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ABSTRACT 

Many electronic devices have started to pay attention to CMOS-MEMS technology which 

provides many advantages. Mostly used in accelerometer and gyroscopes, CMOS-MEMS 

provides a lot of challenges including the sensing of the output signal. While the signal is about 

femto- (10-15) to atto- (10-18) farad, the noise presence in the signal is also another constraint. One 

of the method in sensing the signal is Capacitive Sensing which utilize the difference of the 

capacitance and distance produced between the comb fingers of capacitances. The front-end circuit 

is very crucial in producing clean signal and free from noises. This paper use voltage sensing 

technique of the front-end circuit to evaluate the signal. The evaluation is done by using two 

techniques; circuit simulation by using MultiSim software, and mathematical modeling by using 

MATLAB.  The result obtained shows that the circuit with Chopper Stabilization technique used 

has much better output than the circuit without the technique used. 
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CHAPTER 1:  

INTRODUCTION 

 

Complementary metal-oxide-semiconductor (CMOS) has proven to be one of the main 

components of the today’s advance world. It’s characteristics of having low required but 

with high performance has seen it contribution in a lot of electronics components, 

especially those with microcontrollers, microprocessors, and various digital logic circuits 

(Borkar, 2006). The researchers keep on finding way to improve CMOS to be as efficient 

and effective as possible, and one of the technology found is by integrating it with 

MicroElectroMechanical Systems (MEMS). 

MEMS is a process technology that integrate together the mechanical and electrical into 

components (An Introduction to MEMS, 2002). Discovered in the early 1990’s, MEMS 

have the ability to sense and react to the changes in its surrounding through microcircuit 

control (Varadan, Vinoy, and Gopalakrishnan, 2006). This allow MEMS to be used in 

many application including computer system, automotive, navigation, sports and health 

care (Yazdi, Ayazi, and Najafi, 1998). Some examples of the application that utilized 

MEMS as the mechanism are automotive airbag sensor, medical pressure sensor, and 

inkjet printer head. 

Even though both CMOS and MEMS have shown a lot of advantages on their own, 

integration of both of them has shown a lot of improvement in the performances, smaller 

packaging, and lower cost (Witvrouw, 2006). The most common application that used 

CMOS-MEMS integration technology are accelerometers, gyroscopes, and micro 

scanners (Xie and Fedder, 2002). 
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1.1 BACKGROUND 

The performance of a circuit is always required to analyze and further improve the system. 

In CMOS-MEMS, to evaluate the performance, the output of the system is detected and 

read out which can be done by using several methods. The researchers usually used the 

Capacitive Sensing method since it has advantages like low noise and power dissipation, 

low-temperature sensitivity, and its ability to compatible with VLSI technology scaling 

(Wu, Fedder, and Carley, 2004). 

In this method, two sets of comb-like-capacitors are arranged facing each other with some 

distance between them, as can be seen in Figure 1. One of the capacitors will be set to be 

fixed while the other will be moving up and down. When there are changes in the distance 

between the capacitors, the value of capacitance will be changed depending on the 

magnitude and direction of the moving capacitances. These changes will be detected and 

translated into capacitance value which will be read by a readout circuits. 

 

Figure 1 Comb Finger Capacitor 
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The relationship between the distance and the capacitance can be seen in Figure 2, 3 and 4.  

 

Figure 2 Capacitance Initial Condition 

 

Figure 3 Capacitance Moving Condition (Downward) 

 

Figure 4 Capacitance Moving Condition (Upward) 

In figure 2, the capacitance at initial condition where no input signal is given or detected by 

the circuit. At this stage, the displacement and capacitive value is at their initial value too (X0 

and C0 respectively). But when a signal is sensed, the movable comb will start to move. This 

can be seen in Figure 3 and 4 where the movable comb is either moving downward and 

upward, depending on the signal it received. This will change the value of the displacement 

and also affected the capacitive value. When the capacitance moving downward, the 

displacement will decreasing (X0-ΔX) but the capacitive value increasing (C0+ΔC), while for 

the upward motion, their values are vice versa (displacement increasing, X0+ΔX, Capacitive 

decreasing, C0-ΔC). This change in capacitive value that will give the input to the sensing 

device, which in this case, the capacitive sensing circuit. 

 



4 
 

1.2 PROBLEM STATEMENT 

Advanced technology always came with challenging constraints. In these early stage of 

developing CMOS-MEMS devices, several challenges pose by this technology. One of 

the major problem with CMOS-MEMS applications is the challenge to read the output 

signal which is very small, ranging from femto- (10-15) to atto- (10-18) farad. In addition, 

since CMOS-MEMS is an electronic components, it cannot run away from the presence 

of noise in the circuits, which sometimes can be much bigger than the actual signal (up to 

pico-farad). Without the removal of the noise, it is really difficult to differentiate between 

the real signal and the unwanted noise. 

1.3 OBJECTIVES AND SCOPE OF STUDY 

1.3.1 Objectives 

In general, this project goal is to develop a capacitive readout circuit that has high Signal-

to-Noise Ratio (SNR). 

In short, the project aims to: 

1. To develop and simulate a mathematical modeling of capacitive readout circuit 

CMOS-MEMS devices 

A mathematical modeling simulating the parameter chosen will be done through 

MATLAB software.  

2. To simulate the capacitive readout circuit of CMOS-MEMS devices 

After the mathematical modeling has successfully being design, the circuit will be 

simulated by using MultiSim software to evaluate and improve the performance. 
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1.3.2 Scope of Study 

There are three part of CMOS-MEMS that can be manipulate to achieve the best result, 

which are sensing circuit design, transducer design and fabrication, and control system 

design (Fang, 2006). For this work, the focus is the sensing circuit design while the other 

two parts are out of the scope of this project. There are three sensing circuit architectures 

for capacitive sensing, namely, Capacitive Sensing, Continuous Time Current (CTC) 

Sensing, and Continuous Time Voltage (CTV) Sensing. The work will be focusing on the 

Continuous Time Voltage Sensing architecture but all of the architectures will be 

discussed briefly. While various parameters available to determine the performance of the 

CMOS-MEMS circuits, this work will only focusing on achieving the best Signal-to-

Noise Ratio (SNR). 

 

1.3.3 Relevancy of the Project Scope 

The project is selected to be focusing on the capacitance sensing only due to time 

constraint of the project itself. The project needs to be completed in the period of 7 months 

only. However, the capacitance sensing itself has various type of architectures. Thus, the 

best architecture can be selected based on the literature review done. In addition, there are 

also various circuit configuration that has been done in other researches. This leaves the 

project with various choice of circuits to be working with. 
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CHAPTER 2:  

LITERATURE REVIEW AND THEORY 

 

2.1 READOUT CIRCUIT ARCHITECTURES FOR CAPACITIVE SENSORS 

Readout circuit for capacitive sensing can be divided into three which are Capacitive 

Sensing (Charge Sensing), Current Sensing, and Voltage Sensing. Each of the architecture 

possess their own advantages with some restriction. All three architectures will be 

discussed in this part. 

