#include "Fruit.h"

Fruit::Fruit(void)

{

}

Fruit::Fruit(string name){

 setType(name);

 if(name=="Orange Obstacle"){

 setHSVmin(Scalar(5,163,117));

 setHSVmax(Scalar(23,231,256));

 setColour(Scalar(0,69,255)); //RGB value, in opencv, it is BGR

 }

 if(name=="Yellow Obstacle"){

 setHSVmin(Scalar(26,81,153));

 setHSVmax(Scalar(91,186,256));

 setColour(Scalar(0,255,255)); //RGB value, in opencv, it is BGR

 }

 if(name=="Blue Obstacle"){

 setHSVmin(Scalar(100, 84, 68));

 setHSVmax(Scalar(128,256,168));

 setColour(Scalar(255,0,0)); //RGB value, in opencv, it is BGR

 }

}

Fruit::~Fruit(void)

{

}

int Fruit::getXPos(){

 return Fruit::xPos;

}

void Fruit::setXPos (int x) {

 Fruit::xPos = x;

53

 xPos = x;

}

int Fruit::getYPos(){

 return Fruit::yPos;

}

void Fruit::setYPos (int y) {

 Fruit::yPos = y;

 yPos = y;

}

Scalar Fruit::getHSVmin(){

 return Fruit::HSVmin;

 }

Scalar Fruit::getHSVmax(){

 return Fruit::HSVmax;

}

void Fruit::setHSVmin(Scalar min){

 Fruit::HSVmin = min;

}

void Fruit::setHSVmax(Scalar max){

 Fruit::HSVmax = max;

}

54

Appendix 6: HSV Color Model Classification (Main codes 2)

#include <sstream>

#include <string>

#include <iostream>

#include <vector>

//#include <opencv\highgui.h>// transfered to Fruit.h

//#include <opencv\cv.h> //since this is already declared in Fruit.h

#include "Multiple_Object_Tracking\Fruit.h"

//#include "Fruit.h"

//using namespace cv; //transfered to the Fruit.h

//initial min and max HSV filter values.

//these will be changed using trackbars

int H_MIN = 0;

int H_MAX = 256;

int S_MIN = 0;

int S_MAX = 256;

int V_MIN = 0;

int V_MAX = 256;

//default capture width and height

const int FRAME_WIDTH = 640;

const int FRAME_HEIGHT = 480;

//max number of objects to be detected in frame

const int MAX_NUM_OBJECTS=50;

//minimum and maximum object area

//const int MIN_OBJECT_AREA = 40*40;

const int MIN_OBJECT_AREA = 20*20;

const int MAX_OBJECT_AREA = FRAME_HEIGHT*FRAME_WIDTH/1.5;

//names that will appear at the top of each window

const string windowName = "Original Image";

const string windowName1 = "HSV Image";

const string windowName2 = "Thresholded Image";

const string windowName3 = "After Morphological Operations";

const string trackbarWindowName = "Trackbars";

void on_trackbar(int, void*)

{//This function gets called whenever a

 // trackbar position is changed

}

string intToString(int number){

 std::stringstream ss;

 ss << number;

 return ss.str();

}

void createTrackbars(){

 //create window for trackbars

 namedWindow(trackbarWindowName,0);

 //create memory to store trackbar name on window

 char TrackbarName[50];

 sprintf(TrackbarName, "H_MIN", H_MIN);

 sprintf(TrackbarName, "H_MAX", H_MAX);

 sprintf(TrackbarName, "S_MIN", S_MIN);

55

 sprintf(TrackbarName, "S_MAX", S_MAX);

 sprintf(TrackbarName, "V_MIN", V_MIN);

 sprintf(TrackbarName, "V_MAX", V_MAX);

 //create trackbars and insert them into window

 //3 parameters are: the address of the variable that is changing when the

trackbar is moved(eg.H_LOW),

 //the max value the trackbar can move (eg. H_HIGH),

 //and the function that is called whenever the trackbar is moved(eg.

on_trackbar)

 // ----> ----> ---->

 createTrackbar("H_MIN", trackbarWindowName, &H_MIN, H_MAX, on_trackbar);

 createTrackbar("H_MAX", trackbarWindowName, &H_MAX, H_MAX, on_trackbar);

 createTrackbar("S_MIN", trackbarWindowName, &S_MIN, S_MAX, on_trackbar);

 createTrackbar("S_MAX", trackbarWindowName, &S_MAX, S_MAX, on_trackbar);

 createTrackbar("V_MIN", trackbarWindowName, &V_MIN, V_MAX, on_trackbar);

 createTrackbar("V_MAX", trackbarWindowName, &V_MAX, V_MAX, on_trackbar);

