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ABSTRACT 

Exploration for environmental friendly alternative energy is essential to complement depleting and 

environmentally unfriendly fossil fuels. Renewables energy such as biodiesel is gaining increased 

attention at global level. One other hand, edible oil as a raw material and processing costs are 

adversely affecting the economic viability of biodiesel technology. Currently, more than 95 % of 

biodiesel raw material feedstock sources are from edible oil sources which competes with food 

processing industries affecting both the economics of biodiesel and food industries. 

Transesterification reaction is a very slow reaction due to limited solubility of low molecular 

weight alcohol in vegetable oil. The slow reaction rate of transesterification increases the 

processing cost of biodiesel which ultimately increase the cost of biodiesel as a fuel. Use of non-

edible oil such as used cooking oil (WCO) can reduce the high cost of edible oil sources. The slow 

transesterification rate can also be increased by using reaction rate increasing techniques such as 

microwave heat pretreatment of oil and use of rate enhancement agent such as phase transfer 

catalysis along with the conventional catalyst. In the present research work, the concept of 

microwave pre-treatment of oil for transesterification of waste cooking oil were utilized. To design 

appropriate transesterification reaction conditions, physical and chemical properties of WCO were 

investigated. The Individual and interaction effects of transesterification reaction parameters were 

studied using design of experiment (DOE) software’s such as central composite design (CCD) of 

response surface methodology (RSM). After Investigation of the parametric effect, optimum 

reaction condition for maximum yield was established experimentally using CCD of RSM. At 

optimal conditions of 7.5 ethanol: oil molar ratio, 1.5 wt% NaOH concentration, 3 minutes pre-

treatment of oil with microwave energy, 45℃ reaction temperature & 22.5 minutes of reaction 

time, it was determined that about 98.72 wt% FAEE yield was obtained as compared to 86.24wt% 

FAEE yield obtained with oil untreated with microwave energy at optimal concentration of 7.5 

ethanol: oil molar ratio, 1.5 wt% catalyst concentration, 45℃ and 60 minutes of reaction time. This 

resulted in about 12.48 wt% gain in FAEE yield while reducing the reaction time. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of Study 

Global energy consumption is rising rapidly with increasing population and modernization. 

The total world energy demand is estimated to rise from 505 quadrillion British thermal unit 

(BTU) in 2008 to 770 quadrillion BTU in 2035 as presented in Figure 1.1. About 88% of the 

world energy consumption is based on fossil fuels. World liquid energy consumption is also 

estimated to increase from 85.7 million barrels per day in 2008 to 112.2 million barrels per day 

in 2035 [1-4]. At the existing production rate, the global proven reserves of crude oil and 

natural gas are estimated to be fully consumed in a half century [5]. 

 

Figure 1.1: Projected world energy consumption from 1990 to 2035 in quadrillion BTU (source: 

IEO 2011[2])   

With the increasing demand for energy from the fossil fuels, the environment and its 

ecosystems are getting polluted by the emission of greenhouse gases such as carbon dioxide. 

Carbon dioxide emissions related to use of energy was also estimated to increase from 30.2 

billion metric tons in 2008 to 43.2 billion metric tons in 2035[1]. Associated global warming, 

melting of the polar ice cap, glaciers, rising sea levels and devastating weather patterns can 

affect life on earth irrecoverably. Exploration for alternative renewable fuels and chemical 
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feedstocks with zero net carbon dioxide emissions is necessary for sustainable development. 

Currently renewable energy fuels account for about 11% of the total world energy supply [5].  

Biomass, obtained by photosynthesis, is a versatile renewable feedstock that can be 

converted into different types of bio-fuels (solid, liquid and gas) [5, 6]. It contributes up to 

77.4% of the current renewable energy supply. Bio-fuels include bio-ethanol, bio-methanol, 

biodiesel and bio-hydrogen. Biodiesel is gaining increasing attention as it can substitute 

effectively for petro diesel [7]. Biodiesel can be produced by transesterification of a wide range 

of feedstocks such as vegetable oils, animal fats, used frying oils, etc with alcohols [8, 9]. The 

feedstock source can be region specific. Thus, soybean oil is used in the United States; rapeseed 

oil (canola oil) is used in Europe while palm oil is used in Indonesia and Malaysia. Biodiesel 

offers promising benefits such as biodegradability, good lubricity, high cetane number, high 

flash point, higher combustion efficiency and low polluting emission to the environment 

compared to petro-diesel [9, 10]. 

Biodiesel is composed of methyl or ethyl esters produced from vegetable oil or animal oil 

and has fuel properties similar to diesel fuel which renders its use as biofuel. Biodiesel offers 

many benefits: (a) serves as alternative to petroleum-derived fuel, which implies a lower 

dependence on crude oil foreign imports; (b) provides favorable energy return on energy 

invested; (c) reduces greenhouse emissions in line with the Kyoto Protocol agreement; (d) 

lowers harmful gaseous emissions;(e) biodegradable and nontoxic fuel, being beneficial for 

reservoirs, lakes, marine life, and other environmentally sensitive areas [7-9]. It has been 

realized that local biodiesel production can address challenges related to energy independence, 

economic prosperity, and environmental sustainability in any nation. Towards this, the United 

States (US) and Europe have encouraged large scale industrial biodiesel production. For 

example, biodiesel production in the US has increased from 75 million gallons in 2005 to 250 

million gallons in 2006 and 450 million gallons in 2007, with an expected total capacity of 

well over 1 billion gallons in the next few years [10,11]. 

Transesterification is a chemical reaction between triglycerides present in the oils or fats 

and such as methanol or ethanol to form esters and glycerol in the presence of a catalyst or at 

high pressure and temperature [11, 12]. The molecular weight of ester molecule is about one-

third of its parent vegetable oil molecule and has a viscosity approximately one tenth of the 
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viscosity of vegetable oils and twice that of petro-diesel fuel. The physical characteristics of 

esters produced by transesterification are very close to those of petro-diesel fuel. Vegetable 

oils or animal fats are esters of saturated and unsaturated mono-carboxylic acids with the tri-

hydric alcohol glycerides. The most common fatty acids of vegetable oils are palmitic acid 

(C16:0, no double bond), stearic acid (C18:0, no double bond), oleic acid (C18:1, one double 

bond) and linoleic acid (C18:2, two double bond). All the three OH groups can be esterified 

with alcohol [13, 14]. Stoichiometrically, one mole of triglycerides reacts with three moles of 

alcohol to produce three moles of esters and a mole of glycerol as shown in Figure 1.2.  

 

Figure 1.2: Transesterification reaction of vegetables oils 

As vegetable oils are sparingly soluble in lower alcohols, the transesterification reaction is 

slow due to the limited mass transfer rate between the two immiscible phases [15]. Several 

techniques such as mixing, co-solvent addition, higher temperature, higher pressure, super 

critical alcohol, ultra sonication and microwave irradiation have been investigated to enhance 

the reaction rates. 

The global markets for biodiesel are entering a period of rapid, transitional growth, creating 

both uncertainty and opportunity. In years 2008 to 2012, the global edible oil production 

increased from 137.7 to 150 million tons; about 85% was used as food while about 13% was 

used for biodiesel production and the remaining 2% for other non-food industrial inputs [16]. 

Currently, more than 95% of biodiesel is made from edible oil sources such as rapeseeds, 

soybeans, sunflower and palm [14, 20]. The capacity for biodiesel production increased from 

2.2 million tons per year in 2002 to 32.6 million tons per year in 2008; however, biodiesel 

production was only 1.9 million tons per year in 2002 and 11.1 million tons per year in 2008 
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as presented in Figure 1.3. Biodiesel industry had to compete with food processing industry 

for the all-important raw material - edible oils. This resulted in the rise of edible oil prices 

affecting the economics of biodiesel production as well as food prices. Even now, it has been 

reported that feedstock cost alone accounts for 75% of the biodiesel production cost [8]. 

 

Figure 1.3: World biodiesel production and capacity from 2002 to 2008 [21] 

Energy demand in Malaysia is expected to grow at a rate of 5 to 7.9% for the next 20 years due 

to its fast growing industrialized economy [5]. Natural gas (43.4%), crude oil (38.2%), coal 

(15.3%) and the renewable resources (3.1%) contribute to the required energy mix in 2008 [5]. 

Malaysia is a major palm oil producer and exporter. The government of Malaysia adopted the 

National Biofuel Policy in 2006 to further promote the production and consumption of 

biodiesels [5]. In the same year, Envo diesel has been introduced to further strengthen the 

utilization of biodiesel as a renewable diesel. Envo diesel was a mixture of 5% blend of 

processed palm oil with 95% petro-diesel.  
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1.2 Problem Statement 

Fossil fuels such as coal, natural gas and crude oil supply most of the world energy demand 

(88%).  As the results of this, usage fossil fuels contributes to CO2 emission which are 30.2 

BMT  in 2008 to 43.2 BMT in 2035.Renewable fuels and chemical feedstock's with zero net 

carbon dioxide emissions is necessary for sustainable development. One such option is 

biodiesel. The reason why biodiesel is chosen is due to its close and similar properties to the 

petroleum-based diesel. 