2.1.1 Capacitive Sensing/ Charge Sensing 

Capacitive sensing can arranged in two ways in order to sense the changes in the circuits. 

The first method is by using capacitive divider as shown in Figure 5. The topology is just 

the same as half-bridge circuit which the output signals will be sensed at the center of the 

sensing capacitance node. These sensing capacitances are powered by modulation voltage. 

The second topology is fully differential capacitive bridge. The circuit will sensed the 

output signal at the central node just the same as capacitive divider. The difference is 

instead of using only two sensing capacitances, four sensing capacitances are connected 

in a bridge form. 

 

Figure 5 Capacitive Divider Half Bridge (Sun, H. et al., 2011) 
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Figure 6 Charge Sensing Readout Process 

The process of output readout by using this architecture is shown in Figure 6. The change 

of capacitance first being detected and later the value will be converted into equivalent 

charge redistribution. This charge redistribution later being detect by the Switched 

Capacitor (SC) circuit. Commonly, the architecture will used Correlated Double Sampling 

(CDS) technique to eliminate the flicker noise (Fang, 2006). Since the circuit contain a 

feedback, the output signal taken will be in the ratio of the sensed capacitances changes 

and the feedback capacitance as shown in Equation 1, where Vout is the output voltage, Vp 

is the input voltage, ΔCS is the sensed capacitance changes, and Cfb is the feedback 

capacitance value. 

𝑉𝑜𝑢𝑡 = 𝑉𝑝
∆𝐶𝑆

𝐶𝑓𝑏
      (1) 

Capacitive sensing architecture is insensitive to undesired changing, leakage currents, as 

well as stray and parasitic capacitances. Other than that, it is simple to construct and 

required small silicon area. This leads to easy to design and fabricate the circuit. By 

combine it with Sigma-Delta modulation technique, the output can be obtained in digital 

form. However, Charge Sensing is highly affected by offsets, thermal noise, flicker noise, 

and clock feed-through noise which contribute to less precision and accuracy. To 

overcome this, Correlated Double Sampling (CDS) is suggested by Yazdi, Kulah, and 

Najafi (2004) which working by taking difference of the measured signal at the foreground 

and the background. 

 

 

Capacitance 
Change

Equivalent Charge 
Redistribution

Switched 
Capacitor (SC)

Correlated Double 
Sampling (CDS)
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2.1.2 Current Sensing 

Current Sensing architecture done in continuous time and known as Continuous Time 

Current (CTC) Sensing. There are two methods in using this architecture, namely Trans-

Impedance Amplifiers (TIA) and Trans-Capacitance Amplifiers (TCA), as shown in 

Figure 7. Basically, the process started with changes in sensing capacitance and this will 

produce charge transfer. This charge transfer then will be detected by utilizing TIA or 

TCA. There are several advantages of using this architecture in detecting change in the 

capacitance value. The main advantages are the ability to achieve high gain and insensitive 

to parasitic capacitances (Sun, Jia, Liu, Yan, & Hsu, 2011). In addition, CTC can remove 

dc biasing easily. However, CTC gives a very high flicker noise and white noise. 

 

Figure 7 Current Sensing Topology (a) TCA (b) TIA (Sun, H. et al., 2011) 

Since CTC is using feedback system also, the output voltage also calculated by 

considering the feedback system. In TCA, since both are in capacitance value, the output 

voltage can be calculated by taking the ratio between the sensed capacitance changes and 

feedback capacitances. The only differences than Charge Sensing is the circuit does not 

used the switch in the feedback system. The equation to find output voltage for TCA can 

be found in Equation 2, where Vout is the output voltage, Vp is the input voltage, ΔCS is 

the sensed capacitance changes, and Cfb is the feedback capacitance value. 

𝑉𝑜𝑢𝑡 = 𝑉𝑝
∆𝐶𝑆

𝐶𝑓𝑏
      (2) 
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While for TIA, the capacitance need to be converted into equivalent resistance value. The 

output voltage equation for TIA can be found in Equation 3, where Vout is the output 

voltage, Vp is the input voltage, ω is the angular frequency, ΔCS is the sensed capacitance 

changes, and Rfb is the feedback resistance value. 

𝑉𝑜𝑢𝑡 = 𝑉𝑝 ∙ 𝑗𝜔∆𝐶𝑆𝑅𝑓𝑏    (3) 

2.1.3 Voltage Sensing 

The voltage sensing architecture as shown in Figure 8 is quite simple as it directly 

amplifying the change of voltage detect in the sensing capacitances. It is considered as 

Continuous Time Voltage (CTV) Sensing technique as it is operate in continuous time 

condition. There are two structure offered by this architecture which are Closed Loop and 

Open Loop. Both have their own advantages and disadvantages. Closed loops offers 

accurate gains and better linearity but need to trade of with high power consumption as 

well as high noise. As for open loop, it offers benefits including lower gain, low-power 

and low-noise. 

 

Figure 8 Voltage Sensing Architecture (Sun, H. et al., 2011) 
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Usually, CTV will be combined with Chopper Stabilization Technique which can be seen 

in Figure 9.  

 

Figure 9 Continuous Time Voltage (CTV) with Chopper Stabilization Technique 

The input signal will be sensed first by the circuit. Then, the signal will be modulated to 

a much higher frequency, called chopper frequency where the amplification will be done. 

At this stage, the signal is in the odd harmonics of frequency. In addition, the amplification 

is done at this stage due to small presence of flicker noise here. The signal is then 

demodulated back to the baseband frequency prior to low pass filter the noise. Use of 

chopper stabilization technique will minimize the DC offset, Flicker Noise, and associated 

low frequencies noises (Wu, Fedder, & Carley, 2004).  

The output voltage can be calculated by using equation 4, which taken into account the 

value of input voltage (Vp), Sensed Capacitance Changes (ΔCS), transconductance of the 

MOSFET (gm), Load Resistance (RL), Initial Sensed Capacitance (CS0), and Parasitic 

Capacitance (CP). 

𝑉𝑜𝑢𝑡 = 𝑉𝑃 ∙ ∆𝐶𝑆 ∙
𝑔𝑚𝑅𝐿

(2𝐶𝑠0+𝐶𝑝)
   (4) 

CTV offers benefits in term of high linearity and stability output, superior noise 

performance, and reduce switch noise. In addition, the amplification can be improved by 

adding the differential difference amplifiers. 

Input Signal Modulation
Chopper 

Frequency

AmplificationDemodulationLow Pass Filter
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2.2 NOISE SOURCES IN CAPACITIVE CMOS-MEMS READOUT CIRCUITS 

The Noise in CMOS-MEMS readout circuit can be consist of few type of noises that 

combined together to become a very high noise. The source of noise in the readout 

circuit is shown in Figure 10. 

