Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Characterization of Waste Tire Rubber and Standard Malaysian Rubber (SMR 20) as Potential Raw Materials for Pyrolysis

Mohamed Rahmat, Siti Suraiya (2015) Characterization of Waste Tire Rubber and Standard Malaysian Rubber (SMR 20) as Potential Raw Materials for Pyrolysis. IRC, Universiti Teknologi PETRONAS. (Unpublished)

Download (1MB) | Preview


Rubber tire is a very useful product that is mainly used in the automotive industry. However, the used rubber tires that are no longer useful for vehicles due to punctures or wear become a problematic waste. One way to reduce the waste rubber tire is by recycling the product. Different methods have been developed over time to find the best way for recycling the waste tires. One of these methods is pyrolysis that allows the conversion of the waste tire rubber into valuable chemical products. This project evaluated the use of the rubber tire as a potential raw material for pyrolysis. The samples of waste tire were pyrolysed at different temperatures, to see the effect of temperature on the product yield. The temperatures used for the pyrolysis were 4500C, 5000C, and 5500C. Each set of temperature will be tested three times to get the average of product yield. From the pyrolysis experiment, it shows that the best result for oil yield is at 5000C and decreasing after the temperature is increased. Before the pyrolysis of waste tire, elemental analysis was conducted to find the initial composition of waste tire. The elemental analysis was conducted using CHNS for carbon, hydrogen, nitrogen and sulfur content. The analysis showed that the sulfur content in the waste tire is 2.30% and the main component is carbon, with the composition of 83.57%. Thermal decomposition of waste tire was tested using thermo gravimetric analysis (TGA), which showed that the waste tire completely decomposes between 450 to 5000C and Py-GC-MS was used to obtain the composition of waste tire, mainly showing that the highest component of the waste tire is 1,3-butadiene. The yield of the products of waste tire pyrolysis, the char, oil, and gas, were calculated for the yield for each temperature and the yield vs. temperature graph was plotted. The composition of the product was tested based on the temperature and product yield. The gas yield was analyzed using GC-TCD for the composition of non-condensable gases. The char and oil was tested using CHNS for the composition of carbon, hydrogen, nitrogen and sulfur.

Item Type: Final Year Project
Academic Subject : Academic Department - Chemical Engineering - Separation Process
Subject: T Technology > TP Chemical technology
Divisions: Engineering > Chemical
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 02 Nov 2015 15:53
Last Modified: 25 Jan 2017 09:36
URI: http://utpedia.utp.edu.my/id/eprint/15753

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...