As mentioned earlier, currently more than 95 % of biodiesel raw material feedstock sources  

are from edible oil such as rapeseeds, soybeans, sunflower and crude palm oil. Use of edible 

oil as feedstock's for biodiesel will compete with food industry. This is unavoidable because 

primary use of edible nowadays is for food industry. As a result, there will be an increase in 

both price of raw material (edible oil) and also food. It is necessary to keep the cost of 

production under control to make the biodiesel technology viable by using alternative cheap 

feedstocks and effective environmental friendly reaction pathways. One such option is using 

non-edible oil sources such as waste cooking oil (WCO).   

While many research has been conduct in order to find a better solution to produce 

biodiesel, transesterification reaction has proven its capability to produce a better yield of 

biodiesel with a higher rate of reaction compared to the conventional method being used. 

However, the current biodiesel technology challenge is that the transesterification rate to 

produce biodiesel is still very slow. This happens due to the limited solubility of alcohol 

present in the oil. 

Nowadays, huge quantities of waste cooking oils and animal fats are available throughout 

the world, especially in the developed countries. Management of such oils and fats pose a 

significant challenge because of their disposal problems and possible contamination of the 

water and land resources. Even though some of this waste cooking oil is used for soap 

production, a major part of it is discharged into the environment. WCO is cheap and renewable 

but currently disposed of inadequately. Furthermore, the governments penalize the direct 

discharge of WCO into drainage, sewer and open land and rivers. Countries such as USA, 

Canada, Russia and China produce millions of metric tons of waste cooking oil per year. On 

the other hand, this will also generates huge amount of WCO as non-edible biodiesel 

feedstocks. 
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 Thus, this research or project work will consider WCO as the feedstock’s for biodiesel 

production through transesterification of WCO as a non-edible oil sources. The slow reaction 

rate of transesterification can be enhanced by pretreatment of feed by microwave energy 

irradiation of waste cooking oil. 

 

1.3 Objectives  

The objectives of this research are as follow:  

I. To investigate transesterification reaction of waste cooking oil with ethanol as the 

solvent.  

II. To investigate the effect of microwave pretreatment of waste cooking oil on 

transesterification reaction. 

III. To investigate the individual and interaction effect of reaction variables using DOE 

software. 

IV. To optimize reaction variables for maximum yield 

 

1.4 Scope of Study 

In the present research work, to achieve the affirmation research objectives, waste cooking 

oil were used as a source of non-edible oil and characterized to determine its physical and 

chemical properties. Transesterification reactions will be conducted to investigate the effect of 

reaction variables such as alcohol to oil ratio, catalyst concentration, reaction temperature, 

mixing rate and reaction time on the yield of biodiesel. The interaction effect of reaction 

variables were also studied using statistical tools of response surface methodology (RSM) and 

optimum operating conditions will be established. Conversions of triglycerides with time at 

different reaction conditions will be measured to investigate the rate of reaction and order of 

reaction equations.  

 

 

 

 



 

7 
 

1.5 Relevancy of Project 

This project is important because it discuss the current issue about finding the new source 

of renewable energy that can reduce the dependency on fossil fuels in this case the petroleum 

based diesel. This issue attracts many attentions from every nation especially developed and 

industrialized countries including Malaysia. Therefore, investigation on how to solve and 

improve this problem is needed. This study will provide information in the future for 

transesterification reaction of waste cooking oil in the presence microwave pre-treatment of 

WCO for biodiesel production. 
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CHAPTER 2: LITERATURE REVIEW/THEORY 

 

2.1 Biodiesel and its Properties 

Biodiesel is a renewable energy that has a potential to cater the problems of dependency 

on fossil fuels as a highest consumption source of energy and the depletion of petroleum 

based energy. It is reported by Mofijur M. et. al (2012) within the years of 1980 to 2010, 

the global primary fuel consumption has increase nearly doubled  which is from 6630 

million tons of oil equivalent (Mtoe) to 12,002.4 Mtoe . Moreover, according to 

International Energy Agency, they estimate that global energy consumption will rise 53% 

by 2030. In Malaysia, petrol diesel consumption has rose from 22 Mton in 2001 to 25.3 

Mton in 2010 meanwhile the oil production has drop off from 32.9 Mton in 2001 to 32.1 

Mton in 2010 [24]. With the highest consumption on fossil fuels as a source of energy, the 

environment and its ecosystems are getting polluted by the emission of greenhouse gases 

(GHG) such as carbon dioxide. It was estimated the carbon dioxide emissions interrelated 

with energy consumption to increase from 30.2 billion metric tons in 2008 to 43.2 billion 

metric tons in 2035 [25].  Therefore, searching for environmental friendly alternative 

energy and feedstock with zero net carbon emission is essential for sustainable 

development. Biodiesel is one of the top options that have gained worldwide attention. 

Biodiesel is a type of oil that has almost similar properties to petroleum diesel that is 

derived from plants and animals. It is also known as fatty acid methyl esters or FAME. It 

is renewable, biodegradable, and non- toxic [24]. As it has almost similar properties as 

petroleum diesel, it can be blended with diesel fuel at any proportion and allows it to be 

used in a diesel engine without any modification [24]. Furthermore, it is environmental 

friendly type of energy sources. 

2.2 Quality & Standards of Biodiesel 

Transesterification reaction of vegetable oil does not go to 100% completion; it reaches 

equilibrium state at a certain point. The resulting product of transesterification reaction 

contains fatty acid esters, monoglycerides (MG), diglycerides (DG) and triglycerides (TG) 

and other minor impurities. The biodiesel standards limit components of biodiesel such as 

glycerol, mono, di and triglycerides, FFA (by limiting the acid number), residual alcohol 
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(by limiting flash point) and moisture contents. However, from all of these quality 

parameters, the glycerol content, that is, the free glycerol, MG, DG, TG and acid value are 

the most important. Thus, the ASTM D6751 limits the free glycerol to 0.02%, the total 

glycerol to 0.24% and the acid value to 0.5 mgKOH/g as shown in Table 2.1. 

 

Table 2.1: ASTM D6751 and DIN EN 14214 biodiesel standards [19] 

 

 

Property 

 

 

Unit 

Standard Limit Test Methods 

ASTM 

D6751 

DIN EN 

14214 

ASTM 

D6751 

DIN EN 

14214 

K.Viscosity at 40oC mm2/s 1.9–6.0 3.5–5.0 D445 EN ISO 3104 

Density at 15oC 
kg/m3 - 860–900 – EN SIO 3675 

EN SIO 2185 

Flash point oC 130.0 min 101.0 min D93 ISO CD3679e 

Acid value mg KOH/g 0.80 max 0.5 max D664 pr EN 14104 

Free glycerol % (m/m) 0.020 max - D6584 EN 14106 

Monoglycerides % (m/m – 0.8 max – pr EN 14105m 

Diglycerides % (m/m) – 0.2 max – pr EN 14105m 

Triglycerides % (m/m) – 0.2 max – pr EN 14105m 

Total glycerol % (m/m) 0.240 max 0.25 max D6584 pr EN 14105m 

Methanol % (m/m) – 0.2 max – pr EN 141101 

Cloud point oC – – D2500 – 

Distillation T90AET oC 360 max – D1160  

Iodine value – – 120 max – pr EN 14111 

Water and sediment %vol 0.050 max – D2709 – 

Water content mg/kg – 500 max – EN ISO 12937 

Cetane number – 47 min 51 min D613 EN ISO 5165 

Sulphated ash % (m/m) 0.020 max  D874 ISO 3987 

Carbon residue % (m/m) 0.050 max 0.3 max D4530 EN ISO 10370 

Sulfur (S 15 Grade) ppm 0.0015 max – D5453 – 

Sulfur (S500 Grade) ppm 0.05 max – D5453 - 

Oxidation stability at 

110oC 

h – 6 – pr EN 14112 
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2.3 Biodiesel Production Technology 

Vegetable oils are not suitable for direct use as internal combustion engine fuel due to 

their high viscosity, (27-54mm2/s compared to 2.7mm2/s of petro-diesel fuel), lower 

volatility and high reactivity due to its unsaturated hydrocarbon. Direct use of vegetable 

oil has shown several problems such as: 

 Coking and trumpet formation on the injectors 

 Oil ring sticking 

 Thickening and gelling of the lubricating oil 

 Reduced power and fuel economy[26] 

In order to overcome the problems posed by direct use of vegetable oils, different 

methods such as dilution, micro emulsion, pyrolysis and transesterification were proposed 

to modify the chemical and physical properties of vegetable oil [27]. However, 

transesterification is the most suitable method to lower the viscosity of vegetable oil and 

commercially established process to convert vegetable oils or animal fats to biodiesel [28]. 

Transesterification is a chemical reaction between triglycerides present in the oils or 

fats and alcohols to form esters and glycerol in the presence of catalyst or at high pressure 

and temperature [29]. Methanol is the most preferred alcohol because it is the most 

cheapest and available alcohol. Other alcohols such as ethanol, propanol, butanol and amyl 

alcohol can also be used in place of methanol. 

The molecular weight of ester molecule is about one-third of its parent vegetable oil 

molecule. WCO has viscosity of 10 times or more than regular diesel. The physical 

characteristics of esters produced by transesterification are quite similar to those of diesel 

fuel. Stiochiometrically, 1 mole of triglycerides reacts with 3 moles of alcohol to produce 

3 moles of esters and 1 mole of glycerol. It consists of three consecutive reversible reaction 

steps [30].  