 

Figure 10 Noise sources of capacitive sensing 

Cp is the parasitic capacitance, Rb is the Brownian resistance, 𝑖𝑛,𝑏
2  is the Brownian noise 

current, Cgd is gate-drain capacitance, Cgs is the gate-source capacitance, 𝑖𝑛,𝑙𝑜𝑎𝑑
2  is the 

load noise current, 𝑖𝑛,𝑡ℎ
2 is the thermal noise current and 𝑖𝑛,𝑓𝑙𝑖𝑐𝑘𝑒𝑟

2 is the flicker noise 

current. All of these noises will be discussed in this section. 

2.2.1 Brownian Noise 

Brownian Noise comes from random Brownian motion of molecules which leads to 

electro-mechanical noises. Several method can be implement in order to reduce Brownian 

Noise including by increasing the mass and decrease the damping force by reducing the 

height of the sensed capacitor or extending the gap (Tsai and Fedder, 2005). 
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2.2.2 Electronic Noises 

The most significant noise in the CMOS-MEMS circuits is electronic noises. The noises 

comprised of few type of noises including modulation signal noises, Thermal noises, 

leakage noises, and Flicker noises (1/f noises) (Wu, Fedder, and Carley, 2004). The flicker 

noise current can be found based on equation 5. 

𝑖𝑛,𝑓𝑛
2̅̅̅ ̅̅ ̅ =

𝐾𝑓

𝐶𝑜𝑥𝑊𝐿

𝑔𝑚
2

𝑓
    (5) 

As in the equation, in,fn is the flicker noise current, Kf is the Process-dependent constant, 

Cox is the Gate Capacitance per unit Area, W is the Width, L is the Length, gm is the Trans-

conductance value, and f is the frequency. 

Modulation signal noises generated between modulation voltage and the sensing 

capacitance. Wu, Fedder, and Carley (2004) further suggested that these noises can be 

removed by applying different topology at the front end which the generated noises will 

cancel out each other. 

Thermal noises is created due to free carriers’ random motion between drain and source 

channel. Theoretically, as the absolute working temperature increases, the thermal noises 

also increased. However, the noise does not related to frequency. To overcome this type 

of noise, a maximum aspect ratio which includes the width and the length need to be 

applied. Other than that, trans-conductance also need to be kept at maximum. The equation 

to the thermal noise can be found in equation 6. 

𝑖𝑛𝑡ℎ𝑒𝑟𝑚𝑎𝑙
2 = 4𝛾𝑇𝐾′(

𝑊

𝐿
)𝑉𝑜𝑣   (6) 

In equation 6, inthermal is the thermal current, γ is the MOSFET thermal noise coefficient, 

T is the temperature, K is the Boltzmann’s constant, W is the width, L is the length, and 

Vov is the overdrive voltage. 

On the other hand, shot noise or leakage noise also gives significant effect to the readout 

circuits. It is suggested that the noises are either the reverse-biased diode noise leakage or 

the total sum of thermal noise. Shot noise is inversely proportional to square modulation 

frequency and it makes significant presence in very low frequencies. To cope with this 
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noises, it is recommended to choose modulation frequency with small leakage current. 

The equation of shot noise can be found as equation 7, where inleakage is the shot noise 

current, q is the electron charge, and Ileak is the leakage current. 

𝑖𝑛𝑙𝑒𝑎𝑘𝑎𝑔𝑒
2 (𝑓) = 2𝑞𝐼𝑙𝑒𝑎𝑘   (7) 

In MOSFETS, flicker noises contributed the highest source of noise in the circuit. Even 

though the origin of the noises is still debatable, the noises could give a massive problem 

in readout the output signals from the circuits. Since flicker noise is inversely proportional 

to active gate area (Width-Length) (Tan et al., 2011) and operating frequencies (f), it is 

advisable to use maximum value for both parameters in order to achieve high noise 

performances. 

2.2.3 Parasitic Capacitances 

Parasitic capacitances also need to be taken into consideration as it will affect the 

resolution and noise of the overall circuit. The capacitances that can be considered as these 

capacitances are the parasitic capacitances (Cp), Gate-Source Capacitances (Cgs), and 

Gate-Drain Capacitances (Cgd). Both equation for Cgs and Cgd can be found in equation 8 

and 9 respectively. 

𝐶𝑔𝑠 =
2

3
𝑊𝐿𝐶𝑜𝑥 + 𝑊𝐿𝑜𝑣𝐶𝑜𝑥   (8) 

𝐶𝑔𝑑 = 𝑊𝐿𝑜𝑣𝐶𝑜𝑥    (9) 

In above equations, Cgs is the Gate-Source Capacitance, Cgd is the Gate-Drain 

Capacitance, W is the width, L is the Length, Cox is the Gate Capacitance per unit Area, 

and Lov is the Overlapping Length. 
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CHAPTER 3:  

METHODOLOGY/ PROJECT WORK 

 

After a careful and full consideration, the Continuous Time Voltage (CTV) sensing 

architectures has been chosen. The project work is divided into two parts, the first part is 

mathematical modeling by using MATLAB program while the other part is circuit 

simulation by using MultiSim software. 

By referring to Figure 11, to apply voltage sensing architecture technique, the sensed input 

signal will be modulated to a chopper frequency which is a frequency that is much higher 

than the initial frequency. The chopped signal later will be amplified before being 

demodulated back to the baseband. Lastly, the signal will be undergo Low Pass Filter to 

remove the remaining noise and offsets at odd harmonics of chopping frequency. 

 

Figure 11 Project Block Diagram 

Input Signal Modulation
Chopper 

Frequency

AmplificationDemodulation
Low Pass 

Filter
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Figure 12 Project Flow Diagram 

The flow of the project can be seen in Figure 12. First, an architecture will be selected, which in 

this case is the Continuous Time Voltage (CTV) architecture. Then, a technique will be selected, 

which for this project, will use the chopper stabilization technique. Then the circuit will be 

constructed, both by mathematical modeling in MATLAB and circuit simulation in MultiSim. From 

the simulation and graph, the output will be evaluated by two criteria, which are first, “does it 

achieve a low noise?”, and secondly, “Does it achieve a low power consumption”. If not for any 

of these condition, the circuit will be reevaluate especially on the technique done. If both low 

noise and low power consumption have been achieved, then the work for this project is done. 
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Tools & Software 

Tools/ Software Description 

MATLAB Used to simulate mathematical modeling of the project 

MATLAB is a good software that can be used for algorithm 

development, data visualization, and data analysis. Since the 

project includes various calculation and parameter, MATLAB is 

the best tool to be used. 

MultiSim Used to simulate the circuit of the project 

MultiSim is a software to develop a circuit without the need of 

physical part through simulation. Few programs has been 

considered to do the simulation including PSpice and Cadance, but 

with simple and user-friendly interface, MultiSim is sufficient for 

the use of this project. 

Microsoft Office Used to write report and presentation slides 

Microsoft Office is a package of software that offers tools to write 

reports such as Microsoft Word, Microsoft Power Point, and 

Microsoft Excel.  
Table 1 Tools & Software 

 

Selection of the parameter 

The parameter of the project is carefully chosen and can be observed in Table 1. 

