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ABSTRACT 

There are much more concerns nowadays on the reliability and integrity asset 

management of oil and gas sector since that this industry is always being viewed as 

an ever-changing large scale development under complex environment. In facts, two 

problems have been identified in this project. Firstly, In Malaysian water where 

jacket structure is highly adopted as the offshore platforms, 65% these structures are 

found to be operating exceed its original design life. In addition to the extra loading 

and fatigue imposed on the jacket members, one of the biggest obstacles being faced 

by offshore operator is corrosion; which addresses the second problem. In facts, 

corrosion is a detrimental process which causes material loss and member strength 

degradation. Putting together these issues, this project aims to analyze corrosion 

effects on structural reliability of an aging jacket platform in Malaysian water. 

 From the scope, this project will first review and select an adequate offshore 

jacket platform as the main source of study. In this case, platform F9, an asset from 

PETRONAS Carigali Sendirian Berhad located at Sarawak water is chosen. In this 

project, the structure is assumed to be subjected to general corrosion which is the 

uniformly distributed material loss with length and width more than three times of 

the un-corroded wall thickness. Apart from that, the corrosion will be simulated on 

splash zone of the jacket because this location consists of most critical members in 

the structure with substantive exposure to corrosion. In particular, the splash zone 

will be further divided into three groups and applied with different percentages of 

material loss in order to obtain a comprehensive comparison between members. 

 In order to address the project objective, the model for F9 will first be 

simulated in Structural In-place Analysis and Computer Modeling Software (SACS). 

Each of the member segments area in the predefined group will then be reduced to 

account for corrosion. Next, non-linear pushover analysis will be done on each set of 

model to compute the ultimate strength and derive Reserve Strength Ratio upon first 

member failure and platform collapsing. With the input from SACS analysis, 

reliability analysis will be conducted in MATLAB. In this stage, series of algorithm 

will be utilized to derive reliability index of the particular jacket platform. Ultimately, 

the final result will be expressed in term of probability of failure and to be compared 

with previous researches as well as industrial benchmark.  
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CHAPTER 1 

INTRODUCTION 

1.0 INTRODUCTION 

    1.1 Background 

Over the past decades, exploration and production technologies in Malaysia 

upstream industry had been improving by leaps and bounds, particularly in deep 

water areas to enhance field productivity. With regard to enhanced oil recovery, 

demand for effective asset management had been escalating. While the resource 

optimization is being prioritized, integrity and reliability of the offshore structures 

should not be compromised. In specific, 65% of offshore platforms in Malaysian 

Water were found to be exceeding the original design life which range from 20-30 

years (Wong, Ayob, Kajuputra & Mukherjee, 2014). With respect to these 

predicaments, there are much more concerns nowadays on the ability of structure 

to withstand loadings in which it may not have been originally designed for. 

 In addition to these loadings, offshore platforms were substantively subjected 

to environmental loading such as wave, wind and tidal as well as varies 

uncertainties throughout its service life. For instances, jacket legs platform which 

utilizes steel structure to provide a firm support at water depth less than 200 

meters are prone to corrosion due to significant exposure in seawater immersion. 

For a corrosion to take place, corroded metal will lost its electron to water and 

oxygen, forming hydroxyl ion. These ions will then react with ferrous ions and 

further oxidized to produce hydrated ferric oxide, brownish rust that are 

commonly observed. Further deterioration will not only damage the structure but 

also substantively degrade platform’s capacity to perform its designated functions. 

 Meanwhile, reliability is the probability that a system will deliver its function 

over a specific period of time. In particular, structural reliability governs the 

process to calculate and predict the chance of limit state violations at any stage 

during structure’s life. Within this reliability framework, there are two major 

concerns governing the outcome, namely load on system and structural capacity. 

System load is a random variable with stochastic process within a given time 



horizon (Melchers, 2005). On the other hand, structural capacity is a function of 

strength which is subjected to uncertainties in terms of fatigue and corrosion. In 

the worst case scenario, upcrossing of system load beyond its capacity results in 

structural failure. From both elements, uncertainty is a crucial to express the 

relative frequency of certain realizations for random variables. 

 Relationship between corrosion as the uncertainty and the structural system 

resistance can thereby be scrutinized through several means, one of it involve 

static pushover analysis. As a non-linear method, characteristics of jacket steel 

members in plastic stage are fully utilized in order to predict deformation imposed 

on structures. In this case, similar theory is adopted to determine the ultimate 

capacity with responses to environmental loading. In particular, this analysis 

simulates possible variation of components and applies factored extreme design 

events to the extent that first member failure or structural collpase had taken place. 

While the iterative analysis is running, potential failure of various structural 

components can be observed and monitored from every single load step. The 

program will be terminated given that prescribed criteria are satisfied. 

 Based on the output from pushover analysis, Reserve Strength Ratio (RSR), 

as the ratio of failure strength with design strength can then be formulated as an 

approach to examine the structural reliability. Eventually, final results will be 

expressed in terms of probability of failure for different corrosion cases occurred 

on critical zones in jacket members. From civil engineering perspectives, the use 

of relevant corrosion data and existing Malaysian Water jacket platform model in 

conducting this study is vital to adequately reflect the actual condition. 

1.2 Problem Statement 

 In Malaysian water where jacket platform design is highly adopted, it was 

found out that many of these offshore structures are currently operating beyond 

the design life. With on-going corrosion being taken place on aging upstream 

facilities, structure reliability and operation will be affected. The implication of 

corrosion is an imperative factor to review the reliability while justifying the 

adequacy of these structures. This paper relates corrosion impact on structural 

reliability through determination of Reserve Strength Ratio which will be further 

derived into the probability of platform failure. 



1.3 Objective And Scope Of Study 

 This project aims to analyze corrosion effects on structural reliability of an 

aging jacket platform in Malaysian water. With respect to the objective, the 

implication of material loss and deterioration will be related to the structure 

ultimate capacity degradation. Information on corrosion are gathered and 

simulated on jacket platforms of Malaysian water which scatters across Peninsular 

Malaysia, Sabah and Sarawak. To date, there are approximately 300 fixed 

offshore structures that are mostly located at shallow water and operating exceed 

its design life, thereby being termed as “aging platform” (Zawawi, Liew & Na, 

2012). In this project, platform F9, a four-legged jacket platform from 

PETRONAS Carigali Sendirian Berhad (PCSB) located at Sarawak water will be 

used as the main source of study. Based on the corrosion data, the structural 

reliability will be scrutinized by looking into the Reserve Strength Ratio (RSR) of 

F9 platform which is determined from non-linear pushover analysis.  After that, 

from a probabilistic approach, RSR will be used as an input together with specific 

algorithm to compute final result in terms of probability of platform failure. 

 At the same time, the scope of the study clearly defines corrosion based on 

characteristics, principle and model used for the analysis. In specific, being 

located at the middle of the sea which possesses significant electrolytes that 

escalate corrosion, jacket structures are highly prone to corrosion despite that 

cathodic protection and surface coating had been applied. Thus, distinctive 

differences were observed between corrosion behavior of onshore, coastal and 

offshore facilities. In this project, two main references will be used throughout the 

project, namely PETRONAS Technical Standard: Design of Fixed Offshore 

Structures (Working Stress Design) as well as American Petroleum Institute 

Recommended Practice 2A-WSD.  

 In specific, the structure is assumed to be subjected to general corrosion 

which is the uniformly distributed material loss with length and width more than 

three times of the un-corroded wall thickness. This paper will mainly focus on 

aerobic corrosion of offshore jacket structures which occurs under the presence of 

oxygen throughout the jacket members, to be simulated based on industrial 

practice, inspection and maintenance guideline adopted from PCSB. Twelve cases 



of corrosion implication will be generated to provide a useful insight on the results 

for further comparison and interpretation in later stage.  

 By that, existing jacket structural model will be simulated in Structural In-

place Analysis and Computer Modeling Software (SACS) with the corrosion input. 

The scope involves modification of steel structural member in static in-place 

analysis to account for material loss due to deterioration. In facts, the simulation 

will be conducted on splash zone area of the jacket structure due to its standing as 

the critical structural region which is subjected to significant corrosion. The splash 

zone will be further divided into three groups and applied with different 

percentages of material loss. Since that most of the jacket member is made of 

tubular section to resist environmental load from all direction in similar behaviors, 

the material loss will be done through reduction of tubular members’ diameter and 

thickness. Next, from metocean data, incremental load effects will be generated in 

non-linear pushover analysis on the entire jacket structure that had been subjected 

to different extents of corrosion. When the structure had yielded and lost its 

stiffness, its ultimate strength capacity in terms of base shear upon first member 

failure and collapsing can be determined to compute Reserve Strength Ratio. 

Besides, the scope of study will also include the reliability analysis done in 

MATLAB with principles based on Response Surface Method, a collection of 

mathematical and statistical techniques for empirical modeling. Meanwhile, 

probabilistic values of waves, wind and current at Malaysian water will be created 

to define an algorithm with alterable variables to accommodate different situations.  

In this case, First Order Reliability Method (FORM) which characterizes these 

random variables by their first order function expansion will be used. Ultimately, 

reliability index, β will be computed to represent the probability of failure for 

particular platform. In overall, this projects aims to address the objectives based 

on two stages which involved static non-linear analysis and reliability assessment. 

Both phases are interelated in order to provide a feasible prediction for F9 

platform reliability which approaches can be utilized on other platforms in 

Malaysian water too. It was believed that the determination of β value is 

imperative in a way that returns period of extreme condition which will cause 

structure failure can be obtained and disseminated to the platform operators in 

order to safeguard life, asset and environment. 



CHAPTER 2 

LITERATURE REVIEW 

2.0 LITERATURE REVIEW 

While there is much more concerns nowadays on the state-of-the-art technologies in 

petroleum exploration and production, the structural reliability of offshore platforms 

should not be looked from a narrow and shallow context. In particular, South China 

Sea which accommodates most of the Malaysia jacket platforms was described by Qi, 

Zhang and Shi (2010) as a dynamic, complex sea facing with extreme wind, wave 

and current stretching all the way along its area from North to South. In line with 

intense environment across the South China Sea, Wong, Ayob, Kajuputra and 

Mukherjee (2014) quoted that the ageing offshore structures in Malaysia on South 

China Sea had been escalating with 65% of it exceeding its design life upon 2014. 

Under these predicaments, Stacey and Sharp (2007) added that besides than extreme 

environment loading, offshore installation also cooped up with several failure 

mechanisms such as fatigue and corrosion.  