The first step involves formation of diglycerides molecule, the second step involves 

formation of monoglycerides and the last step is the formation of glycerol. In each step one 

mole of ester is formed as illustrated in Figure 2.1. Since it is an equilibrium reaction, large 
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excess of alcohol need to be used to shift the equilibrium towards formation of esters and 

glycerol. 

 

Figure 2.1: Stepwise transesterification or alcoholysis of vegetable oil 
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Figure 2.2: Overall transesterification or alcoholysis of vegetables oils 

 

2.4 Variables transesterification reaction affecting 

The rate of transesterification reaction of oils and fats is affected by various process 

parameters such as the free fatty acid (FFA) and water in the oil, the type of catalyst and 

their concentration, the ratio of alcohol to oil, reaction temperature, agitation speed and 

reaction time. Each parameter is equally significant to determine the quality and quantity 

of biodiesel produced and to achieve high conversion rates [23].  

 

2.5 Microwave Role in Biodiesel Production  

While transesterification of oils to produce biodiesel is a well-established method, there 

exist conversion and energy utilization inefficiencies in the process which result in the high 

cost of biodiesel mainly associated with heating method in the process. Microwave-assisted 

transesterification, on the other hand, is energy-efficient and quick process to produce 

biodiesel from different feedstock’s [21,22]. Microwave energy, a non-conventional 

heating method is utilized in biodiesel production in two main stages: 1) oil extraction and 

2) chemical transesterification reaction. Biodiesel production involves mixing of 

appropriate ratios of oil, methanol or ethanol(solvent) and catalysts .The mixture is then 

processed through a microwave reactor followed by separation of products to yield 

biodiesel and glycerin. 
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2.6 Microwave Pre-treatment of Non-Edible oil  

Recently, microwaves have received increased attention due to their ability to complete 

chemical reactions in very short times. Few advantages with microwave processing can be 

listed as rapid heating and cooling, cost savings due to energy, time and work space 

savings, precise and controlled processing, selective heating, volumetric and uniform 

heating and reduced processing time. Microwaves have the ability to induce reactions even 

in solvent-free conditions offering “Green Chemistry” solutions to many environmental 

problems related to hazardous and toxic contaminants [20]. Due to these advantages, 

microwaves provide for tremendous opportunities to improve biodiesel conversion 

processes from different feedstock and oils. 

 

2.7 Waste cooking oils as Source of Biodiesel Feedstock 

Figure 2.2 below shows the global analysis on consumption of vegetables oils from year 

1995-2014. From the graph, there is an increase in the vegetables oils consumption 

throughout the year 1995-2014. This trend will continue to increase as time progress as 

there will be an increase in population in the world.  

 

Figure 2.3: Global consumption of vegetable oils from 1995/1996 to 2013/2014, by oil type (in 

million metric tons) 
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Among the vegetables oils used, palm vegetables oils are being consumed at the highest 

rate which is approximately at 56.3 million MT/year. This is because palm oil contributes 

the most in food industry. Other oils such as soybean, canola and sunflower oil also used 

primarily in food industry. The total vegetables oil consumed at year 2014 is approximately 

163 million MT/year which will also generates huge amount of waste cooking oil as a 

source of non- edible oil feedstock’s.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

Overall process flow diagram of the research methodology to investigate transesterification of 

WCO with and without and microwave pre-treatment of WCO followed in the present study 

is presented in Figure 3.1. Materials used are presented in section 3.2. Experimental methods 

used for characterizations of WCO are described in section 3.3. Purification methods of WCO 

are discussed in section 3.4. Experimental design plan for the transesterification of WCO and 

parametric optimization are discussed in section 3.5. Section 3.6 describes the Gantt chart of 

this project work. 

 

Figure 3.1: Process flow of transesterification of waste cooking oil of the present study
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3.2 Materials and Chemicals  

Waste cooking oil sample was collected from local restaurants located around Taman 

Maju, Seri Iskandar, Perak, Malaysia. A sample of 5 litre of WCO were collected and stored 

under room temperature. Chemicals used for transesterification reaction, pro-analysis 

chemicals, alkaline catalyst, and standard chemicals for biodiesel analysis in gas 

chromatograph are presented below: 

Table 3.1: List of chemical used in research 

Description Purity Supplier 
 

Alcohol      

Ethanol ≥ 99.7% N/A  

Catalyst      

Sodium hydroxide (alkaline catalyst) ≥ 99% Merck chemical  

Cetyltrimethylammonium bromide (PTC) ≥ 99% Sigma Aldrich  

Pro-analysis chemicals      

Iso-proponol >99.8% 

Merck chemical 

 

N-hexane ≥ 99%  

N-heptanes ≥ 99.5%  

Potasium hydroxide 0.1 N  

Iodine ≥ 99.99%  

Sodium sulphate ≥ 99%  

α-Naphtholphthalein  ≥ 99%  

Acetic acid  Reagent grade  

Diethyl ether  Reagent grade  

Reference standards kit for GC      

1,2,4 butanetriol GC grade 

  

 

Tricaprin GC grade  

Glycerin GC grade  

Monoolein GC grade  

Diolein GC grade  

Triolein GC grade  

N-Methyl-N-trimethylsilytrifluoroacetamide (MSTFA) GC grade  

Pyridine ≥ 99%  
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3.3 Experimental Approach Characterization of Waste Cooking Oil 

Vegetable oils contain free fatty acids (FFA), saturated and unsaturated fatty acid 

glycerides. Acid value provides a measure of FFA. Saponification value provides a 

measure of fatty acid glycerides and Iodine value gives a measure of level of unsaturation.  

Calorific value of the oil is an indicator of its fuel value; viscosity and density of the oil 

provides an indication of its usability as a fuel.  Methods used to measure these properties 

are presented in the following sections. 

3.3.1 Determination of Acid Value and Acid Number  

Acid value is the measure of the free fatty acid (FFA) present in the oil. According 

to ASTM D 974-06, acid number is defined as the quantity of base expressed in 

milligrams of potassium hydroxide per gram of sample to a specified end point. 

FFA percentage of oil is one of the important factors to design transesterification 

reaction experiments. The acid value of biodiesel fuel also affects the quality of the 

biodiesel as fuel. Thus, determination of the acid value of the oil prior to 

transesterification reaction as well as the acid value of biodiesel is very essential to 

produce a biodiesel fuel that satisfies international requirements of biodiesel as a 

fuel. The acid number of waste cooking oil and the corresponding biodiesel 

produced will be determined using titration method of American Oil Chemists 

Society, AOCS Official Methods cd 3d-63, revised 2003. According to AOCS 

Official Methods cd 3d-63, revised 2003, the acid number is calculated as; 

w

N
BAgKOHmgvalueAcid

1.56*
*)(, 

 (3.1) 

Where:  A = KOH solution required for titration of the sample, ml 

B = KOH solution required for titration of the blank, ml 

N = Normality of standard alkali KOH solution (mol/l) 

w = the amount of sample used, g 
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  The procedures of the experiment are as follows:  

 

1) A solvent mixture consisting of equal parts by volume of isopropyl alcohol 

and toluene is prepared.  

2) 0.1 N KOH is prepared  

3) Phenolphthalein solution is added to the required amount of solvent in ratio of 

2ml to 125ml and neutralize with KOH to a faint pink colour.  

4) The sample size is determined from the following Table 3.2:  

Table 3.2: Acid value sample size 

Acid Value  Mass of Sample, (+/- 

10%) g 

Weighing Accuracy, 

(+/-) g 

0-1  20  0.05  

1-4  10  0.02  

4-15  2.5  0.01  

15-75  0.5  0.001  

75 and over  0.1  0.0002  

5) The volume of KOH used is recorded and calculated 

6) Perform a blank titration using a solvent mixture consisting of equal parts by 

volume of isopropanol and toluene. 

7) The volume of KOH used is recorded and calculated. 

8)  The acid number is calculated. 

