
Microwave Pretreatment of Oil Palm Fronds for Enzymatic Saccharification 

 

By 

 

Izyan Farhana binti A.Kaher 

 

 

 

 

Dissertation submitted to in partial fulfilment of the requirement for 

Bachelor of Engineering (Hons)  

Chemical Engineering 

JANUARY 2015 

 

 

 

 

Universiti Teknologi PETRONAS 

32610 Bandar Seri Iskandar 

Perak Darul Ridzuan 

Malaysia 

 

 

 

 

 



ii 
 

CERTIFICATION OF APPROVAL 

 

Microwave Pretreatment of Oil Palm Fronds Residues for Enzymatic 

Saccharification 

By 

Izyan Farhana binti A.Kaher 

 

A project dissertation submitted to  

Chemical Engineering Programme 

Universiti Teknologi PETRONAS 

In partial fulfilment of the requirement for 

BACHELOR OF ENGINEERING (Hons) CHEMICAL ENGINEERING 

 

 

Approved by, 

 

............................................. 

(Prof. Dr. Yoshimitsu Uemura) 

 

UNIVERSITI TEKNOLOGI PETRONAS 

32610 BANDAR SERI ISKANDAR, 

PERAK DARUL RIDZUAN 

JANUARY 2015 



iii 
 

CERTIFICATION OF ORIGINALITTY 

 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements 

that the original work contained herein have not been undertaken or used by 

unspecified sources or persons. 

 

 

................................................................... 

IZYAN FARHANA BINTI A.KAHER 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

Oil palm frond (OPF) is distinguished to be one of the biomass resources in 

producing the alternative energy. Hence, in this paper, the practicability of the OPF 

to be used as biomass resource is studied by examining the reducing sugars 

composition available inside treated and untreated OPF biomass. Prepared sample of 

OPF have first gone under microwave and conventional pre-treatment followed by 

chemical treatment using NaOH. Chemical concentrations of 0 and 0.25N for the 

pre-treatment time of 2, 4, 8 and 12 minutes have been used. The morphological 

structure study is performed by using Scanning Electron Microscopy (SEM) and it 

certified that the surface treated with microwave assisted NaOH is more ruptured. 

Conventional pre-treatment is the most efficient compared to microwave pre-

treatment at “low” setting with a temperature of less than 100°C by being able to 

liberate the highest amount of sugar yield of 32.31%. However, the reducing sugar 

yield still can be considered as low, even the filter paper can only liberate up to 

28.94% of reducing sugar yield. Nevertheless, the pre-treated OPF still managed to 

yield more reducing sugars compared to untreated OPF which can only managed to 

yield sugars of 23.40%. Maximum saccharification yield of 32.31% for conventional 

heating and 26.20% for microwave pre-treatment is observed at optimal conditions 

of 0.5 g of dry biomass loading, 97.63 FPU/mL of enzyme loading, T.Reesei and 72 

hour of incubation time. 

 

Keywords: Conventional pre-treatment; lignocellulosic; oil palm 

fronds;TricodermaReesei, Scanning Electron Microscopy (SEM) 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background Study 

In recent past few years, the world witnessed a dramatic increase in world oil 

consumption demand and the demand is constantly increasing up to the moment this 

report is written. A huge percentage of transportationssector whole over the world is 

entirely depending on petroleum-fuels-based. However,this never ending demands 

situation and excessive dependent on fossil fuelshas leads to the depletion of fossil 

fuels and in return, its initiate extensiveresearchand development for a new 

alternative way from renewable resources in order to disentangle this problem and 

meeting the worldwide energy demand at the same time. And today, a numerous 

biomass-based-fuels such as bio-ethanol seem to be emerging. The type of biomass 

consists of lignocellulosic materials have caughtthe world attention and turns out to 

be the most potential and compromising biomass feed stocks due to its cheaper price 

and abundant availability on the earth. Other reason is because of these materials 

ability increating completely zero competition with food crop biomass feed-stock 

such as corn and sugarcane (Lee et. al., 2007). Malaysia is known worldwideas the 

most important agricultural countries. As one of the largest palm oil producer and 

exporter, Malaysia has generated for approximately 51 million tonnes of OPF by the 

year 2008 alone (Goh et. al., 2010; MPOB, 2009). By other means, Malaysia creates 

a long-lasting and notable amount of lignocellulosic materials waste from 

agricultural sector. 

The lignocellulosic biomass materials have to be saccharified through 

saccharification reaction process in order to yield the fermentable sugars which will 

later be used as a feedstock in bio-ethanol production through a fermentation process. 
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By definition, saccharification is a process of breaking down the complex structure 

of cellulose (known as hydrolysis) in the lignocellulosic materials into simple 

reducing sugars with the presence of certain types of enzyme such as cellulase. 

Compared to other hydrolysis process, enzymatic saccharification process has the 

potential to offer a number of positive effects such as can yield high pure glucose, it 

only needs mild reaction condition and gives out low environmental impact.In the 

context of saccharification process, typically before undergoes that particular 

process, it is compulsory for the biomass to be pre-treated. There are 

immensenumbers of biomass pretreatment available such as physical pretreatment, 

chemical pretreatment, physiochemical pretreatment and biological pretreatment 

(Claassen, 1999). However, optimization is required so that the overall cost of 

pretreatment can be minimized. In this research study, the methods of pretreatment 

between microwave (MW) heating and conventional (Hot Plate – HP) heating will be 

studied and compared. The impact of each pretreatment heating method on the yield 

of reducing sugars (RS) will be discussed. The influence of NaOHon the percentage 

yield of RS will also be overviewed. 

 

1.2 Problem Statement 

The recalcitrant structure of lignocellulosic biomass which is made of three major 

types of polymer – cellulose, hemicellulose and lignin makes the hydrolysis to 

reducing sugars more difficult (Dumitriu S., 1998). The presence of hemicellulose 

and lignin make the polymer rigid and difficult to break. By other means, this 

condition might block the penetration of cellulose enzyme to the targeted cellulose. 

Hence, a pretreatment study prior to saccharification process is conducted to identify 

the very possible and reliablemethodto enhance the enzymes accessibility and 

hydrolysis rate. Hence, the yield of reducing sugars from OPF can be maximized. 
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1.3 Objectives and Scope of Study 

In determining the very possible pretreatment method prior to saccharification 

process towards maximizing the amount of reducing sugars yield, a few objectives 

have been identified:  

i. To study the amount of glucose available inside OPF. 

ii. To differentiate between conventional heating and microwave heating in 

biomass pretreatment and itseffectson the crystalline structure of 

lignocellulosic materials. 

iii. To investigate the influence of different concentration of alkaline solution on 

the performance of the saccharification process. 

