Enhancement of Structural Reliability of Jacket Platforms in Malaysian Waters for Life Extension

By

Kok Hoy Seng

16006

Dissertation submitted in partial fulfillment of

The requirements of the

Bachelor of Engineering (Hons)

(Civil)

January 2015

Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Enhancement of Structural Reliability of Jacket Platforms in Malaysian Waters for Life Extension

By

Kok Hoy Seng

16006

A project dissertation submitted to the

Civil Engineering Programme

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CIVIL)

Approved by,

(Dr Montasir Osman Ahmed Ali)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK January 2015

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(KOK HOY SENG)

ABSTRACT

Most of the jacket platforms that belongs to PETRONAS Carigali Sdn Bhd have been operated more than their service life for Enhancement of Oil Recovery (EOR). However, it is uncertain to claim the platforms are safe for life extension. Hence, enhancement of structural reliability becomes a necessity to justify the platform is safe throughout the EOR period. In this paper, the effect of local joint flexibility on enhancement of structural reliability of offshore jacket structure in Malaysia waters will be studied. Rigid joint assumptions made during software modelling of jacket structures, had been practiced for past decades. While, standards such as API RP2A-WSD only applies local joint flexibility to the fatigue life analysis. However, past researches show that tubular joints of offshore structure in reality are not fully rigid but possesses flexibilities. In this project, pushover analysis will be perform on the F9JT-A platform model using SACS 5.3 software .100 years return periods of storm were considered as environmental loading and pile soil interaction were included in the pushover analysis for intact and structure with local joint flexibilities(LJF). LJF (Fessler and Buitrago LJF methods) were introduced to all joints of the jacket structure, to determine the effects of LJF to the reserve strength ratio (RSR). The Buitrago method shows better results compare to Fessler method in improvement of RSR. Buitrago method shows a maximum of 21.2% improvement in RSR on 90° loading direction, while Fessler show a maximum improvement of 6.43% in RSR on 270b° loading direction when compared with intact RSR. While for structural reliability analysis, reliability index and probability of failure were obtained through FORM and MCS method, results from Buitrago method shows better result compare to Fessler method with a maximum improvement of 8.817% for reliability index and a maximum reduction of 98.98% for probability of failure when compared with intact structure. While the Fessler method shows a maximum improvement of 3.86% in reliability index and a maximum reduction of 79.67% in probability of failure when compared with the intact structure.

ACKNOWLEDGEMENT

First and foremost, I would like to express my appreciation and thanks to Dr Montasir Osman Ahmed Ali, my FYP supervisor, for his full support, guidance and availability in advising me during my Final Year Project.

Special thanks my co-supervisor, Ir. Mohamed Mubarak bin Abdul Wahab for his support, technical knowledge and time in the contribution of this final year project.

I would also like to take this opportunity to thank Mr Jerin Mathew George, Master student under Prof Kurian which assisted and mentored me on the application of SACS software.

Also, I would like to thank Ir. Andrew Chin Kim Ping, my industrial training supervisor, for his opinion and industrial technical knowledge on this project.

Finally, I would like to thank my family, for their sacrifices made on my behalf and unconditional support.

Here, I might not be able to mention everyone who helped me in the completion of this project, but I will always keep your kindness in my memory. Thank you.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	v
LIST OF TABLES	vi
ABBREVIATIONS AND NOMENCLATURES	vii
CHAPTER 1: INTRODUCTION	1
1.1 Background of study	1
1.2 Problem statement	2
1.3 Objectives	2
1.4 Scope of study	3
CHAPTER 2: LITERATURE REVIEW	4
2.1 Structural Reliability Assessment	4
2.2 Fixed Jacket Structure	5
2.3 Pushover Analysis	5
2.4 The Ultimate Strength Assessment of Offshore Structures	8
2.5 Reserve Strength Ratio (RSR)	8
2.6 Enhancement of Structural Reliability	9
2.7 First-Order Reliability Method (FORM)	10
2.8 Monte Carlo Stimulation (MSC) Method	10
2.9 Critical Analysis	11
CHAPTER 3: METHODOLOGY AND PROGRESS	14
F9JT-A Jacket Structure description	14
3.1 Methodology	15
3.2 Project Activities	24
3.3 Key Project Milestone	25
3.4 Gantt Chart	26
CHAPTER 4: RESULTS AND DISCUSSION	28
4.1 Results	28
4.1.1 RSR of intact structure, JF joint flexibility and BF local joint flexibility introduced structure.	28
4.1.2 The results of displacement in X, Y and Z axis for 0°, 45 ° and 90 ° environmental loading direction.	33
4.1.3 The results on effect of joint flexibility on structural reliability of F9JT-A jacket platform.	43
4.2 Discussion	45

4.2.1 To determine the Reserve Strength Ratio (RSR) of the intact F9JT-A	
platform model using SACS 5.3 software.	45
4.2.2 To determine the effect of local joint flexibilities to the RSR improvement the F9JT-A jacket structure using SACS 5.3.	nt on 45
4.2.3 To determine the effect of joint flexibility on structural reliability of F9. platform through First-Order Reliability Method (FORM) and Monte-Carlo Stimulation (MCS) methods using MATLAB.	JT-A , 47
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	49
5.1 Conclusion	49
5.2 Recommendations	50
References	а
APPENDIX A	d
APPENDIX B	m

LIST OF FIGURES

FIGURE 2-1 Non-linear curve component description	7
FIGURE 3-1 F9JT-A in SACS view	14
FIGURE 3-2 The Omni-directional lateral loads that are applied to the structure during	
Pushover analysis.	15
FIGURE 3-3 General joint geometry.	18
FIGURE 3-4 Flow chart of Methodology	23
FIGURE 3-5 Project activities of FYP	24
FIGURE 4-1 The plot between base shear, base shear at collapse and RSR of intact	
structure.	29
FIGURE 4-2 The plot between base shear, base shear at collapse and RSR of intact stru	icture
with JF flexibility	30
FIGURE 4-3 The plot between base shear, base shear at collapse and RSR of intact stru	icture
with BF flexibility.	31
FIGURE 4-4 The comparison of designed base shear between intact structure and struct	ture
with JF and BF joint flexibility implemented.	31
FIGURE 4-5 The comparison of base shear at collapse between intact structure and	
structure with JF and BF joint flexibility implemented.	32
FIGURE 4-6 The comparison of RSR between intact structure and structure with JF an	d BF
joint flexibility implemented.	32
FIGURE 4-7 Location of joint 7436	33
FIGURE 4-8 Load factor vs displacement curve in X- axis for 0° direction.	34
FIGURE 4-9 Load factor vs displacement curve in X- axis for 45° direction	35
FIGURE 4-10 Load factor vs displacement curve in X- axis for 90° direction	36
FIGURE 4-11 Load factor vs displacement curve in Y- axis for 0° direction	37
FIGURE 4-12 Load factor vs displacement curve in Y- axis for 45° direction	38
FIGURE 4-13 Load factor vs displacement curve in Y-axis for 90° direction	39
FIGURE 4-14 Load factor vs displacement curve in Z- axis for 0° direction	40
FIGURE 4-15 Load factor vs displacement curve in Z- axis for 45° direction	41
FIGURE 4-16 Load factor vs displacement curve in Z- axis for 90° direction	42
FIGURE 4-17 Reliability Index of Intact structure, JF and BF joint flexibility introduced	b
structure	43
FIGURE 4-18 Probability of Failure P _f	44

LIST OF TABLES

TABLE 2-1 Critical analysis on past research papers	11
TABLE 2-2 Critical analysis on past researches and gap between this project.	12
TABLE 3-1 Project key milestone for FYP 1	25
TABLE 3-2 Project key milestone for FYP 2	25
TABLE 3-3 Grantt Chart for FYP 1	26
TABLE 3-4 Grantt Chart for FYP 2	27
TABLE 4-1 The results of pushover analysis for intact structure of F9JT-A	28
TABLE 4-2 The results of pushover analysis for intact structure of F9JT-A with JF m	nethod.
	29
TABLE 4-3 The results of pushover analysis for intact structure of F9JT-A with BF	method.
	30
TABLE 4-4 Reliability index of Intact structure, and both JF and BF joint flexibility	
introduced structure.	43
TABLE 4-5 Probability of Failure of Intact, and both JF and BF joint flexibility intro	oduced
structure	44

ABBREVIATIONS AND NOMENCLATURES

- BF Buitrago local joint flexibility
- D Outer Chord Diameter
- E Young's modulus of elasticity
- FORM First-Order Reliability Method
- I The moment of inertia, A is the Area of short-flex element
- JF Fessler local joint flexibility
- L Flex-element length
- LJF_{AX} Local joint flexibility of axial
- LJF_{OPB} Local joint flexibility of Out-of plane bending moment equation
- LJF_{IPB} Local joint of In-plane bending moment equation
- (LJF_m) In-plane or Out of plane bending local flexibility
- (LJF_p) Axial loading local joint flexibility
- MCS Monte-Carlo Stimulation
- RSR Reserve Strength Ratio
- SACS Structural Analysis Computer System

Chapter 1: INTRODUCTION

1.1 Background of study

More than 60% of the platforms from PETRONAS Carigali Sdn Bhd (PCSB) had been operating for more than 20 years while some have exceeded 30 years compare to their initial designed service life of 20 to 25 years. The extension of service life demand for these operating platforms however had been increasing due to enhanced of oil recovery. Because of this, upgrading, modification and work-over demand will certainly increase the loads subjected to the jacket structure where the platform was not initially designed for. Moreover, the increase in environmental met-ocean loading, seismic loading, shallow gas and other challenges will also significantly affect the jacket structure throughout the years of its service life (Nichols, 2006).

Structural reliability analysis becomes necessary to ensure the structure is safe. The probability of a system perform its purpose in a specified period without failing is known as reliability. Choi et al. (2007) stated the structural reliability study; focus on the calculation and prediction of the probability of limit state violations at any stage of the structure service life. The probabilistic approach is based on the theoretical foundation of Probability Distribution Factor (PDF) information. In addition, the uses of random variables, process and field are introduced to represent uncertainty. To further enhance the structural reliability, local joint flexibilities is one of the approach.

The reliability of the platform for service life extension can be determined by assessing the reliability index and probability of failure which is through Reserve Strength Ratio (RSR). RSR is determined by dividing the ultimate strength to the design strength. The ultimate strength can be determined through pushover analysis. The pushover analysis is used as the capacity of the jacket structure depends significantly in non-linear range of deformation of the behaviour of structure members and the foundation interaction with soil.

As significant number of platforms in Malaysia are extending their service life for continuous production, this research would be a valuable for PETRONAS, our national oil company.

1.2 Problem statement

The existing jacket structure are safe regard to overloading due to wind, current and wave loading, provided that the load is not significantly different from the load the structure was initially designed for (Ersdal, 2005). However when the structure is used beyond its service life, it would be uncertain to claim the structure is still safe for the coming years of operations.