Generally, jacket legs platforms serve the purpose to support topside at water 

depths up to 200 meters as well as to withstand environmental and accidental load 

during oil extraction operation (Honarvar, Bahaari, Asgarian & Alanjari, 2007). 

Dong, Moan and Gao (2011) too, expressed that besides than oil and gas sector, 

jacket had been adopted as substructure for wind turbine to withstand cumulative 

fatigue damage generated by wind loads. Despite these advantages, Rodrigues and 

Jacob (2005) used the words “redundant” to describe ageing jacket legs structures 

which are subjected to progressive collapse under failure mode triggered by 

corrosion and damage. According to the authors, there is a tremendous need to 

perform global non-linear analysis which identifies the strength reserve between the 

first member failure and the global failure of the structure. Bao, Wang and Li (2009) 

had conducted similar pushover analysis for a jacket platform in Bohai, China by 

modeling the members with large displacement and modifying non-linear beam-

column elements as linear elements. From their study on corrosion and damaged 

members, Residual Strength Factor (RSF) was derived from ratio of ultimate lateral 

capacity of the degraded platform to original platform, and the lowest RSF was 



observed along with lowest Reserved Strength Ratio, indicating that particular 

direction was dangerous case for the platform.  

At the same time, Asgarian and Lesani (2009) shared the same perception 

that similar approach can be used through finite elements model of jacket to observe 

the structural behavior. In terms of support type, Zhang and Jin (2010) highlighted 

that bearing capacity with fixed support is larger than that of nonlinear spring support, 

indicating pile-soil interaction should be simulated from the latter mode for more 

critical results. In addition, Wong et al. declared that most of the offshore platforms 

are designed to be fit-for-purpose. However, with plenty of structural degradation 

mechanisms, reliability and safety of an offshore structure can be exposed to several 

types of failure and threats. To name a few, they criticized that many of the ageing 

platforms in Malaysia are experiencing serious corrosion. 

From their study on corrosion rate with respect to time, Melchers and Jeffrey 

(2005) quoted that the relationships between both parameters tend to become non-

linear as time goes by. Zhang, Beer, Quek and Choo (2010) elaborated the scenario 

by dividing corrosion into several phases, namely kinetic, oxygen diffusion and 

anaerobic stages. From the research done by Zhang et.al, they used a simple plate 

model to relate the corrosion impact to ultimate resistances which were later 

subtracted by environmental loads to compute reliability. In the attempt to look after 

and analyze ageing jacket structures, attention had been given to the prediction of 

corrosion losses and maximum pit depth (Melchers & Jeffrey). Salau, Esezobor and 

Omotoso (2011) shared the similar insight that as corrosion areas are spreading, 

stress concentration developed at the tip of the defect increases. They compared three 

jacket models with series of data and concluded that structure subjected to corrosion 

and fatigue was categorized in high risk zone and extremely vulnerable to failure. 

Momber, Plagemann and Stenzel (2014) termed this phenomenon as “corrosive 

stress” which plays a significant role together with fatigue stress in jacket 

degradation. To explain the relationship between mechanical and corrosive stress, a 

corroded component with fatigue crack is more vulnerable to failure mechanism than 

uncorroded member with fatigue crack. However, Melchers and Jeffrey expressed 

that the types of alloy will not significantly govern the corrosion process until 

bacterial invaded the system. Regardless of the type of steel being used, Wheat and 

Liu (2005) highlighted that corrosion protection is essential for marine structures 



while latest technology enables corrosion inhibitor, electrical and chemical sensor to 

be applied throughout the substructure and topside coating system. 

Parameters such as fatigue, corrosion and environmental loads are viewed as 

uncertainties which help to derive reliable predictions regarding the safety of the 

engineering structures (Zhang et al.). To scrutinize into this issue, Melchers and 

Jeffrey used a model within a probabilistic framework to predict the future behavior 

and performance under these uncertainties. From the results, they expressed that 

laboratory corrosion model possesses limitation to replicate the actual process taken 

place during field exposure. To relate it with structure, Zhang et al. added that this 

probabilistic model express material loss due to corrosion as a function of time. With 

respect to that, a bias function was introduced to account for difference between 

predicted loss and actual loss derived from data. Melchers (2005) cited that asset 

management utilizes reliability analysis to estimate the probability of structure safety 

within the life cycle. To study on structural reliability, he suggested that First Order 

Reliability Method (FORM) can be used to approximate the actual probability 

function with iteration process. By that, effect of corrosion can be interpreted in 

software based on time-invariant theory. With respect to that, similar reliability 

assessment using FORM had been done by Silva, Garbatov and Soares (2014) too, to 

derive at a reliability index which showed that localized corrosion is more likely to 

cause structural failure comparing to distributed corrosion. However, they pointed 

out that random corrosion is more likely to be triggered by bacterial corrosion or in 

the case of liquid accumulation. In randomly distributed corrosion wastage, they 

reported that the structure responded to corrosion degradation with sharp decrement 

in reliability index few years after coating failure. 

Platform life extension, in another word, delay in decommissioning is crucial 

for offshore structure to be used beyond its design life without compromising the 

structural integrity (Solland, Sigurdsson & Ghosal, 2011). Galbraith, Sharp and Terry 

(2015) addressed the concern that besides than changing loads, fatigue and corrosion, 

accumulation of changes made for operational effects over the years can also 

depreciate an offshore structure. Copello and Castelli (2013) claimed that 

reassessment can be done through the update of model with sufficient data from 

inspection and monitoring. This statement is agreed by Haagensen, Larsen and 

Vardal (2014) who pointed out that traditional approach which do not consider the 



actual site data during design tend to produce conservative estimation of structure 

life. Wright (2011) in his researched indicated that the key to life extension is to 

prolong the mature stage of life cycle where the production is steady. With respect to 

that, Hudson (2009) highlighted that identifying key asset reliability through risk 

management was crucial to assess the status of structure. Alternatively, from a 

technical perspective, similar outcome can also be achieved through the comparison 

of Reserve Strength Ratio (RSR) with standard to measure the ratio between the 

design loads and the collapse capacity of the structure (Ersdal, 2005). Apart than 

corrosion and fatigue addressed by Momber et. al, the author also included a wider 

scope of failure modes in structure which also addressed loss of stability, dropped 

object and progressive damage. In facts, in order to justify that an ageing offshore 

platform is fit for purpose, demonstration of adequate performance through structural 

assessment is a necessary requirement (Galbraith, Sharp & Terry). 

There are many different approaches being used to simulate corrosion and 

reliability. To start with corrosion modeling, Paik and Kim (2012) used actual 

corrosion data to derive a time-dependent empirical corrosion model for marine 

structure. From the results, probability density distribution patterns for corrosion 

were varied and irregular as the ages of structures increased. However, Bekker et. al 

(2011) criticized that simple probabilistic corrosion model tend to have lesser self-

descriptiveness and reliability. Thus, they proposed three types of advanced models, 

namely regression, deductive and inductive method in simulating corrosion. In facts, 

the authors showed preference on inductive model due to its accuracy in corrosion 

damage distribution and stable result throughout the study life. On the other hand, 

instead of empirical model, Mejri, Cazuguel and Cognard (2010) proposed a similar 

time-variant simulation but with two dimensional mechanical model to study 

structure corrosion. Under the complex stochastic loads application and non-linear 

degradation, the authors highlighted that robust simplified numerical strategies 

should be utilized to balance between local or global scale modeling. With regard to 

that, Chaves and Melchers (2014) added that the biggest challenge in this case was 

the inconsistency of maximum corrosion depths with its ever-changing characteristic 

from a long-term perspective because it was always being poorly and wrongly 

estimated or modeled.  



Apart from that, Mohd and Paik (2014) used Multifinger Imaging Tools (MIT) 

to detect the corrosion of well tube which results can be statistically analyzed into 

probability function for prediction of time-dependent corrosion behavior. The 

following figure demonstrated the sample of results obtained from the MIT 

measurement expressed in material loss proposed by Mohd and Paik. 

 

Figure 2.1: Typical Cross Sectional View of a Corroded Tube (Mohd & Paik, 2014) 

Sharing the similar view with Mohd and Paik, Wang, Wharton and Shenoi (2014) 

stressed the importance on material thickness with respect to corrosion by using three 

types of plates in their study, namely perfect thick, perfect thin and imperfect plates 

to examine the implication. They believed that various thickness changes due to 

corrosion imply a necessity to determine the ultimate strength as to rationalize 

structural behavior with respect to the degradation. Despite the usefulness of 

corrosion data to be considered into structural members, the implication of corrosion 

should not be overlooked. Solland, Sigurdsson and Ghosal in one of their case study 

expressed the concern that when a member degraded, it can possibly increase the 

failure probability of nearby members. It is due to the reasons that moments and 

stresses for the degraded members had been redistributed to the surrounding 

members resulting from large robustness and redundancy of jacket members. Under 

multiple failure mechanisms and complex predicaments, Wong, Ayob, Mukherjee, 

Kajuputra and Salleh (2014) used the term of “requalification” to relate the ultimate 

strength analysis to the reliability of the platform. Thus, similar models being 

adapted with link to reliability shall be scrutinized next. 

Based on Zhang et.al study on uncertainty, a probabilistic corrosion model 

was implied to measure the impact on ultimate resistance which explicitly affects the 

overall reliability. Asgarin and Lesani, on the other hand mentioned that pushover 



analysis as part of reliability test is widely adopted to assess ultimate limit state of 

jacket structure by applying load and displacement to the extend where the structure 

collapses. In their research, a non-linear fiber element named as “Fiber Beam-

Column Post Buckling Element” is used for the modeling of jacket member behavior 

within the non-linear deformation and load-displacement range. Similar approach 

had been used by Wong et al. in determining the ultimate strength of jacket structures 

in Malaysia water. Based on their case study of an eight-legged jacket leg platform 

which had been subjected to substantive scouring across the the 15 years’ service life, 

Wong et.al compared the implication of structure failure and component failure, and 

reported that vertical bracing of the jacket members are highly subjected to failure 

upon analysis even though it allows the structure to deflect without collapse. With 

similar approaches to find the critical location, Kovalenko and Kim (2009) who did 

durability evaluation of offshore structures concluded that corrosion occurrences 

were dominated at splash zone and underwater zone rather than above water. In 

addition, from the limit state equation of global failure mode, Bao, Wang and Li 

(2009) were able to determine the reliability of the platform with Monte Carlo 

simulation method. They first computed Reserves Strength Ratio (RSR) by dividing 

the ultimate lateral capacity in terms of the ultimate base shear to the base shear 

produced by 100-year return period, and then used the lowest RSR among the load 

direction for the analysis. There were two important findings from Bao et al. Firstly, 

the corrosion had greatly impacted the reliability compared to damaged member. 