Among the variables that have been set to carry out this study are: 

i. Type of pretreatment method – hot plate heating and microwave heating 

ii. Concentration of each alkaline solution used – 0 N and 0.25 Nconc. 

iii. Irradiation and heating time 

iv. Changes in crystallinity of biomass material. 

v. The yield of reducing sugar after saccharification 
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

2.1 Biofuels 

In the current situation, the world is still in the phase of depending on the 

petroleum as the main energy source. Hence, in concern with the diminishing supply 

of fossil fuels, it forced the search for alternative and renewable source of energy in 

order to solve this particular issue. Besides, a continuous usage of fossil fuels has 

worsen the global warming problem and it creates the necessities to replace fossil 

fuels with another alternatives energy which are renewable and clean in order to 

reduce the emissions of CO2 and greenhouse gas.Biofuel offers several advantages to 

the environment and sustainability (Pupan, 2002). Based on recent studies made on 

the advantages of using biofuels such as bio-ethanol produced by lignocellulosic 

materials, these materials are believed to have lower life cycle fossil energy use and 

emitted lower amount of green-house gas (GHG) than other conventional petroleum-

based-fuels such as gasoline and diesel (Larsen et. al., 2009) 

The term of biofuel is referred to liquid or gaseous fuels for the transport 

sector that are produced from renewable sources such as vegetable oil and biomass. 

Biofuels include bio-ethanol, bio-methanol, vegetable oils, biodiesel, biogas, 

biosynthesis gas, bio-oil, bio-char, and bio-hydrogen (Demirbas, 2007). 

 

 2.1.1 Feedstocks of Biofuels 

Biofuels are easily available since they are various types of feedstock that can 

be used for biofuels production. Choosing an appropriate feedstock is necessary in 

order to optimize the economical biofuels production cost. Specifically, there are 
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three groups (generations) of biofuels which will be mentioned later in this paper. 

However, they are a numbers of arguments in determining which generation is the 

most promising source of renewable energy. 

 

 2.1.1.1 First Generation of Biofuels 

The common feedstocks used for first generation of biofuels are vegetable 

oils, starch and animal fats. First generation of biofuels has the ability to offer CO2 

benefits and can help to enhance the domestic energy security. However, there are 

issues concerning about environmental impacts and carbon balances when it comes 

to the production of biofuels of first generation. The main disadvantages of first 

generation biofuels which is the food-versus-fuel debatehappened to be one of the 

main reasons for rising food prices due to thepriceincrease in producing the first 

generation biofuels (Laursen W., 2006). On the other hands, it also can cause an 

imbalance on the especially on the biodiversity and use of the land. 

  

 2.1.1.2 Second Generations of Biofuels 

The second generations of biofuels is largely refers to lignocellulosic 

materials. Ligncellulosic biomass has caught the worldwide attention due to its 

ability in creating zero competition with the food crop residues, cheaper price and 

abundantly available on the Earth. Considering the massive amount of carbohydrates 

available in lignocellulosic materials, it is also observed as one of the promising 

biomass resources in alternative energy production (Lee at. al., 2007).A lot of 

literature is written mentioning on the different pretreatments methods used to 

improve the production yield of biofuels derived from lignocellulosic materials. 

However, there are arguments due to the presence of certain technical barriers in 

producing fuels by using this second generation feedstock which makes it not cost 

effective since to carry out the process, numbers of expensive equipment with high 

energy demand will be needed (Xu C. et. al., 2010). 

 

 2.1.1.3 Third Generations of Biofuels 
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Inefficiency and unsustainability for the first and second generation feedstock 

are among the significant concerns raised in most of written literature. According to 

M.Balat in 2010, although biofuels from oil crops has been produced in increasing 

amounts as a clean-burning alternative fuel, its production in large quantities is not 

sustainable. Hence, another alternative called “third generation feedstock” derived 

from microalgae and bacteria have emerged. The idea of producing biofuels by using 

microalgae and bacteria as feed stocks have seemed to be potential and viable for 

biofuels production process in which currently is dominated by palm oil as the main 

feedstock. To date, there have been many attempts to investigate the viability of 

microalgae in producing biofuels for industrial scale process (Slade. R., 2012). 

 

2.2 Palm Oil Residues 

For the past few decades in Malaysia, palm oil industry is happened to be one 

of very well grown agricultural-based industry. Currently, Malaysia has become the 

world’s largest producer and exporter of palm oil, replacing Nigeriaas the chief 

producer since 1971 (Yusof, 2006). Over the last 25 years, Malaysia has produces for 

approximately 40 – 60% of world palm oil production. Besides, Malaysia also 

generates a huge quantity of palm oil biomass including oil palm trunks (OPT), oil 

palm fronds (OPF), empty palm fruit bunches (EPFB), shells and fibres (Chew and 

Bhatia, 2008). Of the whole palm tree, it has the ability to form up to 90% of 

biomass and the remaining of 10% can be used to produce palm oil. 

 According to National Biomass Strategy 2020: New Wealth Creation for 

Malaysia’s Palm Oil Industry report in the year 2011, the amount of oil palm fronds 

alone account for about 75% of the biomass volume. MPOB (2010) also reported 

that the most generated oil palm waste is OPF, which amounted to 83 million tonnes 

(wet weight) annually as per the year 2010. However, as for now, OPF is under-

utilized since majority of the palm oil plantation developers believe that OPF is 

crucial for soil conservation and nutrient recycling, so the developers tend to leave 

the pruned fronds in their plantation (Wan Zahari et al., 2002). Therefore, OPF has 

been selected to be the subject of study in this experiment to investigate the 

possibility of using oil palm fronds (OPF) as biomass resource in producing 

fermentable sugars that can be used for second generation of bio-ethanol production. 
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Mainly, in this context of study, only the lignocellulosic materials from oil palm 

fronds (OPF) pre-treated with microwave and conventional heating will be studied. 

 

2.3 Lignocellulosic Materials 

They are abundant of lignocellulosic materials waste materials available 

worldwide.  Lignocellulosic material consists of mainly three different types of 

polymers, namely cellulose, hemicelluloses and lignin which are associated with 

each other (Fengel and Wegener, 1984). Each of these polymers carries out different 

purposes; almost entirely half of the biomass materials comprises of cellulose. 

According to Laureano-Perez et al. in 2005, the cellulose in a plant consists of parts 

with crystalline (organized) structure and parts with amorphous (not well organized) 

structure. Usually, the cellulose will be associated together with other compound 

such as lignin to prevent degradation on its structure.  

Of cellulose and hemicelluloses, lignin is one of the most abundant polymers 

present in the cellular wall. It functions as to provide a structural support and 

increase the physical strength of the plant. The lignin is also a non-water soluble and 

optically inactive since the lignin itself is an amorphous heteropolymer and exists in 

irregular arrangement, hence it makes the enzymatic and chemical degradation of 

lignin very tough (Ohkuma et al., 2001). 