The acid percentage due to FFA in a sample was assumed due to the contribution of 

presence of lauric,oleic and palmitic FFA acid components. The FFA percentage due to 

each of these components may be estimated by dividing the acid value by 1.99, 2.81 and 

2.56, respectively. In this studies, according to Gas Chromatography Mass Spectroscopy 

(GCMS) results the highest percentages of FFA in a sample of waste cooking oil is oleic 

acid. Therefore, in order to express in terms of free fatty acids as percent, divide the acid 

value in mg KOH/g with 2.81 

 

 

     (3.2) 

     idPalmiticacLauricacidOleicacidKWhere *0251.0*0281.0*0199.0:   

K

valueAcid
FFA %
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3.3.2 Determination of Saponification Value 

Saponification value is the amount of alkali, in milligrams of potassium hydroxide, 

necessary to convert 1 gram of oil into soap. After transesterification is complete, 

the left over catalyst and some soap formed tend to concentrate in the glycerol 

phase. However, some soap may be left in the biodiesel phase. During design of 

transesterification reaction experiment, it is important to know the amount of soap 

formed when alkaline catalyst is used and how effective the washing process is in 

removing soap formed and left over catalyst. In the present work, AOCS Cd 3b-76 

titration procedure was used to estimate the saponification value of both waste 

cooking oil and biodiesel. Mathematically, it is expressed as; 

 

w

N
BAvaluetionSaponifica

56*
*)(    (3.3) 

Where:  w = weight of sample taken, g  

A = volume of KOH required for blank titration, ml 

B = volume of KOH required for sample titration, ml 

N = normality of KOH solution, mol/l 

 

3.3.3 Determination of Iodine Value  

Iodine value or iodine number is the measure of the total amount of unsaturated 

fatty acids in the oil. It is the measure of the number of grams of iodine which will 

combine with 100 grams of the oil. The method specified by AOCS official method 

993.20 was used in order to determine the iodine value. Then the iodine value (I.V) 

is determined by the expression: 

W

N
BAvalueIodine

69.12*
*)(      (3.4) 

Where: N = Normality of sodium thiosulphate (Na2S2O3) used; mol/l 

A = Volume of sodium thiosulphate used for blank; ml 

B = Volume of sodium thiosulphate used for determination, ml  

W = weight of the sample, g 
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3.3.4 Determination of viscosity 

The viscosity of waste cooking oil was tested by using viscometer units. The 

procedure are as follows:  

1) The spindle is selected and attached to the handle. The temperature and 

speed is selected. 

2) The handle is lowered so that the spindle closer to the plated. The handle is 

locked. This to allow the spindle and plate come to an equilibrium. 

3) Handle is raised and sample of waste cooking oil placed onto the plate. The 

handle is lowered and locked. 

4) The spindle is allowed to equilibrate to the temperature control setting. The 

run time is for rotating is set and the run key is pressed. Then, result is 

collected. 

3.3.5 Specific Gravity 

The procedure are as follows:  

1) A measuring cylinder is weigh on the weighing machine and the weight is 

recorded.  

2) 11.5 ml waste cooking oil is pour into a measuring cylinder and the weight 

is recorded.  

3) The density waste cooking oil is calculated by using the equation below:  

 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦= (𝑀𝑎𝑠𝑠 𝑜𝑓 𝑏𝑒𝑎𝑘𝑒𝑟 𝑤𝑖𝑡ℎ 𝑜𝑖𝑙− 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑏𝑒𝑎𝑘𝑒𝑟 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 

𝑜𝑖𝑙)/𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑖𝑙 

 

4) To get the value of specific gravity of waste cooking oil, the value of gravity 

is divided by the density of water which is 1 g/ml.  

 

3.3.6 Determination of calorific value 

The calorific value of waste cooking oil was determined by using bomb calorimeter 

equipment. A sample of waste cooking oil was sent to the required personnel in 

UTP to undergo the bomb calorimeter experiment. 
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3.4 WCO oil purification (esterification reaction). 

Since waste cooking oil contains certain amount of chunks, impurities or solid deposition 

as a result from cooking, it is necessary to purify the oil to ensure the transesterification 

reaction proceed accordingly and avoid any side reaction that may occur.  

3.4.1      Removal of chunks 

Filtering WCO oil will eliminate the chunks of food and other particles before it is 

used for further processes. Chunks can contain water and other impurities that will 

affect the biodiesel production processes and the quality of biodiesel produced. The 

chunks need to be removed using a filtration processes 

i. Appropriate filter such as cotton cloth filter were used to separate chunks from 

WCO. Before that, the oil was heated to about 50℃ to reduce the viscosity for 

easiness of filtration. 

ii. Once the oil was separated, smaller suspended particles were allowed to settle 

so they doesn't attach to the heating element and muck up the processor. This 

process was conducted several times until no more solid depositions are 

present. 

iii. Once separation was completed, the WCO were transferred to a screw cape 

bottle to make ready for esterification process. 

3.4.2 Esterification reaction (FFA conversion)  

The saturated or unsaturated mono-carboxylic acids that occur naturally in fats, oils 

or greases but are not attached to glycerol backbones are known as free fatty acids 

(FFAs). The presence of higher amount of FFAs in oil can result in higher amount 

of acid value of oil. WCO usually contain a high amount of FFAs.  When alkaline 

catalyst is used to promote the transesterification reaction in WCO feed stocks with 

high FFAs, the FFAs reacts with the alkaline catalyst and soap will be formed as 

shown in the Figure 3.2. The formation of soap is the undesirable product in 

transesterification reaction as more catalyst is required to replace the catalyst lost 

due to soap formation.  The presence of soap increases the viscosity (formation of 
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gel) and emulsification resulting in difficulties in separation of biodiesel from 

glycerol resulting in excessive washing and low yield of biodiesel.  For alkaline 

catalysed transesterification reaction, the maximum amount of FFAs in the oil 

needs to be less than 2 or 3%. However, additional catalyst is required to 

compensate the catalyst lost due to saponification. 

              

        Figure 3.2: Saponification of FFA during transesterification reaction 

3.4.2.1.1 Purification of waste cooking oil (esterification) experimental 

procedure 

 

Figure 3.2: Esterification experimental set-up  

The procedure are as follow: 

1. A two neck round bottom flask reactor equipped with a reflux 

condenser (to prevent loss of alcohol), a magnetic stirrer and a 

thermometer are used.  
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2. 50g of waste cooking oil is prepared and placed in the round bottom 

flask reactor.  

3. 12:1 molar ratio of ethanol to oil is mixed with 3.5 wt% of sulphuric 

acid to oil is prepared in a separate flask.  

4. A magnetic stirrer is placed into the reactor flask and set to 400 rpm.  

5. The heat is turned on and allowed for the oil bath to reach 60⁰C. The 

flask will be immersed in an oil bath immediately to maintain the 

reaction temperature.  

6. The mixture of ethanol and sulphuric acid is added to the reactor 

flask and the reaction is started.  

7. The reaction is left for 60 minutes.  

8. After 60minutes, the reactor is withdrawn from the thermostat. The 

liquid mixtures is transferred to a separation funnel. The separation 

processes requires several hours to form a clear phase separation 

between the top layers that contains ethanol sulphuric acid and 

impurities while the bottom layer containing the purified WCO. 

9. The bottom layer is recovered and then be washed with warm (50 – 

60 ⁰C) water several times to remove contaminants.  

10. The recovered purified waste cooking oil can be further use for 

transesterification reaction.  

 

Feed stocks with high content of FFAs such as WCO require special process or pre-

treatment to be used in biodiesel production. The common pre-treatment method is 

esterification of FFAs with ethanol in the presence of acid catalyst (usually 

sulphuric acid) as shown in Figure 3.3. Once the FFAs are reduced to the minimum 

value, the reaction further proceeds with base catalysed transesterification reaction. 

 

Figure 3.3:  Esterification of free fatty acid 
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In the present work, WCO FFA purification using Acid esterification were conducted using 

the following methods: 

Required amount of WCO is poured into the flask and heated up to 60˚C. The 45 

to 50 % v/v ethanol is added with the preheated WCO and stirred for a few minutes. 

1.5 to 2.5 % of sulfuric acid is added with the mixture. Heating and stirring should 

continue about 45 to 60 min at atmospheric pressure. After completion of this 

reaction, the mixture is poured into a separating funnel for separating the excess 

alcohol, impurities and sulfuric acid. The excess alcohol, sulfuric acid and 

impurities moves to the top layer and is separated from the oil. The lower layer is 

separated for further processing of transesterified into ethyl ester. This process is 

expected to reduce the acid value of WCO to less than 1% of FFA. 

 

3.4.3 Transesterification Reaction Experimental Approach  

A two neck round bottom flask reactor equipped with a reflux condenser (to prevent 

loss of alcohol), a magnetic stirrer and a thermometer will be used. Ten grams of 

purified WCO were prepared and placed in the round bottom flask reactor. 

Required amount of alkaline ethanol mixed will be prepared in a separate flask, 

preheated to the reaction temperature and then added to the round bottom flask 

reactor to start the reaction. The flask will be immersed in a silicon oil bath 

thermostat immediately to maintain the reaction temperature. The reactor assembly 

is shown in Figure 3.4.  

After a specified reaction time, the reactor will be withdrawn from the thermostat. 

The liquid mixtures will be transferred to a separation funnel and will be diluted 

with distilled water to arrest further reactions. N-hexane will be added to extract 

alkyl esters and enhance the clarification of the mixture into two phases. The 

separation processes requires several hours to form a clear phase separation 

between the top layer that contains mixture of alkyl ester and n-hexane mixture 

while the bottom layer containing  glycerol, ethanol, sodium hydroxide, water and 

unspent oil.  
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Figure 3.4: Batch reactor for transesterification of waste cooking oil 

The top layer will be recovered and then washed with warm (50 - 60oC) 

water several times to remove contaminants; traces of moisture in the washed top 

layer (containing hexane and alkyl esters) were removed by passing the mixture 

through an adsorption column of sodium sulphate particles. Alkyl ester produced 

will be recovered by evaporating n-hexane from the mixture using a rotary vacuum 

evaporator operating at a temperature of 70oC, 200 mmHg and a rotational speed 

of 20 rpm. The recovered alkyl ester will be weighed and stored in a screw capped 

bottle for further analysis.  

