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 CHAPTER 1: ABSTRACT 

BCD multipliers are the basis of accurate decimal multiplication used in 

banking systems, scientific calculations, etc. Fractions convert poorly into 

binary numbers giving rise to conversion error. Therefore, banking 

industry have been using Binary Coded Decimal numbering system for 

their banking business transaction to circumvent the error between 

decimal fraction number to binary. Here we will explore some single-

digit Binary Coded Decimal Multiplication units that perform 

multiplication in hardware for the purpose of future implementation. We 

will review existing BCD multipliers and compare them with regard to 

their speed, area, power saving and complexity (ability to expand). We 

will also propose a design of a BCD multiplier. This is done on Altera 

DE2-70 board. All the findings and measurements should be catered 

towards that device. The simulations are done using Quartus II software. 

This project presents a novel single-digit BCD multiplier that uses a BCD 

adder to add the partial products. It distributes the weights of a binary 

multiplication to equivalent BCD weights and then adds them. The fact 

that only number from 0 to 9 can be used, is manipulated in order to 

minimize the number of additions required.. 

 

 

 

 

 



 

4 

 

 

 CHAPTER 2: INTRODUCTION 

 Background 

When decimal numbers are converted into the conventional binary 

numbering system, there is usually a slight conversion error. This 

happens because the base of decimal numbers is 10 but the base for 

binary numbers is 2. Therefore, it is practically impossible to represent 

some particular decimal numbers in binary representations no matter how 

many bit we use, there will always be a conversion error no matter how 

slight [1]. 

As an example, if we want to represent the number 0.1 in binary floating-

point, we get 1.00000001490116119384765625E-1 instead of getting 0.1 

as the intention was [2]. 

Another system that can be used to accurately represent numbers in 

binary is BCD (Binary-Coded Decimal). It basically allows representing 

each decimal number in a chunk of four binary bits. However, this 

discards 6 possible combinations of each chunk of four bits, since it only 

allows number from 0 to 9. 

There are a few possible ways to represent numbers which have a 

decimal point in them; fixed-point and floating-point. Fixed point is a 

number representation that has a fixed place for the decimal point. For 

instance, the number 2.43 has a decimal point 2 places from the right. 

This is a restriction and it cannot be changed. That means a number with 

3 numbers to the right has to be rounded off to only 2. However floating 

point allows the decimal point to move around. In this article, both will 

be discussed. 
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Single-digit BCD multipliers are those multipliers which multiply 2 4-bit 

numbers and give as an output a single 8-bit (2 digit) number. For 

instance; 2 * 8 = 16 which would be 0010 * 1000 = 0001 0110. In this 

study we will only be concerned with single-digit BCD multipliers as a 

foundation for all implementations. 

 

 Problem Statement 

As discussed before, it is impossible to represent decimal numbers 

accurately when using the conventional floating-point binary 

representation. This doesn’t create an issue for commercial usages where 

that type of accuracy is negligible.  

But for systems such as banking systems and other fields, that accuracy is 

needed since a slight conversion error in a small number can result in 

misleading calculations which need to be avoided. This can usually be 

solved using higher-level programming libraries [3]. However, this is an 

inefficient way since it uses a lot of unnecessary calculations that slow 

down the system. 

This can also create a problem where accurate scientific formulas need to 

be computed and simulated for instance where a lot of computing power 

shouldn’t be wasted on high-level computations. 

Moreover, the inaccuracy escalates when numbers are multiplied. 

Therefore, a new system is needed where numbers can be represented 

accurately and still hold that accuracy when multiplied. 

 

 Objective and Scope of Study 

The objective of this study is solve this inaccuracy problem by studying 

existing multipliers which use the BCD system and comparing them in 

relation to their speed, complexity, power saving and area. 
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Based on that, a BCD multiplier system for banking applications is to be 

improved and developed based on the previous aspects. It is to be tested 

and implemented on an FPGA (ALTERA DE-2 Kit) for verification 

purposes. 

Since the foundation of all multipliers is single-digit multipliers, we will 

only compare single-digit multipliers developed within the previous 5 

years. 