Meanwhile, for hemicellulose, it is the second most abundant natural polymer 

available on Earth (Agbor et al., 2011) and hemicellulose is refers to a complex 

carbohydrate structure that consists of different polymers consists of pentoses (D-

xylose, D-arabinose), hexoses (D-glucose, D-mannose and D-galactose) and sugar 

acids. Hemicellulose is made up of branches with short lateral chains that consist of 

different sugars, which can be considered as easy hydrolyzable polymers. Also, 

hemicellulose serves as a connector between the lignin and the cellulose and it helps 

to enhance the rigidity for the whole cellulose-hemicellulose-lignin network. 

The structure of the lignocellulosic materials itself caused the process of 

breaking down the complex structure getting more difficult. Hence, a very good 

assessment on the very suitable and possible pretreatment involving modes of 
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heating used must be held to ensure an effective and practical cellulose conversion 

process (saccharification). 

 

2.4 Biomass Pretreatment Method 

Pretreatment is one of great importance tool for practical cellulose conversion 

process, in which at this stage, the structure of cellulose will be altered to make it 

more accessible to the enzymes that convert carbohydrate polymers into fermentable 

sugars (Mosier N., 2005). There are various kinds of pretreatment technologies 

available worldwide. They can categorized into physical pretreatment, chemical 

pretreatment, physio-chemical pretreatment and biological pretreatment. Physical 

pretreatment involving the process of drying, size reduction (through grinding, 

milling etc) and granulometric separation (Woiciechowski AL, et al., 2013) 

 

 2.4.1 Alkaline Pretreatment Method 

Alkaline pretreatment has been recognized lately due to its aptness in 

removing lignin from biomass (Chen et al., 2011). It comprises various types of 

bases such as calcium hydroxide (lime), sodium hydroxide, potassium hydroxide and 

others (Chang VS, 2000).Sodium, calcium, ammonium hydroxide and potassium are 

amongst the most suitable bases. Of all four types, NaOH has been studied the most. 

Meanwhile Ca(OH)2has been indicated to an effective bases used for pretreatment 

and is the least expensive (MacDonald DG. et al., 1983). The potential for alkaline 

pretreatment for achieving desired results varies relying on the treatment conditions 

and substrate used. Normally, this pretreatment is more operative on herbaceous 

wood, hard wood and agricultural remains with low content of lignin (Kumar R. et 

al., 2009). The major effect of using alkaline pretreatment in enhancing the 

penetration rate on enzyme is by decreasing the degree of polymerization (DP) of 

cellulose and caused the cellulose to swell and leads to the increment of internal 

surface area, thus it will be more accessible for enzymes to pass through during the 

hydrolysis stage (Kumar R. et al., 2009). 
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 2.4.2 Significant of Heat Supply during Pretreatment 

Alkaline pretreatment has been used worldwide due its effectiveness and 

cheap price (Sun Y. et al., 2008). However, to achieve better pretreatment 

performance, thermal energy is crucial in facilitating the bond breaking between 

biomass molecules. By other means, different heating devices or different modes of 

heating will give out difference efficacy on lignocellulosic materials. A plenty of 

literatures have showed the significance of using different kind thermal supply in 

term of heating device in pretreatinglignocellulosic feed stocks. But alas, only few 

literatures address the comparison in term of the heating device effectiveness in 

lignocellulosicpretreatment. 

 

 2.4.3 Microwave Heating 

Over the years, microwave (MW) pretreatment has been used globally due to 

its great ability in facilitating the lignocellulosic disruption by using its thermal 

irradiation generated through dielectric heating. The statement is agreed by Azuma et 

al. (1984) who mentioned in their literature microwave irradiation has been used in 

pretreatinglignocelullosic biomass since long ago. Microwave irradiation has the 

ability to change the ultra structure of cellulose, degrade the lignin structure and also 

enhance the enzymic susceptibility of reducing sugars produced.  

In microwave heating, the energy is introduced without the needs of energy 

source to be in contact with the reaction mixture. For microwave, the method in 

facilitating the cellulosic breakdown is mainly via molecular collision caused by 

dielectric polarization. The electromagnetic field generated by microwave has the 

capacity to interact with the samples directly and produce heat, thus the chemical, 

physical and biological process can be accelerated. In contrary with hot plate heating 

whereby the cellulosic breakdown is done through the coil heating before it gets 

transferred to the mixture via convective mode (Guo GL. et al., 2008). 

 

 2.4.4 Conventional Heating 
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Pretreatment through a hot plate (HP) heating is one of the accepted and 

preferred method conventional heating. It is requires less cost compared to other 

pretreatment. HP heating method has been recognized as a result of localized over 

hot plate surface heating which enables fast and effective means of 

lignocelulosicdiscruption. However, compared to other pretreatments method, HP 

heating is rather slow and has the ability to cause a temperature gradient within the 

sample (Ruiz E. et al., 2008).  

 

 2.4.5 Enzymatic Saccharification 

According to Eriksson T. et al. (2002), in order to get an efficient hydrolysis 

of cellulose, a number of enzymes will be required. All these enzymes work 

synergistically to hydrolyse the cellulose by creating new accessible sites for each 

other, removing obstacles and relieving product inhabitation. In saccharification 

process, the sugar polymers such as hemicelluloses and cellulose will be 

depolymerised by degrading the glycosidic bond with the presence of microbial 

enzyme. Subsequently, the process of fermentation will take place to convert the 

sugar to fuels and chemicals (Menon and Rao, 2012). 

Due to extensive research in determining the enzymes performance, it caused 

the enzyme price to be lower and cheaper. However, the amount of enzyme loading 

is suggested to be as low as possible in order to reduce the production cost. In return, 

it might increase the time taken to complete the hydrolysis process.  

Besides, the use of high concentration of substrate has the ability to increase 

the product inhabitation problem and consequently will slow down the enzyme 

performance. Another major obstacle towards achieving an efficient hydrolysis is the 

presence of lignin itself which can shield the cellulose chains and adsorbs the 

enzyme. Hence, a proper pretreatment is needed prior to hydrolysis. Without a proper 

treatment, it might cause a great effect on the saccharification and cost of ethanol 

production in future. 
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CHAPTER 3 

METHODOLOGY AND PROJECT WORK 

3.1 Experiment Methodology 

 This is an experimental project hence the analysis will be focusing on the 

results obtained from the laboratory work. The result trend will be analyzed and a 

proper justification will be made for this experimental project. 