This procedure were used in all the experiments to investigate yields of 

ethyl esters for microwave pretreated and untreated WCO. Optimal operating 

conditions will be investigated with or without microwave pretreatment of WCO 

by statistical tool of response surface methodology (RSM).   

3.4.4 Statistical Experimental Design for investigating the individual and cross 

effects of reaction variables to determine optimum operating conditions  

 Identification of optimum operating condition using conventional method 

was near impossible due to cross influence of different variables. The use of 

statistical methods can be advantageous in understanding interactions among 

process variables with minimum number of experiments that need to be performed 
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and find optimal condition.  Response surface methodology (RSM) is one such 

widely applied statistical tool for experimental design and identification of optimal 

condition. In the present study central composite design (CCD) technique of RSM 

was used for experimental design to investigate the individual and interaction 

effects of reaction variables and determine the optimum reaction condition for 

microwave untreated WCO as well as microwave heat pretreated tranesterification 

of WCO. 

The experimental results were fitted using a polynomial quadratic equation 

in order to correlate the response variables. The general form of the polynomial 

quadratic equation shown in equation (3.5) was used to develop a model that 

predicts (estimates) the yield of alkyl esters (FAEE) at designed reaction variable 

combination. 
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Where: Yi is the predicted response and Xi is the input variables for BTMAOH 

concentration, NaOH concentration, and volume of alcohol, reaction temperature and time. The 

term βo is the offset term (intercept), βi is the linear terms, βii is the squared terms and βij is the 

interaction terms and Xj is the cross term to represent two-parameter interactions. 

The variable Xi was coded according to equation (3.6). 

 

         
i

*

ii

i
ΔX

  -  XX
=  x             (3.6) 

Where: xi is the coded value of the ith variable, Xi is the natural value of the ith variable, Xi* is the 

central value of Xi in the investigated area, and ∆Xi is the step size. 
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3.5  Gantt Chart

No Details 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection of Project Topic: 

Microwave energy 

pretreated ethanolysis of 

non-edible oil 

              

2 Preliminary Research Work: 

Research on literatures 

related to topic 

              

3 Submission of Draft Project 

Proposal. 

     
▲  

       

4 Submission of Project 

Proposal. 

     
 ▲ 

       

5 
Proposal defence. 

              

6 Project Work: 

Study on research scope and 

method. 

              

7 Project Work: 

Further investigation on the 

project and do modification 

if necessary. 

              

8 Submission of Interim 

Report. 

            
▲ 

 

9 
Oral Presentation. 
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CHAPTER 4: RESULTS & DISCUSSION 

 

4.1 Waste Cooking Oil Characterization 

4.1.1 Acid number determination 

The free fatty acid composition of waste cooking oil for this research work mostly 

composed of linoleic (46%) and oleic (45.4%). Thus according to AOCS Official Method 

Cd 3d-63, acid value need to be divided by 2.81 to obtain the free fatty acid (FFA) value. 

From the Table 4:1, it was determined that the free fatty acid (FFA) content was very high 

which 9.44%. This is not a good condition in producing biodiesel because the presence of 

high FFA in a vegetable oil can cause the formation of soap. This is happened during the 

alkaline catalysed transesterification where the alkaline catalyst will partially neutralize the 

FFA in the oil producing soap thus reducing the biodiesel yield [16]. Several studies 

reported that FFA content in vegetable oil must be less than 3% to undergo 

transesterification reaction [17,18]. As the FFA content in waste cooking oil is high, thus 

two-step transesterification reaction is required. Waste cooking oil need to be undergo acid 

catalysed transesterification (esterification) to reduce the FFA content before can proceed 

to alkali catalysed transesterification. 

 

Table 4.1: The result for the acid determination value 

Run 1 2 

Mass of Waste Cooking Oil (g) 2.6743 2.5783 

Titration Starting Point (ml) 3.1 2.0 

Titration End Point (ml) 15.4 11.6 

Volume of KOH used (ml) 12.3 13.6 

Blank titration starting point 

(ml) 

0 0.6 

Blank titration end point (ml) 0.5 1.2 

Volume KOH used (ml) 0.5 0.6 

Acid value(mg KOH/g) 24.75 28.27 

Average (Mg KOH/g) 26.51 

Percentage of FFA 9.44% 

 



 

29 
 

4.1.2 Specific Gravity Determination 

Table 4.2 summarize the results in determination of density and specific gravity of waste 

cooking oil. From the results it was estimated that the density of waste cooking oil is 0.9146 

g/ml (914.6 kg / m3).  Based on the density, the specific gravity of WCO was calculated to 

be 0.91. 

Table 4.2 Density & specific gravity determination of WCO 
 

Experiment Value 

Mass of measuring cylinder (g) 72.4161 

Mass of measuring cylinder with WCO (g) 90.7096 

Mass of waste cooking oil (g) 18.2935 

Volume of waste cooking oil (mL) 20 

Density of waste cooking oil (g/mL) 0.9146 

Density of water (g/mL) 1.000 

Specific gravity of waste cooking oil 0.9146 

 

4.1.3 Viscosity Determination 

The value of viscosity was taken at the highest percentage of torques at 40oC and 250 rpm. 

Based on the result tabulated above, at 2.7% the viscosity waste cooking oil is 43.38cP. 

This value is higher as compared to petroleum based diesel fuel which is 2.7cP at 40 ℃ 

[19]. Therefore waste cooking oil need to undergo transesterification reaction in order to 

reduce its viscosity to a range similar with petroleum based diesel thus make it work 

effectively as fuel in standard diesel engine. 

Table 4.3: The result obtained for viscosity determination 

Spindle % of torques Viscosity (cP) 

2 2.7 43.38 

 3 -31.1 0 

4 0.8 48.00 

5 0.2 24.00 

6 0.2 60 

Waste Cooking Oil Viscosity (cP) 43.38 
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4.1.4 Calorific Value Determination 

The calorific value of waste cooking oil obtained from bomb calorimeter experiment is 

39.70 kJ/g. This is nearly to the petroleum based diesel energy content which is 43.1 kJ/g. 

Therefore, with that heating energy value, waste cooking oil is considered as a feasible 

fuel. 

4.1.5 Summary of Waste Cooking Oil Properties 

The properties waste cooking oil such as FFA content, viscosity, calorific value and 

specific gravity are tabulated in the Table 4.4 below:  

Table 4.4: Properties of WCO 

Properties of Waste Cooking Oil Value 

Specific gravity 0.9146 

Viscosity (cP) 43.38 

Calorific Value (kJ//g) 39.70  

FFA content (%) 9.44 % 

Molecular weight (g/mol) 876.35 

 

4.2 Preliminary Experiment Result  

4.2.1 Esterification Reaction 

The FFA content of waste cooking oil is high. Thus, it is required to undergo two-step 

transesterification reaction which is acid-catalyzed esterification using sulphuric acid 

H2SO4. The oil was treated approximately for 1 hour as temperature 70℃. The stirring 

speed was 400 rpm. The ethanol to oil molar ratio used was 12:1 in order to reduce the 

FFA content in the oil followed by alkaline catalyzed transesterification to produce 

biodiesel. After experiment was done, the oil is titrated again to determine the % FFA 

content. The result in esterification reaction is tabulated in the table 4.5. 

 

 



 

31 
 

Table 4.5: Titration result after acid catalysed transesterification reaction of WCO 

Run 1 2 

Mass of Waste Cooking Oil (g) 10.543 10.893 

Titration Starting Point (ml) 0 0 

Titration End Point (ml) 3.6 3.4 

Volume of KOH used (ml) 3.6 3.4 

Blank titration starting point (ml) 4.0 4.0 

Blank titration end point (ml) 4.5 4.6 

Volume KOH used (ml) 0.5 0.6 

Acid value(mg KOH/g) 1.6495 1.4420 

Average (Mg KOH/g) 1.5457 

% FFA 0.55 % 

According to AOCS Official Method Cd 3d-63, acid value need to be divided by 2.81 to 

obtain the free fatty acid (FFA) value. From the table above, it is shown that the FFA 

content in oil has reduced to 0.55%. It is consider as a good condition to undergo 

transesterification reaction as the FFA content is below than 3%.  

4.2.2 Transesterification Reaction 

Two different conditions of transesterification reaction was carried out in order to 

determine the range of variables value in RSM experiment design. The result are tabulated 

below:  

Waste cooking oil  : 10g  

Stirring speed    : 350 rpm  

Weight percent of NaOH : 1.5 w/w %  

Reaction time    : 1 Hour (without microwave heating)  

  30 Min (with microwave heating) 

 

4.2.3 Reaction without microwave heating 

In this experiment, the waste cooking oil was not treated with microwave to study the 

FAEE yield of biodiesel (ethyl-esters). The transesterification reaction was done for 1 hour 

for each experiment.  
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Table 4.6: Experiment done with constant temperature 

Ethanol to oil molar ratio Reaction Temperature (℃) FAEE yield w/w % 

3 50 61.56 

6 50 83.19 

9 50 76.42 

 

Table 4.7: Experiment done with different temperature (constant molar ratio) 

Ethanol to oil molar ratio Reaction Temperature (℃) FAEE yield w/w % 

6 30 56.76 

6 45 80.43 

6 60 72.82 

 

4.2.4 Reaction with microwave pre-treatment of waste cooking oil (WCO) 

In this experiment, the waste cooking oil undergoes microwave pre-treatment before it goes 

for transesterification reaction in order to study the effect of microwave heating of WCO 

towards the yield of biodiesel/ethyl-esters produced. The reaction time for this experiment 

is 30 min. 