Input Signal 

Type Sine 

Voltage 1µV(p-p) 

Bandwidth 75-105Hz 

Frequency 90 Hz 

Chopper Signal 

Type Square 

Frequency 16kHz 

Voltage 1V(p) 

Noise 

Magnitude 150nV 

Amplifier 

Gain 50 (34dB) 

Bandwidth 32kHz 
Table 2 Circuit Parameter 
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Justification on selection of the parameter 

The input signal detected by the sensing devices is expected to be 1µV. This reflects the 

real scenario of the devices that may detect signal in the range of femto- (10-15) to atto- 

(10-18) farad. Other than that, the simulation will be done in the interest of bandwidth 

between 75 and 105 Hz. This is because frequency higher than 105 Hz may having low 

impact on the SNR while taking frequency lower than 75 Hz is not productive to be 

evaluate (Abdelkader, 2010). Thus, since the bandwidth is only 30 Hz, taking a sinusoidal 

signal with 90 Hz of frequency as the input is sufficient enough to evaluate the 

performance of the circuit. 

For the chopper frequency, a square wave signal with 1V amplitude will be used. This 

will convert the input signal into odd harmonics frequencies prior of amplification stage. 

The frequency of the square wave is chosen to be 16 kHz so that the flicker (1/f) noise 

will still small without the need to compensate the transistor size in the core amplifier.  

The gain of the amplifier is set to be 50 (34dB) to avoid the common-mode signal will be 

converted into a differential signal. The bandwidth of the amplifier also is set to be twice 

of the modulation frequency (32 kHz) to reduce the effect of aliasing of the signal. This is 

due to Nyquist Theorem that suggested the sampling rate must be at least twice of 

maximum frequency. 

The output of the circuit is expected to achieve the value as shown in Table 2. 

Expected Outcome 

SNR (dB) 6 dB 

Power Dissipation 110 µW 

Size 0.25 mm2 

Allowable Noise <180nV 
Table 3 Expected Output 

A signal-to-noise ratio (SNR) of 6 dB is choosen based on other related paper that has 

achieved above 5 dB of Output SNR. This is achievable and sufficient with the input of 

90 Hz sinusoidal. Since a minimum of 6 dB output is expected from the circuit, the total 

tolerable noise can be computed by using Equation 10. 
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Arms =
1

2
∙

1

√2
∙ Ap    (10) 

Where Arms is the amplitude of the input signal in root-mean-square (rms) value and Ap is 

the peak amplitude of the input signal. In this case, the amplitude is 1µV. Arms is calculated 

and producing 3.536 × 10-7 V. The total allowable noise is later computed by using SNRdB 

formula in Equation 11. 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ 𝑙𝑜𝑔10 (
𝐴𝑟𝑚𝑠

𝑁𝑡𝑜𝑡
)   (11) 

Where SNRdB is 6dB and Ntot is the total noise. From the calculation it is found that the 

the total noise should not exceed 180 nV. 

While the power dissipation and size is not a main concern in this paper, the parameter is 

still needed to have a high performance circuit. 
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Key Project Milestone 

 

 

 

 

 

Sept 2014 

Oct 2014 

Nov 2014 

Apr 2015 

May 2015 
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Project Timeline Study Plan (FYP I) 

 

                   Week 

Task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Project Topic Selection                             

Research on studies & projects                             

Submission of Extended Proposal                             

Software Training                             

Initial Project Development                             

Proposal Defense                             

Further Project Development                             

Result Evaluation                             

Submission of Interim Draft Report                             

Submission of Interim Report                             
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Project Timeline Study Plan (FYP II) 

 

                   Week 

Task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Project Work Continues                             

Submission of Progress Report                             

Pre-SEDEX                             

Submission of Draft Final Report                             

Submission of Dissertation (Soft Bound)                             

Submission of Technical Paper                             

Viva                             

Submission of Project Dissertation 

(Hard Bound) 
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3.1 MATLAB 

The work for this part has been divided into 13 separately parts that later will work 

together to work as one mathematical modeling. All the coding used can be refer in the 

appendices section. The parts are as follow: 

1. Main coding 

This is the main part of the coding where all the parameter is defined and all the 

functions are included in here. 

2. Sine-Wave Generator 

Coding to generate a sine-wave input to the system. This sine-wave will act as an 

original signal before anything is done including modulation, amplification, and 

insertion of noise.  

3. Square-Wave Generator 

Square-wave is required to modulate the signal into chopper frequency and then 

after the amplification, the square wave is once again used to demodulate it back 

to the baseband. 

4. High Pass 

High Pass function will filter the signal so that the lower frequency corner of the 

amplifier is 1 Hz. 

5. Low Pass 

Low pass filter is used to remove the noise presented in the signal. This is done 

after the signal is demodulated back into the baseband. 

6. Noise-Generation 

This is a coding to generate noise. In this work, the noise includes Flicker noise 

(1/f noise) and thermal noise. 

7. Anti-Aliasing 

As in other signal processing, aliasing problem might occurred. To counter this 

problem in this work, Anti-Aliasing Function (AAF) is used. 

8. Band Pass 

To filter out the input signal to a specific order, this function is used. 
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9. FFT Magnitude 

The function will compute the magnitude of the fast Fourier transform (FFT) of 

the output signal. 

10. Hodie Window 

The Hoodie Window function is used to minimize the spectral blurring of the 

output signal. 

11. SNR Computation 

This function is used to calculate the value of Signal-to-Noise Ratio (SNR) of the 

output signal. The performance of the signal is evaluated here. 

12. Time Domain Plot 

This function is used to plot the output of the signal in time domain. 

13. Frequency Domain Plot 

This function is used to plot the output signal in the frequency domain. 
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3.2 MultiSim 

 

The circuit is design based on Fang (2006) paper but with certain alteration and the overall 

circuit. A basic circuit without the chopper frequency can be seen in Figure 13. 

 

Figure 13 Circuit without Chopper Diagram 

A sine wave with rms value of 0.3536 µV and frequency of 90 Hz is use as the input 

signal. Then, the noise is added after the sensing circuit. The noise use a sine wave with 

rms value of 180 nV and frequency of 90 Hz. Lastly, the signal will go through an 

amplification circuit with a gain of 50. Then the output signal is obtained and evaluated. 
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The improvement circuit that take into account the chopper stabilization technique can be 

seen in Figure 14.  

 

Figure 14 Overall Circuit with Chopper Diagram 

The sensing circuit used is just the same, which has sine wave with rms value of 0.3536 

µV and frequency of 90 Hz. Then the signal will be transformed into odd harmonic of 

frequencies by the square wave with amplitude of 0.5 V (peak) and frequency of 16 kHz. 

Then, the noise of sine wave with rms value of 180 nV and frequency of 90 Hz is added 

into the signal. The output from this noise addition stage will then be amplified prior to 

demodulate back the signal back to the baseband. The amplification stage has a feedback 

system to improve the performance of the circuit itself. 
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To calculate the SNRdB of the output, we need a noise value from the circuit. Thus, a 

noise circuit as shown in Figure 15 is constructed. 