The study is customized for banking systems. However, the ability to 

expand it for other applications will be taken into consideration so that it 

can be used in different fields and applications. 
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 CHAPTER 3: LITERATURE REVIEW AND/OR THEORY  

The need and popularity of decimal arithmetic has increased recently 

since the computational power is needed and the need to eliminate the 

high-level arithmetic computations has increased [4]. It has been found 

that some applications take up to 90% of their processing time in high-

level arithmetic computing [4]. This is a huge sacrifice of processing 

power. BCD systems have recently been more popular in commercialized 

processors [5]. 

 

Several single-digit BCD multiplications systems have been developed 

such as iterative algorithms [6,7] in which partial products are computed 

and added to the previous result. A carry-save adder for instance can be 

used in these algorithms [6]. Later, this system was developed to provide 

30% more saving in the area of the algorithm implementation [8] using 

full adders and half adders in order to allow for more practical VLSI 

implementation as can be seen in Figure 1.  

 

 

 

 

 

 

 

 
Figure 1: Area-optimized binary product BCD digit multiplier, FA 

(HA): full (half) adder 
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Another further area and delay-optimized BCD digit multiplier was 

proposed which uses multiplexers and binary to BCD converters [9]. This 

design gives a reduction of 7% of area and 16% of delay when compared 

to the design discussed above [8]. This new optimized design can be seen 

in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Single digit BCD multiplier with further improvements in delay and area 
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This particular single-digit BCD multiplier was also tested for expansions 

such as; multi-digit multiplier as well as fixed-point multiplier [9]. 

Another expansion [10] was done based on fast partial product generation, 

BCD recoding schemes and a BCD-4221 Carry Save Adder reduction tree 

[11]. This expansion is an FPGA implementation of decimal floating-

point achieved with a parallel fixed-point multiplier in order to comply 

with IEEE 754-2008 [12] which is the IEEE approved standard for 

decimal floating-point arithmetic. 
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 CHAPTER 4: METHODOLOGY/PROJECT WORK 

 Project Outline 

 

 

  Key Milestone              Process 

 

 

 Research Steps 

1. Write the verilog code of the design using Quartus II software 

2. Test the code on the DE2-70 kit to make sure it’s working 

3. Simulate the code using modelsim 

4. Take the measurements: 

a. Area (number of elements used) 

b. Power 

c. Speed (maximum propagation delay) 

5. Deciding how easy it is to expand the multiplier 

6. Repeating the above steps for each design used 

7. Propose a new design. 
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 Comparison Methodology 

The methodology used in comparison is heavily based on implementation 

on Altera FPGA DE2-70 board. First the designs are to be simulated for 

functionality purposes. This is done using Modelsim. Later on, Quartus II 

software is used to determine the size of the design on the actual board 

and the result is used for area saving comparisons. Quartus II is also used 

to determine the power the design uses. And based on the power 

consumption and the area saving, the cost will be calculated since it 

varies accordingly. The area is also determined using the number of 

elements used. 
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 CHAPTER 5: RESULTS AND DISCUSSION 

 Initial results 

Having started with comparing single-digit BCD multipliers, a lot of 

multipliers were found and studied. However the results were different 

and the simulations gave different performances, power saving, cost 

implementations. 

It became obvious to us that there have been a lot of implementations, 

most of them being able to do the job but with completely varying 

circuitry and implementations 

In Figure 3 for instance shows a delay comparison between [13] and a 

previous work 

 

A  

 

 

 

 

 

 

 

 Figure 3 Comparison between Vedic BCD Multiplier and Previously 
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Furthermore a mistake in a formula was found and referenced in [8]. That 

mistake being if we try and multiply 5 x 1 using the formula in [6] we get 

an incorrect result of 1 instead of 5. 

This particular mistake shows that all data needs to verified and simulated 

properly before anything is to be assumed. However, all other formulas 

and algorithms that were tested show correct behavior. 

A testbench was developed and used to test a number of the designs of 

single-digit mentioned in the literature review. All results came 

conforming with the functionality of the BCD multipliers. Figure 4 shows 

the input vectors (a, b) and the output (result) from the designs tested. All 

designs conformed with the expected results. When a is 0 (000) and b is 0 

(000) the result is (0000 0000). When a is 1 (0001) and b is 5 (0101), the 

result is 5 (0000 0101). When a is 4 (0100) and b is 5 (0101), the result is 

20 (0010 0000). When a is 3 (0011) and b is 7 (0111), the result is 21 

(0010 0001). 