Offshore jacket platforms possess some flexibilities in the joints in reality and there were a lot researches have been conducted on the effect of local joint flexibilities on the overall structure behaviour, and it was included recently in fatigue analysis. However, this local joint flexibilities effect was not included in most the offshore structures' finite element analysis such as in-place analysis and nonlinear pushover analysis.

Hence, enhancement of structural reliability of the jacket platform by considering the effect of local joint flexibilities to determine the actual strength of the jacket platform in Malaysian waters is necessary to requalify the strength of jacket platform.

1.3 Objectives

The main objective of this project is to analyse the factors that contribute to the enhancement of the structural reliability of jacket platforms in Malaysian waters for life extension.

This main objective can be subdivided into few sub-objectives as follows:

- i) To determine the Reserve Strength Ratio (RSR) of the intact F9JT-A platform model using SACS 5.3 software.
- To determine the effect of the local joint flexibilities to the RSR improvement on the F9JT-A jacket structure using SACS 5.3.
- iii) To determine the effect of joint flexibility on structural reliability of F9JT-A platform through First-Order Reliability Method (FORM) and Monte-Carlo Stimulation (MCS) methods using MATLAB.

1.4 Scope of study

The scope of this project is limited to the following constrains:

- F9JT-A jacket platform provided by PETRONAS Carigali will be used in this project.
- ii) The static non-linear pushover analysis using SACS 5.3 is used in this project.
- Deterministic value of wind, wave and current loading as environmental loading will be consider in this project to evaluate response of the jacket platform.
- iv) Only both Fessler and Buitrago local joint flexibility methods will be include during pushover analysis for structure with local joint flexibilities.
- v) Structural Reliability Analysis will be performed using FORM and Monte Carlo Stimulation (MCS) methods through MATLAB.

Chapter 2: LITERATURE REVIEW

This chapter will introduce the concept of structural reliability assessment, pushover analysis, ultimate strength assessment, reserve strength ratio (RSR), enhancement of structural reliability, First Order Reliability Method (FORM) and Monte Carlo stimulation (MCS).

2.1 Structural Reliability Assessment

The capability of the offshore structure to meet its purpose under any condition is known as structural reliability. Determination of whether the limit-state of structure is exceeded is how the reliability analysis evaluates the probability of failure of a structure. The confidence interval of structural response and probability distribution function are very important for reliability analysis as mention by Choi S.K et al. (2007) in their book.

The limit state, whereby the structure exceeded its specific limit and is unable to carry the load which is initially design for is considered as unreliable. There are two types of limits state, ultimate-limit states and serviceability limit-state. The ultimate limitstate is very unlikely to occur is caused by progressive collapse, plastic mechanism, fire, fracture, fatigue, deterioration and corrosion. As for the serviceability limit-state, is caused by leakage, local damage, excessive vibration and deflection which are not as critical as ultimate limit-state.

In term of structural system reliability assessment, pushover analysis has a huge role to assess the resistance capacity of the offshore structure. Onoufriou, and Forbes (2001) in their research focus on three main part of the jacket platform for pushover analysis besides the failure mechanism and application of loads, which include the superstructure, substructure and the foundation.

The reliability of the platform for extended usage can be determined by the reliability index and probability of failure of the platform structure, and this will determine whether the platform structure is suitable and reliable for extended usage.

2.2 Fixed Jacket Structure

Fixed jacket structure or offshore jacket platform is a structure that is totally made up of tubular steel frame with pile foundation that is located on shallow sea. While the structure members of the jacket consist of X, Y and K joints and members. Production facilities, living quarter and helideck are all included on the superstructure of the jacket platform. The purposes of jacket structure are to process the crude oil/gas from reservoir and pumped to shore through pipelines after process. The design of jacket structure depends on various requirements, which include fatigue and strength and it is design to have a typical service life of 10 to 25 years (Randall, 2010).

2.3 Pushover Analysis

Pushover analysis which has the same function as the non-linear analysis which is used to determine the Ultimate Strength of the jacket platform is carried out to determine whether it is safe for continuous usage of the existing jacket structure by determine the RSR of the structure.

Asgarian and Lesani (2007) mention that to determine the ultimate strength of the jacket structure, pushover analysis is the most general method. Buckling, member failure due to yielding, joint failure and pile soil failure, are the important assessment for offshore platforms are all included in the pushover analysis. During the pushover analysis, loads are pushed to the jacket structure until the jacket collapsed or targeted displacement is achieved.

Onoufriou and Forbes (2001) found the capacity and response of the whole structure of jacket offshore platforms significantly rely on the deformation of structure member in the non-linear range in their research. Most critical member will be determined by pushover analysis. However, the effects of possible component strength variation result in different combination of elements and failure sequence will not be considered.

Non-linear pushover analysis assesses the non-elastic range of the structure in order to determine the weakest joint/point of the structure together with the failure mechanism of the structure. In the research of Krawinkler and Seneviratna (1998), the weakest

point, which is hidden from the elastic analysis is shown by non-linear pushover analysis and at same time provides a more reliable result for the assessment of jacket structure.

According to krawinkler (1994), pushover analysis is used for evaluating the design's solution as this analysis does will not provide a good solution. However, pushover analysis will analyse and forecast the load and failure mechanism happens to the elements of the structure. Two and three dimensional model is analysed in the analysis, which will account for both linear and nonlinear response of the structure. The structure was pushed to a targeted displacement by applying lateral loads which represent the relative inertia forces that developed at location of substantial masses. While the deformation and internal strength calculated through the pushover analysis are then comparing to the available capacities.

Onoufriou and Forbes (2001) performed the pushover analysis by applying gravity load to the structure, followed by lateral loads which are applied incrementally to the structure until the structure eventually collapses. Beside material properties, joint failure is the main focuses in their analysis although there are many cases where failure of member will occur first before joint failure because the joint failure will affect the estimation of ultimate load and failure mechanism of the jacket structure.

During the pushover analysis, points were considered as hinges when they reached the bending strength in the application of lateral loads. The analysis will continue even it exceeded the targeted displacement, which will result in a base shear vs. displacement response curve. Non-linear curve component description is shown is Figure 2-1.

FIGURE 2-1 Non-linear curve component description (V.J. Kurian at el, 2013)

2.3.1 Advantages of pushover analysis:

Pushover analysis is a method that considered the redistribution of internal forces, this is vital when the structure unable to resist the internal forces in the elastic range. Pushover Analysis also evaluates more comprehensive and realistic compared to linear elastic analysis. Hence, when dynamic analysis or static linear elastic analysis unable to obtain targeted information on response characteristic from a structure, pushover analysis is used.

The response characteristic provided by pushover analysis according to krawinkler (1994) includes:

- Deformation demand estimation of element that will deform inelastically to release the ground motion energy transmitted to the structure.
- ii) The behaviour of structural system affected by the individual member strength deterioration.
- iii) Strength discontinuities identification that will cause the dynamic characteristic to change in inelastic zone.
- iv) Identification and focus on critical regions which have high deformation demand through detailing.

Pushover analysis will also check the load transfer across connection between ductile materials with realistic forces. Most importantly, it will cover all the elements from the structure, which include structural or non-structural elements which will cause distribution of significant loads.

2.4 The Ultimate Strength Assessment of Offshore Structures

WestLake et al. (2006) in their paper, state that non-linear finite element analysis, also known as collapse analysis or pushover analysis will be used for the ultimate strength assessment of offshore structures. This analysis will assess the capacity of the entire system of the structure.

WestLake et al. (2006) in their research, found that each directional environmental loading, will cause the structure to have different RSR. While the environmental loading direction which causes the lowest RSR to the structure will be the main focus.

The plastic deformation of piles, members and joints are allow in this ultimate strength assessment, and the components of the structure are allow to undertake load above the yield strength. In addition, the loads applied to the structure are all redistributed to all the structure members until the structure eventually collapses.

2.5 Reserve Strength Ratio (RSR)

According to Titus and Banon (1988) (Bolt et al, 1996) RSR is the term used for offshore platform ultimate strength measurement. It is the measurement of the ability of the structure to withstand overloading as compared to the initial designed load of the offshore platform. RSR value obtained through the pushover analysis will determine whether the jacket platform is reliable for the continuous usage for the industry. However, the RSR is greatly affected by the load combination and the environmental loading direction subjected to the jacket structure.

2.6 Enhancement of Structural Reliability

In current practice, the tubular joints/connections are all assumed to be fully rigid during analysis for offshore jacket platforms. However, their true behaviour is essentially flexible. (Nichol et al. 2006)(Masoud et al, 2009). This is due to lack of knowledge on how the actual behaviour of tubular joints can be represented in frame test and large scale component.

Present-day practice with no flexibility on tubular joint, will give inaccurate joint response of the structure in the analysis result. Hence, joints should be represented with finite linear elastic flexibility where it represent the accurate way of joint behave in practice, which is suggested by Structural engineering mechanics.

There are extensive data showing that all the tubular joints are flexible, that differ depends on geometry load case and joint types. Masoud et al (2009) state the flexibilities of the connection should be considered to obtain accurate stiffness and strength of the platform as connections are not perfectly rigid. Masoud et al (2009) also obtained a significant result in the research by comparing a fully rigid structure and a structure which includes flexibilities on connection. Besides, Masoud et al (2009) also found that effect of flexibilities of joint become apparent in non-linear analysis where the structure undergo plastic region.

Local joint flexibility (LJF) is now introduced to the fatigue analysis in a very reliable and cost-effective manner (MSL, 2002) (Nichol et al (2006). Local joint flexibilities had been implemented by introducing short "flex-element" at the end of the brace which connect to the surface of the chord. To verify this method, a T-joint was created using SACS software which has the same geometry as the test specimen was selected from a database that contain data of full-scale failure test on tubular joints. Analysis was carried out for both with and without flex-element T-joint. The result from the test shows the predicted of T-joint with flex-element's deformation is close to the test result from database, while the rigid joint model's result is not matching at all. Research had been done on a platform by MSL (2002), where a more accurate fatigue life prediction was obtained that had a similar result with the result obtained from under water inspection when the flex-element was introduced to the jacket structure finite element model.

2.7 First-Order Reliability Method (FORM)

FORM is probabilistic method that is used to evaluate the reliability of a system. Sokheang (2014) in his research found that, the component probability of failure can be determined by FORM method. The determination of whether the limit state function is an uncorrelated normal variables, linear function or linear first order approximation with equivalent normal variables represent the non-linear limit state function are evaluated using FORM method.

2.8 Monte Carlo Stimulation (MSC) Method

The Monte Carlo Stimulation method is a simple random sampling method that is use to determine uncertainty. The approximate probability of an event can be determine using this method as MSC contain statistical analysis of trial output, variable reduction techniques and digital generation of random variables and function (Choi et al ,2007). The structure probabilistic characteristic response can be determined by stimulation through generated sampling set for the analysis of structural reliability according to probability density function.

2.9 Critical Analysis

This section discuss the analysed critical analysis based on past research papers on implementing joint flexibilities to the offshore jacket platforms and the gaps between this project and past researches, are shown in table 2-1 and table 2-2.