Secondly, it was found out that diagonal bracing significantly influent residual 

strength and system reliability, which agreed upon results obtained by Wong et al. 

mention earlier.  

Critically, most of the previously done researches prioritize on derivation of 

system reliability based on overall system strength, which are rather straightforward 

and may have overlooked the importance of structural component roles in strength 

degradation. Thus, this project aims to fill in the observed gap by providing a more 

explicit modeling of jacket platform with respect to the corrosion, which will be 

simulated in reliability analysis eventually. It was believed that the focus on member 

strength degradation due to material loss utilizes a more direct approach in 

scrutinizing relationship between corrosion and reliability. 



CHAPTER 3 

METHODOLOGY 

3.0 METHODOLOGY 

3.1 Research Methodology 

Corresponding to the corrosion which takes place on offshore jacket platforms, the 

theory adopted will be based on model developed by Melchers. Assumptions are 

made that corrosion at ageing fixed offshore structure is caused by aerobic 

corrosion activity in phase one and two as proposed in Melchers's model. In 

particular, the corrosion is governed by concentration of oxygen and diffusion of 

oxygen through the rusted area to deteriorate the member. During both phases, 

corrosion occurs under simultaneous presence of water and oxygen which is 

highly relevant to the offshore steel structures which have significant exposure to 

the sea water. Anaerobic corrosion, in this case, is omitted due to information on 

presence of bacteria is limited.   

 

Figure 3.1 An Overview and Perspective of the Studied Platform 



 In this project, platform F9, an existing four-legged jacket model located at 

Kumang Cluster, Sarawak water selected from PETRONAS Carigali Sdn. Bhd. 

assets will be viewed in SACS and modified with respect to the corrosion.  

 First and foremost, the splash zone area of the jacket platform is identified 

from the SACS model. From the technical standard provided by PETRONAS, 

splash zone is defined as that region below +5.0m MSL and above -3.0m MSL for 

Malaysian waters with seabed subsidence calibration. As explained earlier, splash 

zone is chosen as the main focus due to its location which is extensively exposed 

to corrosion effects. Once that all the members located within the splash zone had 

been selected, the corrosion will be applied on three groups of members: 

 

Figure 3.2 Members of Group 1, 2 and 3 (from left) are Highlighted 

Table 3.1 Splash Zone Member Classification 

Group Members With Corrosion 

1 All the diagonal bracings 

2 All the horizontal and vertical bracing 

3 All the jacket leg 

 In each group, the material loss due to corrosion will be expressed in terms of 

reduction of total volume based on percentages. For example, given that corrosion 

occurred on particular circular hollow section member. Based on the member 

dimension, the total volume of steel is computed. Next, the reduction in volume 

will be applied to calculate remaining volume of steel after corrosion. By that, 

backward calculation will be used to determine equivalent member diameter 

assumed than the thickness remained constant. The newly defined equivalent 



diameter with respect to the corrosion loss will be used to replace the existing 

member. As the result, smaller diameter is expected to yield more critical result 

than the original member without corrosion. Nevertheless, similar approach will 

be repeated by setting the outer diameter as constant in order to calculate 

equivalent thickness. 

 As mentioned above, the rate of corrosion will be expressed in terms of 

reduction in member volume. In this paper, 10% and 25% reduction will be 

applied respectively. The reason is because based on PCSB topside inspection 

guideline, material loss more than 25% is considered as advanced deterioration 

(P1), which will undergo maintenance immediately. Therefore, possibility of 

splash zone member with deterioration more than 25% is less likely to be existed 

without replacement for a long period of time. Mean whiles, material loss from  

10% - 25% is termed as significant deterioration. By that, four different scenarios 

will be implemented as summarized in the following table.  

Table 3.2 Simulation Cases for Each Group of Member 

Simulation Material Loss Constant Variable 

Case 1 10.00% Thickness Equivalent Diameter 

Case 2 10.00% Diameter Equivalent Thickness 

Case 3 25.00% Thickness Equivalent Diameter 

Case 4 25.00% Diameter Equivalent Thickness 

 Apart from that, the load case applied on the structures will be combination of 

dead load and live load. Extra attention should be paid to environmental data 

which includes wave, wind, current, tidal and even seismic load if applicable. 

Additional loads due to changes across the years will be added to the original load 

cases to achieve more accurate outcomes. Once that all the loads had been 

simulated, the system will determine the critical load combinations and applied to 

the platform for largest impact during static analysis.  

 Upon completion of member replacement, push-over analysis will be 

conducted. The platform model will then be subjected to incremental load until 

the structure collapse in order to study the consequence of strength deterioration. 

This type of non-linear approach aims to predict force and deformation demands 

imposed on the structure. In particular, the storm load and live load will be applied 



from all eight different directions to determine the most critical direction. 

However, for platform F9, the total number of analysis for each case will be nine 

instead of eight due to load combination 07 and 08 are both accounted for load 

from direction 270° as created by the model file developer. In SACS, collapse files 

will be inserted alongside with the platform model to iterate the increasing 

environmental load. The following example had highlighted some of the 

important aspects within each collapse file: 

 

Figure 3.3 Example of Collapse File with respect to Direction 45° 

It should be noted that the direction for live load combination and storm load 

combination with respect to 100 years return period should always be in the same 

direction. Similar concept is applied to the selected load, load factor modification 

and load combination implemented in the modified SACS model file. 



 

Figure 3.4 Loading Directions in Pushover Analyses 

 Based on the collapse results, the ultimate strength for first member failure 

will be divided by design allowable strength respectively in order to calculate the 

Reserve Strength Ratio (RSR) for each corrosion case: 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝐷𝑒𝑠𝑖𝑔𝑛 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
 

In particular, the strengths will be obtained from the base shear which is derived at 

load step with first member failure during pushover analysis. From the outcome, 

the results will be compared to analysis that was done during the past and the 

value of RSR will be interpreted according to the industrial benchmark.  

 With the input from pushover analysis, the reliability of the respective jacket 

platform will be scrutinized. This can be achieved through the principles of First 

Order Reliability Method (FORM) in MATLAB software. As the name suggested, 

FORM refers to the first order expansion of the function which utilizes mean and 

standard deviation as the main input and output. The variable X is statistically 

independent while the limit state function involved can be linear or non-linear. 

 The value of RSR will be incorporated into series of algorithm provided by 

research team in the MATLAB in order to compute reliability index, β. The code 

was developed with reference to Finite Element Reliability Using MATLAB 



(FERUM) project initiated in University Of California, Berkeley during 1999. 

Over the years, FERUM provided step-by-step tutorial in accessing structural 

reliability and had become an effective tools since then. To be specific, an 

interface function, “shell” is vital to utilize the data created by the user. In addition, 

an input file is required to contain and syntax the data field while g-function file 

will prompt for appropriate code to compute the probability of failure. Putting 

these functional packages together for platform F9, the respective MATLAB code 

developed by the research team was put into usage. Particularly, the limit state 

function in this case is calculated by deducing the system load from system 

resistance. While the load parameter is constant in this case, the resistance can be 

computed from the following formula: 

     𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝛽 ∗ 𝑅𝑆𝑅 ∗ ((𝑐1 ∗ (𝐻𝑑 ∗ 2)) + (𝑐2 ∗ 𝐻𝑑) + (𝑐3 ∗ (𝑈𝑏 ∗ 2))

+ (𝑐4 ∗ 𝑈𝑏) + (𝑐5 ∗ (𝑊𝑏 ∗ 2)) + (𝑐6 ∗ 𝑊𝑏) + 𝑐7) 

 

Figure 3.5 G-Function for MATLAB Coding and Alteration of RSR Value 

 Where c1, c2, c3, c4, c5 and c6 is the parameter for wave loading curve, beta 

is the random number generated in response to RSR coefficient, Hd is the 

maximum wave height, Ub is the current velocity, Wb is the wind speed, which 



was all adopted from previous literature by Ersdal (2005). In this case, the coding 

fixed the response surface coefficient, response surface model and uncertainty 

model. The only outstanding parameter in this function is RSR, which should be 

obtained from pushover analysis for each simulation case. Once that all the 

parameter had been input into the coding, the g-function was run.  

 

Figure 3.6 List of Reliability Analysis available in FERUM 

 Next, in the input function, First Order Reliability Method was prompted to 

complete the analysis, which will provide a systematic overview of the reliability 

parameters. The determination of reliability index is crucial in order to calculate 

probability of platform failure, Pf as the final results. The data will be available to 

be retrieved from the workspace in the ‘gformresults’ folder together with other 

function such as analysis operation, analysis type, finite element model g-function 

data and probability data. In facts, this statistical value is useful to be used as 

practical results so that reminder can be provided to the regional operator in the 

potential of devastating environmental loading predicaments. 



 

Figure 3.7 Process Flow of the Overall Project 

3.2 Project Activities 

 Planning and Research 

 During the beginning stage, the formulation of problem statement 

will be conducted based on internship observation, discussion and 

consultation with Supervisor.  

 Once that the topic had been identified, extensive study into 

previous paper on corrosion, reliability and life extension will be 

done, followed by comparison between papers and critical 

literature review. 

 Sampling and Data Collection 

 Data sources required for the analysis will be identified. 

Information of corrosion will be gathered through large sampling 

from various sources through empirical, actual or experimental 

model.  

 The data will be validated and compared in order to improve the 

accuracy and determine the best approach to be implemented for 

further analysis. 



 Model Simulation  

 A model for existing jacket platform at Malaysian water will be 

selected and run in Structural In-place Analysis And Computer 

Modeling Software (SACS).  

 Modification will be done with respect to the corrosion according 

to the predefined member groups and simulation cases. There are 

total of 12 cases of corrosion simulated by inducing member 

section diameter or thickness reduction.  

 Pushover Analysis 

 Factored environmental loads will be applied on the jacket 

structure until the pre-established criteria. From the base shear of 

first member failure, Reserve Strength Ration will be computed. 

 Results Interpretation and Reliability Analysis 

 Results will be validated with respect to previous similar works 

done by other authors. The trend of the results will be interpreted 

and compared between different cases of corrosion. 

 Reliability analysis will be conducted in MATLAB with series of 

algorithm in order to determine the reliability index and probability 

of platform failure. 

 Final Report and Presentation 

 All the findings will be compiled and critical analysis will be done 

to conclude the project. Technical paper of final year project will 

be completed, following by final presentation to the judge panel for 

wrapping up of project.  