This is the basic behavior testing of the BCD multiplier. In the test 

vectors, there were some of them that differentiate between a normal 

multiplier and a BCD multiplier and the result confirms with the 

functionality that a BCD multiplier has 
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Figure 4: Modelsim Simulation of BCD Multiplier 
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 Final results 

The simulation takes place in Quartus II software and then using the 

compilation report we can find out the total number of elements used in 

the design as seen in Figure 5. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Area 
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We can also find the maximum propagation delay using TimeQuest 

Timing Analyzer tool in Quartus II and then choose the maximum 

number from the list as can be seen in figure 6. 

 

 

 

 

 

 

Figure 6: Propagation delay 
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Lastly we can find the power consumption using the PowerPlay Power Analyzer Tool as 

can be seen in figure 7. 

 

 

 

These previous results in the figures were obtained from simulating design shown in 

Figure 1 [8]. Therefore for this particular design, the number of elements is 23. The 

maximum propagation delay is 12.623 ns and the total thermal power dissipation is 

194.94 mW. 

 

Figure 7: Power 
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 Proposed BCD Multiplier 

Based on the research done and the results from the simulations, a BCD 

multiplier was designed which has small delay and area calculations. 

The idea of the BCD multiplier is based on a normal binary multiplier 

that uses an adder to add the individual partial products. However, the 

weights are distributed differently to suit a BCD multiplier. The adder 

integrated also is a BCD adder instead of a binary adder. 

The BCD adder adds 2 8-bit number by adding each 4-bit combination 

and checking if the number is larger than 9. If so, then it adds 6 to the 

existing result. 

The weights of the BCD multiplier were arranged so that it achieves 

maximum speed and minimum area. 

The end result was that the multiplier adds only 4 8-bit BCD numbers 

resulting in only 3 BCD adders with an area of 50 and a delay of almost 

18 ns. 

This is very comparable to the results above since the previous results are 

based on multipliers that give the output in binary which would require 

BCD conversion which makes the data here less accurate. 

Below are the details of this new proposed multiplier. 
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o Partial Products of 2 4-bit BCD numbers 

As shown in Fig. 8, this is the partial product that would result from a 

binary multiplication. These can be added together to yield a binary 

product. 

 

The idea here is to convert these binary partial products to a BCD from 

before they can be added. In [8], a binary-to-BCD converter was suggested 

that relies on the fact that each binary digit can be distributed over a 

number of BCD weights as can be shown in Fig. 9. 

 

 

 

Figure 8 Binary Partial Products 

 

 

 

Figure 9 Binary-to-BCD conversion 
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By applying this conversion to the individual partial products we get 

the result in Fig. 10. 

 

 

 

Figure 10 BCD Partial Products 

 

 

 

o Elimination of the Number of Additions 

In a normal binary context, any number of the partial products can be 

equal to 1. On the contrary, some partial products cannot coexist as 1 

together. For example, A3 and A2 would never be equal to 1 at the same 

time, enabling us to make sure that partial products B1.A3 and B2.A2 

would never be equal to 1 at the same time. 

  

This realization gives us the ability to treat the partial products that 

cannot coexist together as one single partial product. 
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By applying this principle to all partial products that are presented in 

Fig. 10, we get the possibilities shown in Fig. 11. 

 

 

 

 

Figure 11 Minimized BCD Partial Products 

  

It can be noticed from the table that the number of additions required 

were reduced from 10 all the way down to 4 (N1 through N4).  

  

Adding these 4 numbers would work in most cases except where 

numbers in weights 8 and 4, or 8 and 2 coexist (in N1 and N2). This can 

be adding an extra part the BCD 8-bit adder that adds N1 and N2. Before 

adding the 2 numbers, it should check whether the lower 4 bits exceed 

9(1001). If so, it should add 6(0110). 
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o BCD Addition 

A number of BCD adders have been addressed. However, here a simple 

adder that adds the 2 numbers and then checks if the number is larger than 

9. If it is, then the adder adds 6 to the existing number [14] 

 

The individual binary adders used inside are simple 4-bit ripple-carry 

adders in order to reduce the area. 

 

A simple equation is used to check if the output of one 4-bit adder 

exceeds 9.  