	Auth	ors
	Onoufriou.T and Forbes. V.J	MSL Engineering Ltd (2002)
	(2001)	
What	System Reliability Assessment of	The effects of local joint
they	Fixed Jacket Platforms. They also	flexibility on the reliability of
Studied	study the various system effects	fatigue life estimation by
	(deterministic and probabilistic	comparing fatigue life predicted
	effects) and their relative	for rigid joint structure and
	contributions to the overall	flexible joint structure in the
	system reliability	North Sea
Methods	Pushover Analysis under extreme	Pushover Analysis using SACS,
	Environmental Loading	include Local joint flexibility
		(LJF), hydrodynamic loads
Remarks	Uncertainties on pushover	A more accurate fatigue life
	prediction based on assumption	prediction with a closer
	made (foundation effects, joint	agreement results from
	failure, extreme loading and	underwater inspections
	fatigue conditions)	

TABLE 2-1 Crit	tical analysis on pa	ast research papers

		Authors	Gap					
	Nichols et al (2006)	Masoud et al (2009)						
What	Study the fatigue	The effect of joint flexibility	Enhancement of					
they	analysis on the	on overall behaviour of two	structural					
Studied	structure based on	jacket platforms, effect of	reliability of					
	rigid and flexible	joint flexibility on natural	jacket platforms					
	joints	frequency of vibration of the	in Malaysia					
		structure and the process of	Waters					
		plastic hinge formations						
Methods	Pushover Analysis	Nonlinear static and	Using SACS, to					
	using SACS,	Dynamic analysis	implement joint					
	Implement Local		flexibility (JF and					
	Joint Flexibility		BF) to specific					
	(Buitrago Method)		joints of the					
	on various joints and		structure to					
	tested on the tubular		determine the					
	joint prototype.		Reserve Strength					
			of the jacket					
			structure and on					
			the same time					
			determine the					
			effects of joint					
			flexibility to the					
			RSR.					
Remarks	The predicted	Joints are not perfectly rigid,						
	fatigue life	and the flexibility should be						
	increased, and the	implemented to obtain						
	result from the	accurate strength and						
	analysis is closer to	stiffness of the platform.						
	the result of full	Recommend to take joint						
	scale test on the	flexibility into account in						
	tubular joint.	design and analysis of						

TADLEGG	Cuiting 1 a				
IABLE 2-2	Critical a	nalysis on	past researches a	ina gap t	between this project.

offshore structure. Flexible	
connections shows higher	
displacements and inter-	
storey drifts, lower base	
shear cause by low stiffness	
and strength of jacket	
structure. Overestimation of	
lateral capacity of structure if	
joint flexibility is not	
included.	

Chapter 3: METHODOLOGY AND PROGRESS

This chapter will describe method use in this project, from how information was sourced, the project carried out and plan.

F9JT-A Jacket Structure description

Kumang Cluster F9JT-A platform is a jacket platform, located in Sarawak in the South China sea, 200m away from the MLNG plant offshore Bintulu Sarawak. F9JT-A is typical unmanned four legged fixed jacket structure which operates in shallow water with water depth of 94.8m. There are total six decks at the topside of the structure, which consist of helideck, main deck, mezzanine deck, cellar deck, sub cellar deck and SNV access deck. (MMC Oil & Gas Engineering)

FIGURE 3-1 F9JT-A in SACS view

3.1 Methodology

Non-linear analysis can be used to determine the ultimate strength of the jacket structure, as it will consider the large deflection and plasticity of material in the analysis.

In this research, pushover analysis was chosen as the suitable analysis to determine the ultimate resistance capacity of the jacket structure. Non-linear Pushover analysis has been used for many years which include both onshore and offshore for researches to determine the structural behaviour especially in the failure mechanism and identify the weakest point of the structure in the inelastic range.

The pushover analysis was performed by subjecting the structure to lateral loads. These lateral loads were the environmental loads that include the wind, wave and current that will be applied to the jacket structure, as referring to Omni-directional loading from API-RP2A-WSD. For the structure used in this project, load will be applied from 8 directions which are the 0 degree, 45 degree, 90 degree, 135 degree, 180 degree, 225 degree, 270 degree, and 315 degree as shown in figure 3-2.

FIGURE 3-2 The Omni-directional lateral loads that are applied to the structure during Pushover analysis.

During the analysis, the chosen direction designed storm loads were applied to the structure and the lateral loads were factored incrementally until the structure collapse where the ultimate strength of the structure reached.

The reliability of the jacket structure can be represented by the Reserve Strength Ratio of the jacket structure via the pushover analysis by converting the jacket platform resistance capacity into the Reserve Strength Ratio.

The RSR defined by Titus and Banon(1988)(Bolt et al, 1996) as:

$$RSR = \frac{\text{Ultimate Platform Resistance}}{\text{Design Load}}$$
(3.1)

Detailed steps are shown in the following to determine the Reserve Strength Ratio, implementing joint flexibilities to the jacket model using SACS 5.3 software.

- F9JT-A platform model was obtained. Further modifying of the structure model was done when there is a necessity using the SACS 5.3 software.
- ii) Load subjected to the jacket model were as according to the initial designed data. During load application process, the combination of live loads, dead loads and environmental loads were determined so as to find the combination of loads which give the most significant effect to the structure.
- iii) The non-linear pushover analysis was done by applying the lateral loads from all the 8 directions using SACS 5.3.
- iv) The RSR was determined using pushover analysis for the intact structure.
- Implement local joint flexibility to the jacket platform model using JF and BF local joint flexibility options to the specific joints of the jacket model.
- vi) Determine the RSR via pushover analysis for the structure with the flexibility introduced to the specific joint of the jacket structure.
- vii) The results obtained will be compared
- viii) Interpretation of results.

Implementation of local joint flexibility

Buitrago equations and Fessler equation method were used in this project. Both Fessler and Buitrago equation are the option provided by SACS software to implement the joint flexibility to the structure.

JF option that use Fessler equation is the equation originally used by SACS software on tubular joints to implement joint flexibility. The Fessler local joint flexibility equations provided by SACS Collapse Manual are as follow:

$$LJF_{AX} = \frac{1.95\gamma^{2.15}(1-\beta)^{1.3}\sin^{2.19}\emptyset}{ED}$$
(3.2)

$$LJF_{OPB} = \frac{85.5\gamma^{2.2}exp(-3.85\beta)sin^{2.16}\phi}{ED^3}$$
(3.3)

$$LJF_{IPB} = \frac{134\gamma^{1.73} \exp(-4.52\beta) \sin^{1.22} \phi}{ED^3}$$
(3.4)

$$\beta = \frac{\text{Brace diameter(d)}}{\text{Chord diameter(D)}}$$
(3.5)

$$\gamma = \frac{\text{Chord diameter(D)}}{2*\text{Chord thickness(T)}}$$
(3.6)

$$\emptyset$$
 = Chord – brace interection angle

Where:

 LJF_{AX} is the local joint flexibility of axial

LJF_{OPB} is the local joint flexibility of Out-of plane bending moment equation

 LJF_{IPB} is the local joint of In-plane bending moment equation.

While BF option (Buitrago Joint flexibility method), involved inserting a short flexelement at the end of the selected brace, the flex-element is connected with both brace and surface of the chord. In this project, SACS 5.3 software will automatically implement the method when the BF option is selected. Buitrago local joint flexibility Equations (DNV-OS-J101 (2004)) are as follow:

$$I = \frac{L}{E(LJF_m)}$$
(3.7)

$$A = \frac{L}{E(LJF_p)}$$
(3.8)

$$LJF_{p} = \frac{f_{axial}}{ED}$$
(3.9)

$$LJF_{m} (LJF_{IPB}) = \frac{f_{IPB}}{ED^{3}}$$
(3.10)

$$LJF_{m} = \frac{f_{OPB}}{ED^{3}}$$
(3.11)

Where:

I is the moment of inertia, A is the Area of short-flex element

L= flex-element length

(LJF_m)= In-plane or Out of plane bending local flexibility

(LJF_p)= Axial loading local joint flexibility

E=Young's modulus of elasticity

D= Outer Chord Diameter

FIGURE 3-3 General joint geometry. (DNV-OS-J101 (2004))

Tubular joints' parametric expression for calculation are shown in following.

According to DNV-OS-J101 (2004), for single-brace joint (Y), the non-dimensional influence factor expression for local joint flexibility are:

$$f_{axl} = 5.69\tau^{-0.111} \exp(-2.251\beta)\gamma^{1.791} \sin^{1.700}\theta$$

$$f_{ipb} = 1.39\tau^{-0.238}\beta^{-2.245}\gamma^{1.898} \sin^{1.240}\theta$$

$$f_{opb} = 55\tau^{-0.220} \exp(-4.076\beta)\gamma^{2.417} \sin^{1.883}\theta$$
(3.12)

For X joint, the non-dimensional influence factor expression for local joint flexibility are:

$$\begin{split} f_{axl_{1}}^{\delta_{1}} &= 8.94\tau^{-0.198}\exp(-2.759\beta)\gamma^{1.791}\sin^{1.700}\Theta \\ f_{ipb_{1}}^{\theta_{y_{1}}} &= 67.60\tau^{-0.063}\exp(-4.056\beta)\gamma^{1.892}\sin^{1.255}\Theta \\ f_{opb_{1}}^{\theta_{x_{1}}} &= 73.95\tau^{-0.300}\exp(-4.478\beta)\gamma^{2.367}\sin^{1.926}\Theta \end{split} \tag{3.13}$$

$$f_{opb_{1}}^{\delta_{1}} &= \tau^{-0.1}(-353+1197\beta-1108\beta\sin\Theta-40\beta\gamma+50\gamma\sin\Theta) \\ f_{opb_{1}}^{\theta_{y_{2}}} &= \tau^{-0.1}(26+75\beta^{2}-8.5\beta^{2}\sin\Theta+85\beta^{2}\gamma-7.4\gamma\sin\Theta) \\ f_{opb_{1}}^{\theta_{x_{2}}} &= \tau^{-0.1}(2249-5879\beta+5515\beta\sin\Theta+221\beta\gamma-358\gamma\sin\Theta) \end{split}$$

For K joint, the non-dimensional influence factor expression for local joint flexibility are:

i) Gapped Joints

$$\begin{split} f_{axl_{1}}^{\delta_{1}} &= 5.90\tau^{-0.114}\exp(-2.163\beta)\gamma^{1.869}\varsigma^{0.009}\sin^{1.869}\Theta_{1}\sin^{-0.089}\Theta_{2} \\ f_{ipb_{1}}^{\Theta_{y_{1}}} &= 52.2\tau^{-0.119}\exp(-3.835\beta)\gamma^{1.934}\varsigma^{0.011}\sin^{1.417}\Theta_{1}\sin^{-0.108}\Theta_{2} \\ f_{ipb_{1}}^{\Theta_{x_{1}}} &= 49.7\tau^{-0.251}\exp(-4.165\beta)\gamma^{2.449}\varsigma^{0.004}\sin^{1.865}\Theta_{1}\sin^{0.054}\Theta_{2} \\ f_{axl_{1}}^{\delta_{2}} &= 3.93\tau^{-0.113}\exp(-2.198\beta)\gamma^{1.847}\varsigma^{-0.056}\sin^{0.837}\Theta_{1}\sin^{0.784}\Theta_{2} \quad (3.14) \\ f_{ipb_{1}}^{\Theta_{y_{2}}} &= f_{ipb_{1}}^{\Theta_{y_{1}}} - 1.83\tau^{-0.212}\beta^{-2.102}\gamma^{1.872}\varsigma^{0.020}\sin^{1.249}\Theta_{1}\sin^{0.060}\Theta_{2} \\ f_{ipb_{1}}^{\Theta_{x_{2}}} &= 4.37\tau^{-0.295}\exp(-3.814\beta)\gamma^{2.875}\varsigma^{-0.149}\sin^{0.885}\Theta_{1}\sin^{1.109}\Theta_{2} \end{split}$$