}

//void drawObject(int x,int y,Mat &frame){

void drawObject(vector<Fruit> theFruits,Mat &frame){

 //theFruit.getXPos()

 for(int i=0; i<theFruits.size();i++){

 //theFruits.at(i).getXPos()

 cv::circle(frame,cv::Point(theFruits.at(i).getXPos(),theFruits.at(i).getYPos()

),10,cv::Scalar(0,0,255));

 cv::putText(frame,intToString(theFruits.at(i).getXPos())+ " , " +

intToString(theFruits.at(i).getYPos()),cv::Point(theFruits.at(i).getXPos(),theFruits.a

t(i).getYPos()+20),1,1,Scalar(0,255,0));

 cv::putText(frame,

theFruits.at(i).getType(),cv::Point(theFruits.at(i).getXPos(),theFruits.at(i).getYPos(

)-30),1,2, theFruits.at(i).getColour());

 //cv::putText(frame,intToString(x)+ " , " +

intToString(y),cv::Point(x,y+20),1,1,Scalar(0,255,0));

 }

 }

void morphOps(Mat &thresh){

 //create structuring element that will be used to "dilate" and "erode" image.

 //the element chosen here is a 3px by 3px rectangle

 Mat erodeElement = getStructuringElement(MORPH_RECT,Size(3,3));

 //dilate with larger element so make sure object is nicely visible

 Mat dilateElement = getStructuringElement(MORPH_RECT,Size(8,8));

 erode(thresh,thresh,erodeElement);

 erode(thresh,thresh,erodeElement);

 dilate(thresh,thresh,dilateElement);

 dilate(thresh,thresh,dilateElement);

56

}

void trackFilteredObject(Mat threshold,Mat HSV, Mat &cameraFeed){

 //int x,y;

 //Fruit apple;

 vector <Fruit> apples;

 Mat temp;

 threshold.copyTo(temp);

 //these two vectors needed for output of findContours

 vector< vector<Point> > contours;

 vector<Vec4i> hierarchy;

 //find contours of filtered image using openCV findContours function

 findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE);

 //use moments method to find our filtered object

 double refArea = 0;

 bool objectFound = false;

 if (hierarchy.size() > 0) {

 int numObjects = hierarchy.size();

 //if number of objects greater than MAX_NUM_OBJECTS we have a noisy

filter

 if(numObjects<MAX_NUM_OBJECTS){

 for (int index = 0; index >= 0; index = hierarchy[index][0]) {

 Moments moment = moments((cv::Mat)contours[index]);

 double area = moment.m00;

 if(area>MIN_OBJECT_AREA){

 Fruit apple;

 apple.setXPos(moment.m10/area);

 apple.setYPos(moment.m01/area);

 //x = moment.m10/area;

 //y = moment.m01/area;

 //apple.setX(x);

 //apple.setY(y);

 apples.push_back(apple);

 objectFound = true;

 }else objectFound = false;

 }

 //let user know you found an object

 if(objectFound ==true){

 //draw object location on screen

 //drawObject(x,y,cameraFeed);}

 drawObject(apples,cameraFeed);}

 }else putText(cameraFeed,"TOO MUCH NOISE! ADJUST

FILTER",Point(0,50),1,2,Scalar(0,0,255),2);

 }

}

57

void trackFilteredObject(Fruit theFruit,Mat threshold,Mat HSV, Mat &cameraFeed){

 //int x,y;

 //Fruit apple;

 vector <Fruit> apples;

 vector <Fruit> bananas;

 vector <Fruit> cherrys;

 Mat temp;

 threshold.copyTo(temp);

 //these two vectors needed for output of findContours

 vector< vector<Point> > contours;

 vector<Vec4i> hierarchy;

 //find contours of filtered image using openCV findContours function

 findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE);

 //use moments method to find our filtered object

 double refArea = 0;

 bool objectFound = false;

 if (hierarchy.size() > 0) {

 int numObjects = hierarchy.size();

 //if number of objects greater than MAX_NUM_OBJECTS we have a noisy

filter

 if(numObjects<MAX_NUM_OBJECTS){

 for (int index = 0; index >= 0; index = hierarchy[index][0]) {

 Moments moment = moments((cv::Mat)contours[index]);

 double area = moment.m00;

 if(area>MIN_OBJECT_AREA){

 Fruit apple;

 apple.setXPos(moment.m10/area);

 apple.setYPos(moment.m01/area);

 apple.setType(theFruit.getType());

 apple.setColour(theFruit.getColour());

 Fruit banana;

 banana.setXPos(moment.m10/area);

 banana.setYPos(moment.m01/area);

 banana.setType(theFruit.getType());

 banana.setColour(theFruit.getColour());

