Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Amine-Functionalized MCM-41/Polysulfone Mixed Matrix Membranes: Preparation, Characterization and Its Performance in CO2/CH4 Separation

Zhen, Foo Khai (2015) Amine-Functionalized MCM-41/Polysulfone Mixed Matrix Membranes: Preparation, Characterization and Its Performance in CO2/CH4 Separation. IRC, Universiti Teknologi PETRONAS. (Unpublished)

Download (2302Kb) | Preview


Mixed matrix membrane or MMM, comprising polymeric membrane and inorganic fillers, is promising in gas separation as it combines the advantages of the two components. However, the fabrication of MMM is challenging due to the issue of agglomeration of inorganic fillers and the formation of interfacial voids on MMM surface morphology. Nevertheless, the dispersion of the filler and interaction between filler-polymer can be improved by modifying filler with binding agents, which improves the separation performance of MMM. This work is about synthesis and characterization of new modified fillers to be used in MCM-41/Psf MMM for CO2/CH4 separation. Mesoporous MCM-41 silica is modified with primary (APTMS) and secondary amine functional groups (AAPTMS) using grafting method. MMMs with MCM-41, APTMS-MCM-41 and AAPTMS-MCM-41 were synthesized using dry/wet inversion method. The filler loadings were set as 0.1 wt% and 1 wt%. The synthesized MMMs were characterized using TEM, SEM, FT-IR and EDX. The CO2/CH4 separation performance of MMMs was tested using gas permeation test rig, where the permeance and selectivity of MMMs were compared to pure Psf membrane. TEM results showed reduction of particles agglomeration after amine functionalization. Besides, the hexagonal structure of MCM-41 remained intact after functionalization. Based on the results obtained from SEM and EDX, the fillers were uniformly dispersed in the Psf matrix, while the presence of amine functional groups APTMS and AAPTMS on MCM-41 has improved the compatibility between fillers and matrix. FT-IR results confirmed the successful grafting of the amine groups on MCM-41 at the band of ~690 cm-1 and ~1530cm−1. The incorporation of APTMS-MCM-41 into Psf has successfully increased the CO2 permeability by 410.44% (0.1 wt% loading) and 569.97% (1 wt% loading), while AAPTMS-MCM-41 has 114.10% (0.1 wt% loading) and 309.32% (0.1 wt% loading). APTMS-MCM-41 has better overall performance than AAPTMS-MCM-41 in terms of permeance. All MMMs showed an inverse relationship between permeance and ideal selectivity as indicated by Robeson’s trade-off bound.

Item Type: Final Year Project
Academic Subject : Academic Department - Chemical Engineering - Separation Process
Subject: T Technology > TP Chemical technology
Divisions: Engineering > Chemical
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 02 Nov 2015 15:53
Last Modified: 25 Jan 2017 09:36
URI: http://utpedia.utp.edu.my/id/eprint/15768

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...