 The value of the project will be utilized to provide valuable 

information for the offshore operators in enhancing the structure 

integrity and reliability. 



3.3 Key Project Milestones 

1) Completion Of Extensive Planning And Research 

 With respect to the problem statement, extensive study had been 

done to determine the best approach to address the problem. Based 

from the comparisons between previously done researches, it was 

realized that most of the structural reliability had been derived from 

a mathematical approach. From the discussion with supervisor, 

modeling approach will be utilized to examine the corrosion impact. 

2) Completion Of Modeling And Pushover Analysis 

 Model simulation was conducted based on corrosion input for all 

12 cases followed by static analysis to perform Unity Check for 

the modified members. Next, series of pushover analyses from 

eight directions for each case was completed. Reserve Strength 

Ratio (RSR) values were obtained to address the first objectives on 

studying corrosion effects. 

3) Completion Of Reliability Analysis 

 From the input of RSR, the platform reliability index was derived 

with series of algorithm in MATLAB. The final results were 

expressed in terms of probability of platform F9 failure for each of 

the corrosion cases. The results will be validated based on 

previously done researches and industrial benchmark while 

addressing second objective to relate corrosion with reliability. 

4) Completion Of Final Year Project 

 Submission of final dissertation as well as technical paper to 

supervisor, internal examiner and external judge panel. Completion 

of viva presentation in order to deliver the value of project. The 

significance of findings in terms of potential return period for 

extreme environmental loading will be optimized toward the 

industry and society to safeguard life and assets. 



3.4 Gantt Chart 

 

Figure 3.8 Project Gantt Chart



CHAPTER 4 

RESULTS AND DISCUSSION 

4.0 RESULTS AND DISCUSSION 

4.1 Unity Check For Modified Member Segments 

From the three defined group of members within splash zone area of F9 Jacket 

Platform, member modifications was simulated in SACS. In total, there are 16 

Circular Hollow Section (CHS) bracing member segments, 110 CHS horizontal 

member segments and 14 Concentric Tubular member segments for the jacket leg. 

These members were modified based on 10% and 25% material loss respectively 

with diameter and thickness as the variables to account for the corrosion effects. 

Once that the members dimension had been updated, the static in-place analysis 

was run to study the impacts. From the “postvue” data generated, the preliminary 

result will be reported in terms of  member maximum Unity Check (UC) value. 

Table 4.1 Member Properties for the Modified Sections 

Member Properties Magnitude 

E 200000000 kN/m2 

G 80000000 kN/m2 

Fy 345000 kN/m2 

Density 7.849 tonne/m3 

Theoretically, each members will develop stresses in responds to the load 

combinations being applied on the system. In this case, there are three types of 

stresses being prioritized, which is axial stress, bending stresses in major and 

minor axis. By dividing each of these stress with the allowable stress, the 

individual UC can be calculated. Eventually, the summation of these individual 

UC is the member maximum UC value. Since that UC measure the ratio of 

member stresses to its allowable limit, it is essential to have UC smaller than 1 to 

prevent member being overstressed than its capacity. From all the 12 different 

cases of members modification based on material loss, the members maximum 

UC had been reported and compared with the original member without corrosion. 



The following figures summarized the dimension modification and resulting UC 

for one of the members, bracing 601-501X: 

 

Figure 4.1 Modification of Member 601-501X with Respect to Corrosion 

Similar procedure was repeated for another 139 member segments, and the 

maximum UC ratio for each of the four cases was recorded. The results had been 

tabulated in the spreadsheet attached in Appendix.  

 

Figure 4.2 Maximum UC Computation 

Based on the UC ratio, several distinctive trends of results had been observed. 

Firstly, most of the members in all four cases reported an UC increment with 

respect to the reduction in member dimension. Fundamentally, this can be 



explained by the principles of member stress which is derived from applied force 

divided by the member cross-sectional area. Provided that the constant forces had 

been applied on the member with decreased in cross-sectional area with respect to 

the corrosion, the stress is expected to be escalated. From the result, it was 

observed that in most of the member segments, axial and bending stresses were 

increased with respect to the section modification.  

However, this explanation may not be fully consistent in every scenario since 

that the members segment in jacket structure are in space truss arrangement with 

various connections to other member which are subjected to several load 

combinations. This provided an insight on the reason why certain members 

undergone slight decrement in UC in Case 3 despite the reduction in area. For 

example, during design, the cross-sectional area across a member can be different 

in order to account for different stresses being developed. Change in size between 

segments of a particular member may have affected the load transfer mechanism. 

During the modification, some segments were reduced and unintentionally match 

other segment well, thereby implicitly contributed to lesser stresses being 

developed on the respective member segment. However, the decrement in the 

member segments’ UC is minimal and only occurred at several segment in Case 3 

which still reported an increment at the rest of the cases.    

In order to provide a better understanding on the trend of preliminary results 

for the studied member segments, the UC values for each group had been plotted 

in two graphs with respect to reduction in diameter and thickness respectively. 

The x-axis of the graph recorded the UC value while the y-axis represented the 

percentage of material losses. It should be noted that 0% section decrement 

indicated the original member without corrosion. The UC value for original 

member was essential to be included in both graphs to act as the baseline value for 

the future assessment. Each of the line in the graph represented the member 

segment. In the case of Group 2-horizontal members, only 15 member segment 

with highest UC ratio had been selected for analysis. In addition, the gradient for 

each of the line will be calculated to measure the stiffness and study the 

relationship between each member segments. The following shows the plotted 

graphs from preliminary results: 



 

Figure 4.3 Graph of UC Against Bracing Member (Group 1) Reduction



 

Figure 4.4 Graph of UC Against Horizontal Member (Group 2) Reduction



 

Figure 4.5 Graph of UC Against Jacket Leg (Group 3) Reduction



From all six graphs, a trend had been observed that if the initial UC value was 

small, the gradient of the graph will be small too, which indicate an almost linear 

increment in UC. This can be observed particularly from graph for bracing 

members which members with small initial UC has the gradient between 0.28 to 

0.42. However, if the UC value is high, the gradient will be stiffer with respect to 

material losses. As for member segment 559-604 in the first graph, the gradient is 

5.63 which are much steeper than other members with small initial UC.  

 

Figure 4.6 Interpretations of Trends and Gradient of Bracing Members 

Similar trend had been observed in both diameter and thickness reduction, with 

exception that the thickness reduction has smaller change in UC compared to that 

of diameter reduction. For the same member of 559-604, the gradient with respect 

to thickness reduction is only 1.27 compared to that of diameter reduction which 

was 5.63 as discussed earlier. 

Comparing all three groups of members, bracing members had the most 

critical increment in UC, followed by horizontal members (G = 0.12-1.67) and 

lastly jacket leg (G = 0.15 to 0.27). In facts, jacket legs was least affected by 

material loss. It can be due to larger member incorporated with pile are being used 



in Concentric Tubular member for jacket leg, thus the reduction in material only 

account for minimal area loss in each segment.  

 

Figure 4.7 Typical Cross Section of Concentric Tubular Member  

In overall, reduction in D and t caused increase in UC because member stress is 

inversely proportional to the section area of the member. 

 

However, all of the reported findings are only preliminary results for this project; 

the actual corrosion effects should be scrutinized later when the input from this 

stage was being put forward for further analyses. 

4.2 Reserve Strength Ratio 

During the pushover analysis, all the modified models for F9 platform were 

subjected to incremental load in its respective 100 year storm case load 

combination ’ST’ to the multiplier of five. The member responses in sequence 

were observed and any convergence or member failure was taken note. Since that 

the load was applied to manifest member’s plasticity and ultimate strength, the 

corrosion effects toward the entire jacket structure is the highlight of this section. 

Meanwhile, the change in deflection as load factors increasing governed the 

process of incremental stresses for the modified member segments. From the 

analysis, the Reserve Strength Ratio (RSR) was calculated based on first member 

failure and all the results are concluded as the following: 



 

Figure 4.8 RSR Value for All Corrosion Cases in All Storm Directions 



 

Figure 4.9 Compiled RSR Value for All Corrosion Cases in All Storm Directions 



 

Figure 4.10 Pushover Analysis Results Showed Large Deflection within Jacket 

The base shear was obtained from the collapse view at load step which 

indicated the first member failure had occurred. By dividing this value with the 

design base shear at load multiplier of one for extreme storm condition, Reserve 

Strength Ratio was computed. In order to validate the magnitude of RSR, API RP 

2A-WSD was referred. Based on the code, the assessment criteria for platform 

outside of United States should have at least 0.8 RSR for low failure consequence, 

unmanned platform. At the same time, PETRONAS Technical Standard set the 

minimum requirement of 1.32 RSR for the platform with similar characteristic as 

outlined in API. Both of this value acts as the bottom line for the RSR obtained 

through pushover analysis. From the results, most of the RSR value is higher than 

the acceptable value except certain outliers with respect to ST02. 

  In comparison with the original model without corrosion implication, all the 

modified cases overlooked a slightly drop in RSR value. This can be explained by 

implementation of thinner member sections which had reduced the strength of the 

members within the splash zone to withstand the incremental loads during 

extreme storm condition. However, in overall the decrement in RSR was ranged 

from 0% to 0.33%, which indicated not significant changes across the 

modification. Nevertheless, some trends observed from the result in pushover 

analysis were able to provide insights on critical storm direction as well as the 

influence of material loss from different angles.  



In particular, the horizontal members RSR show the highest drop in RSR 

compared to bracing or jacket leg members. By static, the tubular member for 

horizontal members had its strength greatly reduced in the case of material loss. 

From a dynamic perspective, the observed trend can be explained by its location 

which accounts for larger equivalent added masses on horizontal bracing 

compared to diagonal bracing of equal length when the storm direction is 

perpendicular to the member, thus increasing the mass and decreasing the natural 

frequency of the jacket structure. However, besides than merely accusing that the 

corrosion impact had taken a toll in this group, another potential explanation for 

this predicament can be due to horizontal members contribute to largest portion of 

members, thus more section had been reduced relatively.  

Nevertheless, all the first member failure had taken place in same member 

segment, which is Member A045-501X as illustrated below: 

 

Figure 4.11 First Member Failure and Level of Plasticity Developed 

As shown in the collapse view, member A045-501X located at a critical direction 

in connection with four diagonal bracings. The application of load under extreme 

weather condition had developed on excessive amount of stresses between these 

members before it behaved plastic. This member failed at storm load with 2.6 

multiplier. Its strategic location progressively led to other members’ failure as the 

analysis proceeded. In figure above, another notable observation showed the sign 

of horizontal member failure at the bottom parts of splash zone, which is in line 

with discussion above that this group was more prone to the corrosion impacts.    