 

Figure 15 Noise Circuit Diagram 

Basically, the input of the noise is just the same as two previous circuit (sine wave 

with rms value of 180 nV and frequency of 90 Hz). Then the amplification is done and 

the output of the circuit can be evaluated. Based on the results obtained from the 

three circuits, the SNRdB value is calculated based on the Equation 11. 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ 𝑙𝑜𝑔10 (
𝐴𝑟𝑚𝑠

𝑁𝑡𝑜𝑡
)   (11) 
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3.3 Calculation 

1. Sensing Circuit 

To obtain the value of the output voltage, the reactance of the capacitance is first 

obtained, as shown in Equation 12. 

𝑋𝐶𝑛 =
1

2𝜋𝑓𝐶𝑛
     (12) 

After each of the reactance value is obtained, the total reactance is calculated by 

taking the sum of each reactance as shown in Equation 13. 

𝑋𝐶(𝑇𝑂𝑇𝐴𝐿) = ∑ 𝑋𝐶𝑛    (13) 

The source voltage will be divided by the total reactance to obtain the current in the 

circuit, as shown in Equation 14. 

𝐼 =
𝑉

𝑋𝐶(𝑇𝑂𝑇𝐴𝐿)
     (14) 

Finally the voltage across each capacitance is computed by using equation 15. 

𝑉𝑛 = 𝐼 ∙ 𝑋𝐶𝑛     (15) 

2. Modulation Circuit 

Basically the output from the modulation circuit will be obtained by using equation 

16. 

𝑉𝑚𝑜𝑑 = 𝑉𝑖𝑛 × 𝐴𝑚𝑜𝑑    (16) 

3. Noise Addition 

The noise source is inserted by arranging it in series with the output from the 

modulation circuit. Thus, the output will be computed by equation 17. 

𝑉𝑂𝑢𝑡𝑁𝑜𝑖𝑠𝑒 = 𝑉𝑚𝑜𝑑 × 𝑉𝑛𝑜𝑖𝑠𝑒   (17) 
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4. Amplification 

After the noise is added, the amplification is done. The output can be calculated by 

using equation 18. 

𝑉𝑎𝑚𝑝 = 𝑉𝑂𝑢𝑡𝑁𝑜𝑖𝑠𝑒 × 𝐴𝑎𝑚𝑝    (18) 

5. Demodulation Circuit 

The output of the amplification stage is then modulated back to baseband, can be 

calculated by using equation 19. 

𝑉𝑑𝑒𝑚𝑜𝑑 = 𝑉𝑎𝑚𝑝 × 𝐴𝑑𝑒𝑚𝑜𝑑   (19) 
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CHAPTER 4:  

RESULTS AND DISCUSSION 

 

4.1 MATLAB 

MATLAB tool has been used to simulate the mathematical modeling of the work. For this 

work, works by Abdelkader H. S. entitled “Design of a Chopper Amplifier for Use in 

Biomedical Signal Acquisition” has been used as reference. The result is shown in Table 

4, Figure 11, and Figure 12.  

Circuit SNRdB 

With Chopper Configuration -35.39 

Without Chopper Configuration -33.76 

Table 4 MATLAB Output 

 

 

 

Figure 16 Output With Chopper Configuration 
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Figure 17 Output without Chopper Configuration 

The noise generation output also has been obtained, both in Time Domain and Frequency 

Domain, as can be seen in Figure 18 and 19 respectively. 

 

 

Figure 18 Noise Output in Time Domain 
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Figure 19 Noise Output in Frequency Domain 

The SNR of the signal is then computed by using Equation 11. 

With Chopper 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ log10 (
𝐴𝑟𝑚𝑠

𝑁𝑡𝑜𝑡
) 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ log10 (
170 𝑛𝑉

10−5𝑉
) 

𝑆𝑁𝑅𝑑𝐵 = −35.39 𝑑𝐵 

Without Chopper 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ log10 (
205 𝑛𝑉

10−5𝑉
) 

𝑆𝑁𝑅𝑑𝐵 = −33.76 𝑑𝐵 

 

 

Plot of Noise Signal vs. Frequency 
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4.2 MultiSim 

Four circuits has been simulated, which are the categorized as first, Circuit with Chopper 

Configuration and the other is Circuit without Chopper Configuration. For each type, two 

circuit is simulated, basically to ease in the calculation of the SNRdB, which are the 

complete circuit and the noise circuit. 

Circuit without Chopper 

The circuit in Figure 13 is simulated and producing the result as shown in Figure 22. 

 

Figure 20 MultiSim Output (Non-Chopper) 

From the result above, it is observed that the circuit producing 506.236 nV of output. 

Later, the noise circuit for non-chopper circuit also being simulated and producing the 

result shown in Figure 23. 
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Figure 21 Noise Output (Non-Chopper) 

The SNR value of the circuit is then calculated by using equation 11. 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ log10 (
506.236 𝑚𝑉

561.257 𝑚𝑉
) 

 

Circuit with Chopper 

The circuit in Figure 14 is simulated and the output of the circuit is shown in Figure 20. 

 

 

Figure 22 MultiSim Output Diagram (Chopper) 

Plot of Output Signal & Noise Signal vs. Time 
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As observed, it produces output of 13.715 V. 

Noise Circuit 

While the circuit for Noise is also constructed and simulated. The circuit producing the 

result in Figure 21. 

 

Figure 23 MultiSim Noise Output (Chopper) 

As observed in diagram above, it producing output of 13.615 V. 

To calculate the SNRdB, Equation 11 is used. 

𝑆𝑁𝑅𝑑𝐵 = 20 ∙ log10 (
13.715 𝑉

13.615 𝑉
) 

              = 63.563 × 10−3𝑑𝐵 

             = − 0.  896𝑑𝐵 
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CHAPTER 5:  

CONCLUSION AND RECOMMENDATION 

As the conclusion, it is observed that from the mathematical modeling in MATLAB and 

circuit simulation of MultiSim, the circuit with Chopper Configuration show a better result 

compared without the Chopper Configuration. However, the Signal-to-Noise Ratio (SNR) 

achieved is not as expected, which is much lower. This might be because the circuit is not 

properly constructed and more improvement can be done in the future. This includes a 

proper selection of the parameter especially for the capacitance value that play major role 

in determining the gain of the circuit. Other than that, the simulation used a non-variable 

capacitance which is not simulated the real circuit due to restriction of the software used. 