                Table 4.8: Preliminary experiment with constant temperature 

Ethanol to oil molar ratio Reaction Temperature (℃) FAEE yield w/w % 

3 30 64.58 

6 30 85.32 

9 30 75.14 

 

Table 4.9: Preliminary experiment conducted with constant ethanol: oil molar ratio 

Ethanol to oil molar ratio Reaction Temperature (℃) FAEE yield w/w % 

6 30 68.43 

6 45 88.57 

6 60 76.21 
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The FAEE yield is calculated by using the following formula: 

𝐹𝐴𝐸𝐸 𝑦𝑖𝑒𝑙𝑑 =  
weight of FAEE after transesterification

weight of oil used 
× 100% 

Based on the results obtained, in order to produce higher FAEE/biodiesel several range variables 

are proposed for the design experiment. The range of variables are as follows: 

Table 4.10: Range of variables proposed for experiment 

Variables Range 

Ethanol to oil ratio  3 - 9  

NaOH concentration (w/w%)  0.5 – 1.5 % 

Reaction temperature (℃)  30 – 70 

Reaction time (min)  30 - 60  

 

4.3 Alkaline Catalyzed Transesterification 

In this section, base catalyzed transesterification of waste cooking oil was investigated. The 

objective is to conduct an optimization of base catalyzed transesterification reaction and to study 

the individual and interaction effect of the reaction variables on FAEE yield. 

4.3.1 Optimization of base catalyzed transesterification of waste cooking oil 

In this section, yield of Fatty Acid Ethyl-Esther (FAEE) produced is mainly depends on 

four independent variables: Ethanol to oil molar ratio (A), NaOH concentration (B), 

reaction temperature (C), and reaction time (D). In all the experiment, 10 g waste cooking 

oil and stirrer speed of 400 rpm were kept constant. The individual and interaction effect 

of process variables and the optimal conditions to get the maximum biodiesel yield were 

investigated by using central composite design (CCD) technique of response surface 

methodology (RSM) for base catalyzed transesterification reaction. According to RSM 

experimental design technique, it was considered that each reaction variable can take five 

different levels from low (-2),(-1),(0),(1) and to high (2). The experiment range and level 

of the independent variable is shown in the Table 4.11. 
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                     Table 4.11: Experimental range and level of the independent variables 

Variables Coded 

Symbol 

Range & Levels 

-2 -1 0 1 2 

Ethanol 𝐴  4.97731 6  7.5  9  10.0227 

NaOH Conc 𝐵  0.659104 1.0  1.5 2  2.3409 

Temperature  𝐶  19.7731 30  45  60  70.2269 

Time  𝐷  9.54622 30 60 90 110.454  

Experiments carried out as a function of the un-coded variables (with coded variables in 

the parenthesis) prompted by central composite design technique along with the observed 

biodiesel yield for base transesterification are presented in Table 4.12. 

Table 4.12: Experimental design matrix by CCD technique for base catalysed 

transesterification along with experimental and model predicted yields 

No 
Ethanol 

: Oil 

Molar 

Ratio 
 

NaOH 

concentration 

(%w/w) 

Reaction 

Temperature 

(℃) 

Reaction 

time 

(min) 

Experimental 

yield (%) 

Predicted 

yield (%) 

1 9 1 60 90 50.23 52.65 

2 7.5 1.5 45 9.54622 47.43 48.94 

3 9 2 30 30 55.32 57.13 

4 6 1 30 30 66.57 65.16 

5 9 2 60 30 60.2 63.21 

6 9 1 30 90 64.74 66.11 

7 7.5 1.5 45 60 84.12 85.73 

8 7.5 1.5 45 110.454 75.12 77.43 

9 7.5 2.3409 45 60 70.41 72.33 

10 7.5 1.5 19.7731 60 68.23 70.12 

11 6 1 60 30 71.44 72.36 

12 7.5 0.659104 45 60 53.27 54.28 

13 10.0227 1.5 45 60 78.28 79.10 

14 6 2 60 90 71.34 72.35 

15 7.5 1.5 45 60 85.27 86.24 

16 6 2 30 90 73.12 75.33 

17 7.5 1.5 70.2269 60 77.47 79.18 

18 4.97731 1.5 45 60 52.69 54.72 
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Based on the Table 4.12 above, it is observed run 15 has the highest FAEE yield which is 

85.27% and 86.24% experimentally observed predicted yield by RSM model equation 4.1 

at 7.5 ethanol to oil molar ratio, 1.5 % wt/wt of NaOH concentration, 45 °C reaction 

temperature and 60 minutes reaction time.  

Table 4.13: Regression Coefficient for FAEE yield (base catalyzed transesterification) 

Coefficient Estimate 

Constant 0.427424 

A:Ethanol:Oil Ratio 19.6285 

B:NaOH Concentration -57.6801 

C:Temperature 1.5675 

D:Reaction Time -0.675763 

AA -2.13292 

AB 9.99308 

AC -0.0706667 

AD 0.0937953 

BB -24.3511 

BC 0.212333 

BD 0.940364 

CC -0.00975628 

CD -0.00723333 

DD -0.00698615 

 

FAEE yield obtained during base transesterification were statistically analyzed by 

ANOVA in order to determine the constants of the quadratic equation which is shown in 

the Table 4.13. Based on the constants of quadratic equation, statistical model equation is 

established to estimate the FAEE yield. The statistical model equation are shown as 

equation 4.1 below. 

𝐹𝐴𝐸𝐸 𝑦𝑖𝑒𝑙𝑑 = 0.427424 + 19.6285𝐴 − 57.6801𝐵 − 0.675763𝐷 − 2.13292𝐴2 +

9.99308𝐴𝐵 − 0.0706667𝐴𝐶 + 0.0937953𝐴𝐷 − 24.3511𝐵2 + 0.212333𝐵𝐶 +

0.940364𝐵𝐷 − 0.00975628𝐶2 − 0.007233𝐶𝐷 − 0.00698615𝐷2  

(RSM Model Equation 4.1) 

Where A is Ethanol to Oil molar ratio, B is NaOH concentration, C is reaction temperature and 

D is reaction time. 
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The diagnostic plot as shown in the Figure 4.1 compares the observed experimental FAEE 

yield with the predicted values obtained using quadratic model equation. Linear trend are 

shown between the experimental values versus predicted values of the FAEE yield. Since 

the P-value in the ANOVA table is less than 0.05, there is a statistically significant 

relationship between FAEE Yield and Predicted Yield at the 95.0% confidence level. The 

R-Squared statistic indicates that the model as fitted explains 99.3405% of the variability 

in FAEE Yield.  The correlation coefficient equals 0.996697, indicating a relatively strong 

relationship between the variables. This indicate that the experimental values are nearly 

same to the predicted values. Apart from that, the R-Squared statistic (𝑅2 = 0.99) indicates 

that the model as fitted explains 99.3405% of the variability in FAEE yield. This implies 

that, 99.3405% of the experiment values for base catalyzed transesterification is reliable. 

 

Figure 4.1: The diagnostic plot of experimental FAEE yield (observed) versus predicted 

FAEE yield for base catalyzed transesterification 

 

Figure 4.2: Main Effect Plot for FAEE Yield 
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Figure 4.2 shows the DOE mean plot or main effect plot of factors that exerts effects on 

FAEE yield. Among the factors analyzed, we can clearly see that the reaction time of 

transesterification has the most significant impacts on the FAEE yield. However the 

reaction temperature only have a mild effect towards FAEE yield. For more analyzation, 

individual interaction effects of reaction variables on FAEE yield were further discuss in 

the section 4.2.3. 

4.3.2 The individual and interaction effect of the reaction variables on FAEE yield 

The response surface plots for the yield of FAEE as a function of 3 factors at a time while 

keeping the other factors at their centre point level were plotted in the three dimensional 

surface with the response surface contour at the bottom as shown in figure below:  

 

Figure 4.3: 3D Surface Plot with constant Reaction Time 

Figure 3.3 depicts the interaction effects of ethanol to oil molar ratio, catalyst concentration 

(NaOH w/wt%) and reaction temperature on FAEE yield. From the contour plot, it was 

observed that the increasing volume of ethanol can increase the FAEE yield. However, the 

FAEE yield started to decrease when the ethanol volume reaches to a certain marginal level 

which is about 7.9 ethanol to oil molar ratio. Over loading of ethanol reduced the 

concentration of the catalyst thus affect the catalytic reaction. Apart from that, it is also 

lead to the solubility problem where the product FAEE/biodiesel easily dissolved in 

glycerol phase thus reduced the biodiesel recovery process. It was also observed that 

increasing the NaOH concentration successfully increased the FAEE yield up to a certain 
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level. However, further increased the NaOH concentration also favors the saponification 

reaction thus reduced the FAEE yield. From the response surface, the maximum yield was 

gained with 7.5 ethanol to oil molar ratio and 1.2 % w/wt of NaOH concentration. 