Where δ and Θ_y and Θ_x = Axial Deflection and IPB and OPB Rotations

Subscripts 1 and 2 =Brace 1 and Brace 2

ii) Overlapped Joints

$$\begin{split} f_{axl_{1}}^{\delta_{1}} &= 3.91 \exp(-2.265\beta) \gamma^{2.010} \varsigma^{-0.009} \sin^{1.811} \Theta_{1} \sin^{-0.029} \Theta_{2} \\ f_{ipb_{1}}^{\Theta_{y_{1}}} &= 1.86\beta^{-2.093} \gamma^{1.766} \varsigma^{-0.029} \sin^{0.711} \Theta_{1} \sin^{0.036} \Theta_{2} \\ f_{ipb_{1}}^{\Theta_{x_{1}}} &= 54.2 \exp(-3.959\beta) \gamma^{2.403} \varsigma^{0.001} \sin^{1.865} \Theta_{1} \sin^{-0.009} \Theta_{2} \\ f_{axl_{1}}^{\delta_{2}} &= 0.48\beta^{-1.269} \gamma^{2.032} \varsigma^{0.072} \sin^{0.949} \Theta_{1} \sin^{0.954} \Theta_{2} \\ f_{ipb_{1}}^{\Theta_{y_{2}}} &= 0.75\beta^{-3.000} \gamma^{2.063} \varsigma^{1.079} \sin^{0.533} \Theta_{1} \sin^{0.586} \Theta_{2} \\ f_{ipb_{1}}^{\Theta_{x_{2}}} &= 1.16\beta^{-2.068} \gamma^{2.550} \varsigma^{0.117} \sin^{1.090} \Theta_{1} \sin^{1.089} \Theta_{2} \end{split}$$

C = Absolute value of g/D

 $f_{axl} = LJF_{axl} {}^{*}ED$; $f_{ipb} = LJF_{ipb} {}^{*}ED^{3}$; $f_{opb} = LJF_{opb} {}^{*}ED^{3}$

Structural Reliability Analysis

For the structural reliability analysis, it will be computed by using MATLAB, the FORM and Monte Carlo Stimulation (MCS) methods will be used to determine the reliability of the results. FORM, which is also referring as the First-Order Reliability Method, is a further development of First-Order Secondary Moment method (FOSM). The FORM will be used to determine the reliability index of the jacket structure.

According to Choi at al. (2007), the approximate limit-state function at the mean is written as:

$$\bar{g}(x) = g(\mu_x) + \nabla g(\mu_x)^T (X_i - \mu_{x_i})$$
 (3.16)

Where $\mu_x = \{ \mu_{x_1}, \mu_{x_2}, \mu_{x_3}, \mu_{x_4}, \mu_{x_n} \}^T$ and $\nabla g (\mu_x)$ is the gradient of g evaluated at μ_x . The mean value of approximate limit-state function is:

$$\mu_{\bar{g}} = g(\mu_x) \tag{3.17}$$

The limit-state approximation function standard deviation is:

$$G_{\bar{g}} = \sqrt{(\operatorname{Var}[\bar{g}(x)])}$$
(3.18)
$$G_{\bar{g}} = \left[\sum_{i=1}^{n} \left(\frac{\partial g(\mu_{x})}{\partial x_{1}}\right)^{2} G_{x_{i}}^{2}\right]^{1/2}$$

While the reliability index β is defined as:

$$\beta = \frac{\mu_{\tilde{g}}}{6_{\tilde{g}}} \tag{3.19}$$

However, if the limit-state function is nonlinear, mean value method will be used to linearize the original limit-state function to obtain the approximate limit-state surface at the mean value point. While the β in equation 3.23, will be known as Mean Value First-Order Secondary Moment method (MVFOSM). The complex probability problem will be change by MVFOSM to a simpler problem that forms relationship between mean, standard deviation and the reliability index.

If the failure surface is a hyper plane, which can be defined as a linear-failure function for independent variables of n-dimensional space:

$$\bar{g}(x) = c_0 + \sum_{i=1}^n c_i x_i$$
 (3.20)

$$\mu_{\bar{g}} = c_0 + c_1 \mu_{x_1} + c_2 \mu_{x_2} + \dots + c_n \mu_{x_n}$$
(3.21)

$$G_{\bar{g}} = \sqrt{\sum_{i=1}^{n} c_1^2 \, G_{x_i}^2} \tag{3.22}$$

MVFOSM reliability index β is defined as:

$$\beta = \frac{\mu_{\tilde{g}}}{6_{\tilde{g}}} \tag{3.23}$$

Whereas the Monte Carlo Method, will be used to generate random variables through predetermined probability distribution function.

The probability of failure provided by Monte Carlo Stimulation is as follows:

$$p_f = \frac{N_f}{N} \tag{3.24}$$

Where N_f represent the trials number when g (') is violated out of N experiment conducted while g (') represent failure for the samples of random variables.

As for the enhancement of the structural reliability, will be focusing on the joints of the jacket structure. In this project a MATLAB code known as Finite Element Reliability Using Matlab (FERUM) will be used to perform the reliability analysis. The simplified methodology of the project is shown in the following flow chart (Figure 3-4)

FIGURE 3-4 Flow chart of Methodology

3.2 Project Activities

Activities slated throughout this project are illustrated in the chart below:

FIGURE 3-5 Project activities of FYP

3.3 Key Project Milestone

FYP 1

TABLE 3-1 Project key milestone for FYP 1

Key Activities	Week
Choose FYP tittle	1
Practice SACS software	3
Submission of Extended Proposal	6
Determine the RSR of Intact Structure	8
Proposal Defence	9
Introduce Joint Flexibility to the F9JT-A structure	10
Submission of Interim report	13

FYP 2

TABLE 3-2 Project key milestone for FYP 2

Key Activities	Week
Introduce Joint flexibility to one joint at a time to the F9JT-A Structure	1
Submission of Progress Report	7
Evaluate Results	8
Structural Reliability Analysis	9
Pre-Sedex	12
Submission of Dissertation (Soft Bound)	12
Submission of Technical Paper	13
Viva	14

3.4 Gantt Chart

FYP1														
	Week													
Main Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Selection of topic														
Preliminary Literature review														
SACS 5.3 Software Practice														
Extended Proposal														
Detailed Literature Review														
Pushover Analysis using SACS for F9JT jacket structure														
Determine the factor that contribute to enhancement of structural reliability														
Introduce the joint flexibility to the F9JT jacket structure and determine the RSR														
Proposal Defence														
Compare and analyse the RSR obtained														
Draft Interim report														
Final Interim Report														

TABLE 3-3 Grantt Chart for FYP 1
TABLE 3-4 Grantt Chart for FYP 2

FYP2														
	W	'eek												
Main Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Continue Non-linear pushover analysis that include JF and BF joint flexibilities for various joints														
Refine Literature review and Methodologies														
Tabulation of Results for the effect of joint flexibility to the F9JT-A Platform														
Submission of Progress Report														
Structural Reliability Analysis of F9JT-A Platform														
Detail Analysis of results obtained														
Prepare Draft Report														
Pre-Sedex														
Submission of Dissertation														
Submission of Technical Paper														
Viva														

Chapter 4: RESULTS AND DISCUSSION

4.1 Results

4.1.1 RSR of intact structure, JF joint flexibility and BF local joint flexibility introduced structure.

Results of intact structure

Results obtained from pushover analysis for intact structure are tabulated in table 4-1.

	Intact Base	Intact Base Shear	Intact
	Intact Dasc	Intact Dasc Shear	intact
Direction(°)	shear(kN)	at Collapse (kN)	RSR
0	8842	38415.24	4.344632
45	19909.13	35834.59	1.799907
90	10020.02	35769.84	3.569837
135	10189.84	33969.4	3.333654
180	10018.5	38037.34	3.79671
225	10013.65	27543.84	2.750629
270a	10319.15	30484.16	2.954135
270b	10320.49	30485.84	2.953914
315	10012.52	29398.06	2.93613

TABLE 4-1 The results of pushover analysis for intact structure of F9JT-A

Referring to table 4-1, base shear, base shear at collapse and RSR are tabulated with respect to the direction of environmental loading. It can be seen that the highest RSR for the intact structure at 0° direction with RSR value of 4.344632, while the lowest RSR obtained is at 45° with RSR value of 1.799907. Graph illustration are shown is figure 4-1

FIGURE 4-1 The plot between base shear, base shear at collapse and RSR of intact structure.

Results with local Joint flexibility introduced

Structure with local joint flexibility introduced in each and every joints are referred in this report for local joint flexibility introduced structure, while structure with local joint flexibility introduced to one joint at a time can be referred in **APPENDIX A**

Results of intact structure with Fessler local joint flexibility introduced.

Results from pushover analysis for intact structure with JF (Fessler) local joint flexibility introduced to all the joints, are tabulated in table 4-2.

	JF base	JF base shear at	
Direction(°)	shear(kN)	collapse (kN)	JF RSR
0	8841.45	36346.1	4.110875
45	19912.35	35770.48	1.796397
90	10015.46	31822.33	3.177321
135	10189.1	33961.37	3.333108
180	10018.15	38015.33	3.794646
225	10014.29	27546.73	2.750742
270a	10323.29	30499.67	2.954453
270b	10325.16	32460	3.143777
315	10019.11	29326.94	2.9271

TABLE 4-2 The results of pushover analysis for intact structure of F9JT-A with JF method.

As shown in table 4-2, base shear, base shear at collapse and RSR are tabulated with respect to the direction of environmental loading. It can be seen that the highest RSR for the structure that apply JF local joint flexibility to all the joints of the structure is at 0° direction with RSR value of 4.110875, while the lowest RSR obtained is at 45° with RSR value of 1.796397. Graph illustration are shown is figure 4-2.

FIGURE 4-2 The plot between base shear, base shear at collapse and RSR of intact structure with JF local joint flexibility

Results of intact structure with Buitrago local joint flexibility introduced.

Results from pushover analysis for intact structure with BF (Buitrago) local flexibility introduced to all the joints, are tabulated in table 4-3.