Thus, the value obtained might not be accurate but it does simulate the concept used in 

the Capacitive Sensing. In future work, more advanced software is suggested to simulate 

the real situation. 
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APPENDIX A 

MATLAB CODE 

The Main Code (ChopperTool) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This is a tool to analyze the performance of a Chopper Amplifier. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

TRUE = 1 ; 

FALSE = 0 ; 

ReadFromFile = FALSE ; % Set equal to TRUE if you want to import data vector 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 16*131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence 

N = 2 ^ (round(log2(N))) ; % 2 to some power 

A = 0.5e-6; % Input sine wave amplitude 

F0 = 90; % Frequency of input sine wave 

BW = 30; % Desired Amplifier bandwidth in Hertz 

Fch = 16e3; % Chopping frequency 

Asq = 1; % Amplitude of square wave 

G = 50; % Amplifier Gain 

n1 = 1; 

f1 = 1; % high-pass filter: (f1 = 1/2*pi*(R*C2) = 1Hz 

w1 = 2*pi*f1; 

n2 = 1; % 1st order LPF for a limited GBW of the op-amplifier 

f2 = 2*Fch; % cut-off frequency for a limited GBW (fc0=2*Fch = 32KHz) 

w2 = 2*pi*f2; 

Rnp = 3.071e4; % thermal noise Resistance of input devices 

Kfp = 4.028e-13; % flicker noise Coefficient of input devices 

Rnn = 5.607e3; % thermal noise Resistance of load devices 

Kfn = 8.353e-13; % flicker noise Coefficient of load devices 

n3 = 2; % 2nd Order LPF filter at the output of the demodulator 

f3 = 12e3; % the cut-off frequency 

w3 = 2*pi*f3; 

n4 = 4; % 8th Order BPF filter 

w4 = [2*pi*75 2*pi*105]; % passband range: 75Hz - 105Hz 

t = 1 / Fs ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Error checks 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%ErrorCheck(Fs, N, F0) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Apply sinewave to the input of the Chopper Amplifer 

% the Chopper Amplifier consists of a modulator followed by an 

% amplification stage, a demodulator, a low pass filter, and finally a band-pass filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if (ReadFromFile == TRUE) 

rfid = fopen('Chopper_data_recorder.txt') ; 

ChopperOutput = fscanf(rfid,'%g'); 

L = length(ChopperOutput) ; 

if (L < N) 

error('ChopperOutput time sequence is too short') ; 
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else 

ChopperOutput = ChopperOutput(1 : N)' ; 

end 

else 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Input stage 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

SineWave = SineWaveGenerator(N, A, Fs, F0); %input signal 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Modulation stage 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

squarewave = SquareWaveGenerator(N, Asq, Fs, Fch); 

Modulatorout = SineWave.*squarewave; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Amplification stage 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% High pass filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%hp_filterout = HighPass(n1, w1, Modulatorout,t); % apply the filter to an input signal 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Adding noise at the input 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

p_noise = NoiseGenerator(Rnp, Kfp, Fs, N); % Noise generation for input devices 

n_noise = NoiseGenerator(Rnn, Kfn, Fs, N); % Noise generation for load devices 

noise = p_noise + n_noise; % total noise 

Amplinput = Modulatorout + transpose(noise); % noise added at the input of the amplifier 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Pure amplification 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Amp = G*Amplinput; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% low-pass filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ampliout = LowPass(n2, w2,Amp,t); % apply the low-pass filter to an input signal 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Demodulation stage 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

squarewave = SquareWaveGenerator(N, Asq, Fs, Fch); 

Demodulatorout = Ampliout.*transpose(squarewave); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Ouptut of the Chopper Amplifier 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ChopperOutput = Demodulatorout; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% the filtring stage (2nd order LPF) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Filterout = AAF(n3, w3, ChopperOutput, t); % apply the filter to an input signal 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Signal filtring stage (8th order BPF) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

BP_Filterout = BandPass(n4,w4,Filterout,t); % apply the filter to an input signal 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Lets use the middle group of samples in each array so that we don't have transients to 

% contend with. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%L = length(ChopperOutput) ; 

%ChopperOutput = ChopperOutput(L/4+1 : 5*L/4) ; 

%L = length(Filterout) ; 

%Filterout = Filterout(L/4+1 : 3*L/4) ; 

%L = length(DSP_Filterout) ; 

%DSP_Filterout = DSP_Filterout(L/4+1 : 3*L/4) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Take FFTs of the output waveforms 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ChopperOutputFFT = FFTmagnitude(transpose(ChopperOutput)); 

FilteroutFFT = FFTmagnitude(transpose(Filterout)); 

BP_FilteroutFFT = FFTmagnitude(transpose(BP_Filterout)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate the SNR 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ChopperOutputSNR = ComputeSNR(ChopperOutputFFT, Fs, F0, BW) 

FilteroutSNR = ComputeSNR(FilteroutFFT, Fs, F0, BW) 

BP_FilteroutSNR = ComputeSNR(BP_FilteroutFFT, Fs, F0, BW) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot in time domain so we can see of waveform looks reasonable 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(1) ; 

hold on ; 

TimeDomainPlot(SineWave, 1, Fs, 'b', 1, 4) ; 

TimeDomainPlot(ChopperOutput, 1, Fs, 'g', 2, 4) ; 

TimeDomainPlot(Filterout, 1, Fs, 'r', 3, 4) ; 

TimeDomainPlot(BP_Filterout, 1, Fs, 'b', 4, 4) ; 

hold off ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot in the frequency domain 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(2) ; 

hold on ; 

FreqDomainPlot(ChopperOutputFFT, 1, Fs, 'b', 1, 3) ; 

FreqDomainPlot(FilteroutFFT, 1, Fs, 'g', 2, 3) ; 

FreqDomainPlot(BP_FilteroutFFT, 1, Fs, 'g', 3, 3) ; 

hold off ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Sine-wave Generation function 

function[SineWave] = SineWaveGenerator(N, A1, Fs, Fo) 

% 

% Generates a sinusoidal time sequency 

% 

% N is the number of samples to in the time sequence 

% A1 is the peak amplitude of the sine wave 

% Fs is the sampling frequency 

% Fo is the frequency of the sine wave in Hertz 

% 

% Fhat is the normalized frequency i.e. F0/Fs 

% 

%Resolution = 1 ; % Frequency resolution in Hertz 

%Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

%N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

%N = 2 ^ (round(log2(N))) ; 

%A1 = 1e-6; % Input sine wave amplitude 

%Fo = 45; % Frequency of input sine wave 

Fhat = Fo / Fs ; 

K = 2 * pi * Fhat ; 

index = linspace(0, N-1, N) ; 

SineWave = A1 * sin(K * index); 

%Ts = 1 / Fs ; 

%time = Ts * index ; 

%plot(time, SineWave) 

 

end 
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Square-wave Generation function 

function[SquareWave] = SquareWaveGenerator(N, A2, Fs, Fch) 

% 

% Generates a square wave sequency 

% 

% N is the number of samples to in the time sequence 

% A2 is the peak amplitude of the square wave 

% Fs is the sampling frequency 

% Fch is the frequency of the square wave in Hertz (chopper frequency) 

% 

%Resolution = 1 ; % Frequency resolution in Hertz 

%Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

%N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

%N = 2 ^ (round(log2(N))) ; 

%Fch=16e3; 

%A2=1; 

% 

% Fhat is the normalized frequency i.e. Fch/Fs 

% 

Fhat = Fch / Fs ; 

K = 2 * pi * Fhat ; 

index = linspace(0, N-1, N) ; 

SquareWave = A2 * square(K * index); 