 Fruit cherry;

 cherry.setXPos(moment.m10/area);

 cherry.setYPos(moment.m01/area);

 cherry.setType(theFruit.getType());

 cherry.setColour(theFruit.getColour());

 //x = moment.m10/area;

 //y = moment.m01/area;

 //apple.setX(x);

 //apple.setY(y);

 apples.push_back(apple);

 bananas.push_back(banana);

58

 cherrys.push_back(cherry);

 objectFound = true;

 }else objectFound = false;

 }

 //let user know you found an object

 if(objectFound ==true){

 //draw object location on screen

 //drawObject(x,y,cameraFeed);}

 drawObject(apples,cameraFeed);

 drawObject(bananas,cameraFeed);

 drawObject(cherrys,cameraFeed);

 }

 }else putText(cameraFeed,"TOO MUCH NOISE! ADJUST

FILTER",Point(0,50),1,2,Scalar(0,0,255),2);

 }

}

int main(int argc, char* argv[])

{

 //if we would like to calibrate our filter values, set to true.

 //bool calibrationMode = true; //to calibrate the colour of the object

 bool calibrationMode = false; // to hardcode the colour of the object

 //Matrix to store each frame of the webcam feed

 Mat cameraFeed;

 Mat threshold;

 Mat HSV;

 if(calibrationMode){

 //create slider bars for HSV filtering

 createTrackbars();

 }

 //video capture object to acquire webcam feed

 VideoCapture capture;

 //open capture object at location zero (default location for webcam)

 capture.open(0);

 //set height and width of capture frame

 capture.set(CV_CAP_PROP_FRAME_WIDTH,FRAME_WIDTH);

 capture.set(CV_CAP_PROP_FRAME_HEIGHT,FRAME_HEIGHT);

 //start an infinite loop where webcam feed is copied to cameraFeed matrix

 //all of our operations will be performed within this loop

 while(1){

 //store image to matrix

 capture.read(cameraFeed);

 //convert frame from BGR to HSV colorspace

 cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);

 if(calibrationMode==true){

 //if in calibration mode, we track objects based on the HSV slider

values.

 cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);

59

 inRange(HSV,Scalar(H_MIN,S_MIN,V_MIN),Scalar(H_MAX,S_MAX,V_MAX),threshold);

 morphOps(threshold);

 imshow(windowName2,threshold);

 trackFilteredObject(threshold,HSV,cameraFeed);

 }else{

 Fruit apple("Orange Obstacle"), banana("Yellow Obstacle"), cherry("Blue

Obstacle");

 //apple.setHSVmin(Scalar(0,0,0));

 //apple.setHSVmax(Scalar(255,255,255));

 apple.setHSVmin(Scalar(5,163,117));

 apple.setHSVmax(Scalar(23,231,256));

 banana.setHSVmin(Scalar(26,81,153));

 banana.setHSVmax(Scalar(91,186,256));

 cherry.setHSVmin(Scalar(100, 84, 68));

 cherry.setHSVmax(Scalar(128,256,168));

 cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);

 inRange(HSV,apple.getHSVmin(),apple.getHSVmax(),threshold);

 morphOps(threshold);

 //imshow(windowName2,threshold);

 trackFilteredObject(apple,threshold,HSV,cameraFeed);

 cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);

 inRange(HSV,banana.getHSVmin(),banana.getHSVmax(),threshold);

 morphOps(threshold);

 //imshow(windowName2,threshold);

 trackFilteredObject(banana,threshold,HSV,cameraFeed);

 cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);

 inRange(HSV,cherry.getHSVmin(),cherry.getHSVmax(),threshold);

 morphOps(threshold);

 //imshow(windowName2,threshold);

 trackFilteredObject(cherry,threshold,HSV,cameraFeed);

 }

 //show frames

 //imshow(windowName2,threshold);

 imshow(windowName,cameraFeed);

 //imshow(windowName1,HSV);

 //delay 30ms so that screen can refresh.

 //image will not appear without this waitKey() command

 waitKey(30);

 }

 return 0;

}

60

Appendix 7: CMakeLists.txt (For the compilation of Motion Templates codes)

cmake_minimum_required (VERSION 2.8)

project (raspicam_test)

SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH}

/usr/local/lib/cmake/)

find_package(raspicam REQUIRED)

find_package(OpenCV)

IF (OpenCV_FOUND AND raspicam_CV_FOUND)

MESSAGE(STATUS "COMPILING OPENCV TESTS")

add_executable (videotest1 videotest1.cpp)

target_link_libraries (videotest1 ${raspicam_CV_LIBS})

ELSE()

MESSAGE(FATAL_ERROR "OPENCV NOT FOUND IN YOUR SYSTEM")

ENDIF()