 

E = Sum[1].Sum[3] + Sum[2].Sum[3] 

 

 

o Comparison with Previous Designs 

This design and other designs were synthesized using Quartus II 

software with a target device of Cyclone II EP2C70F896C6 of Altera 

DE2-70 Kit. The parameters that were acquired are; area, delay and power 

consumption. 

  

Some of the designs generate a binary output which would greatly 

reduce the area and the delay. 

 

The results are shown in Fig. 12. 
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Figure 12 Comparison with previous designs 

 

 

The BCD Conversion Design simply consists of a BCD-to-binary 

Converter followed by a binary multiplication that passes through a 

binary-to-BCD conversion. 
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 CHAPTER 6: CONCLUSION AND RECOMMENDATION 

A few designs have been explored and studied starting with single-digit 

BCD multipliers. These were extended to multi-digit BCD multipliers 

and later into fixed-point implementations. Floating-point multipliers 

were built upon that which comply with IEEE 754-2008 [12]. 

The single-digit multipliers are to be studied and compared in regard to 

their cost, power saving, complexity, area and speed. The 2-semester plan 

was discussed with the goal of publishing a paper containing the results 

of the simulations. 

The initial results were discussed and it was shown how important the 

simulations and verifications are. 

It was also shown how the methodology is planned to be implemented 

using Quartus II to provide the results of speed, power and area. 

The future works were illustrated and explained for consistency with the 

rest of the 2-semester plan 
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 APPENDICES 

 Proposed Design Verilog Code 

module mine( 

input [3:0] x, 

input [3:0] y, 

output [7:0] p 

); 

wire [7:0] a1 = {1'b0, x[3]&y[3], x[2]&y[3] | x[3]&y[2] | x[3]&y[3], x[1]&y[3] | 

x[2]&y[2] | x[3]&y[1], x[0]&y[3] | x[2]&y[1], x[3]&y[3] | x[2]&y[2] | x[3]&y[1] 

| x[1]&y[3], x[3]&y[2] | x[2]&y[3] | x[2]&y[2], x[0]&y[0]}; 

wire [7:0] a2 = {3'b0, x[2]&y[3] | x[3]&y[2], x[3]&y[0] | x[1]&y[2], x[1]&y[1], 

x[3]&y[1] | x[1]&y[0], 1'b0}; 

wire [7:0] a3 = {5'b0, x[2]&y[0], x[1]&y[3] | x[0]&y[1], 1'b0}; 

wire [7:0] a4 = {5'b0, x[0]&y[2], 2'b0}; 

wire [7:0] net1, net2; 

bcd_adder_2 inst1(.a_i(a1), .b_i(a2), .bcd(net1)); 

bcd_adder inst2(.a(net1), .b(a3), .bcd(net2)); 

bcd_adder inst3(.a(net2), .b(a4), .bcd(p)); 

endmodule 

 

module FA(sout,cout,a,b,cin); 

output sout,cout; 
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input a,b,cin; 

assign sout=(a^b^cin); 

assign cout=((a&b)|(a&cin)|(b&cin)); 

endmodule 

 

module   full_adder_4bit( 

    cin, 

    cout, 

    a, 

    b, 

    sout 

    ); 

        parameter   reg_size = 4; 

     

    input   cin; 

    input   [reg_size-1:0] a; 

    input   [reg_size-1:0] b; 

    output  [reg_size-1:0] sout; 

    output  cout; 

     

    assign   {cout,sout} = a + b + cin; 
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endmodule 

 

module bcd_adder(a, b, bcd, cout); 

 

input [7:0] a, b; 

output [7:0] bcd; 

output cout; 

 

wire [7:0] sum; 

wire cout3, aux_cy, cout7; 

wire net3, net4, net9, net10; 

 

 

full_adder_4bit inst2 (.a(a[3:0]), .b(b[3:0]), .cin(0), .sout(sum[3:0]), 

.cout(cout3)); 

assign net3 = sum[3] & sum[1]; 

assign net4 = sum[2] & sum[3]; 

assign aux_cy = cout3 | (net3 | net4); 

full_adder_4bit inst6 (.a(sum[3:0]), .b({1'b0, aux_cy, aux_cy, 1'b0}), .cin(1'b0), 

.sout(bcd[3:0])); 
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full_adder_4bit inst8 (.a(a[7:4]), .b(b[7:4]), .cin(aux_cy), .sout(sum[7:4]), 