%Ts = 1 / Fs ; 

%time = Ts * index ; 

%plot(time, SquareWave); 

% 

end 
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High-pass function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Analog high-pass filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[out] = High(n, w, input, t) 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence 

N = 2 ^ (round(log2(N))) ; % 2 to some power 

n = 1; 

f1 = 1; % high-pass filter: (f1 = 1/2*pi*(R*C2) = 1Hz 

w = 2*pi*f1; 

T = 1 / Fs ; 

t = T * linspace(0, N-1, N) ; 

[z, p, k] = butter(n,w, 'high', 's'); % Zero-Pole-Gain design 

hp = zpkdata(z,p,k); % creates a continuous-time zero-pole-gain model 

tfhp = tf(hp); % convert to transfer function model 

% plot of the transfer function 

h = bodeplot(tfhp); setoptions(h,'FreqUnits','Hz'); 

setoptions(h1,'FreqUnits','Hz','PhaseVisible','off'); 

out = lsim(tfhp,input,t); % apply the filter to an input signal 

 

 

 

Low-pass function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Analog low-pass filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[out] = LowPass(n, w, input, t) 

%Resolution = 1 ; % Frequency resolution in Hertz 

%Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

%N = Fs / Resolution ; % Length of input time sequence 

%N = 2 ^ (round(log2(N))) ; % 2 to some power 

%Fch = 16e3; % Chopping frequency 

%n = 1; % 1st order LPF for a limited GBW of the op-amplifier 

%f2 = 2*Fch; % cut-off frequency for a limited GBW (fc0=2*Fch=32KHz) 

%w = 2*pi*f2; % the angular frequency 

%T = 1 / Fs ; 

%t = T * linspace(0, N-1, N) ; 

[z, p, k]=butter(n,w, 's'); % Zero-Pole-Gain design of the LPF 

lp = zpk(z,p,k); % creates a continuous-time zero-pole-gain model 

tflp = tf(lp); % convert to transfer function model 

% plot of the transfer function 

%h = bodeplot(tflp); setoptions(h,'FreqUnits','Hz'); 

%setoptions(h1,'FreqUnits','Hz','PhaseVisible','off'); 

out = lsim(tflp,input,t); % apply the filter to an input signal 
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Noise Generation function 

function[noise] = NoiseGenerator(Rn, Kf, Fs, N) 

% 

% Script to generate noise vector containing both white and flicker 

% noise components. 

% 

% Paramters 

% 

TRUE = 1 ; 

FALSE = 0 ; 

Ut = 26e-3; % Thermal voltage 

qe = 1.602e-19; % Charge of electron 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

N = 2 ^ (round(log2(N))) ; 

NBW = Fs/2 ; % Desired noise bandwidth 

WRITE_FILE = TRUE ; 

Rnp = 3.071e4; % Rnp, Resistance for thermal noise generation for input devices 

Kfp = 4.028e-13; % Kfp, Coefficient for 1/f noise generation for input devices 

Rn = 5.607e3; % Resistance for thermal noise generation for load devices 

Kf = 8.353e-13; % Coefficient for 1/f noise generation for load devices 

% 

% Thermal noise standard deviation 

% 

sigma = sqrt(4 * Ut * qe * Rn * NBW) ; 

sigma_Kf = sqrt(4 * Ut * qe * Kf * NBW) ; 

% 

% Determine the length of vector in samples 

% 

T = 1 / Fs ; 

% 

% Compute time vector 

% 

t = T * linspace(0, N-1, N) ; 

% 

% Compute white noise vector 

% 

wn = sigma * randn(1, N) ; 

% 

% Compute flicker noise vector 

% 

fn = randn(1, N) ; 

% 

% Add the two together 

% 

noise = wn + fn ; 

% 

% Plot in time domain so we can see of waveform looks reasonable 

% 

figure(1) ; 

plot(t, noise) ; 

% 

% And also plot in frequency domain 

% 
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mag = abs(fft(noise)) ; 

DeltaFreq = Fs / N ; 

freq = DeltaFreq * linspace(0, N/2-1, N/2) ; 

mag = 1/N * mag(1 : N/2) ; 

figure(2) ; 

loglog(freq, mag) ; 

% 

% Open a ASCII text file and write results to file 

% We need to create a PWL file for Spectre 

% 

if (WRITE_FILE == TRUE) 

fid = fopen('noise.pwl','w') ; 

end 

delT = T - T/100 ; 

delTinMS = 1e3 * delT ; 

delTinUS = 1e6 * delT ; 

for k = 1 : N 

if (WRITE_FILE == TRUE) 

t(k) = 1e3 * t(k) ; 

fprintf(fid, '%15.8fm\t%g\n', t(k), noise(k)) ; 

fprintf(fid, '%15.8fm\t%g\n', t(k)+ delTinMS, noise(k)) ; 

end 

end % end for 

if (WRITE_FILE == TRUE) 

status = fclose(fid) ; 

end 

end 

 

 

 

Anti-Aliasing Filter function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Anti-Aliasing Filter (2nd order Analog low-pass filter) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[out] = AAF(n, w, input, t) 

%Resolution = 1 ; % Frequency resolution in Hertz 

%Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

%N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

%N = 2 ^ (round(log2(N))) ; 

%n = 2; % 2st order LPF for a limited GBW of the op-amplifier 

%f3 = 12e3; % cut-off frequency for a limited GBW (fc0 = 2*Fch = 32 KHz) 

%w = 2*pi*f3; % the angular frequency 

%T = 1 / Fs ; 

%t = T * linspace(0, N-1, N) ; 

[z, p, k]=butter(n,w, 's'); % Zero-Pole-Gain design 

lp = zpk(z,p,k); % creates a continuous-time zero-pole-gain model 

tflp = tf(lp); % convert to transfer function model 

% plot of the transfer function 

%h = bodeplot(tflp); setoptions(h,'FreqUnits','Hz'); 

%setoptions(h1,'FreqUnits','Hz','PhaseVisible','off'); 

out = lsim(tflp,input,t); % apply the filter to an input signal 
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Band-Pass Filter function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 8th order DSP Band-Pass filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[out] = BandPass(n, w, input, t) 

%Resolution = 1 ; % Frequency resolution in Hertz 

%Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

%N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

%N = 2 ^ (round(log2(N))) ; 

%n = 4; % 8th Order BPF filter 

%w = [2*pi*75 2*pi*105]; % passband range: 75Hz - 105Hz 

%T = 1 / Fs ; 

%t = T * linspace(0, N-1, N) ; 

[z, p, k]=butter(n,w,'s'); % zero-pole-gain design 

bp = zpk(z,p,k); % creates a continuous-time zero-pole-gain model 

tfbp = tf(bp), % convert to transfer function model 

% plot of the transfer function 

% h = bodeplot(tfbp); setoptions(h,'FreqUnits','Hz'); 

out = lsim(tfbp,input,t); % apply the filter to an input signal 

 

 

 

FFT Magnitude Computation function 

function[out] = FFTmagnitude(Waveform) 