TABLE 4-3 The results of pus	ushover analysis for intact structure	of F9JT-A with BF method.
------------------------------	---------------------------------------	---------------------------

	BF base	BF base shear at	
Direction(°)	shear(kN)	collapse (kN)	BF RSR
0	8876.44	39838.36	4.488101
45	19913.51	35764.16	1.795975
90	10022.3	43369.63	4.327313
135	10190.54	34006.52	3.337068
180	10019.87	38034.8	3.795937
225	10016.07	27549.04	2.750484
270a	10323.45	32439.93	3.142354
270b	10327.04	32456.9	3.142904
315	10020.17	29310.02	2.925102

Based on table 4-3, base shear, base shear at collapse and RSR are tabulated with respect to the direction of environmental loading. It can be seen that the highest RSR for the structure that apply BF local joint flexibility to all the joints of the structure is

at 0° direction with RSR value of 4.488101, while the lowest RSR obtained is at 45° with RSR value of 1.795975. Graph illustration are shown is figure 4-3.

FIGURE 4-3 The plot between base shear, base shear at collapse and RSR of intact structure with BF local joint flexibility.

The comparison of base shear, base shear at collapse and RSR between the intact structure, JF and BF introduced to the structure are illustrated in figure 4-4, 4-5 and 4-6.

FIGURE 4-4 The comparison of designed base shear between intact structure and structure with JF and BF local joint flexibility implemented.

FIGURE 4-5 The comparison of base shear at collapse between intact structure and structure with JF and BF local joint flexibility implemented.

FIGURE 4-6 The comparison of RSR between intact structure and structure with JF and BF local joint flexibility implemented.

4.1.2 The results of displacement in X, Y and Z axis for 0° , 45 ° and 90 ° environmental loading direction.

Joint 7436, has been taken as the joint for result tabulation in this report to represent the displacement of the structure. Joint 7436 is a joint located in the centre point of the top most layer of the jacket part of the F9JT-A platform.

FIGURE 4-7 Location of joint 7436

i) The following figure 4-8, 4-9, 4-10 are the load factor vs displacement curve for 0°, 45° and 90° in the X- axis.

The load factor vs displacement curve in X- axis for 0° direction is shown in figure 4-8 below:

FIGURE 4-8 Load factor vs displacement curve in X- axis for 0° direction.

Based on figure 4-8, it can be seen that the BF local joint flexibility introduced structure have the highest load factor with lower displacement, while the JF local joint flexibility introduce structure has a larger displacement with respect to load factor, as comparing both with the intact structure for displacement in the X- axis for 0° direction.

The load factor vs displacement curve in X- axis for 45° direction is shown in figure 4-9 below:

FIGURE 4-9 Load factor vs displacement curve in X- axis for 45° direction

Referring to figure 4-9, it can be seen that the JF local joint flexibility introduced structure have the highest load factor with lower displacement, while the BF local joint flexibility introduce structure has a larger displacement with respect to load factor, as comparing both with the intact structure for displacement in the X- axis for 45° direction.

The load factor vs displacement curve in X- axis for 90° direction is shown in figure 4-10 below:

FIGURE 4-10 Load factor vs displacement curve in X- axis for 90° direction

As shown in the figure 4-10 above, it can be seen that the BF local joint flexibility introduced structure has the highest load factor with highest displacement, while the intact structure has a larger displacement with respect to load factor, as comparing with the JF local joint flexibility introduce structure for displacement in the X- axis for 90° direction.

ii) The following figure 4-11, 4-12, and 4-13 are the load factor vs displacement for 0°, 45° and 90° in the Y- axis.

The load factor vs displacement curve in Y-direction for 0° direction is shown in figure 4-11 below:

FIGURE 4-11 Load factor vs displacement curve in Y- axis for 0° direction

Based on figure 4-11, it can be seen that the BF local joint flexibility introduced structure have the highest load factor with lower displacement, while the JF local joint flexibility introduce structure has a lower displacement with respect to load factor, as comparing with the intact structure for displacement in the Y- axis for 0° direction.

The load factor vs displacement curve in Y- axis for 45° direction is shown in figure 4-12 below:

FIGURE 4-12 Load factor vs displacement curve in Y- axis for 45° direction

As referring to the figure 4-12, it can be seen that the JF local joint flexibility introduced structure has the highest load factor with lower displacement, while the BF local joint flexibility introduce structure has a larger displacement with respect to load factor, as comparing with the intact structure for displacement in the Y- axis for 45° direction.

The load factor vs displacement curve in Y- axis for 90° direction is shown in figure 4-13 below:

FIGURE 4-13 Load factor vs displacement curve in Y-axis for 90° direction

Based on figure 4-13 above, it can be seen that the BF local joint flexibility introduced structure has the highest load factor with lower displacement, while the JF local joint flexibility introduce structure has a lower capacity of displacement with respect to load factor, as comparing with the intact structure for displacement in the Y-axis for 90° direction.

iii) The following figure 4-14, 4-15 and 4-16 are the load factor vs displacement for 0°, 45° and 90° in the Z- axis.

The load factor vs displacement curve in Z- axis for 0° direction is shown in figure 4-14 below:

FIGURE 4-14 Load factor vs displacement curve in Z- axis for 0° direction

Based on figure 4-14, it can be seen that the BF local joint flexibility introduced structure has the highest load factor with lower displacement, while the JF local joint flexibility introduce structure has a larger displacement with respect to load factor, as comparing with the intact structure for displacement in the Z- axis for 0° direction.

The load factor vs displacement curve in Z- axis for 45° direction is shown in figure 4-15 below:

FIGURE 4-15 Load factor vs displacement curve in Z- axis for 45° direction

Based on figure 4-15, it can be seen that the JF local joint flexibility introduced structure has the highest load factor with lower displacement, while the BF local joint flexibility introduced structure has a lower displacement with respect to load factor, as comparing with the intact structure for displacement in the Z- axis for 45° direction.

The load factor vs displacement curve in Z-axis for 90° direction is shown in figure 4-16 below:

FIGURE 4-16 Load factor vs displacement curve in Z- axis for 90° direction

Referring to figure 4-16, it can be seen that the BF local joint flexibility introduced structure has the highest load factor with lower displacement, while the JF local joint flexibility introduced structure has a lower displacement with respect to load factor, as comparing with the intact structure for displacement in the Z- axis for 90° direction.

4.1.3 The results on effect of joint flexibility on structural reliability of F9JT-A jacket platform.

Reliability Index, β							
Direction(°)	Intact	JF	BF				
0	7.625077	7.45978	7.717915				
45	4.127333	4.118397	4.117322				
90	6.996537	6.572673	7.613445				
135	6.752041	6.752041	6.755798				
180	7.206213	7.206213	7.20554				
225	6.000648	6.000648	6.00043				
270a	6.289692	6.290119	6.530508				
270b	6.289395	6.53224	6.531178				
315	6.26537	6.253084	6.250357				

TABLE 4 Reliability index of Intact structure, and both JF and BF local joint flexibility introduced structure.

FIGURE 4-17 Reliability Index of Intact structure, JF and BF local joint flexibility introduced structure

Referring to table 4-4 and Figure 4-17, it can be seen that, the highest and lowest reliability index value for all Intact, and both JF and BF local joint flexibility introduced structure are on the same loading direction, which is 0° loading direction for the highest reliability index value while lowest is on 45° loading direction. The highest reliability index value for Intact, JF and BF are 7.625077, 7.45978 and 7.717915 respectively. While the lowest reliability index value for intact, JF and BF are 4.127333, 4.118397 and 4.117322 respectively.

Probability of Failure							
Direction(°)	Intact	JF	BF				
0	1.22E-14	4.34E-14	5.94E-15				
45	1.83E-05	1.91E-05	1.92E-05				
90	1.31E-12	2.47E-11	1.33E-14				
135	7.29E-12	7.29E-12	7.1E-12				
180	2.88E-13	2.88E-13	2.89E-13				
225	9.83E-10	9.83E-10	9.84E-10				
270a	1.59E-10	1.59E-10	3.28E-11				
270b	1.59E-10	3.24E-11	3.26E-11				
315	1.86E-10	2.01E-10	2.05E-10				

TABLE 4-5 Probability of Failure of Intact, and both JF and BF joint flexibility introduced structure

FIGURE 4-18 Probability of Failure $P_{\rm f}$

Based on table 4-5 and Figure 4-18, it can be seen that, the highest probability of failure for all Intact, JF and BF are on 45° loading direction with probability of failure value of 1.83E-05, 1.91E-05 and 1.92E-05 respectively. As for the lowest probability of failure for all Intact, JF and BF structure are on 0° loading direction with probability of failure value of 1.22E-14, 4.34E-14 and 5.94E-15 respectively.

4.2 Discussion

4.2.1 <u>To determine the Reserve Strength Ratio (RSR) of the intact F9JT-A</u> platform model using SACS 5.3 software.

The RSR values of the intact structure were obtained through Pushover Analysis using SACS 5.3 software and the results had been shown in table 4-1. In this project, 100 years return of storm condition which include wind, wave and current have been applied to the intact structure incrementally until the structure collapsed. It can be seen that, the highest RSR obtained for the F9JT-A intact structure was 4.344 for 0° environmental loading direction while the lowest RSR value obtained was 1.799 on 45° environmental loading direction. While for 90°, 135°, 180°, 225°, 270a°, 270b° and 315° with RSR value of 3.569, 3.333, 3.796, 2.750, 2.954, 2954 and 2.936 respectively. Different loading directions cause different RSR of the jacket structure due to different failure mechanisms in different directions, which may cause by topside failure, jacket members or joint failure, foundation failure or whole system failure.

4.2.2 <u>To determine the effect of local joint flexibilities to the RSR improvement</u> on the F9JT-A jacket structure using SACS 5.3.

Based on the results obtained by implementing all the joints to be flexible through methods suggested by Fessler and Buitrago, the Fessler method gives a less significant results on improvement of RSR value as compare with the results obtained through Buitrago method. There are total of 3 out of 9 environmental loading from pushover analysis gives positive percentage in the differences between the intact structure and the structure that implement the Fessler equation for local joint flexibility (JF method). The highest positive difference between the JF method and the intact structure in term of RSR is 6.427% for 270b°, while the other 2 environmental direction were the 225° and 270b° with RSR improvement of 0.0041% and 0.01075% when compare with the RSR of the intact structure.

While for the RSR obtained using the Buitrago local joint flexibility equations method (BF method) gives more significant results on the improvement of the RSR when compare with the intact structure and the JF method. There are total of 5 out of 9 environment loading directions where the RSR were improved, with the most significant of 21.22% of improvement of RSR for the 90° environmental loading direction, while the other environmental loadings that have RSR improvement includes 0°, 135°, 270a° and 270b° with RSR improvement of 3.3%, 0.1023%, 6.3714% and 6.3979% respectively when it is compare with the intact structure.

Even though there were improvement in term of RSR when the local joint flexibility (JF and BF) were included to the structure, there were RSR values that had a slight decrease in certain environmental loading directions with the maximum decrease in percentage of RSR for JF and BF methods were 10.99% and 0.375% respectively. It can be seen that although there were some decrease RSR values for BF method, the results of BF were far more better as compare with the JF method.