 

Figure 4.12 Graph of RSR Against Bracing Member Reduction 



 

Figure 4.13 Graph of RSR Against Horizontal Member Reduction 



 

Figure 4.14 Graph of RSR Against Leg Member Reduction 



 To scrutinize this finding, Figure 4.8 showed the graphs of Horizontal RSR 

value against percentage of diameter and thickness reduction respectively. Based 

on the results, ST03 which indicates storm combination from 135° direction had 

highest RSR value, while ST02 that shows storm combination from 45° direction 

were in critical condition due to extraordinary low RSR upon section reduction. 

For instances, ST02 with 10% depletion in horizontal members’ diameter has 

RSR at 0.4915, which is 3.68 time lower than the original RSR. The extent of 

impact can be due to the facts that larger amount of load case was considered in 

that particular direction to reflect the actual environmental loading on platform 

orientation. At 25% diameter reduction, the entire platform collapsed even before 

the load multiplier reached one. This finding highlighted that combination of 

corrosion impact with extreme wave at 45° direction is extremely detrimental and 

stern actions is prompted to prevent the occurrence for this predicaments.  

 On the other hand, both of the graphs in Figure 4.8 pointed out the difference 

between diameter and thickness reduction in affecting the RSR. To be specific, 

decrease in member’s diameter was found to have more chronic impact than 

thickness reduction in the change in RSR. For instances, at ST03, the gradient for 

diameter impacted RSR was -0.0548, which is much steeper than thickness 

impacted RSR with gradient of -0.0321. This finding is in conjunction with the 

Unity Check results in previous context, where the change in diameter had made 

the cross-sectional area become smaller and implicitly affect the path for load 

transfer as well as stress distribution. 

 Comparing the results in terms of variation of UC and RSR, the preliminary 

results focused more on the implication of corrosion toward the individual 

member segments. From the context, some of the members had developed critical 

UC by having its dimension reduced. The first part of static assessment brought a 

transition into pushover analysis, in which RSR for storm from all directions were 

accounted for. In facts, the results from both assessments are interrelated. For 

example, one of the horizontal member 602-9457 had shown dramatic change 

over the UC from 0.59 to 0.99 when 25% diameter was loss. In addition, this 

member was found to be the first member that had failed in pushover analysis. 

The combination of results findings was able to provide a guideline for 

monitoring of critical member groups. In facts, the final stage on reliability 



analysis in the following context will include the probability of failure for each 

case in providing a comprehensive understanding on the reliability of F9 platform. 

4.3 Probability Of Failure 

With respect to the previous results, RSR value from pushover analyses was input 

into reliability analysis. Next, the subsequent analysis was run with the assistance 

of FERUM coding in MATLAB. Two important parameters can be obtained from 

each simulation cases, namely reliability index and probability of failure. 

 

Figure 4.15 Results from First Order Reliability Method (FORM) 

Based on the findings, reliability index ranged from 7.4815 to -1.0645 which 

resulted in probability of failure platform falling in between 3.67 x 10-14 to 0.8564. 

Due to plenty of simulation cases and direction-dependent implications, extensive 

tabulated results had been summarized in Appendix section. Since that the overall 

comparison between the studied members had been discussed in the previous 

sections, the following discussion will scrutinize into the impact of corrosion by 

focusing on most critical member groups in response to thickness and diameter 

depletion. From the results, the reliability of horizontal members was greatly 

affected by the material loss especially in the case of diameter decrement. To be 

specific, the following table indicated Probability Of Failure for horizontal 

members from 45° storm load at ST02. 



 

Figure 4.16 Sequence of Progressive Collapse during Extreme Incremental Load 

Table 4.2 Most Critical Findings from Reliability Analysis 

Case Load Base Shear 1st Member Failure RSR β Pf Remarks 

Horizontal 10% D ST02 18016.04 8854.26 0.4915 -1.0645 0.85644672 
*1st member failure before 

ST01 reaching 1.0 multiplier. 

Horizontal 25% D ST02 - 3523.67 - - - 
*Structure collapse before 

ST01 reaching 1.0 multiplier. 

Horizontal 10% t ST02 18077.95 29100.88 1.6097 3.6162 1.49E-04 - 

Horizontal 25% t ST02 18074.77 8886.89 0.4917 -1.0632 8.56E-01 
*1st member failure before 

ST01 reaching 1.0 multiplier. 



Based on the results, it can be observed that the trend for the pushover 

analysis and reliability analysis was in a positive consistent correlation. To be 

specific, in this case, the RSR value was directly proportional to the reliability 

index, β and inversely proportional to the probability of failure: 

𝑅𝑆𝑅 ∝ 𝛽 ∝
1

𝑃𝑓
 

This trend can be explained from the coding of MATLAB which even though 

include multiple system and environmental parameters, but the only variable was 

the RSR value. However, this approach was believed to be adequate in this project 

since that the true intention is to examine the corrosion implication on critical 

members. This is in line with literature by Dong, Moan and Gao (2012) who 

stated that corrosion effects and material degradation would reduce the reliability 

index. With reference to the API standard, the Pf for unmanned platform with 

1000 years of return period should be smaller than 1 x 10-4. From the data, all the 

corrosion simulation yield acceptable Pf ultimately in exception of few cases in 

ST02 direction, which involved large live load combinations. The results showed 

that the decrement in Platform F9 splash zone member sections do not actually 

possessed threats to the structural integrity except several scenarios in horizontal 

member groups. In facts, the Pf for horizontal members was found to be biggest 

among the three studied groups and stern attentions should be given.  

 In addition to the discussion epitomized earlier, the critical Pf on horizontal 

member can be explained by the members’ role when corrosion invaded. As a fact, 

reduction in member capacity did not imply that system strength will be 

compromised; it depends on whether the member was participating in failure 

mechanism. As demonstrated from the collapse of sequence and reliability 

analysis, the load path of horizontal member was completely disrupted when 

corrosion took place. During corrosion, a new loading distribution will be 

developed based on the altered forms, dimension of yielding and the connection to 

the intact members. The additional load imposed on the uncorroded members 

reduced the margin of safety and implicitly decreased the ultimate capacity of the 

jacket structure. Unlike other redundant member groups which were able to 

redistribute the member stresses upon component failure, the horizontal member 



in splash zone was subjected to excessive stresses and deflections in the case of 

extreme loads, which made this group of members rather critical. This finding was 

in line with Bao, Wang and Li (2009)’s research which quoted that due to high 

degree of redundancy of the platform, most of the members meet the API code 

requirement despite the ultimate strength had been degraded. 

 Furthermore, comparing the effects of diameter and thickness reduction, the 

former was found to be significantly decreasing the member capacity. For 

instances, the 10% material loss in terms of diameter resulted in probability of 

failure at 0.85645 while 10% thickness depletion at the same direction gave much 

smaller Pf at 0.000149. Coincidence, 25% thickness depletion yield equivalent 

results of Pf to that of 10% diameter loss. In conjunction with the discussion 

above, the results indicated that change in diameter has significant effect in the 

weakening the system strength. Thus, it is recommended that in the design of the 

jacket structure, thicker steel member should be used instead of larger member to 

counter for the impact of corrosion. From another perspective, member’s diameter 

should also be kept within smaller range since that it also contribute to the wave 

parameter in the Morrison’s Equation. Putting together these findings, thicker 

section should be deployed on horizontal member in addition to comprehensive 

design of load distribution path in order to optimize the steel capacity. 

 In addition to the type of member groups, this project concluded that direction 

of the environmental loads also play an imperative role in affecting the structural 

reliability. In this case, load from 45° led to the largest deviation of Pf from the 

baseline value. This is in conjunction with Ayob et. al (2014)’s similar study on 

an eight-legged drilling and production platform, which claimed that the 

environmental load coming perpendicular to the platform weak axis will cause 

largest impact. Thus, the ultimate strength of the member was dependent on the 

wave, wind and current direction too. In conclusion, with respect to the corrosion, 

most simulation cases of platform F9 were able to meet the acceptable annual 

probability of extreme load cases with the probability of failure ranging from 3.67 

x 10-14 to 0.8564. In facts, horizontal member was critically affected by the 

material loss especially in terms of diameter change. The results were essential to 

be utilized as information to enhance and improve the existing platform reliability. 



CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.0 CONCLUSION AND RECOMMENDATION 

While corrosion had been taking a toll on Malaysian water offshore jacket structures 

which are mostly being operated exceeding its design life, this project aims to 

address two objectives. Firstly, the effects of corrosion in degrading jacket members’ 

strength within splash zone area was be studied by using pushover analysis. Secondly, 

the input from first objective was fully utilized to conduct structural reliability 

assessment in order to derive probability of platform failure with respect to 

predefined corrosion. In comparison with the previous similar works done by other 

researchers; this project was dedicated to fill in the gap in offshore corrosion study 

through a direct modeling and mathematical approach. 

During the first stage of the project, 10% and 25% of material loss had been 

simulated into and SACS model of F9 platform, an asset from PCSB. There are 

twelve set of preliminary results to account for corrosion taken place in different 

members within splash zone area. Initially, static analysis was run on the modified 

platforms to observe the change in member stresses with respect to the members’ 

depletion. Next, pushover analysis was conducted to observe the jacket structure 

ability to withstand extreme incremental loadings. At this phase, Reserve Strength 

Ratio (RSR) was derived from the base shear developed by first member failure. 

Upon completion, reliability analysis was conducted to address second objective 

through the computation of platform’s failure probability with respect to corrosions.  

From the results, the Unity Check ratio had been examined and most of the 

member segments demonstrated increased in axial and bending stresses with respect 

to decreased cross-sectional area. From the two approaches used in section reduction, 

the decreased in diameter yielded higher UC compared to decrease in thickness for 

the same member segment. On the other hand, RSR for the platform in each case had 

been scrutinized. Based on the findings, the group in which horizontal members were 

applied with material loss showed greater decrement in RSR compared to another 

two groups. The results were not in line with the UC findings due to the approach in 

pushover analysis prioritized on the corrosion impacts on the entire jacket instead of 



individual members. Nevertheless, in overall the platform is able to yield standard 

acceptable RSR value in all of the directions except several cases from 45°. It was 

concluded that due to large amount of load cases had been considered in this 

directions, the incremental load had developed an excessive amount of stresses to 

escalate the component and structural failure.  