% 

% Using Hodie window to minimize spectral blurring 

% 

L = length(Waveform) ; 

coefficients = HodieWindow(L) ; 

WindowedWaveform = Waveform .* coefficients' ; 

% 

% Return magnitude part of FFT 

% 

out = abs(fft(WindowedWaveform)) ; 

end 
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Hodie Window function 

function [out] = HodieWindow(N) 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 16*131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence 

N = 2 ^ (round(log2(N))) ; % 2 to some power 

% 

% Script to compute a N-term floating point Hodie window 

% Copyright 2001 Eric Swanson 

% N is the number of filter coefficients 

% 

window = zeros(N,1); 

bottom = zeros(N,1); 

top = 2.5 * ones(N,1); 

index = [0:N-1]'; 

v = 2 * pi / N; 

% 

% Hodie window cosine coefficients 

% 

a0=0.61640321314050; 

a1=0.98537119272586; 

a2=0.49603771622007; 

a3=0.14992232793243; 

a4=0.02458719103474; 

a5=0.00176604651487; 

a6=0.00003158118857; 

% 

% Coefficients sum to N 

% 

for m=1:N; 

n1=m-.5; 

window(m,1)=a0-a1*cos(v*n1)+a2*cos(v*2*n1)-a3*cos(v*3*n1)+a4*cos(v*4*n1)-

a5*cos(v*5*n1)+a6*cos(v*6*n1); 

end; 

out = window; 

% 

%plots 

% 

plot(index,window,'-g',index,bottom,'-b',index,top,'-b'); 

%axis([0 1000 0 2.5]); 

%axis off; 
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SNR Computation function 

function [SNR] = ComputeSNR(FFT, Fs, Fo, BW) 

% 

% Generates a sinusoidal time sequency 

% 

% N is the number of samples to in the time sequence 

% A1 is the peak amplitude of the sine wave 

% Fs is the sampling frequency 

% Fo is the frequency of the sine wave in Hertz 

% 

% Fhat is the normalized frequency i.e. F0/Fs 

% 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

N = 2 ^ (round(log2(N))) ; 

A1 = 1e-6; % Input sine wave amplitude 

Fo = 45; % Frequency of input sine wave 

Fhat = Fo / Fs ; 

K = 2 * pi * Fhat ; 

index = linspace(0, N-1, N) ; 

SineWave = A1 * sin(K * index); 

Ts = 1 / Fs ; 

time = Ts * index ; 

 

% 

% Script to compute signal-noise-ratio 

% 

% 

% Compute signal bin 

% 

FFT = SineWave; 

 

L = length(FFT) ; 

BW = 30; 

BinSize = Fs / L ; 

SignalBin= round(Fo/BinSize) ; 

% 

% Hodie Window confines spectrum to Signal Bin +/- 8 bins 

% 

LowerSignalBin = SignalBin - 8 ; 

UpperSignalBin = SignalBin + 8 ; 

% 

% Compute end of BW bin 

% 

BWbin= round(BW/BinSize) ; 

SumSignalSquared = 0.0 ; 

SumNoiseSquared = 0.0 ; 

% 

% Calculate noise power preceding signal bins 

% 

for k = 2 : 1: (LowerSignalBin - 1) 

SumNoiseSquared = SumNoiseSquared + FFT(k) * FFT(k); 

end 

% 
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% Estimate the noise power in the signal bins 

% 

EstNoisePwr = FFT(LowerSignalBin - 1) * FFT(LowerSignalBin - 1) ; 

EstNoisePwr = EstNoisePwr + FFT(UpperSignalBin + 1) * FFT(UpperSignalBin + 1) ; 

EstNoisePwr = EstNoisePwr / 2.0 ; 

% 

% Calculate signal power 

% 

for k = LowerSignalBin: 1 : UpperSignalBin 

SumSignalSquared = SumSignalSquared + FFT(k) * FFT(k) - EstNoisePwr ; 

SumNoiseSquared = SumNoiseSquared + EstNoisePwr ; 

end 

% 

% Calculate noise power after signal bins 

% 

for k = UpperSignalBin + 1 : 1 : BWbin 

SumNoiseSquared = SumNoiseSquared + FFT(k) * FFT(k) ; 

end 

SNR = 10 * log10(SumSignalSquared/SumNoiseSquared); 

plot(time, SNR); 

end 
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Time Domain Plot function 

function[] = TimeDomainPlot(Wave, Vref, Fs, color, locn, total) 

% 

% Generates a sinusoidal time sequency 

% 

% N is the number of samples to in the time sequence 

% A1 is the peak amplitude of the sine wave 

% Fs is the sampling frequency 

% Fo is the frequency of the sine wave in Hertz 

% 

% Fhat is the normalized frequency i.e. F0/Fs 

% 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

N = 2 ^ (round(log2(N))) ; 

A1 = 1e-6; % Input sine wave amplitude 

Fo = 45; % Frequency of input sine wave 

Fhat = Fo / Fs ; 

K = 2 * pi * Fhat ; 

index = linspace(0, N-1, N) ; 

SineWave = A1 * sin(K * index); 

Ts = 1 / Fs ; 

time = Ts * index ; 

% 

% This script will plot waveforms associated with delta sigma ADC 

% 

Wave = SineWave; 

L = length(Wave) ; 

index = linspace(0, L-1, L) ; 

Ts = 1 / Fs ; 

time = Ts * index ; 

%subplot(total, 1, locn) ; 

plot(time, Wave) ; 

end 
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Frequency Domain Plot function 

function[] = FreqDomainPlot(FFTwaveform, Vref, Fs, color, locn, total) 

% 

% Generates a sinusoidal time sequency 

% 

% N is the number of samples to in the time sequence 

% A1 is the peak amplitude of the sine wave 

% Fs is the sampling frequency 

% Fo is the frequency of the sine wave in Hertz 

% 

% Fhat is the normalized frequency i.e. F0/Fs 

% 

Resolution = 1 ; % Frequency resolution in Hertz 

Fs = 131072 ; % Modulator sampling frequency Fs = 2^17Hz 

N = Fs / Resolution ; % Length of input time sequence (2 to some power) 

N = 2 ^ (round(log2(N))) ; 

A1 = 1e-6; % Input sine wave amplitude 

Fo = 45; % Frequency of input sine wave 

Fhat = Fo / Fs ; 

K = 2 * pi * Fhat ; 

index = linspace(0, N-1, N) ; 

SineWave = A1 * sin(K * index); 

Ts = 1 / Fs ; 

time = Ts * index ; 

% 

% This script will plot FFTs associated with chopper amplifier 

% 

FFTwaveform = SineWave; 

Vref=3.6; 

L = length(FFTwaveform) ; 

DBFS = 20*log10((2*FFTwaveform)/(L * Vref)) ; 

index = linspace(0, L/2-1, L/2) ; 

deltaF = Fs / L ; 

frequency = deltaF * index ; 

%subplot(total, 1, locn) ; 

plot(frequency, DBFS(1 : L/2)) ; 

end 

 