As mentioned by Onoufriou and Forbes (2001), the deformation of the structure will have significant impact on the strength of the jacket platform. In reality, structure's joints are not absolutely rigid when the structure is subjected to lateral loading, it will clearly shows flexibility at the joints. During Pushover analysis the loads were pushed incrementally to the structure in the lateral direction, thus by allowing the joints to have flexibilities will allow the loads to be redistributed to the whole jacket more effective than considering the joints to be rigid, which will in certain direction of loading cause increment and decrement in RSR values when it is compared with intact structure.

The effect of local joint flexibilities are significant when the structure is in the nonlinear behavior which is in the plastic region. It can be seen from the results, that the structure stiffness decrease when joint flexibilities were introduced and the structure was allowed to have a higher displacement compare with the intact structure when subjected to lateral loading. This is because the structure with local joint flexibilities were allowed to deflect more than the intact structure. Based on the results obtained, it can also be seen that the intact structure with rigid joints, have underestimated and overestimated the strength of the structure on certain loading directions, knowing the fact that the joints of the structure are flexible in reality. Thus, to determine a more accurate results of RSR and structure deformation, local joint flexibility should be introduced.

Moreover, when the structure with flexibilities is more ductile as it is allowed to deflect more than the intact structure. The load factor that were applied to the structure with respect to displacement will also increase and on the same time increase the displacement for certain loading directions, this means the structure with joint flexibilities can sustain higher loading compare to the intact structure. This means the structure with local joint flexibility relatively stronger than the intact structure, especially the Buitrago local joint flexibility introduced structure.

4.2.3 <u>To determine the effect of joint flexibility on structural reliability of F9JT-</u> <u>A platform through First-Order Reliability Method (FORM) and Monte-Carlo</u> <u>Stimulation (MCS) methods using MATLAB.</u>

Based on reliability index results obtained as shown in table 4-4, the highest occurrence of percentage in reliability enhancement was from BF local joint flexibility introduced structure when compare with the intact structure with total of 5 out of 9 occurrences of enhancement on loading directions of 0°,90°,125°,270a° and 270b°. The highest percentage of enhancement for Buitrago local joint flexibility introduced structure is on 90° loading direction with 8.817% of enhancement. While for 0°, 135°, 270a° and 270b° have the reliability enhancement of 1.217%, 0.0556%, 3.82875%, and 3.8443% respectively. There are also 4 out of 9 occurrence of decrease in percentage for the value of reliability index. However, the decreased reliability index was not significant when the BF local joint flexibility introduced structure was compared with the intact structure. This can be seen when the maximum percentage of decrement in the reliability index are 0.0093%, 0.0036% and 0.2396% respectively.

Meanwhile, for the Fessler local joint flexibility introduced structure has no significant results when the reliability index was compared with the intact structure. There were total of 2 out of 9 occurrence on the enhancement of reliability index, with highest percentage of enhancement of 3.8612% on 270b° loading direction and 0.00679% for 315° loading direction. While the highest decrement in percentage of reliability index was on 0° loading direction with the 2.1678 %.

By referring to table 4-5, Buitrago local joint flexibility introduced structure gives the lowest probability of failure when it is compared with the Fessler and intact structure. There were total of 5 occurrence for lowest probability of failure for BF joint flexibility introduced structure. They were the 90°, 0°, 270b°, 270a° and 135° environmental loading directions with their percentage differences of -98.984%, -51.364%, -79.525%, -79.394% and -2.5566% respectively when compared with the intact structure.

While the highest probability failure when compare with the intact structure were observed from Fessler local joint flexibility introduced structure. There were total of 4 occurrence with high probability of failure. They were 90°, 0°, 315° and 45° loading directions with percentage difference of 1783.62%, 255%, 8.196% and 3.957% when compared with the intact structure.

Reliability of a structure is the ability of the structure to perform its purpose without failing. In this project the reliability is a function of RSR. Thus the higher the RSR, the lower the probability of failure, higher reliability as a result. Hence, both results of reliability index and probability of failure were control by the RSR value obtained from objective 2. The higher the RSR value of specific structure on specific loading direction, the higher the reliability index and the lower the probability of failure, vice versa.

Since Buitrago local joint flexibility introduced structure shows the higher RSR values occurrence when it was compare with both intact and Fessler local joint flexibility introduced structure, hence, making it the structure which has the highest reliability index and lowest probability of failure. On the same time, it also means the structure is more reliable and has a lower tendency to fail when Buitrago local joint flexibility is introduce to the structure compare to Fessler local joint flexibility and the rigid intact structure.

Chapter 5: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

To conclude this project, all three objectives have been achieved. The RSR of intact structure, the effect of local joint flexibility using Fessler equations and Buitrago et al equations to the RSR, and the effect of local joint flexibility on the structural reliability of F9JT-A jacket platform have been studied in this project.

Although assumption of rigid joints for jacket structure has been a practice in the offshore industry, however neglecting joint flexibility of the structure will lead to underestimate and overestimating the strength of the structure in the real situation. This is because the joints of jacket platforms are normally welded, may possess some flexibilities cause by the welding methods on connection during fabrication and modifications.

Based on the RSR results obtained from this project, the local joint flexibility method suggested to be apply for the enhancement of structural reliability during pushover analysis is the Buitrago local joint flexibility method. This is because it provide a significant results with the maximum of 21.22% of improvement in terms of RSR value and this method was also suggested by various researchers for fatigue analysis.

In addition to that, based on the results obtained from reliability index and probability of failure, it can be concluded that reliability of the structure increased significantly with maximum of 8.817% for reliability index when Buitrago local joint flexibility was introduced. While the probability of failure of the structure reduced by maximum of 98.98% when the Buitrago local joint flexibility was introduced to the platform when it was compared with the intact F9JT-A jacket platform.

From all the results in this project, the load distributions and deformation effects due to local joint flexibility have a significant impact to the result from analysis of the F9JT-A platform. The effect of joint flexibility is recommended to be taken into various analysis for offshore jacket platforms and Buitrago local joint flexibility method is suggested as it enhanced the structure's reliability.

5.2 Recommendations

As for recommended future work of this project / similar project are as follow:

- i) It is suggested to researchers that carry out similar researches that, experimental full scale test on the tubular joints should be carry out to determine the exact capacity and deflection and to validate the results from results obtained from finite element software that estimate the ultimate strength of the tubular joints.
- Lower scale factor can be used depend on the limitation of research facilities if full scale test is not achievable.
- iii) Different types of joints including X, Y and K-joints with high sensitive sensor attached should be used for the full scale test. Finite element software should be used to model the exact material properties and dimension of the joint that gone through the full scale test to be analyse and determine the accuracy of the finite element analysis.
- Latest finite element software such as SACS 5.7, USFOS 8.7, SESAM, ANSYS or ABAQUS should be used for the non-linear pushover analysis that equipped with latest refined theories to generate a more accurate results in future researches.

References

- 1) API RP2A-WSD 'Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms', 21st Edition, Dec 2000.
- B. Asgarian, M. Lesani (2007). Pile-soil interaction in pushover analysis of jacket offshore platforms using fiber elements. Journal of constructional steel research 65 (2009) 209-218.
- Bolt, H. M., Billington, C. J., & Ward, J. K. (1996). A Review of The Ultimate Strength of Tubular Framed Structures. Health and Safety Executives. Retrieved from <u>www.hse.gov.uk/research/othpdf/200-399/oth365.pdf</u>
- 4) Choi.S.K, V. Ramana. Grandhi, and Robert A. Canfield. (2007) 'Reliability Based Structural Design', Springer-Verlag London Limited.
- 5) DNV OS-J101 "OFFSHORE STANDARD, DESIGN OF OFFSHORE WIND TURBINE STRUCTURES" JUNE 2004. Retrieved from http://homes.civil.aau.dk/rrp/BM/BM8/m.pdf
- 6) Ersdal, G. (2005). Assessment of existing offshore structures for life extension. University of Stavanger, Norway. Retrieved from www.icrard.org/upload/gerhard-Avhandling_kompl.pdf
- 7) FERUM; Finite Element Reliability Using Matlab http://www.ce.berkeley.edu/projects/ferum/
- Krawinkler, H., & Seneviratna, G. D. P. K. (1998). Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures, 20(4–6), 452-464. doi: <u>http://dx.doi.org/10.1016/S0141-0296(97)00092-8</u>
- Krawinkler H. (1994) Pushover analysis: Why, how, when and when not to use it. Structural Engineers Associatopn of California;.Retrieved from nisee.berkeley.edu/elibrary/Text/LIB050223
- 10) Kristina.W, Louis.Q, Jan.W, Holger.H, Hans-Gerd.B (2009). Stimulation Method for Joint Flexibility in Modern Offshore Support structures. Fraunhofer Institute for Wind Energy and Energy System Technology (IWES). Retrieved from <u>http://proceedings.ewea.org/offshore2009/allfiles2/221_EOW2009presentatio</u> <u>n.pdf</u>
- 11) Kurian .V.J, M.M.A. Wahab, M. C. Voon, S. S. Goh, and M. S. Liew .(2013). Reliability of Jacket Platforms in Malaysian Waters. Sensitivity Study using

Pushover Analysis. Civil Engineering Department. Universiti Teknologi PETRONAS. Retrieved from eprints.utp.edu.my/10127/1/1569763331.pdf

- 12) M.Masoud, A.Z.Hossein, A.Pejman and M.A.Assareh (2009) Effect of Joint Flexibility on Overall Behavior of Jacket Type Offshore Platforms. Khajeh Nassir Toosi University of Technology. Tehran, Iran. Retrieved from thescipub.com/PDF/ajeassp.2009.25.30.pdf
- 13) MMC Oil & Gas Engineering. Conceptual Design & Engineering Services for Kumang Cluster Development Project. Retrieved 10 December 2014, from http://www.mmcog.com/projects/conceptual-design-engineering-services-forkumang-cluster-development-project
- 14) MSL Engineering Ltd (2002). The effects of local joint flexibility on the reliability of fatigue life estimate and inspection planning. Offshore Technology Report 2001/056. Retrieved from www.hse.gov.uk/research/otopdf/2001/oto01056.pdf
- 15) Nichols.N.W, Petronas Carigali Sdn Bhd; t.k.goh, Petronas Research & Scientific Services Sdn Bhd; h. Bahar, Petronas Carigali Sdn Bhd.(2006)
 'Managing Structural Integrity for Aging Platform', Proceedings, SPE Asia Pacific Oil and Gas Conference and Exhibition, Adelaide, Australia, No SPE101000
- 16) Onoufriou, T., & Forbes, V. J. (2001). Developments in structural system reliability assessments of fixed steel offshore platforms. Reliability Engineering & System Safety, 71(2), 189-199. doi: http://dx.doi.org/10.1016/S0951-8320(00)00095-8
- 17) Randall, Robert E. (2010). Elements of Ocean Engineering. Society of Naval Architects and Marine Engineers (SNAME). Online version available at:http://app.knovel.com/hotlink/toc/id:kpEOE0000A/elements-ocean-engineering/elements-ocean-engineering
- 18) SACS 5.3 Collapse Manual
- 19) T. Sokheang.(2014). System Reliability of an Existing Jacket Platform (Failure Paths and System Reliability Index). University Teknologi PETRONAS.
- 20) Thoft-Christensen.P. (1978). Introduction to Reliability of Offshore Structures. Aalborg University, Denmark Retrieved from

http://vbn.aau.dk/files/17204971/chapter_8_introduction_to_reliability_of_of fshore_structures

21) WestLake. H.S, Puskar.F.J, O'Connor. P.E, and Bucknell.J.R. (2006). The Role of Ultimate Strength Assessments in the Structural Integrity Management (SIM) of Offshore Structures. Offshore Technology Conference, Houston,TX, U.S.A., 1-4 May 2006.Retrieved from <u>https://www.onepetro.org/conferencepaper/OTC-18331-MS</u>

APPENDIX A

Joint flexibility introduced to single chosen joint at a time for JF and BF methods.