 3.1.1 Research from the literature 

 The first phase of this project is started by selecting the related literatures 

mainly on lignocellulosic biomass materials (i.e: oil palm fronds, oil palm trunk, 

empty fruit bunches, rice straw, maize etc), enzymaticsaccharification, thermal 

pretreatment, conventional heating, microwave heating and others. 

 3.1.2 Preparation of substrate, OPF 

 The oil palm fronds (OPF) used for this experiment will be obtained from 

KampungFelcraNasaruddin in Bota, Perak. The OPF collected is washed, cut into 

uniform particle size, dried and grinded before used in order to sustain the 

consistency of the results. 

 3.1.3 Pretreatment Methods Used 

 Two types of pretreatment methods are being used in this project which are; 

(1) conventional heating method, and (2) microwave heating method. Then, the 

amount of compound loss will be determined for each method. 

 3.1.4 Alkaline Used 
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 Two different bases are being used in this study which are; (1) NaOH, and (2) 

Ca(OH)2. The effect of using different concentration of NaOH at different time 

interval and type of bases used is overviewed and studied at the end of the studies. 

 3.1.5 Enzymatic Saccharification 

 The enzymatic saccharification in incubator shaker will be conducted for all 

the pretreated samples for 72 hours. The optimal incubation time and the amount of 

recovered biomass will be determined. From here, the methods that yield more 

reducing sugars will be identified. 

 3.1.5 Documentation and Report 

 All the results obtained will be documented and result trending will be 

analyzed. A brief justification and comparison with other research paper will be 

made in order to come out with a proper deduction for this project. 
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3.2 Procedure 

Below are the listed procedures in conducting the research. 

 

 3.2.1 Raw Material (OPF) Preparation 

OPF is collected from FELCRA (Federal Land Consolidation and 

Rehabilitation Authority) Nasaruddin oil palm mill at Bota, Perak, Malaysia. The 

raw OPF was dried at temperature 105°C for 30 hours. Drying is an important step in 

determining the densification process of the materials with moisture. There are 

several factors to be considered while performing drying step such as the type of 

dryer, drying conditions, drying medium and characteristics of biomass because 

these are the factors that will affect the final quality of the feedstock (Lam PS et al, 

2013) 

 

Figure 7: The photo of OPF raw material at FELCRA Nasaruddin, BotaKanan, Perak 

 

Figure 8: The photo of washed OPF which has been cut and ready to be dried at drying oven 
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Afterwards, the OPF was grinded into uniformly small particle size in order to 

maintain the consistency of the results and sieved to four distinctive group of particle 

size range which are; 

 0.10 mm – 0.25 mm 

 0.25mm – 0.50 mm 

 0.50 mm – 1.00mm 

 1.00 mm – 2.00mm 

The OPF sample size within the range of 0.10mm – 0.25mm is selected to be 

used throughout the experiment since it is the smallest in size and can provide a 

better contact during pretreatment and saccharification experiments. 

 

 3.2.2 Raw Material Characterization 

Several means of characterization has been taken into consideration 

throughout the experiment. This includes: (1) moisture content, (2) % component 

composition, (3) elemental analysis. 

 

 3.2.2.1 Moisture Content Determination 

The procedure in determining moisture content is conducted by referring the 

ASTM method, E 871 – 82(1998). The procedure is as mentioned below: 

1. The sample is dried for 30 min on oven at 105°C in the drying oven, then 

cooled in the desiccators to room temperature. 

2. The weight of crucibles are measured and labelled as container weight, Wc 

3. 2 g of grinded OPF sample with range of 0.1 mm – 0.25 mm is placed in the 

crucibles and be recorded as initial weight, Wi 

4. The sample and the crucibles is placed in the drying oven for 24 hour at 

105°C. 

5. After 24 hours, the sample and the container is removed from the oven and 

cooled in the desiccator to room temperature. 
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6. After it reached room temperature, the sample and the container is removed 

from desiccators and weighted immediately. The weight is recorded. 

7. The sample and the container is later returned to the oven at be dried at 105°C 

for 1 hour. Step 6 is repeated continuously until the total weight change 

between weighing varies less than 0.2%. The reading taken is recorded as 

final weight, Wf. 

8. The percentage of moisture content is calculated by using this formula: 

𝐌𝐨𝐢𝐬𝐭𝐮𝐫𝐞 𝐂𝐨𝐧𝐭𝐞𝐧𝐭 𝐢𝐧 𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬 𝐬𝐚𝐦𝐩𝐥𝐞, % =  
𝐖𝐢 − 𝐖𝐟

𝐖𝐢 − 𝐖𝐜
 × 𝟏𝟎𝟎% 

Where, 

Wi : initial weight (g) 

Wf : final weight (g) 

Wc : container weight (g) 

 

 3.2.2.2 Determination of Percent Component Composition of OPF  

The raw material (untreated OPF) solid samples will undergoes qualitative 

analysis characterization by using Thermo-Gravimetric Analysis (TGA) in order to 

examine the weight % of their lignin, cellulose, hemicelluloses, ash and moisture 

content of the treated and untreated OPF. It should be possible to predict the yield 

and compositions of the saccharification product of OPF feedstock when its 

composition is known. Negligible interactions among the three biomass 

compositions are observed in their study when using TG analysis (Yang et al., 2006). 

The experiment is carried out with sample masses of about 10mg using a linear 

heating rate of 10°C/min within the range of temperature between 28°C - 840°C and 

a steady nitrogen flow rate of 100cm3/min. The weight loss and derivative weight 

loss curves on the separate biomass will obtained in a graph of derivative weight loss 

(%/°C) versus time (min). From the graph obtained, the graph pattern will be 

overviewed and discussed further. 

 

 3.2.2.3 Solid Characterization 

The solids characterization of the wet cakes (solid residues) is verified by 

using the method of elemental analysis and scanning electron microscopy (SEM). 
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Meanwhile, the elemental analysis is conducted by using CHNS analyzer to examine 

the elemental value of carbon, hydrogen, nitrogen, oxygen and sulphur, 

meanwhileHPLC analyzerwill be used to test the reducing sugars presence such as 

glucose. SEM is used in determining the surface morphology of the untreated and 

pre-treated OPF biomass. 

 

 3.2.3 Microwave Power Determination 

 3.2.3.1 Variation of Microwave Power Setting  

The microwave oven used in this experiment has the ability to produce up to 

800W output. The irradiation power output was set at different level, however the 

exact value is unknown since the power setting available are termed only as “LOW”, 

“MEDIUM” and “HIGH”. Hence, an experiment was conducted to study the amount 

of radiation being absorbed by OPF sample at different microwave power setting. 

The estimation of power absorbed is based on 100ml of distilled water since the pre-

treatment method used in future will be using OPF sample immersed in 100ml 

aqueous solution which has close heat capacity with distilled water. The procedure is 

as below: 

1. After the initial temperature of distilled water is taken using thermometer, 

100ml of distilled water was added into 250mL Schott beaker. 