Proceeding to reliability analysis, the outcome from first stage was used to 

study platform reliability by deriving probability of failure in MATLAB. The study 

of corrosion impact is vital in order to relate the consequence of member strength 

deterioration to the entire structures while achieving the second objective. The 

probability of failure for F9 platform ranged from 3.67 x 10-14 to 0.8564 with critical 

impacts on horizontal members from 45°. The significant result was caused by 

uneven stress distribution between the deteriorated members in addition to the facts 

that most horizontal components in splash zone participated in failure mechanism. 

As a recommendation, thicker member should be used instead of larger member due 

to smaller corrosion implication with respect to change in thickness. For further 

implementation, this project can be improved with actual corrosion data from the 

industry in order to escalate the accuracy of results. By referencing into inspection 

reports and data, sampling of information such as pitting corrosion can be simulated 

within the analysis to provide a wider perspective in this study. In addition, with the 

presence of industrial data, it will provide an opportunity to open up a new frontier in 

exploring topics such as anaerobic corrosion impact on offshore structures.   

Apart from that, the algorithm used in MATLAB can be enhanced to allocate 

for more considerations to make the result even comprehensive. For example, other 

factors such as fatigue, dynamic and accidental loadings can be taken as optional part 

of the analysis so that the combinations of different scenario can be examined. In 

addition, pile-soil interaction can be included in the pushover analysis to account for 

the supports provided by the foundation system. Nevertheless, the corrosion can be 

applied on less critical member such as member groups that are not belongs to splash 

zone areas so that the results will not be biased and bounded by conservative 

limitation. In short, it was believed that these outcomes can be converted into useful 

information such as reminder for operator, especially on the return period of potential 

extreme environmental loading so that precautions can be developed in advance. 
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 Unity Check (UC) Results 

Category Member Length D t D1 -10% D2 - 25% t1 - 

10% 

t2 - 

25% 

UC0 UC1 UC2 UC3 UC4 

Group 1-Diagonal Members 

Diagonal 

 

559-604 12.2671 58.6 1.34 52.874 44.285 1.203 0.9991 0.25 0.29 0.4 0.29 0.34 

603-559 11.8549 58.6 1.34 52.874 44.285 1.203 0.9991 0.24 0.26 0.32 0.26 0.32 

504-559 13.0692 61 2 55.1 46.25 1.794 1.4871 0.14 0.16 0.2 0.16 0.19 

503-559 13.4919 61 2 55.1 46.25 1.794 1.4871 0.18 0.21 0.27 0.21 0.25 

559-A044 8.10171 61 2 55.1 46.25 1.794 1.4871 0.09 0.11 0.16 0.11 0.14 

603-558 9.29629 58.6 1.34 52.874 44.285 1.203 0.9991 0.22 0.21 0.25 0.21 0.25 

602-558 8.99015 58.6 1.34 52.874 44.285 1.203 0.9991 0.28 0.47 0.47 0.39 0.41 

558-503 11.2316 61 2.54 55.154 46.385 2.276 1.8839 0.29 0.24 0.27 0.20 0.24 

502-558 11.5377 61 1.27 55.027 46.0675 1.141 0.9474 0.21 0.21 0.26 0.21 0.26 

602-501X 12.7163 58.6 1.34 52.874 44.285 1.203 0.9991 0.29 0.34 0.44 0.33 0.37 

601-501X 11.3763 58.6 1.34 52.874 44.285 1.203 0.9991 0.36 0.7 1.74 0.58 0.69 

502-501X 13.654 61 2 55.1 46.25 1.794 1.4871 0.32 0.63 1.26 0.52 0.61 

501-501X 10.6362 61 2 55.1 46.25 1.794 1.4871 0.18 0.23 0.29 0.23 0.27 

601-560 9.2571 58.6 1.34 52.874 44.285 1.203 0.9991 0.22 0.22 0.32 0.21 0.25 

560-604 8.9511 58.6 1.34 52.874 44.285 1.203 0.9991 0.21 0.25 0.3 0.26 0.31 

560-501 11.1855 61 2.54 55.154 46.385 2.276 1.8839 0.21 0.14 0.18 0.14 0.17 

504-560 11.4914 61 1.27 55.027 46.0675 1.141 0.9474 0.23 0.24 0.31 0.23 0.27 

Group 2-Horizontal Members 

Horizontal  604-632 2.568 61 2 55.1 46.25 1.794 1.4871 0.03 0.36 0.47 0.33 0.37 
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657-632 6.289 61 3 55.2 46.5 2.685 2.2201 0.01 0.1 0.12 0.09 0.09 