(JF) Fessler equation joint flexibility method:

	JF base	JF base shear at	201 JF	%	
Direction	shear(kN)	collapse (kN)	RSR	differences	
90	10019.96	35777.95	3.570668	0.023272	Positive
45	19909.12	35928.98	1.804649	0.263455	Positive
0	8841.93	37831.91	4.278694	-1.51771	Negative
315	10012.53	29354.55	2.931781	-0.1481	Negative
270a	10319.19	30455.04	2.951301	-0.09591	Negative
270b	10320.47	30485.82	2.953918	0.000128	Positive
225	10013.64	27543.84	2.750632	9.99E-05	Positive
180	10018.49	38037.34	3.796714	9.98E-05	Positive
135	10189.84	33876.07	3.324495	-0.27475	Negative

201

202

Direction	JF base shear(kN)	JF base shear at collapse (kN)	202 JF RSR	% differences	
90	10019.82	35765.38	3.569463	-0.01047	Negative
45	19909.11	35573.16	1.786778	-0.72945	Negative
0	8841.87	37832.77	4.27882	-1.5148	Negative
315	10012.53	34539.44	3.449622	17.48872	Positive
270a	10319.12	30484.04	2.954132	-0.0001	Negative
270b	10320.49	30491.25	2.954438	0.017746	Positive
225	10013.64	27543.84	2.750632	9.99E-05	Positive
180	10018.49	38037.11	3.796691	-0.0005	Negative
135	10189.8	33852.51	3.322196	-0.34371	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	203 JF RSR	% differences	
90	10019.91	35773.33	3.570225	0.010855	Positive
45	19909.11	35852.17	1.800792	0.049159	Positive
0	8841.91	37770.12	4.271715	-1.67833	Negative
315	10012.53	29354.57	2.931783	-0.14803	Negative
270a	10319.14	30484.06	2.954128	-0.00023	Negative
270b	10320.43	30491.25	2.954455	0.018327	Positive
225	10013.65	27543.63	2.750608	-0.00076	Negative
180	10018.49	38037.39	3.796719	0.000231	Positive
135	10189.84	33880.57	3.324936	-0.2615	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	204 JF RSR	% differences	
90	10019.98	35769.66	3.569833	-0.0001	Negative
45	19909.11	35900.36	1.803213	0.183638	Positive
0	8841.67	34792.87	3.935102	-9.42613	Negative
315	10012.52	29345.53	2.930884	-0.17869	Negative
270a	10319.15	30484.06	2.954125	-0.00033	Negative
270b	10320.52	30490.96	2.954402	0.016504	Positive
225	10013.64	27543.84	2.750632	9.99E-05	Positive
180	10018.49	38037.33	3.796713	7.35E-05	Positive
135	10189.82	33886.81	3.325555	-0.24293	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	206 JF RSR	% differences	
90	10018.93	35739.92	3.567239	-0.07278	Negative
45	19908.72	33804.72	1.697986	-5.66261	Negative
0	8842.2	39794.31	4.500499	3.58756	Positive
315	10013.41	29353.73	2.931442	-0.15967	Negative
270a	10319.7	32475.31	3.146924	6.526075	Positive
270b	10321.65	32391.12	3.138173	6.23778	Positive
225	10013.65	27544.43	2.750688	0.002142	Positive
180	10018.4	38039.51	3.796965	0.006703	Positive
135	10190.05	33845.37	3.321414	-0.36718	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	207 JF RSR	% differences	
aon shear 90		35768.81	3.569788	-0.00138	Negative
45	19909.13	35932.39	1.80482	0.272921	Positive
0	8841.84	37900.47	4.286491	-1.33823	Negative
315	10012.66	29354.53	2.931741	-0.14947	Negative
270a	10319.16	30484.1	2.954126	-0.00029	Negative
270b	10320.5	32403.69	3.13974	6.29085	Positive
225	10013.69	27543.83	2.750617	-0.00044	Negative
180	10018.5	38037.34	3.79671	0	Negative
135	10189.88	33848.39	3.321765	-0.35662	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	208 JF RSR	% differences	
90	10018.59	35645.42	3.557928	-0.33361	Negative
45	19909.8	44819.41	2.251123	25.06883	Positive
0	8841.68	39780.86	4.499242	3.558639	Positive
315	10014.29	29355.2	2.931331	-0.16344	Negative
270a	10320.4	32451.85	3.144437	6.441901	Positive
270b	10321.42	30494.66	2.954502	0.019918	Positive
225	10014.41	36014.25	3.596243	30.74254	Positive
180	10018.44	38036.03	3.796602	-0.00285	Negative
135	10189.67	33968.95	3.333665	0.000344	Positive

Direction	JF base shear(kN)	JF base shear at collapse (kN)	210 JF RSR	% differences	
90	10020.02	35770.75	3.569928	0.002544	Positive
45	19909.12	35894.37	1.802911	0.166872	Positive
0	8841.81	39774.82	4.498493	3.541393	Positive
315	10012.43	29354.66	2.931822	-0.14673	Negative
270a	10319.08	30484.01	2.95414	0.000186	Positive
270b	10320.57	32279.87	3.127722	5.883977	Positive
225	10013.64	27544	2.750648	0.000681	Positive
180	10018.58	38036.71	3.796617	-0.00245	Negative
135	10189.84	33879.12	3.324794	-0.26577	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	301 JF RSR	% differences	
90	10019.85	35685.62	3.561492	-0.23376	Negative
45	19908.86	35932.58	1.804854	0.274811	Positive
0	8842.31	54820.28	6.199769	42.69951	Positive
315	10012.86	37893.5	3.784483	28.89358	Positive
270a	10319.1	30483.17	2.954053	-0.00276	Negative
270b	10320.82	30491.97	2.954414	0.01691	Positive
225	10013.57	27544.15	2.750682	0.001924	Positive
180	10018.48	38037.4	3.796724	0.000357	Positive
135	10189.73	33837.79	3.320774	-0.38636	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	302 JF RSR	% differences	
90	10019.92	35736.01	3.566497	-0.09358	Negative
45	19908.86	35932.58	1.804854	0.274811	Positive
0	8843.37	39495.45	4.466109	2.796003	Positive
315	10012.86	29354.66	2.931696	-0.15102	Negative
270a	10319.76	30491.61	2.954682	0.018526	Positive
270b	10320.62	32622.23	3.160879	7.006463	Positive
225	10013.88	27543.87	2.750569	-0.00219	Negative
180	10018.51	38040.91	3.797063	0.009286	Positive
135	10189.79	33969.52	3.333682	0.000844	Positive

Direction	JF base shear(kN)	JF base shear at collapse (kN)	303 JF RSR	% differences	
90	10012.48	35777.62	3.573303	0.097073	Positive
45	19909.26	35894.83	1.802921	0.167452	Positive
0	8842	38047	4.302986	-0.95858	Negative
315	10014.68	29354.69	2.931166	-0.16906	Negative
270a	10318.87	30483.18	2.95412	-0.0005	Negative
270b	10321.64	30490.96	2.954081	0.005651	Positive
225	10014.18	28253.8	2.821379	2.572135	Positive
180	10018.5	38041.82	3.797157	0.011778	Positive
135	10189.82	33812.97	3.318309	-0.46031	Negative

Direction	JF base shear(kN)	JF base shear at collapse (kN)	304 JF RSR	% differences	
90	10020.05	35776.65	3.570506	0.018739	Positive
45	19909.25	33773.91	1.696393	-5.7511	Negative
0	8841.86	49682.27	5.618984	29.33163	Positive
315	10014.64	29354.84	2.931193	-0.16815	Negative
270a	10319.15	30488.9	2.954594	0.015549	Positive
270b	10321.55	30486.04	2.95363	-0.00961	Negative
225	10013.91	27544.05	2.750579	-0.00183	Negative
180	10018.61	38935.66	3.886334	2.360555	Positive
135	10189.91	33843.04	3.321231	-0.37267	Negative

(BF)Buitrago et al joint flexibility equations method:

Joint 201

Direction	BF base shear(kN)	BF base shear at collapse (kN)	201 BF RSR	% differences	
90	10019.94	33608.46	3.354158	-6.04171	Negative
45	19909.12	35903.62	1.803376	0.192685	Positive
0	8841.9	37864.24	4.282365	-1.43321	Negative
315	10012.53	29354.57	2.931783	-0.14803	Negative
270a	10319.2	30485.23	2.954224	0.003025	Positive
270b	10320.45	30491	2.954425	0.017314	Positive
225	10013.64	27543.64	2.750612	-0.00063	Negative
180	10018.49	38037.71	3.796751	0.001073	Positive
135	10189.84	33968.85	3.3336	-0.00162	Negative

Joint 202

Direction	BF base shear(kN)	BF base shear at collapse (kN)	202 BF RSR	% differences	
90	10019.71	35714.29	3.564404	-0.15221	Negative
45	19909.1	35897.41	1.803065	0.175456	Positive
0	8841.82	37962.35	4.2935	-1.17692	Negative
315	10012.54	29354.62	2.931786	-0.14796	Negative
270a	10319.1	30484.94	2.954225	0.003043	Positive
270b	10320.48	30491.27	2.954443	0.017908	Positive
225	10013.64	27543.85	2.750633	0.000136	Positive
180	10018.49	38037.07	3.796687	-0.00061	Negative
135	10189.77	33846.99	3.321664	-0.35967	Negative

	BF base	BF base shear at	203 BF	%	
Direction	shear(kN)	collapse (kN)	RSR	differences	
90	10019.86	35773.66	3.570275	0.012276	Positive
45	19909.1	35895.81	1.802985	0.170991	Positive
0	8841.88	39797.48	4.50102	3.599561	Positive
315	10012.52	29354.61	2.93179	-0.1478	Negative
270a	10319.14	32460.06	3.145617	6.48183	Positive
270b	10320.39	30491.27	2.954469	0.018781	Positive
225	10013.65	27543.83	2.750628	-3.6E-05	Negative
180	10018.49	38037.41	3.796721	0.000284	Positive
135	10189.84	33880.07	3.324887	-0.26297	Negative