2. The Schott beaker was put on the centre point of the rotating dish inside the 

microwave oven. 

3. With “LOW” power setting, the bottle was microwaved for t = 2, 4, 8 and 12 

minutes. After that, the temperature of the distilled water is recorded 

immediately. The temperature change will be used to determine the total 

irradiation energy absorbed in one minute. 

 

 3.2.4 Conventional Heating Temperature Determination 

For conventional heating, the estimation of heat absorbed by the sample is 

based on 100ml of distilled water since the pre treatment method used in future will 

be using OPF sample immersed in 100ml aqueous solution which has close 
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heatcapacity with distilled water. Adding on to that, hot plate will be used as an 

alternative to the Bunsen burner. Typical operating temperatures for hotplate usually 

are varied from 100°C to 380°C. Hence, experiment is conducted to study the 

amount of heat absorbed by OPF at different interval settings.  The temperature 

recorded at interval of t = 2, 4, 8 and 12 minutes for conventional heating is 

compared with the temperature reading produced by MW. The experiment set-up 

which produced the closest and adjacent temperature value to MW is selected as the 

permanent set-up for conventional heating. To achieve that, the level of distilled 

water and also the size of beaker used are varies. 

 

 3.2.4.1 Conventional Heating Temperature Determination 

For conventional heating, the estimation of heat absorbed by the sample is 

based on 100ml of distilled water since the pre treatment method used in future will 

be using OPF sample immersed in 100ml aqueous solution which has close heat 

capacity with distilled water. Adding on to that, hot plate will be used as an 

alternative to the Bunsen burner. Typical operating temperatures for hotplate usually 

are varied from 100°C to 380°C. Hence, experiment is conducted to study the 

amount of heat absorbed by OPF at different interval settings.  The temperature 

recorded at interval of t = 2, 4, 8 and 12 minutes for conventional heating is 

compared with the temperature reading produced by MW. The experiment set-up 

which produced the closest and adjacent temperature value to MW is selected as the 

permanent set-up for conventional heating. To achieve that, the level of distilled 

water and also the size of beaker used are varies. 

 

 3.2.5 Pre-treatment 

In order to pre-treat the OPF sample, 2 experiments were conducted. The 

procedures were discussed as below: 

 3.2.5.1 Experiment 1: The effect of conventional-alkali pre-treatment at 

different pre-treatment time 
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In this experiment, the pretreatment time becomes the manipulated variable. The 

chosen time is t= 2, 4, 8 and 12 minutes. The procedure is as follows: 

1. 3g of OPF is put into 250mL Schott beaker with 100mL of 0 N ofNaOH 

aqueous solutions (water only) for pre-treatment. 

2. The sample was heated by subjecting to conventional treatment on the 

hotplate for 2 minutes at desired temperature. 

3. After 2 minutes, the mixture is removed immediately from the hot plate (HP) 

and weighed. The mixture and beaker is filtered using vacuum pump to 

separate the wet cake (solid residues) and filtrate. 

4. The pre-treated solid residue is washed using sieve using neutral pH with tap 

water and weighed before being transferred into 100mL sample bottle. 

Meanwhile, the filtrate will be weighed immediately. Both wet cake and 

filtrate are kept in refrigerator. 

5. Step 1 to 4 was repeated for different concentration of NaOHwhich is at – 

0.25N concentration. 

 

 3.2.5.2 Experiment 2: The effect of microwave-alkali pre-treatment at 

different pre-treatment time 

In this experiment, the pretreatment time becomes the manipulated variable. The 

chosen time is t= 2, 4, 8 and 12 minutes. The power setting is fixed at “LOW” 

settings at desired temperature. The procedure is as follows: 

1. 3g of OPF is put into 250mL Schott beaker with 100mL of 0 N ofNaOH 

aqueous solutions (water only) for pre-treatment. 

2. The sample was heated by subjecting to microwave treatment for 2 minutes at 

desired temperature. 

3. After 2 minutes, the mixture is removed immediately from the MW and 

weighed. The mixture and beaker is filtered using vacuum pump to separate 

the wet cake (solid residues) and filtrate. 

4. The pre-treated solid residue is washed using sieve using neutral pH with tap 

water and weighed before being transferred into 100mL sample bottle. 

Meanwhile, the filtrate will be weighed immediately. Both wet cake and 

filtrate are kept in refrigerator. 
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5. Step 1 to 4 was repeated for different concentration of NaOHwhich is at – 

0.25N concentration. 

 

 3.2.6 Measurement of Cellulase Activities 

The cellulose activities are determined by using the method designed by 

International Union of Pure and Applied Chemistry (IUPAC). The cellulose activities 

are determined by measuring the filter paper unit (FPU) per millilitre of enzyme 

solution that releasing 2.0mg of reducing sugar. The FPU will later be calculated by 

using the following equation: 

𝐅𝐏𝐔 =  
𝟎. 𝟑𝟕

[𝐞𝐧𝐳𝐲𝐦𝐞]𝐫𝐞𝐥𝐞𝐚𝐬𝐢𝐧𝐠 𝟐. 𝟎𝐦𝐠 𝐨𝐟 𝐠𝐥𝐮𝐜𝐨𝐬𝐞
 𝐮𝐧𝐢𝐭𝐬/𝐦𝐥 

Below are the listed procedures in determining the cellulose activities: 

1. DNS Reagent and 0.05M of citrate buffer at pH 4.8 is prepared by using the 

method designed by NREL. 

2. Filter paper assay for saccharifying cellulose is conducted by preparing three 

categories of experimental tubes (assay mixtures, blanks and controls, and 

glucose standard). The substrate is a 50 mg of Whatman No. 1 filter paper 

strip (1.0 × 6.0 cm). 

3. Enzyme assay tube is prepared by using following procedure: 

a. A rolled of filter paper is placed into each 13 × 100m test tube. 

b. 1.0 mL of 0.05M citrate buffer with pH 4.8 is added to the tube. 

c. 0.5mL of appropriately diluted enzyme is added in citrate buffer. Two 

dilutions are made for each enzyme sample. 