.cout(cout7)); 

assign net9 = sum[7] & sum[5]; 

assign net10 = sum[6] & sum[7]; 

assign cout = net10 | (net9 | cout7); 

full_adder_4bit inst17 (.a(sum[7:4]), .b({1'b0, cout, cout, 1'b0}), .cin(1'b0), 

.sout(bcd[7:4])); 

 

endmodule 

 

module bcd_adder_2(a_i, b_i, bcd, cout); 

 

input [7:0] a_i, b_i; 

wire [7:0] a, b; 

output [7:0] bcd; 

output cout; 

 

wire [7:0] sum; 

wire cout3, aux_cy, cout7; 

wire net3, net4, net9, net10; 
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full_adder_4bit inst3 (.a(a_i[3:0]), .b({1'b0,(a_i[3] & a_i[2]) | (a_i[3] & a_i[1]) , 

(a_i[3] & a_i[2]) | (a_i[3] & a_i[1]),1'b0}), .cin(0), .sout(a[3:0])); 

full_adder_4bit inst4 (.a(a_i[7:4]), .b({3'b0, (a_i[3] & a_i[2]) | (a_i[3] & a_i[1])} 

), .cin(0), .sout(a[7:4])); 

 

full_adder_4bit inst5 (.a(b_i[3:0]), .b({1'b0,(b_i[3] & b_i[2]) | (b_i[3] & b_i[1]) , 

(b_i[3] & b_i[2]) | (b_i[3] & b_i[1]),1'b0}), .cin(0), .sout(b[3:0])); 

full_adder_4bit inst7 (.a(b_i[7:4]), .b({3'b0, (b_i[3] & b_i[2]) | (b_i[3] & b_i[1])} 

), .cin(0), .sout(b[7:4])); 

 

 

full_adder_4bit inst2 (.a(a[3:0]), .b(b[3:0]), .cin(0), .sout(sum[3:0]), 

.cout(cout3)); 

assign net3 = sum[3] & sum[1]; 

assign net4 = sum[2] & sum[3]; 

assign aux_cy = cout3 | (net3 | net4); 

full_adder_4bit inst6 (.a(sum[3:0]), .b({1'b0, aux_cy, aux_cy, 1'b0}), .cin(1'b0), 

.sout(bcd[3:0])); 

full_adder_4bit inst8 (.a(a[7:4]), .b(b[7:4]), .cin(aux_cy), .sout(sum[7:4]), 

.cout(cout7)); 

assign net9 = sum[7] & sum[5]; 

assign net10 = sum[6] & sum[7]; 

assign cout = net10 | (net9 | cout7); 
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full_adder_4bit inst17 (.a(sum[7:4]), .b({1'b0, cout, cout, 1'b0}), .cin(1'b0), 

.sout(bcd[7:4])); 

 

endmodule 

 

 

 

 Testbench in Verilog 

module add_sub_bcd_tb; 

 

reg [3:0] x,y; 

wire [7:0] p; 

reg clk; 

  

mine test ( 

 .x ( x ), 

 .y ( y ), 

 .p ( p ) 

 ); 

  

  

always 
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#2 clk = ~ clk; 

 

initial 

begin 

 clk = 0; 

end 

 

initial 

begin 

 x = 4'd9; 

 y = 4'd8; 

 #5 

 x = 4'd5; 

 y = 4'd6; 

 #5 

 x = 4'd3; 

 y = 4'd7; 

 #5 

 x = 4'd9; 

 y = 4'd9; 

 #5 
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 x = 4'd7; 

 y = 4'd7; 

end 

 

initial 

#30 $finish;  

endmodule 

 

 

 

 Tested design no. 1 

module simulation( 

input [3:0] x, 

input [3:0] y, 

output [6:0] p 

); 

 

assign p[0] = x[0] & y[0]; 

wire ha1_a = x[1] & y[0]; 

wire ha1_b = x[0] & y[1]; 

wire fa1_a = x[2] & y[0]; 

wire fa1_b = x[0] & y[2]; 
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wire fa2_a = (x[3] & y[0]) | (x[1] & y[2]); 

wire fa2_b = (x[0] & y[3]) | (x[2] & y[1]); 

wire ha2_b = (x[1] & y[3]) | (x[2] & y[2]) | (x[3] & y[1]); 

wire ha3_b = (x[3] & y[2]) | (x[2] & y[3]); 

wire ha4_a = x[1] & y[1]; 

wire ha7_co, ha3_co; 

assign p[6] = (x[3] & y[3]) | ha7_co | ha3_co; 