Meanwhile for the reaction temperature, it was observed that increasing the temperature 

up to a certain point will also increase the yield of biodiesel. However further increase in 

temperature does caused the reduction of FAEE yield. This is because, transesterification 

under high temperature promotes saponification reactions. 

 

 

Figure 4.4: 3D Surface Plot with constant Temperature  

Figure 4.4 shows interaction of reaction variables with constant temperature at 45℃. It is 

expected that increasing the reaction time can increased the FAEE yield. However further 

increase in reaction time beyond its optimum value could reduce the FAEE recovery 

process. This is because saponification will likely to happen at longer period/reaction time. 

The optimum reaction time to produce high yield of FAEE is determined to be around 60 

min for reaction without microwave pre-treatment of WCO. 

Meanwhile, it can be observed that the ethanol: oil molar ratio still give the 

optimum value within the range of 6.9 to 7.9 and the yield also starts to increase starting at 

about 1.3 wt% catalyst concentration. As mentioned earlier, increasing the molar ratio of 

ethanol: oil and catalyst concentration could promote saponification to occur. The 

formation of soap is the undesirable product in transesterification reaction as more catalyst 

is required to replace the catalyst lost due to soap formation. The presence of soap increases 
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the viscosity (formation of gel) and emulsification resulting in difficulties in separation of 

biodiesel from glycerol resulting in excessive washing and low yield of biodiesel. 

    

Figure 4.5: 3D Surface Plot with constant Ethanol:Oil molar ratio 

Figure 4.5 shows the interaction of variables with volume of ethanol. From the observation, 

we could see that the maximum yield of FAEE is around 85%. The optimum concentration 

of NaOH was observed to be 1.2 wt% and the optimum reaction temperature was found to 

be 42.5 ℃. This is also true in figure 4.6 (plot with 1.5wt% NaOH conc). Increasing the 

volume of ethanol up to a certain level also gives optimum FAEE yield. However, too high 

reaction temperature promotes the saponification reaction. 

    

Figure 4.6: 3D Surface Plot with constant NaOH Concentration 
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4.3.3 Optimum reaction conditions for base catalysed transesterification  

From the design expert, RSM analyzation, it was observed that the maximum optimum 

FAME yield is 86.24% for base catalysed transesterification of waste cooking oil without 

undergoing microwave pre-treatment. 

     Table 4.14: Optimum Condition of Base Catalyzed Transesterification of WCO 

Factor Low High Optimum 

Ethanol:Oil Ratio 4.97731 10.0227 7.5 

NaOH Concentration 

(wt%) 

0.659104 2.3409 1.5 

Temperature (℃) 19.7731 70.2269 45 

Reaction Time (min) 9.54622 110.454 60 

 

4.4 Microwave energy pre-treated transesterification of WCO with alkali catalyst 

In this section, the reaction of base catalyzed transesterification of waste cooking oil was enhanced 

by pre-treating the oil with microwave energy at the beginning of the experiment. 

4.4.1 Optimization of Microwave Energy Pre-treated Transesterification with alkali 

catalyst 

FAEE yield produced is mainly depends on four independent variables: - Microwave 

heating time (𝐴), ethanol to oil molar ratio (B), NaOH concentration (C), and reaction time 

(𝐷). In all the experiment, 10 g of waste cooking oil, stirrer speed of 400 rpm and reaction 

temperature at 50 (℃) were kept constant. The individual and interaction effect of process 

variables and the optimal conditions to get the maximum FAEE yield were investigated by 

using central composite design (CCD) technique of response surface methodology (RSM) 

for microwave pretreated transesterification with alkali catalyst (NaOH). According to 

RSM experimental design technique, it was considered that each reaction variable can take 

five different levels from low (-2), (-1),(0),(1) and to high (2). The experiment range and 

level of the independent variable is shown in the Table 4.15 below: 
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Table 4.15: Experimental range and level of the independent variables 

Variables 
Coded 

Symbol 

Range & Levels 

-2 -1 0 1 2 

MWHT 𝐴 1.318 2 3 4 4.682 

Ethanol:oil 

molar ratio 
𝐵 4.977 6 7.5 9 10.023 

Reaction Temp 𝐶 0.323 0.75 1.375 2 2.426 

Reaction Time 𝐷 19.77 30 45 60 70.23 

 

Experiments carried out as a function of the un-coded variables (with coded variables in 

the parenthesis) prompted by central composite design technique along with the observed 

FAEE yield for microwave energy pre-treated transesterification of waste cooking oil) are 

presented in Table 4.16.  

Table 4.16: Experimental design matrix by CCD technique for microwave energy pre-

treated transesterification (without PTC) along with the experimental and model predicted 

yields 

No MWHT 

(min) 
 

Ethanol:Oil 

Molar Ratio 

Reaction 

Temperature 

(℃) 

Reaction 

time 

(min) 

Experimental 

yield (%) 

Predicted 

yield (%) 

1 2 6 30 15 57.98 58.73 

2 2 6 60 15 61.43 63.54 

3 3 7.5 45 35.1134 81.41 83.78 

4 4 9 30 15 72.46 75.09 

5 2 9 60 30 65.22 64.32 

6 3 7.5 45 9.88655 78.43 79.68 

7 2 9 30 30 64.83 66.13 

8 3 7.5 45 22.5 95.35 98.72 

9 3 10.0227 45 22.5 64.21 65.94 

10 3 7.5 70.2269 22.5 61.65.2212 62.47 

11 3 7.5 19.7731 22.5 73.99 74.13 

12 4.68179 7.5 45 22.5 65.23 67.25 

13 4 6 60 30 62.84 63.07 
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14 3 7.5 45 22.5 94.11 96.71 

15 4 6 30 30 67.35 68.14 

16 1.31821 7.5 45 22.5 78.13 77.83 

17 3 4.97731 45 22.5 61.88 60.11 

18 4 9 60 15 75.68 76.38 

Based on the Table 4.16, it was observed experimentally that run 8 has the highest FAEE 

yield which is 95.35% with model equation predicted yield of 98.72% at 3 minutes MWHT, 

7.5 ethanol to oil molar ratio, 7.5%w/wt NaOH concentration and 22.5 minutes reaction 

time. 

Table 4.17: T and P values for the regression coefficients in the second order model 

equation 

Coefficient Estimate F-Ratio P-Value 

constant 90.2506 2.31 0.2258 

A:MHWT -7.6704 0.08 0.8014 

B:Methanol to oil 

molar ratio 

1.38554 0.74 0.4525 

C:NaOH 

Concentration 

-2.79635 0.12 0.7487 

D:Reaction Time 1.77188 11.64 0.0421 

AA -11.9368 0.3 0.6231 

AB 3.59938 0.09 0.7822 

AC -1.2825 0.76 0.4464 

AD -5.76196 26.59 0.0141 

BB -18.0425 0.08 0.8011 

BC 1.1675 5.1 0.1091 

BD -14.8879 18.02 0.0239 

CC -14.8535 0.4 0.5701 

CD -2.6975 3.05 0.1791 

DD -6.1102 2.31 0.2258 

 

The regression analysis fitted the output response with the input process variables. Second 

order polynomial model equations in terms of coded and actual factors are the result of 

regression analysis. The second order model equations are shown below. 
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𝐹𝐴𝐸𝐸 𝑦𝑖𝑒𝑙𝑑 = −421.568 + 37.0166𝐴 + 74.5838𝐵 + 3.31246𝐶 + 9.67982𝐷

− 6.54726𝐴2 + 1.19979𝐴𝐵 −  0.04275𝐴𝐶 − 0.38413𝐴𝐷 − 4.26673𝐵2

+ 0.0259444𝐵𝐶 − 0.661684𝐵𝐷 − 0.0355806𝐶2 − 0.0119889𝐶𝐷

− 0.0646039𝐷2 

(RSM Model Equation 4.2)
=

 

FAEE yields predicted by this second order model equations were tabulated in the Table 

4.16 together with the experimental observation. The second order model equations were 

evaluated statistically in order to study the significance of the model terms. Table 4.17 

shows the P and T values that can indicate the significance of model terms. The P-value 

must be less than 5% in order for the variables to have a significance effect on the response 

values. Meanwhile, the F-value indicate the higher significance of the corresponding 

coefficient the model. The higher the F-value for the corresponding coefficient of the 

model, the higher will be the effects on that coefficient. In microwave pre-treated 

transesterification with alkali catalyst 3 effects have P-values less than 5% indicating that 

they are significantly different from zero at the 95.0% confidence level. Thus, in this 

experiment, we can conclude that reaction time has the most influence on the FAEE yields 

as it has the low P-value and high T-value as compared to the other variables. 

 

Figure 4.7: The diagnostic plot of experimental FAEE yield (observed) versus predicted 

FAEE yield for base catalyzed transesterification 
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Figure 4.7 shows the diagnostic plot of experimental FAEE yield (observed) versus the 

predicted FAEE yield which have undergo microwave pre-treatment of  WCO. Linear trend 

are shown between the experimental values versus predicted values of the FAEE yield. 