4. Blank and controls experimental tubes are prepared by following the listed 

procedures: 

a. 1.5mL of citrate buffer is added into 100mL of test tube and a filter 

paper strip is placed inside the tube which acts as substrate control. 

b. To prepare reagent blank, 1.5mL of citrate buffer is added in 100mL 

test tube 

c. Meanwhile, for enzyme control, 1.0mL of citrate buffer is added in 

together with 0.5mL of each enzyme dilution. 
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5. Glucose standard preparation procedures: 

a. A working stock solution of anhydrous glucose (10mg/ml) is 

prepared. The aliquot of this working stock solution is tightly sealed 

and stored frozen. 

b. The glucose dilutions are made from the working stock solution in the 

following manner: 

i. 1.0mL + 0.5mL buffer = 3.35mg/0.5mL 

ii.  1.0mL + 1.0mL buffer = 2.50mg/0.5mL 

iii. 1.0mL + 2.0mL buffer = 1.65mg/0.5mL 

iv. 1.0mL + 4.0mL buffer = 1.00mg/0.5mL 

c. The glucose standard tubes are prepared by adding in 0.5mL of each 

of the above glucose dilution to 1.0mL citrate buffer in 13 × 100mm 

of test tube 

6. Blank and controls, glucose standard and enzymatic assay is later be 

incubated at 50°C for 60 minutes. DNS reagent is added afterwards. 

7. After that, each of the experimental tubes is vigorously boiled in water bath 

for exactly 5 minutes for color development. The test tube is later be cooled 

by transferring all the experimental tubes to cold ice water bath. 

8. 0.2mL of color-developed mixture for each tube together with 2.5mL of 

water is mixed by using the pipettor into the spectrophotometer cuvette. The 

absorbance at 540nm against reagent blank is measured. 

9. After that, a linear glucose standard curve is constructed by plotting the 

absorbance at 540nm against absolute amounts of glucose (mg/0.5ml). Using 

this standard curve, the amount of glucose released for each sample tube after 

enzyme blank subtraction is determined. 

10. The concentration of enzyme which would have released exactly 2.0mg of 

glucose is determined by plotting glucose liberated against enzyme 

concentration. 

11. From there, the FPU is calculated by using the above formula. 
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 3.2.7 Enzymatic Saccharification 

The enzymatic sachharification of pre-treated OPF was based on the method 

devised by NREL. In the method, it was mentioned that the total volume of the 

mixture used was 25mL.  

For saccharification, 1g of OPF was used as dry basis. The enzymes used 

were 10mg/mL of TricodermaReesei, T.Reesei. The enzyme is diluted to 0.01mg/mL 

concentration, before being mixed with the pretreatedOPF sample. For every 25mL 

sample solution, 2mL of cellulose solution and 1mL of 0.002mg/mL of β-

glucosidase is used. 2% of biocide made from sodium azide is added in to prevent 

the growth of organisms during the digestion process. Most of the time, enzymatic 

hydrolysis requires buffer solution, therefore a proper pH can be obtained and 

maintained throughout the process. In this experiment, 0.05M citrate buffer solutions 

with pH 4.8 were used. The amount of buffer solution required c determined by 

using the equation below: 

VT = 25mL = Mass of OPF on wet basis (g=mL) + Volume of citrate buffer + 

Volume of enzymes + Volume of biocide 

 

VT   = total sample volume  

Volume of enzymes = 2mL of cellulose + 1mL of β-glucosidase 

Volume of biocide = 1mL 

 

Below are the procedures for saccharification of the pretreated samples. 

1. 0.5 g on dry basis of pre-treated OPF is loaded into 100mL Erlenmeyer flask 

with cap. 

2. The citrate buffer is loaded into the flask (based on the amount calculated 

from the equation aforementioned above). 

3. 2mL of T.Reeseienzyme together with 1mL of β-glucosidase and 1mL of 

sodium azide is loaded into the mixture. 
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4. The concoction is placed into the incubator shaker set at rotation speed of 

150rpm and temperature of 50°C. 

5. The sample is later be incubated for 72 hours (3 days). 1mL of the sample 

aliquot was taken out for every 12 hours and inserted in vial for HPLC 

analysis. 

 

 3.2.8 Calibration Curve 

Calibration curve are required to pinpoint the retention time of the reducing sugar 

and also to translate the peak area from HPLC graph into a concentration unit. In this 

experiment, only fructose and glucose will be taking into account since it can be 

easily liberated from cellulose. Below are the procedures in generating the 

calibration curve: 

1. Five solutions of known sugar with a concentration of 1.0, 2.5, 5, 7.5 and 

10g/l respectively were prepared. 

2. The sample was later analyzed by using HPLC. 

3. Using the data obtained from the HPLC, graph of peak area against 

concentration was plotted.  
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3.3 Project Process Flow 

This is the process flow for this research project that must be so that the objectives of 

the study can be successfully achieved.

 

 

Problem Statement & Objectives

Identifying the purpose of conducting this project 

Literature Review

Reading and collecting information as much as possible from 
different sources regarding the project

Experiment Methodology and Design

Deciding the experimental method,materials  and procedures 
needed in order to conduct this project

Data Gathering and Analysis

The Data(s) of the experiment is collected and interpreted 
critically. The result will then analysed and discussed

Documentation and Reporting

All the findings in this report will be documented and reported. 
Conclusion and recommendation will be made by the end of the 

report 
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3.4 Gantt Chart and Key Milestone 

No Details 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. FYPII Project Work               

2. FYPII Activities: 

Experimental 

Work/Simulation 

Work 

              

3. Progress report 

submission 

              

4. FYPII Activities: 

Experimental 

Work/Simulation 

Work 

              

5. Pre-EDX               

6. Draft Submission                

7. Project Work 

Continue: Analysis 

and reporting 

              

8. Softbound submission                

9. Technical Paper 

Submission 

              

10. Oral Presentation               

11. Submission of 

Hardbound 

              

 

 

 

 

 

 

 

 

 

 

 

Gantt chart 

Key Milestone 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1 Raw Material Characterization 

 4.1.1 Moisture Content of OPF Raw Material 

The OPF collected is washed and dried to avoid the fungus growth on the OPF 

which might degrade the raw material. OPF is later grinded and sieved into range 

size of: 

 0.10 mm – 0.25 mm  

 0.25 mm – 0.50 mm 

 0.50 mm – 1.00 mm 

 1.00 mm – 2.00 mm 

The smallest size range of 0.10 mm – 0.25 mm has been selected. 