682-657 5.619 61 2.54 55.154 46.385 2.276 1.8839 0.02 0.15 0.2 0.13 0.14 

682-603 4.7694 61 2.54 55.154 46.385 2.276 1.8839 0.08 0.31 0.42 0.27 0.29 

937-603 2.5588 76.2 2.54 68.834 57.785 2.278 1.8883 0.31 0.45 0.63 0.4 0.48 

936-937 1 76.2 2.54 68.834 57.785 2.278 1.8883 0.08 0.13 0.17 0.12 0.14 

935-936 2 76.2 2.54 68.834 57.785 2.278 1.8883 0.17 0.27 0.37 0.25 0.3 

690-935 0.642 76.2 2.54 68.834 57.785 2.278 1.8883 0.18 0.28 0.37 0.26 0.3 

934-690 0.358 76.2 2.54 68.834 57.785 2.278 1.8883 0.2 0.29 0.38 0.27 0.31 

933-934 1 76.2 2.54 68.834 57.785 2.278 1.8883 0.2 0.3 0.4 0.27 0.32 

932-933 1 76.2 2.54 68.834 57.785 2.278 1.8883 0.17 0.25 0.32 0.23 0.27 

931-932 1 76.2 2.54 68.834 57.785 2.278 1.8883 0.14 0.2 0.28 0.18 0.22 

930-931 1 76.2 2.54 68.834 57.785 2.278 1.8883 0.12 0.1 0.12 0.09 0.11 

602-930 1.8428 76.2 2.54 68.834 57.785 2.278 1.8883 0.38 0.54 0.46 0.49 0.59 

602-9457 2.8884 61 2 55.1 46.25 1.794 1.4871 0.59 0.74 0.99 0.68 0.81 

9457-9458 1 61 2 55.1 46.25 1.794 1.4871 0.31 0.44 0.58 0.4 0.47 

9458-680 0.881 61 2.54 55.154 46.385 2.276 1.8839 0.4 0.49 0.66 0.44 0.52 

680-9459 0.119 61 2.54 55.154 46.385 2.276 1.8839 0.34 0.41 0.57 0.39 0.45 

9459-9460 1 61 2.54 55.154 46.385 2.276 1.8839 0.46 0.43 0.55 0.4 0.46 

9460-9461 1.7 61 2 55.1 46.25 1.794 1.4871 0.45 0.56 0.79 0.52 0.62 

9461-9462 1 61 2 55.1 46.25 1.794 1.4871 0.21 0.2 0.31 0.18 0.22 

649-9462 1.1905 61 2 55.1 46.25 1.794 1.4871 0.52 0.71 1.07 0.64 0.78 

649-614 5.6795 61 1.59 55.059 46.1475 1.427 1.1844 0.15 0.17 0.18 0.17 0.19 

601-614 2.568 61 2 55.1 46.25 1.794 1.4871 0.08 0.09 0.1 0.09 0.11 

601-611 1.5508 61 3 55.2 46.5 2.685 2.2201 0.05 0.24 0.33 0.22 0.25 



611-944 2.608 61 3 55.2 46.5 2.685 2.2201 0.06 0.13 0.19 0.11 0.13 

944-945 0.8 61 2 55.1 46.25 1.794 1.4871 0.06 0.17 0.21 0.15 0.18 

613-945 5.892 61 2 55.1 46.25 1.794 1.4871 0.06 0.17 0.21 0.16 0.18 

604-613 1.5508 61 2 55.1 46.25 1.794 1.4871 0.05 0.25 0.32 0.23 0.26 

523-504 4 61 2.54 55.154 46.385 2.276 1.8839 0.06 0.05 0.06 0.05 0.06 

535-523 4.85 61 2.54 55.154 46.385 2.276 1.8839 0.04 0.04 0.04 0.04 0.04 

A044-535 0.934 61 2.54 55.154 46.385 2.276 1.8839 0.06 0.07 0.08 0.07 0.09 

542-A044 5.741 61 2.54 55.154 46.385 2.276 1.8839 0.06 0.07 0.08 0.07 0.08 

503-542 5.8194 61 2 55.1 46.25 1.794 1.4871 0.13 0.16 0.26 0.14 0.16 

548-503 4.7618 61 1.59 55.059 46.1475 1.427 1.1844 0.12 0.14 0.2 0.14 0.16 

547-548 3 61 2 55.1 46.25 1.794 1.4871 0.11 0.11 0.16 0.1 0.12 

546-547 0.142 61 2 55.1 46.25 1.794 1.4871 0.06 0.07 0.12 0.06 0.08 

546-590 1.858 61 2 55.1 46.25 1.794 1.4871 0.05 0.06 0.08 0.06 0.08 

590-545 2 61 1.59 55.059 46.1475 1.427 1.1844 0.09 0.1 0.14 0.1 0.12 

502-545 4.0458 61 1.59 55.059 46.1475 1.427 1.1844 0.13 0.15 0.2 0.14 0.17 

502-543 5.4944 61 2 55.1 46.25 1.794 1.4871 0.08 0.08 0.08 0.09 0.1 

543-541 0.325 61 2.54 55.154 46.385 2.276 1.8839 0.04 0.05 0.06 0.06 0.07 

540-541 1.675 61 2 55.1 46.25 1.794 1.4871 0.1 0.11 0.16 0.11 0.13 

591-540 2.7 61 2 55.1 46.25 1.794 1.4871 0.06 0.08 0.1 0.08 0.09 

529-591 1.6905 61 2 55.1 46.25 1.794 1.4871 0.08 0.08 0.1 0.09 0.11 

529-522 4.2405 61 2 55.1 46.25 1.794 1.4871 0.09 0.1 0.11 0.11 0.12 

522-501 4 61 2.54 55.154 46.385 2.276 1.8839 0.1 0.1 0.11 0.1 0.11 

501-519 3.0208 61 1.59 55.059 46.1475 1.427 1.1844 0.08 0.08 0.1 0.08 0.1 

519-520 3.241 61 2 55.1 46.25 1.794 1.4871 0.12 0.15 0.19 0.14 0.17 



521-520 6.525 61 2 55.1 46.25 1.794 1.4871 0.08 0.08 0.1 0.08 0.09 

521-504 3.0208 61 2 55.1 46.25 1.794 1.4871 0.11 0.1 0.13 0.1 0.12 

613-623 3.106 50.8 2 45.92 38.6 1.792 1.4843 0.02 0.11 0.13 0.1 0.11 

631-623 1.178 50.8 2.54 45.974 38.735 2.273 1.8793 0.02 0.03 0.15 0.03 0.03 

640-631 2.272 50.8 2.54 45.974 38.735 2.273 1.8793 0.03 0.04 0.05 0.04 0.04 

656-640 2.839 50.8 2.54 45.974 38.735 2.273 1.8793 0.02 0.07 0.09 0.06 0.07 

656-676 1.789 45.7 2.54 41.384 34.91 2.272 1.8761 0.01 0.07 0.08 0.07 0.07 

676-679 1.6279 45.7 2.54 41.384 34.91 2.272 1.8761 0.02 0.11 0.16 0.1 0.1 

611-615 3.106 50.8 2 45.92 38.6 1.792 1.4843 0.07 0.08 0.12 0.07 0.09 

624-615 1.178 50.8 2.54 45.974 38.735 2.273 1.8793 0.03 0.04 0.06 0.03 0.04 

633-624 2.272 50.8 2.54 45.974 38.735 2.273 1.8793 0.06 0.07 0.11 0.06 0.07 

650-633 2.839 50.8 2.54 45.974 38.735 2.273 1.8793 0.05 0.11 0.14 0.09 0.11 

650-667 1.789 45.7 2.54 41.384 34.91 2.272 1.8761 0.07 0.13 0.17 0.12 0.13 

667-678 1.6279 45.7 2.54 41.384 34.91 2.272 1.8761 0.06 0.11 0.1 0.08 0.08 

518-521 2.495 50.8 2 45.92 38.6 1.792 1.4843 0.15 0.1 0.13 0.09 0.11 

518-528 3.45 50.8 2 45.92 38.6 1.792 1.4843 0.18 0.12 0.17 0.11 0.13 

534-528 3.145 50.8 0.95 45.815 38.3375 0.853 0.7091 0.08 0.07 0.11 0.1 0.16 

514-519 2.495 50.8 2 45.92 38.6 1.792 1.4843  0.2 0.29 0.18 0.22 

524-514 3.45 50.8 2 45.92 38.6 1.792 1.4843 0.1 0.07 0.08 0.07 0.08 

530-524 3.145 50.8 0.95 45.815 38.3375 0.853 0.7091 0.08 0.08 0.11 0.1 0.16 

623-632 1.839 45.7 2 41.33 34.775 1.792 1.4824 0.02 0.07 0.09 0.05 0.06 

622-623 0.408 45.7 1.59 41.289 34.6725 1.426 1.1816 0.02 0.05 0.07 0.04 0.05 

621-622 1.076 45.7 1.59 41.289 34.6725 1.426 1.1816 0.01 0.06 0.07 0.06 0.06 

620-621 2.374 45.7 1.9 41.32 34.75 1.702 1.4092 0.01 0.07 0.06 0.05 0.06 



620-619 0.538 45.7 1.9 41.32 34.75 1.702 1.4092 0.02 0.04 0.04 0.04 0.04 

619-618 0.538 45.7 1.9 41.32 34.75 1.702 1.4092 0.04 0.09 0.13 0.09 0.1 

618-617 2.374 45.7 1.9 41.32 34.75 1.702 1.4092 0.04 0.07 0.08 0.07 0.07 

616-617 1.076 45.7 1.59 41.289 34.6725 1.426 1.1816 0.03 0.04 0.04 0.04 0.04 

615-616 0.408 45.7 1.59 41.289 34.6725 1.426 1.1816 0.03 0.03 0.04 0.03 0.03 

614-615 1.839 45.7 2 41.33 34.775 1.792 1.4824 0.05 0.08 0.09 0.07 0.07 

633-640 8.792 45.7 2 41.33 34.775 1.792 1.4824 0.02 0.07 0.08 0.06 0.07 

657-656 1.839 50.8 1.27 45.847 38.4175 1.14 0.9463 0.03 0.06 0.07 0.05 0.06 

655-656 0.408 50.8 2.54 45.974 38.735 2.273 1.8793 0.02 0.05 0.06 0.04 0.04 

654-655 1.076 50.8 2 45.92 38.6 1.792 1.4843 0.02 0.06 0.06 0.05 0.06 

654-653 2.912 50.8 2 45.92 38.6 1.792 1.4843 0.02 0.07 0.08 0.06 0.07 

652-653 2.912 50.8 2 45.92 38.6 1.792 1.4843 0.04 0.08 0.1 0.08 0.08 

652-651 1.076 50.8 2 45.92 38.6 1.792 1.4843 0.04 0.04 0.06 0.04 0.05 

650-651 0.408 50.8 2.54 45.974 38.735 2.273 1.8793 0.04 0.04 0.06 0.04 0.04 

649-650 1.5306 50.8 1.27 45.847 38.4175 1.14 0.9463 0.15 0.45 0.58 0.4 0.46 

517-518 1.179 45.7 1.59 41.289 34.6725 1.426 1.1816 0.1 0.15 0.22 0.13 0.16 

516-517 3.45 45.7 1.59 41.289 34.6725 1.426 1.1816 0.1 0.11 0.14 0.1 0.12 

515-516 3.45 45.7 1.59 41.289 34.6725 1.426 1.1816 0.18 0.22 0.3 0.2 0.24 

514-515 1.179 45.7 1.59 41.289 34.6725 1.426 1.1816 0.27 0.32 0.43 0.3 0.36 

524-528 9.258 45.7 1.59 41.289 34.6725 1.426 1.1816 0.03 0.05 0.04 0.05 0.06 

534-535 3.57 61 2 55.1 46.25 1.794 1.4871 0.11 0.08 0.09 0.09 0.1 

534-533 1.433 61 2 55.1 46.25 1.794 1.4871 0.06 0.07 0.08 0.07 0.08 

532-533 3.45 61 2 55.1 46.25 1.794 1.4871 0.12 0.13 0.18 0.13 0.15 

532-531 3.45 61 2 55.1 46.25 1.794 1.4871 0.06 0.06 0.08 0.06 0.07 



530-531 1.433 61 2 55.1 46.25 1.794 1.4871 0.07 0.08 0.11 0.07 0.09 

530-529 3.2618 61 2 55.1 46.25 1.794 1.4871 0.12 0.09 0.11 0.09 0.1 

682-679 2.63409 45.7 1.59 41.289 34.6725 1.426 1.1816 0.07 0.17 0.23 0.14 0.17 

673-679 3.02843 45.7 2.54 41.384 34.91 2.272 1.8761 0.03 0.08 0.11 0.08 0.09 

673-661 2.23215 45.7 2.54 41.384 34.91 2.272 1.8761 0.02 0.07 0.08 0.06 0.07 

660-653 0.6881 45.7 2.54 41.384 34.91 2.272 1.8761 0.03 0.02 0.02 0.02 0.02 

670-660 2.23215 45.7 2.54 41.384 34.91 2.272 1.8761 0.03 0.03 0.05 0.03 0.03 

678-670 3.02843 45.7 2.54 41.384 34.91 2.272 1.8761 0.04 0.09 0.1 0.08 0.08 

680-678 2.63409 45.7 1.59 41.289 34.6725 1.426 1.1816 0.14 0.15 0.22 0.16 0.18 

690-680 7.96109 45.7 1.59 41.289 34.6725 1.426 1.1816 0.07 0.09 0.11 0.08 0.09 

690-682 7.96109 45.7 1.59 41.289 34.6725 1.426 1.1816 0.05 0.07 0.09 0.06 0.07 

542-532 10.0185 50.8 0.95 45.815 38.3375 0.853 0.7091 0.16 0.18 0.22 0.18 0.23 

541-538 9.82471 50.8 0.95 45.815 38.3375 0.853 0.7091 0.1 0.1 0.14 0.13 0.23 

546-541 10.0195 50.8 0.95 45.815 38.3375 0.853 0.7091 0.1 0.11 0.14 0.13 0.23 

546-542 10.0195 50.8 0.95 45.815 38.3375 0.853 0.7091 0.2 0.22 0.26 0.22 0.27 

Group 3-Jacket Legs Members 

 

Jacket 

Legs 

604-923 3.63607 168.6 4.3 152.17001 127.52501 3.86 3.2038 0.11 0.1 0.12 0.1 0.11 

926-923 6.01182 164 2 147.8 123.5 1.798 1.4953 0.11 0.13 0.16 0.14 0.15 

919-926 3.37178 164 2 147.8 123.5 1.798 1.4953 0.11 0.13 0.15 0.14 0.15 

504-919 4.16562 170 5 153.5 128.75 4.486 3.7215 0.11 0.09 0.11 0.09 0.1 

603-715 2.69689 168.6 4.3 152.17001 127.52501 3.86 3.2038 0.1 0.09 0.11 0.09 0.1 

729-715 4.79732 165.2 2.6 148.94 124.55 2.336 1.9423 0.1 0.11 0.13 0.11 0.12 

503-729 9.8205 170 5 153.5 128.75 4.486 3.7215 0.09 0.08 0.09 0.08 0.08 

602-739 2.69689 168.6 4.3 152.17001 127.52501 3.86 3.2038 0.15 0.13 0.16 0.13 0.14 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

738-739 4.79732 165.2 2.6 148.94 124.55 2.336 1.9423 0.15 0.17 0.2 0.17 0.19 

502-738 9.8205 170 5 153.5 128.75 4.486 3.7215 0.15 0.12 0.15 0.12 0.14 

649-A043 2.66693 119.5 2.3 107.78 90.2 2.066 1.7167 0.43 0.22 0.21 0.22 0.25 

A043-A045 4.77024 119.5 0.8 107.63 89.825 0.72 0.5965 0.34 0.45 0.51 0.46 0.56 

A045-501X 1.78033 119.5 0.8 107.63 89.825 0.72 0.5965 0.31 0.41 0.46 0.42 0.52 

529-501X 7.97073 121.9 3.5 110.06 92.3 3.141 2.6031 0.1 0.05 0.06 0.05 0.06 

601-924 3.63607 168.6 4.3 152.17001 127.52501 3.86 3.2038 0.14 0.13 0.17 0.13 0.14 