 

ha ha1 ( .s(p[1]), .co(ha1_co), .a(ha1_a), .b(ha1_b)); 

ha ha2 ( .s(ha2_s), .co(ha2_co), .a(fa2_co), .b(ha2_b)); 

ha ha3 ( .s(ha3_s), .co(ha3_co), .a(ha2_co), .b(ha3_b)); 

ha ha4 ( .s(p[2]), .co(ha4_co), .a(ha4_a), .b(fa1_s)); 

ha ha5 ( .s(p[3]), .co(ha5_co), .a(ha4_co), .b(fa2_s)); 

ha ha6 ( .s(p[4]), .co(ha6_co), .a(ha5_co), .b(ha2_s)); 

ha ha7 ( .s(p[5]), .co(ha7_co), .a(ha6_co), .b(ha3_s)); 

 

fa fa1 ( .s(fa1_s), .co(fa1_co), .a(fa1_a), .b(fa1_b), .ci(ha1_co)); 

fa fa2 ( .s(fa2_s), .co(fa2_co), .a(fa2_a), .b(fa2_b), .ci(fa1_co)); 

 

endmodule 
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module ha(s,co,a,b); 

    output s,co; 

    input a,b; 

    xor u1(s,a,b); 

    and u2 (co,a,b); 

endmodule 

 

module fa(s,co,a,b,ci); 

    output s,co; 

    input a,b,ci; 

    xor u1(s,a,b,ci); 

    and u2(n1,a,b); 

    and u3(n2,b,ci); 

    and u4(n3,a,ci); 

    or u5(co,n1,n2,n3); 

endmodule 
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 Tested design no. 2 

module U_04271381( 

input [3:0] x, 

input [3:0] y, 

output [6:0] p 

); 

 

assign p[0] = y[0] & x[0]; 

assign p[1] = (x[0] & y[1]) ^ (x[1] & y[0]) ; 

assign p[2] = ( x[0] & y[1] & x[1] & y[0] ) ^ ( x[1] & y[1] ) ^ (x[2] & y[0]) ^ ( 

x[0] & y[2] ); 

assign p[3] = ((x[1] & y[2]) | (x[0] & y[3])) ^ ((x[2] & y[1]) | (x[3] & y[0])) ^ 

((((~y[0]) & (x[0] & y[1]) & ((x[1] & y[2]) | (x[0] & y[3]))) | (((x[1] & y[2]) | 

(x[0] & y[3])) & (x[0] & y[1]) & (~x[2])) | ((~x[0]) & (x[1] & y[0]) & ((x[2] & 

y[1]) | (x[3] & y[0]))) | ((~x[2]) & (x[1] & y[0]) & ((x[2] & y[1]) | (x[3] & 

y[0])))) | ((~x[2]) & ((x[0] & y[1]) & (x[1] & y[0])) & (~x[2])) | ((~x[1]) & (x[2] 

& y[0]) & (x[0] & y[2])) | ((x[0] & y[2]) & (x[2] & y[0]) & (~x[1]))); 

assign p[4] = ((((~y[0]) & (x[0] & y[1]) & ((x[1] & y[2]) | (x[0] & y[3]))) | 

(((x[1] & y[2]) | (x[0] & y[3])) & (x[0] & y[1]) & (~x[2])) | ((~x[0]) & (x[1] & 

y[0]) & ((x[2] & y[1]) | (x[3] & y[0]))) | ((~x[2]) & (x[1] & y[0]) & ((x[2] & 

y[1]) | (x[3] & y[0])))) | (((~y[1]) & (x[0] & y[2]) & (x[2] & y[0]) & (x[1])) | 

((x[0] & y[2]) & (x[2] & y[0]) & (~x[1]) & (y[1])) | ((x[1] & y[1]) & (x[2] & 

y[2]))) | ((x[3] & y[3]) & (x[0] & y[0]))) ^ (((x[2] & y[0]) & (x[1] & y[1]) & 

(x[0] & y[2])) ^ ((x[2] & y[2]) | (x[3] & x[1]) | (x[1] & y[3]))); 
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assign p[5] = (((~y[1]) & (x[0] & y[2]) & (x[2] & y[0]) & (x[1])) | ((x[0] & y[2]) 