Subsequently, around 2.00 g (±0.05) of OPF is taken out from the raw 

material for moisture content determination purposes. The weight of the sample 

before and after drying is recorded. The weight loss difference calculation is 

performed by using the formula: 

∆𝐦 = 𝐦𝐭=𝟐𝟒+𝐧 − 𝐦𝐭=𝟐𝟒 

The sample is repeatedly dried for another 1 hour until the weight is constant (less 

than 0.2%). Once the weight difference is less than 0.2%, the moisture content, MC 

for the sample is conducted by using the formula of: 

𝐌𝐨𝐢𝐬𝐭𝐮𝐫𝐞 𝐂𝐨𝐧𝐭𝐞𝐧𝐭 𝐢𝐧 𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬 𝐬𝐚𝐦𝐩𝐥𝐞, % =  
𝐖𝐢 − 𝐖𝐟

𝐖𝐢 − 𝐖𝐜
 × 𝟏𝟎𝟎% 
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Sample Wi 

OPF 

(g) 

Wi 

cru + 

OPF (g) 

Wf=  

24 hrs 

(g) 

Wf =  

25 hrs 

(g) 

Wf =  

26 hrs 

(g) 

Wf =  

27 hrs 

(g) 

MC (%) 

1 2.0009 18.8389 18.7200 18.7301 18.7300 18.7300 5.4198 

2 2.0093 16.8296 17.0100 17.0001 17.0200 17.0200 5.4057 

Table 3: Moisture Content Determination of OPF Raw Materials 

Average MC% =  
5.4198 + 5.4057

2
= 5.41275 

From the result obtained, it can be seen that, after drying at t = 25 hours for 

Sample 1, it gives higher value compared to sample weight at t = 24 hours. 

Meanwhile, for Sample 2, after drying at t = 26 hours, it gives higher value compared 

to previous reading. This error might occur due to moisture absorbance. The sample 

might absorb some moisture from the surrounding after drying process takes place. 

However, throughout the experiment, a uniform distribution of moisture content is 

achieved and the drying activity is stopped at t = 27 hours.In the end, the average 

moisture content of raw OPF obtained from the test is 5.4127%. It is crucial to 

determine the moisture content of the OPF biomass for the benefits of effective 

thermal treatment due to the decreasing amount of its calorific value (Demirbas A., 

2005) 
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 4.1.2 Moisture Content in Prepared Sample 

The moisture content of prepared sample is calculated after drying process 

takes place. The weight of the OPF before and after pretreatment is measured.After 

done with the pretreatment, all pretreated samples are washed vigorously by using 

tap water until it reach neutral pH (6.90 < pH < 7.10) before being used in enzymatic 

saccharification process later on. Variation of pH in pretreated sample may distract 

the enzymes and cause denaturation. After it reached neutral pH, the samples are 

later being put in sample bottles. 1.0 g from the OPF solid residues we are dried for 

24 hours in 105°C oven temperature to determine the moisture content. 

 

Sample 

Before drying After 

drying 

24 hrs 

MC % 
Average 

MC % 
Petri 

dish 

OPF 

sample 
Total 

HP NaOH 0.0 N T2 54.3357 1.0056 55.3413 54.7398 59.8150 
60.8124 

HP NaOH 0.0 N T2 57.0286 1.0178 58.0464 57.4173 61.8098 

HP NaOH 0.0 N T4 54.7022 1.0264 55.7286 54.9294 77.8644 
78.3087 

HP NaOH 0.0 N T4 34.6250 1.0185 35.6435 34.8414 78.7531 

HP NaOH 0.0 N T8 44.4112 1.0063 45.4175 44.5661 84.6070 
84.1521 

HP NaOH 0.0 N T8 56.9201 1.0029 57.9230 57.0836 83.6973 

HP NaOH 0.0 N T12 57.2133 1.0058 58.2191 57.3726 84.1619 
84.6305 

HP NaOH 0.0 N T12 55.6470 1.0033 56.6503 55.7965 85.0992 

HP NaOH 0.25 N T2 31.4171 1.0051 32.4222 31.5867 83.1261 
83.2446 

HP NaOH 0.25 N T2 30.9156 1.0050 31.9206 31.0828 83.3632 

HP NaOH 0.25 N T4 1.2672 1.0030 2.2702 1.4291 83.8584 
83.8253 

HP NaOH 0.25 N T4 2.2081 1.0063 3.2144 2.3712 83.7921 

HP NaOH 0.25 N T8 2.2101 1.0080 3.2181 2.3787 83.2738 
83.2920 

HP NaOH 0.25 N T8 2.1655 1.0060 3.1715 2.3334 83.3101 

HP NaOH 0.25 N T12 26.8625 1.0083 27.8708 27.0401 82.3862 
82.3312 

HP NaOH 0.25 N T12 31.3857 1.0043 32.3900 31.5637 82.2762 

Table 4 (a): Moisture Content in Prepared Sample for Conventional Heating 

HP : Hot Plate (Conventional Heating) 
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Sample 

Before drying After 

drying 24 

Hours 

MC % 
Avg 

MC % 
Petri 

dish 

OPF 

sample 
Total 

MW NaOH 0.0 N T2 46.5774 1.0400 47.6162 46.7262 85.5769 
86.1560 

MW NaOH 0.0 N T2 52.4501 1.0147 53.8115 52.9314 86.7350 

MW NaOH 0.0 N T4 55.1938 1.0365 56.2295 55.3178 87.9595 
86.6378 

MW NaOH 0.0 N T4 53.9324 1.0120 54.9435 54.0801 85.3162 

MW NaOH 0.0 N T8 41.3805 1.0043 42.3841 41.5922 78.8509 
79.2947 

MW NaOH 0.0 N T8 48.8051 1.0172 49.8225 49.0114 79.7385 

MW NaOH 0.0 N T12 53.3769 1.0088 54.3854 53.5713 80.6998 
80.7281 

MW NaOH 0.0 N T12 50.2263 1.0523 51.2792 50.4294 80.7564 

MW NaOH 0.25 N T2 53.9460 1.0361 54.9810 54.0696 87.9645 
87.6171 

MW NaOH 0.25 N T2 52.7874 1.0149 53.8023 52.9166 87.2697 

MW NaOH 0.25 N T4 50.2367 1.0108 51.2508 50.3574 88.3854 
88.3678 

MW NaOH 0.25 N T4 46.5972 1.0498 47.6470 46.7195 88.3502 

MW NaOH 0.25 N T8 53.3889 1.0733 54.4636 53.5348 86.5368 
84.8780 

MW NaOH 0.25 N T8 40.4411 1.0810 41.5287 40.6291 83.2192 

MW NaOH 0.25 N T12 48.8190 1.0560 49.8733 48.9595 86.5341 
86.4919 

MW NaOH 0.25 N T12 55.2076 1.0354 56.2484 55.3533 86.4497 

Table 2 (b): Moisture Content in Prepared Sample for Microwave Heating 

MW : Microwave Heating 
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 4.1.3. Proximate Analysis of Lignocellulosic Components of OPF 

The findings from Thermo-Gravimetric Analysis (TGA) reveal the weight 

loss% of the lignin, cellulose, hemicelluloses, ash and moisture content of OPF 

sample under nitrogen atmosphere at heating rate of 10°C min-1. 

 

Figure 9(a): Dried OPF decomposition - Thermogravimetric curve 

 

Figure 3(b): Dried decomposition of OPF - Derivative Thermogravimetric (DTG) curve 
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From the findings in Figure 3a, the thermal decomposition takes place at 

lower temperature approximately at 303K (30°C).  The first and largest lost can be 

observed and it is due to the decomposition of cellulose and hemicelluloses. 