This indicate that the experimental values are nearly same to the predicted values. Apart 

from that, the R-Squared statistic (𝑅2 = 0.9404) indicates that the model as fitted explains 

94.04% of the variability in FAEE yield. This implies that, 94.04% of the experiment 

values for microwave energy pre-treated transesterification is reliable.  

 

Figure 4.8: The main effect plot on FAEE yield for base catalyzed transesterification with 

microwave pre-treatment 

 

4.4.2 The Individual and Interaction Effect of the reaction variables on FAEE yield 

The response surface plots for the yield of FAEE yield as a function of two factors at a 

time while keeping the other three factors at their centre point level were plotted in a three 

dimensional surface with the contour plot at the bottom as shown in Figure 8. Good 

interaction between two variables on the response are indicated by the elliptical shape of 

the contour plot. Meanwhile if the contour plot is in circle shape, this indicates that less 

interaction effect between the variables to affect the response. From the surface contour 

plot, it was also determi8ned that the FAEE yield was at the highest for all experiments 

with microwave pre-treatment of WCO. . In this experiment also, the concentration of 

NaOH was kept constant at 1.5wt% in order to study the effect of MWHT and 

transesterification reaction time towards yield of FAEE. 
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Figure 4.9: Response Surface Plot at constant concentration of NaOH (1.5 wt %) 

Figure 4.9 presents the effects of ethanol to oil molar ratio to FAEE yield with the 

microwave energy pre-treated (min) transesterification. Maximum yield was observed at 

volume of ethanol at 7.5 molar ratios of ethanol to waste cooking oil. Increasing amount 

of ethanol can increase the FAEE yield. However, further increase of the volume of ethanol 

beyond the optimum value can decreased the FAEE yield. This is due to the solubility 

problem where the product biodiesel can easily dissolve into the glycerol phase that affect 

the biodiesel recovery process thus reducing the FAEE yield.  

From previous analysis, increasing the NaOH concentration can increase the FAEE yield 

up to a certain marginal value (1.5 w/wt %). However, overloading the NaOH 

concentration can decreased the FAEE yield. Therefore in this experiment the interaction 

effect of microwave heating time with the FAEE yield could be studied more clearly. From 

observations, it is found that the optimum time for the WCO to undergo microwave heating 

is around 3.3 min. 
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Figure 4.10: Response Surface Plot at constant concentration of NaOH % molar ratio 

Figure 4.10 depicts the interaction between reaction time and FAEE yield on microwave 

energy pre-treated transesterification on waste cooking oil. In this plot, we could observe 

the relationship between reaction time and FAEE yield. In this case, it is predicted that the 

reaction time for base transesterification reaction with presence of microwave pre-

treatment of WCO should be lower than without microwave pre-heating due to rapid 

heating & cooling and also selective heating of microwave.  

From the observation, increasing the reaction time will increase the FAEE yield. Further 

increase the reaction time can lead into saponification reaction thus reduced the FAEE 

yield. At this figure, the maximum biodiesel yield is about 24 minutes of reaction time 

which is shorter than reaction without microwave heating. 

 

Figure 4.11: Contour Plot at constant concentration of NaOH % & constant reaction time 
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Figure 4.11 illustrates the interaction effects between reaction temperature and microwave 

heating time with the maximum FAEE yield. The maximum FAEE yield produced was 

observed about of 3.5 min MWHT at temperature around 30 ℃ which is much lower than 

reaction without microwave pre-treatment (60℃). It was also observed that the yield 

is higher at for all the plot compared to reaction without microwave heating. 

4.4.3 Optimum reaction conditions for Microwave Energy Pre-treated 

Transesterification with alkali catalyst (NaOH) 

Table 4.18: Optimum Condition of Microwave Energy Pre-treated Transesterification 

Factor Low High Optimum 

MWHT 1.31821 4.68179 3.0 

Ethanol:Oil Molar Ratio wt% 4.97731 10.0227 7:5 

Temperature 19.7731 70.2269 4.5 

Reaction Time 9.88655 35.1134 22.5 

 

From the RSM analyzation, it was observed that the maximum optimum FAEE yield is 

98.72% for microwave energy pre-treated transesterification of waste cooking oil. 

4.5 Summary for optimization of FAEE yield 

In the present studies, optimization on the FAEE yield has been investigated with three 

different conditions which are;  

Optimization 1:    Base catalyzed transesterification (without Microwave Heating) 

Optimization 2: Microwave energy pre-treated transesterification with alkali 

catalyst  

In each experiment there are an enhancement towards the transesterification reaction to 

produce high FAEE yield. Table below shows the summary of the optimum condition to 

achieve the maximum of FAEE yield as presented by design expert software Stat-graphics 

Centurion RSM technique and optimum condition from experiment results. 
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Table 4.19: Optimization summary 

Parameters/Condition Optimization 1  Optimization 2  

MWHT (min) - 3.0 

Ethanol to oil molar 

ratio 
7.5 7.5 

NaOH Concentration 

(w/wt %) 
1.5 1.5(constant) 

Reaction Temperature 

(℃) 
45 45 

Reaction Time (min) 60 22.5 

FAEE yield (w/wt%) 86.24 98.72 

 

From Table 4.19, it can be seen that optimization transesterification of waste cooking oil 

with microwave pre-treatment gives the highest FAEE yield. Base transesterification has 

the least FAEE yield. Results shows that 98.72% w/wt of FAEE yield can be obtained 

within 22.5 minutes reaction time for transesterification reaction pre-treated with 

microwave irradiation. As compared to the base transesterification with the absence of 

microwave heating the highest FAEE yield obtained was only 86.24 wt%. This shows that 

in the presence of microwave heating, there was a significant increment of FAEE yield 

which is around 12.48wt%.  

Besides that, it was also observed that the reaction time of transesterification with 

microwave pre-heating of waste cooking oil was lower than the reaction time for the 

reaction conducted in the absence of microwave pre-treatment by 37.0 minutes. Thus, it 

can be conclude that microwave energy pre-treatment of waste cooking oil can improve 

the yield of FAEE in a transesterification reaction and speed up the reaction at lower mild 

condition. 
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CHAPTER 5: CONCLUSION & RECOMMENDATIONS 

5.1 Conclusion  

Microwave-enhanced organic/inorganic synthesis is considered as green chemistry 

and a preferred method due to several advantages such as lower energy consumption, 

substantial reduction in reaction times and solvent requirements, enhanced selectivity, 

and improved conversions with less by-product formation. Many reactions that do not 

occur under classical methods of heating can be carried out with high yields under 

microwave irradiation. Microwaves have the potential for large scale applications 

specifically in biodiesel production due to their ability to interact with a variety of 

reagents. 

In this present studies, the non- edible oil source, waste cooking oil was used as the 

raw material for transesterification reaction to produce biodiesel. Base catalysed 

transesterification and microwave energy pre-treated transesterification were 

investigated. Results shows that at optimum condition, 98.72%w/wt within 22.5 

minutes reaction time of Fatty Acid Ethyl-Esther (FAEE) yield was observed when 

the reaction was conducted with microwave energy  pre-treated of waste cooking oil. 

It was also demonstrated that a gain of 12.48% of FAEE yield for a reaction conducted 

using microwave energy pre-treated oil transesterification reaction as compared to 

transesterification reaction in the absence of microwave pre-heating (FAEE 

yield=86.24% w/wt).  

As compared to alkaline catalysed transesterification, the reaction conducted by 

using microwave energy pre-treated oil transesterification assisted also has a reduction 

of 37 min of reaction time. Thus, it can be conclude that microwave energy can 

improve the transesterification reaction and prove to be efficient and economically 

feasible for operation. Hence, use of microwave pre-treatment of oil has a promising 

future in terms of enhancing the transesterification reaction time and also increasing  

the yield of biodiesel. 
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5.2 Recommendations for future work 

As for future works and recommendation, microwave energy pre-treated 

transesterification should also be done in the presence of phase transfer catalyst. By 

using a PTC process, one can achieve faster reactions, obtain higher conversions or 

yields, make fewer byproducts, and eliminate the need for expensive or dangerous 

solvents that will dissolve all the reactants in one phase, eliminate the need for 

expensive raw materials and/or minimize waste problems. Phase-transfer catalysts are 

especially useful in green chemistry  by allowing the use of water so that the need 

for organic solvents is reduced. Besides that, research should be done with other non-

edible oil for example, Kapok oil, Margosa oil, Neem oil and etc. in order to find new 

alternatives. 

Furthermore different   type of PTC can also be used as a rate enhancement agent 

in transesterification reaction for example, benzyltrimethylammonium hydroxide and 

crown ether. On the other hand, higher quality of biodiesel can be produce through 

good and reliable equipment. For example, a cleaner biodiesel can obtained if the 

rotary evaporator equipment is working in the lab. The physical separation/filtration 

of oil such as removal of chunks and solid depositions should be carried out with a 

proper filtration technique in order to attain good purity of biodiesel. Therefore, action 

need to be taken by the personnel in charge with the laboratory equipment to bring in 

new and more advance equipment for biodiesel synthesis. 
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APPENDIX 

 

Figure (a): Untreated/raw waste cooking oil 

 

Figure (b): Filtered & Purified WCO  
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Figure (c): Final oil product after microwave assisted transesterification 

 (Final Biodiesel Product) 

    

Figure (d): Separation process after transesterification reaction 
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