Direction	BF base shear(kN)	BF base shear at collapse (kN)	204 BF RSR	% differences	
90	10019.96	35769.7	3.569845	0.000207	Positive
45	19909.11	35893.88	1.802887	0.165555	Positive
0	8841.82	37858.22	4.281723	-1.44799	Negative
315	10012.48	29354.56	2.931797	-0.14757	Negative
270a	10319.15	30484.97	2.954213	0.002657	Positive
270b	10320.52	30490.95	2.954401	0.016471	Positive
225	10013.65	27543.84	2.750629	0	Negative
180	10018.49	38037.32	3.796712	4.72E-05	Positive
135	10189.82	33887.53	3.325626	-0.24082	Negative

	BF base	BF base shear at	206 BF	%	
Direction	shear(kN)	collapse (kN)	RSR	differences	
90	10018.38	35729.98	3.566443	-0.09508	Negative
45	19908.43	35904.28	1.803471	0.198	Positive
0	8842.29	39830.58	4.504555	3.680919	Positive
315	10013.77	34764.5	3.47167	18.23964	Positive
270a	10318.71	32494.17	3.149054	6.598166	Positive
270b	10320.8	32572.07	3.155964	6.840066	Positive
225	10013.39	27544.56	2.750773	0.005211	Positive
180	10018.34	38037.88	3.796825	0.003017	Positive
135	10190.1	33819.85	3.318893	-0.44279	Negative

Direction	BF base shear(kN)	BF base shear at collapse (kN)	208 BF RSR	% differences	
90	10018.59	35760.34	3.569398	-0.01229	Negative
45	19909.79	35938.71	1.805077	0.287233	Positive
0	8841.67	39791.16	4.500412	3.58557	Positive
315	10014.29	29302.88	2.926107	-0.34138	Negative
270a	10320.4	32493.84	3.148506	6.579628	Positive
270b	10321.42	30496.11	2.954643	0.024674	Positive
225	10014.41	27544.12	2.750449	-0.00657	Negative
180	10018.44	38036.01	3.7966	-0.0029	Negative
135	10189.67	33968.95	3.333665	0.000344	Positive

Direction	BF base shear(kN)	BF base shear at collapse (kN)	301 BF RSR	% differences	
90	10019.8	35709.84	3.563927	-0.16555	Negative
45	19908.89	33946.4	1.705088	-5.26804	Negative
0	8842.43	36896.88	4.172708	-3.95716	Negative
315	10013.02	29353.99	2.931582	-0.15489	Negative
270a	10319.06	30479.07	2.953667	-0.01583	Negative
270b	10320.91	32422.96	3.141483	6.349835	Positive
225	10013.52	27544.54	2.750735	0.00384	Positive
180	10018.51	38037.57	3.796729	0.000505	Positive
135	10190.03	33839.02	3.320797	-0.38567	Negative

Direction	BF base shear(kN)	BF base shear at collapse (kN)	302 BF RSR	% differences	
90	10019.94	35740.79	3.566966	-0.08042	Negative
45	19908.89	33946.4	1.705088	-5.26804	Negative
0	8843.95	39822.55	4.502801	3.640559	Positive
315	10013.13	29279.85	2.924146	-0.40817	Negative
270a	10319.9	32398.59	3.139429	6.272357	Positive
270b	10320.65	32626.79	3.161312	7.021109	Positive
225	10013.84	27539.8	2.750174	-0.01656	Negative
180	10018.53	38039.65	3.796929	0.005774	Positive
135	10189.76	33969.78	3.333717	0.001904	Positive

Direction	BF base shear(kN)	BF base shear at collapse (kN)	303 BF RSR	% differences	
90	10019.91	35778.77	3.570768	0.026063	Positive
45	19909.68	35889.98	1.80264	0.151805	Positive
0	8841.97	38134.62	4.31291	-0.73015	Negative
315	10014.62	29317.65	2.927485	-0.29443	Negative
270a	10315.96	39485.08	3.827572	29.5666	Positive
270b	10321.7	30490.51	2.95402	0.003594	Positive
225	10014.33	27543.64	2.750423	-0.00752	Negative
180	10018.51	38041.88	3.797159	0.011836	Positive
135	10189.81	33297.15	3.267691	-1.9787	Negative

Direction	BF base shear(kN)	BF base shear at collapse (kN)	304 BF RSR	% differences	
90	10020.07	35775.72	3.570406	0.015939	Positive
45	19909.32	35898.48	1.803099	0.177335	Positive
0	8841.78	37666.09	4.260012	-1.9477	Negative
315	10014.56	29354.98	2.93123	-0.16688	Negative
270a	10318.55	30487.2	2.954601	0.015788	Positive
270b	10321.55	30486.17	2.953643	-0.00919	Negative
225	10014.01	27544.16	2.750562	-0.00243	Negative
180	10018.66	38034.61	3.796377	-0.00877	Negative
135	10189.94	33968.8	3.333562	-0.00275	Negative
APPENDIX B

Guide to include local joint flexibility in SACS model and collapse input.

100 years environmental loads for 45° loading direction in SACS' Datagen:

LOADCN	63								
LOADLB	63 STORM WA	AVE & C	UR DIR 45°						
CURR									
CURR	0.000	0.000	45.000	0.700		US	LN	AWP	
CURR	9.460	0.550	45.000						
CURR	47.300	0.950	45.000						
CURR	94.600	1.200	45.000						
WIND									
WIND D F	24.0		45.0						
WAVE									
WAVE0.95	STOK 11.70	94.60	10.60	45.00	D	0.00	5.00	72MM10	1 1

Introducing local joint flexibility:

Edit in option from SACS' model file (SACINP.F9JT-A)

Edit in collapse input: to include BF local joint flexibility

💷 C:\Users\Asus\Deskt	top\new	f9\bf\a	ll first l	ayer pr	imary\	clpinp.	F91									
CLPOPT 20 CLPOP2 0.25 CLPRPT P1R1M1	8 20 20) .0 SMMS	SPW	CN	LHE Set opt	LEEF P SF2U 0.10.001 0.01 Set BF here for BF local joint flexibility option, same goes to JF					0.01		0.002			
JFSEL I 201	202	203	204	1												
LDSEQ AAA		I	DL	5			1.LL(01	5		1.	.0ST(01 2	25		5.
GRPELA	1A1	1A2	1A3	1A4	1A6	1A7	1A8	1A9	1AH	1B1	1B2	1B3	1B5	1B6	1B7	
GRPELA	2A4	3A3	3A4	3A6	3A7	3A8	3A9	4A1	4A2	4A3	4A4	4A5	4 A6	4A7	4A8	
GRPELA	4A9	5A5	BL1	BL2	BL3	BL4	BL5	BL6	BL7	BSS	BST	C1A	C1C	C1G	C1L	
GRPELA	C2D	C3G	C4G	C5G	CON	CRB	CRC	CRA	CRN	CS1	CT1	D1A	D1B	D1C	D1G	
GRPELA	D1H	D1I	D1J	D1K	D1L	D1M	D1P	D1R	D1S	D2A	D2B	D2G	DL1	DL2	DL3	
GRPELA	DL4	FAA	FAB	FAC	FAD	FAE	FAG	JST	JT1	JT2	P1B	P1C	P1D	P2A	P2B	
GRPELA	P2C	P2D	P2E	P2F	P2G	P2F	P2J	P3D	P4A	P4B	P4C	P4E	P4G	P4H	P4I	
GRPELA	P4J	P4L	P4M	P4N	P5G	P5H	P6G	P6J	RG1	RG2	RG3	RGS	RGT	RS1	RS2	
GRPELA	RS3	RS4	RT1	RT2	RT3	RT4	T11	T13	T14	т22	TG5	TH5	TV5	TV6		
END																

COLLAPSE Options			×
Max.Iterations Per Load Incmnt		20	
Number of Member Segments		8	
Max. No. of Member Iterations		20	
🗖 Treat skipped members as plastic		Continue if Max. Iterations Exceeded	
Include Local Buckling Effects	 YES 	© NO	
Local Buckling Method		20 🗸	
Joint Flexibility Effects	C None	⊂ JF @ BF	
Include Pile Plasticity			
Joint Strength Check Option		None 💌	
All Members Elastic		🔽 Create model file w/ final defl. shape	
Deflection Tolerance (CM)		0.1	
Rotation Tolerance (RAD)		0.001	
Member Deflection Tolerance (CM)		0.01	
Collapse Deflection (CM)		.0	
Strain Hardening Ratio		0.002	
	1	1	
	: Prev	Next > OK Cancel H	elp

To include local joint flexibility for joints 201,202,203, 204

C:\Users\Asus\Desktop\new f9\bf\all first layer primary\clpinp.F91							
CLPOPT 20 CLPOP2 0.25 CLPRPT P1R1M1	8 20 20.0 SMMSPV	CN L	B <mark>BB</mark> PP	SF2U	0.10.001 0.01	0.002	
JFSEL I 201 LDSEQ AAA GRPELA	L option is used 202 203 2 DL 1A1 1A2 17	to include 204 5 A3 1A4 1	any joint that ne 1.LL0 A6 1A7 1A8	ed to be account 1 5 1A9 1AH 1B1	for joint flexibility 1.0ST01 25 1B2 1B3 1B5 1B6	5. 1B7	
GRPELA GRPELA GRPELA	2A4 3A3 3A 4A9 5A5 BI C2D C3G C4	A4 3A6 3 L1 BL2 B 4G C5G C	A7 3A8 3A9 BL3 BL4 BL5 CON CRB CRC	4A1 4A2 4A3 BL6 BL7 BSS CRA CRN CS1	4A4 4A5 4A6 4A7 BST C1A C1C C1G CT1 D1A D1B D1C	4A8 C1L D1G	
GRPELA GRPELA GRPELA	D1H D1I D1 DL4 FAA FA P2C P2D P2	1J D1K D AB FAC F. 2E P2F P	D1L D1M D1P TAD FAE FAG D2G P2F P2J	D1R D1S D2A JST JT1 JT2 P3D P4A P4B	D2B D2G DL1 DL2 P1B P1C P1D P2A P4C P4E P4G P4H	DL3 P2B P4I	
GRPELA GRPELA END	P4J P4L P4 RS3 RS4 R1	4M P4N P T1 RT2 R	75G P5H P6G RT3 RT4 T11	P6J RG1 RG2 T13 T14 T22	RG3 RGS RGT RS1 TG5 TH5 TV5 TV6	RS2	

ſ	Joint Flexibility Joint Selection		×
	Include or Exclude	INCL	C EXCL
	1st Joint		201
	2nd Joint		202
II.	3rd Joint		203
	4th Joint		204
1	5th Joint		
	6th Joint		
5	7th Joint		
	8th Joint		
2 2	9th Joint		
	10th Joint		
	11th Joint		
	12th Joint		
	13th Joint		
	14th Joint		
	<prev next=""></prev>	ОК С	ancel Help
L			