& (x[2] & y[0]) & (~x[1]) & (y[1])) | ((x[1] & y[1]) & (x[2] & y[2]))) ^ ((x[3] & 

y[2]) | (x[2] & y[3])); 

assign p[6] = x[3] & y[3]; 

 

endmodule 

 

 Tested design no. 3 

module U_04786744( 

input [3:0] x, 

input [3:0] y, 

output [7:0] p 

); 

 

wire [5:0] mul_33, mul_43, mul_34, mux_1, mux_2; 

wire [7:0] mux_3; 

wire [7:0] mul_44; 

wire [7:0] conv_out; 

wire sum, carry; 

 

assign mul_33 = x[2:0] * y[2:0]; 
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assign mul_43[0] = x[0] & y[0]; 

assign mul_43[1] = x[0] & y[1]; 

assign mul_43[2] = x[0] & y[2]; 

assign mul_43[3] = y[0]; 

assign mul_43[4] = y[1]; 

assign mul_43[5] = y[2]; 

 

assign mul_34[0] = x[0] & y[0]; 

assign mul_34[1] = x[1] & y[0]; 

assign mul_34[2] = x[2] & y[0]; 

assign mul_34[3] = x[0]; 

assign mul_34[4] = x[1]; 

assign mul_34[5] = x[2]; 

 

assign mul_44[0] = x[0] & y[0]; 

assign mul_44[1] = x[0] ^ y[0]; 

assign mul_44[2] = ~(x[0] | y[0]); 

assign mul_44[3] = 0; 

assign mul_44[4] = x[0] ^ y[0]; 

assign mul_44[5] = ~(x[0] & y[0]); 

assign mul_44[6] = ~(x[0] & y[0]); 
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assign mul_44[7] = x[0] & y[0]; 

 

ha ha1 (sum, carry, x[3], y[3]); 

 

assign mux_1 = x[3]? mul_43 : mul_34; 

assign mux_2 = sum?  mux_1 : mul_33; 

 

binary_to_BCD binary_to_BCD1 ({1'b0, mux_2}, conv_out[3:0], 

conv_out[7:4]); 

 

assign p = carry? mul_44 : conv_out; 

 

endmodule 

 

module binary_to_BCD(A,ONES,TENS,HUNDREDS); 

input [7:0] A; 

output [3:0] ONES, TENS; 

output [1:0] HUNDREDS; 

wire [3:0] c1,c2,c3,c4,c5,c6,c7; 

wire [3:0] d1,d2,d3,d4,d5,d6,d7; 

 

assign d1 = {1'b0,A[7:5]}; 
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assign d2 = {c1[2:0],A[4]}; 

assign d3 = {c2[2:0],A[3]}; 

assign d4 = {c3[2:0],A[2]}; 

assign d5 = {c4[2:0],A[1]}; 

assign d6 = {1'b0,c1[3],c2[3],c3[3]}; 

assign d7 = {c6[2:0],c4[3]}; 

add3 m1(d1,c1); 

add3 m2(d2,c2); 

add3 m3(d3,c3); 

add3 m4(d4,c4); 

add3 m5(d5,c5); 

add3 m6(d6,c6); 

add3 m7(d7,c7); 

assign ONES = {c5[2:0],A[0]}; 

assign TENS = {c7[2:0],c5[3]}; 

assign HUNDREDS = {c6[3],c7[3]}; 

 

endmodule 

 

 

module add3(in,out); 
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input [3:0] in; 

output [3:0] out; 

reg [3:0] out; 

 

always @ (in) 

 case (in) 

 4'b0000: out <= 4'b0000; 

 4'b0001: out <= 4'b0001; 

 4'b0010: out <= 4'b0010; 

 4'b0011: out <= 4'b0011; 

 4'b0100: out <= 4'b0100; 

 4'b0101: out <= 4'b1000; 

 4'b0110: out <= 4'b1001; 

 4'b0111: out <= 4'b1010; 

 4'b1000: out <= 4'b1011; 