925-924 6.01182 164 2 147.8 123.5 1.798 1.4953 0.15 0.19 0.22 0.19 0.21 

918-925 3.37178 164 2 147.8 123.5 1.798 1.4953 0.15 0.19 0.22 0.19 0.21 

501-918 4.16562 170 5 153.5 128.75 4.486 3.7215 0.15 0.12 0.14 0.12 0.13 



Tabulation Of Reserve Strength Ratio, Reliability Index And Probability Of Failure 

No Case Load Base Shear First Member Failure RSR Reliability Index Probability Of Failure 

1 Original 

  

  

  

  

  

  

  

  

ST01 8187.85 20891.49 2.5515 5.6854 6.53E-09 

ST02 18075.29 32775.49 1.8133 4.1613 1.58E-05 

ST03 8956.02 37079.17 4.1401 7.4815 3.67E-14 

ST04 9283.86 30992.87 3.3384 6.7573 7.03E-12 

ST05 9344.75 26198.20 2.8035 6.0788 6.05E-10 

ST06 9134.30 30471.01 3.3359 6.7545 7.17E-12 

ST07 9222.15 23621.62 2.5614 5.7018 5.93E-09 

ST08 9221.86 21821.64 2.3663 5.3597 4.17E-08 

ST09 9122.84 23212.12 2.5444 5.6735 7.00E-09 

2 Bracing 10% D 

  

  

  

  

  

  

  

  

ST01 8130.01 20741.22 2.5512 5.6849 6.55E-09 

ST02 17954.32 32262.05 1.7969 4.1197 1.90E-05 

ST03 8900.93 36837.88 4.1387 7.4804 3.70E-14 

ST04 9226.67 30798.44 3.3380 6.7568 7.05E-12 

ST05 9279.02 24154.72 2.6032 5.7705 3.95E-09 

ST06 9077.79 30278.85 3.3355 6.7541 7.19E-12 

ST07 9167.80 23480.59 2.5612 5.7015 5.94E-09 

ST08 9167.52 21691.18 2.3661 5.3593 4.18E-08 

ST09 9063.61 23059.57 2.5442 5.6731 7.01E-09 

3 Bracing 10% t 

  

  

  

ST01 8178.72 20867.80 2.5515 5.6854 6.53E-09 

ST02 18058.45 32745.29 1.8133 4.1613 1.58E-05 

ST03 8949.05 37047.20 4.1398 7.4812 3.68E-14 

ST04 9275.65 30965.02 3.3383 6.7572 7.04E-12 



  

  

  

  

  

ST05 9334.69 26170.06 2.8035 6.0788 6.05E-10 

ST06 9126.21 30443.50 3.3358 6.7544 7.17E-12 

ST07 9215.16 23603.67 2.5614 5.7018 5.93E-09 

ST08 9214.88 21804.87 2.3663 5.3597 4.17E-08 

ST09 9114.40 23191.68 2.5445 5.6736 6.99E-09 

4 Bracing 25% D 

  

  

  

  

  

  

  

  

ST01 8053.59 18981.62 2.3569 5.3422 4.59E-08 

ST02 17791.59 32265.76 1.8135 4.1618 1.58E-05 

ST03 8825.61 36521.70 4.1382 7.4801 3.71E-14 

ST04 9149.01 28752.93 3.1427 6.5309 3.27E-11 

ST05 9190.28 23924.47 2.6032 5.7705 3.95E-09 

ST06 9001.71 28268.54 3.1404 6.5281 3.33E-11 

ST07 9094.55 23290.04 2.5609 5.701 5.95E-09 

ST08 9094.28 21515.29 2.3658 5.3587 4.19E-08 

ST09 8984.49 21120.56 2.3508 5.3309 4.89E-08 

5 Bracing 25% t 

  

  

  

  

  

  

  

  

ST01 8179.10 20868.66 2.5515 5.6954 6.53E-09 

ST02 18058.61 32746.13 1.8133 4.1613 1.58E-05 

ST03 8949.04 37047.98 4.1399 7.4813 3.68E-14 

ST04 9275.61 29158.04 3.1435 6.5319 3.25E-11 

ST05 9334.76 24300.10 2.6032 5.7705 3.95E-09 

ST06 9126.28 26891.19 2.9466 6.2795 1.70E-10 

ST07 9215.34 21805.40 2.3662 5.3595 4.17E-08 

ST08 9215.07 21805.35 2.3663 5.3597 4.17E-08 

ST09 9114.72 21432.55 2.3514 5.332 4.86E-08 

6 Horizontal 10% D 

  

ST01 8144.07 20777.78 2.5513 5.685 6.54E-09 

ST02 18016.04 8854.26 0.4915 -1.0645 0.85644672 



  

  

  

  

  

  

  

ST03 8899.52 31592.12 3.5499 6.9774 1.50E-12 

ST04 9240.99 30847.09 3.3381 6.7569 7.05E-12 

ST05 9296.64 24200.50 2.6031 5.7704 3.96E-09 

ST06 9091.90 30326.90 3.3356 6.7542 7.18E-12 

ST07 9167.28 23479.27 2.5612 5.7015 5.94E-09 

ST08 9166.98 23479.33 2.5613 5.7017 5.93E-09 

ST09 9077.49 23094.24 2.5441 5.673 7.02E-09 

7 Horizontal 10% t 

  

  

  

  

  

  

  

  

ST01 8188.17 20892.40 2.5515 5.6854 6.53E-09 

ST02 18077.95 29100.88 1.6097 3.6162 1.49E-04 

ST03 8960.58 35327.74 3.9426 7.3288 1.16E-13 

ST04 9285.64 30998.90 3.3384 6.7573 7.03E-12 

ST05 9345.06 26198.99 2.8035 6.0788 6.05E-10 

ST06 9136.27 30477.72 3.3359 6.7545 7.17E-12 

ST07 9226.92 23634.10 2.5614 5.7018 5.93E-09 

ST08 9226.62 21833.14 2.3663 5.3597 4.17E-08 

ST09 9124.80 23217.22 2.5444 5.6735 7.00E-09 

8 Horizontal 25% D 

  

  

  

  

  

  

  

  

ST01 8080.13 20611.73 2.5509 5.6844 6.57E-09 

ST02 - 3523.67 - - - 

ST03 8816.63 24377.50 2.7649 6.022 8.62E-10 

ST04 9177.73 27055.63 2.9480 6.2814 1.68E-10 

ST05 9225.40 24015.33 2.6032 5.7705 3.95E-09 

ST06 9029.19 26599.83 2.9460 6.2787 1.71E-10 

ST07 9086.60 23269.16 2.5608 5.7009 5.96E-09 

ST08 9086.30 23269.21 2.5609 5.701 5.95E-09 

ST09 9011.20 22922.92 2.5438 5.6725 7.04E-09 



9 Horizontal 25% t 

  

  

  

  

  

  

  

  

ST01 8188.19 20892.54 2.5515 5.6854 6.53E-09 

ST02 18074.77 8886.89 0.4917 -1.0632 8.56E-01 

ST03 8960.57 30054.24 3.3541 6.7744 6.24E-12 

ST04 9285.62 30998.90 3.3384 6.7573 7.03E-12 

ST05 9345.03 26198.97 2.8035 6.0788 6.05E-10 

ST06 9136.25 30477.66 3.3359 6.7545 7.17E-12 

ST07 9226.92 23634.40 2.5615 5.702 5.92E-09 

ST08 9226.62 21833.17 2.3663 5.3597 4.17E-08 

ST09 9124.81 23217.47 2.5444 5.6735 7.00E-09 

10 Leg 10% D 

  

  

  

  

  

  

  

  

ST01 8091.80 22210.32 2.7448 5.9919 1.04E-09 

ST02 17895.69 34271.62 1.9151 4.4108 5.15E-06 

ST03 8867.08 36694.25 4.1383 7.4801 3.71E-14 

ST04 9196.80 32487.71 3.5325 6.9602 1.70E-12 

ST05 9253.77 25943.35 2.8035 6.0788 6.05E-10 

ST06 9042.69 30160.16 3.3353 6.7539 7.20E-12 

ST07 9128.42 23378.15 2.5610 5.7012 5.95E-09 

ST08 9128.13 23378.30 2.5611 5.7013 5.94E-09 

ST09 9028.86 24712.06 2.7370 5.9801 1.11E-09 

11 Leg 10% t 

  

  

  

  

  

  

ST01 8197.20 20915.75 2.5516 5.6855 6.52E-09 

ST02 18097.89 32815.39 1.8132 4.161 1.58E-05 

ST03 8966.72 37113.12 4.1390 7.4807 3.70E-14 

ST04 9294.19 31027.26 3.3384 6.7573 7.03E-12 

ST05 9353.74 26223.22 2.8035 6.0788 6.05E-10 

ST06 9141.79 30496.98 3.3360 6.7546 7.16E-12 

ST07 9229.52 23641.45 2.5615 5.702 5.92E-09 



  

  

ST08 9229.23 23641.52 2.5616 5.7022 5.91E-09 

ST09 9130.75 23233.06 2.5445 5.6736 6.99E-09 

12 Leg 25% D 

  

  

  

  

  

  

  

  

ST01 7947.34 18725.62 2.3562 5.3409 4.62E-08 

ST02 17598.54 26547.59 1.5085 3.3202 4.50E-04 

ST03 8722.42 36086.48 4.1372 7.4793 3.74E-14 

ST04 9053.70 28447.82 3.1421 6.5302 3.28E-11 

ST05 9064.36 23597.78 2.6034 5.7708 3.94E-09 

ST06 8897.02 29666.61 3.3344 6.7529 7.25E-12 

ST07 8981.49 22996.48 2.5604 5.7002 5.98E-09 

ST08 8981.30 22996.88 2.5605 5.7004 5.98E-09 

ST09 8880.88 20870.42 2.3500 5.3294 4.93E-08 

13 Leg 25% t 

  

  

  

  

  

  

  

  

ST01 8197.30 17736.25 2.1637 4.9631 3.47E-07 

ST02 18097.87 25456.67 1.4066 3.0038 0.001333106 

ST03 8966.62 37119.79 4.1398 7.4812 3.68E-14 

ST04 9293.92 25593.66 2.7538 6.0054 9.54E-10 

ST05 9353.46 20599.81 2.2024 5.0423 2.30E-07 

ST06 9141.57 30496.70 3.3360 6.7546 7.16E-12 

ST07 9229.47 23641.38 2.5615 5.702 5.92E-09 

ST08 9229.23 23641.36 2.5616 5.7022 5.91E-09 

ST09 9130.80 19707.54 2.1584 4.9521 3.67E-07 

 

 

 



 