 4'b1001: out <= 4'b1100; 

 default: out <= 4'b0000; 

 endcase 

endmodule 

 

module ha(s,co,a,b); 
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    output s,co; 

    input a,b; 

    xor u1(s,a,b); 

    and u2 (co,a,b); 

endmodule 

 

 Tested design no. 4 

module U_05483001( 

input [3:0] x, 

input [3:0] y, 

output [7:0] p 

); 

 

wire [7:0] MUL; 

multiply4bits mul1 (MUL, x, y); 

 

binary_to_BCD convert1 (.A(MUL), .ONES(p[3:0]), .TENS(p[7:4])); 

 

 

 

 

endmodule 
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module binary_to_BCD(A,ONES,TENS,HUNDREDS); 

input [7:0] A; 

output [3:0] ONES, TENS; 

output [1:0] HUNDREDS; 

wire [3:0] c1,c2,c3,c4,c5,c6,c7; 

wire [3:0] d1,d2,d3,d4,d5,d6,d7; 

 

assign d1 = {1'b0,A[7:5]}; 

assign d2 = {c1[2:0],A[4]}; 

assign d3 = {c2[2:0],A[3]}; 

assign d4 = {c3[2:0],A[2]}; 

assign d5 = {c4[2:0],A[1]}; 

assign d6 = {1'b0,c1[3],c2[3],c3[3]}; 

assign d7 = {c6[2:0],c4[3]}; 

add3 m1(d1,c1); 

add3 m2(d2,c2); 

add3 m3(d3,c3); 

add3 m4(d4,c4); 

add3 m5(d5,c5); 
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add3 m6(d6,c6); 

add3 m7(d7,c7); 

assign ONES = {c5[2:0],A[0]}; 

assign TENS = {c7[2:0],c5[3]}; 

assign HUNDREDS = {c6[3],c7[3]}; 

 

endmodule 

 

 

module add3(in,out); 

input [3:0] in; 

output [3:0] out; 

reg [3:0] out; 

 

always @ (in) 

 case (in) 

 4'b0000: out <= 4'b0000; 

 4'b0001: out <= 4'b0001; 

 4'b0010: out <= 4'b0010; 

 4'b0011: out <= 4'b0011; 

 4'b0100: out <= 4'b0100; 
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 4'b0101: out <= 4'b1000; 

 4'b0110: out <= 4'b1001; 

 4'b0111: out <= 4'b1010; 

 4'b1000: out <= 4'b1011; 

 4'b1001: out <= 4'b1100; 

 default: out <= 4'b0000; 

 endcase 

endmodule 

 

module HA(sout,cout,a,b); 

output sout,cout; 

input a,b; 

assign sout=a^b; 

assign cout=(a&b); 

endmodule 

 

module FA(sout,cout,a,b,cin); 

output sout,cout; 

input a,b,cin; 

assign sout=(a^b^cin); 

assign cout=((a&b)|(a&cin)|(b&cin)); 
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endmodule 

 

module multiply4bits(product,inp1,inp2); 

output [7:0]product; 

input [3:0]inp1; 

input [3:0]inp2; 

assign product[0]=(inp1[0]&inp2[0]); 

wire x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17; 

HA HA1(product[1],x1,(inp1[1]&inp2[0]),(inp1[0]&inp2[1])); 

FA FA1(x2,x3,inp1[1]&inp2[1],(inp1[0]&inp2[2]),x1); 

FA FA2(x4,x5,(inp1[1]&inp2[2]),(inp1[0]&inp2[3]),x3); 

HA HA2(x6,x7,(inp1[1]&inp2[3]),x5); 

HA HA3(product[2],x15,x2,(inp1[2]&inp2[0])); 

FA FA5(x14,x16,x4,(inp1[2]&inp2[1]),x15); 

FA FA4(x13,x17,x6,(inp1[2]&inp2[2]),x16); 

FA FA3(x9,x8,x7,(inp1[2]&inp2[3]),x17); 

HA HA4(product[3],x12,x14,(inp1[3]&inp2[0])); 

FA FA8(product[4],x11,x13,(inp1[3]&inp2[1]),x12); 

FA FA7(product[5],x10,x9,(inp1[3]&inp2[2]),x11); 

FA FA6(product[6],product[7],x8,(inp1[3]&inp2[3]),x10); 

endmodule 