Meanwhile, the second larger lost seems to be equivalent to the decomposition of 

lignin. The decomposition pattern of cellulose and hemicelluloses is not fully 

comprehended however, according to Vamvuka D et al (2003), it reveals that 

hemicelluloses is usually broke down at lower temperature in contrast with cellulose 

that break down at higher temperature. The statement was in agreement with other 

researchers such as Cozzani V et al (1995), Werther J et al (2000) and Williams P. T 

et al (1991) that mentioned the lower temperature peak indicated the hemicelluloses 

decomposition and the higher temperature peak exhibits the cellulose decomposition. 

Apparently, the point X in DTG curve might have been the start point of cellulose 

break down. From DTG curve, the ignition temperature for OPF dried sample is 

identified at 423K (150°C), meanwhile the peak temperature is obvious at 595K 

(322°C). Notably, the ignition temperature is a temperature where the burning profile 

experienced a sudden rise and the peak temperature is a temperature where 

maximum rate of weight loss during thermal combustion takes place. Seemingly, 

these values are comparably lower compared to coal fuels studied by W.A Wan 

AbKarimGhani et al (2004) which are 623K (350°C) for ignition temperature. The 

almost constant flat curves at higher temperature represent the lignin which happened 

to be slowly decomposed within a wider temperature range (Williams P T et al., 

1991). 
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 4.1.4 CHNS Analysis  

CHNS analysis is an important tool in the process of characterizing the 

carbon content and carbon to oxygen ratio in relation to calorific value inside the 

biomass. From the analysis, the amount of carbon (C), hydrogen (H), nitrogen (N) 

and oxygen (O) will be determined. The analysis will be replicate twice and from 

there, the average value of each sample is recorded in the table below. 

No of 

sample 

Weight of 

sample (g) 

Results, % 

C H N S O 
C/O 

Ratio 

1 2.121 43.14 5.99 0.72 0.31 49.84 0.8656 

2 2.152 43.78 6.12 0.62 0.41 49.07 0.8922 

Average 2.137 43.46 6.06 0.67 0.36 49.46 0.8787 

Table 4: CHNS Analysis Result 

Table 4 summarizes the results from CHNS analysis of raw oil palm fronds 

carried out by using PerkinElmer 2400 CHNS Analyzer. The average carbon content 

value obtained from CHNS analysis shows 43.46%. The carbon contents value of 

OPF is compared to another literature reported by other researcher, whereby almost 

similar value of carbon contents is obtained by M.A.K.M Zahari et al (2012) which 

is49%. The high amount of carbon content indicates the suitability of lignocellulosic 

biomass to be use as renewable carbon source in producing the value-added products 

through fermentation process later. In comparison with solid fossil fuels, biomass is 

considered to have much less carbon content and more oxygen content (Demirbas, 

2004) 
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4.2 Microwave and Conventional Heating Temperature Setting 

The setting for conventional microwave heating is adjusted to make the 

heating process more precise hence can produce greater yields and higher quality of 

products. This is due to different mechanism of heat transfer takes place between 

conventional and microwave heating. Heat is transferred to the surface of the beaker 

and biomass via conduction or convection in conventional heating. On the contrary, 

microwave is not considered as another form of heat but rather form of energy that 

are represented as heat via their interaction with the biomass materials 

(www.chemicalprocessing.com) 

In determining the temperature setting for both heating method, the 

temperature of microwave at “low” setting and hot plate at each intervals of t = 2, 4, 

8 and 12 minutes is recorded. The final temperature, T2 of both heating method is 

compared. The conventional setting that gives out the closest T2 with MW at low 

setting is being selected as the conventional heating set-up throughout the project 

research. From the table below it can be seen that the conventional settings of 250ml 

Schott beaker filled with 100ml of distilled water gives out the closest T2 compared 

to the settings of 250 ml beaker filled with 50ml of distilled water. The summary 

settings are shown in table below. 
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water T1 T2 ΔT 
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t = 2 

1 

105.62 203.49 97.87 25.40 54.40 29.00 120 11.86 0.10 

t = 4 97.51 188.73 91.22 25.40 70.50 45.10 240 17.19 0.07 

t = 8  127.72 216.65 88.93 25.20 94.60 69.40 480 25.79 0.05 

t = 12 105.58 206.35 100.77 25.10 101.8 76.70 720 32.30 0.04 

H
P

 (
2

5
0
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b
ea

k
er

 &
1

0
0

m
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w
at

er
) 

t = 2 

1 

97.31 190.10 92.79 24.10 56.30 32.20 120 12.49 0.10 

t = 4  105.37 202.43 97.06 24.20 72.40 48.20 240 19.55 0.08 

t = 8  105.37 208.59 103.22 22.50 97.20 74.70 480 32.22 0.07 

t = 12  105.35 211.25 105.90 22.50 97.10 74.60 720 33.01 0.05 

t = 2 

2 

97.31 190.10 92.79 24.10 56.30 32.20 120 12.49 0.10 

t = 4  105.37 202.43 97.06 24.20 72.40 48.20 240 19.55 0.08 

t = 8  105.33 210.93 105.60 22.40 97.30 74.90 480 33.05 0.07 

t = 12  105.36 210.85 105.49 22.30 97.10 74.80 720 32.98 0.05 

Table 5: Microwave and Conventional Heating Temperature Settings 
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Heat energy, Q (kJ) is calculated by using the formula of: 

𝐐 = 𝐦𝐂𝐩𝛉   

Where : m  – Mass of the distilled water, g 

Cp – Heat capacity of water, 0.004186 kJ/gram °C 

 𝜃 – Temperature changes, °C 

Meanwhile, the power, P (W) irradiated/absorbed is calculated by dividing respective 

heat energy, Q (kJ) with time (s). 

𝐏 =  
𝐐

𝐬⁄  

 

Figure 10: A graph of temperature against pre-treatment time 

 

 From Table 5, the graph of temperature recorded against pretreatment time is 

plotted as in Figure 4 to observe the consistency of temperature setting between 

microwave temperature and conventional temperature settings. 
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4.3 Pre-treatment 

4.3.1 Effect of pre-treatment on the mixture solution thickness 

The pre-treatment step for OPF biomass by using 0 N and 0.25 

NofNaOHforboth microwave and conventional heating is conducted. The total mass 

of OPF in 100ml of solution is measured before and after pre-treatment. Later, the 

filtrate and the wet cake are separated by using the vacuum pump and the weight of 

both filtrate and wet cake is measured. However, during the separation process, some 

of the OPF tend to stick to the filter paper. It caused difficulties to remove the OPF 

solid residues from the filter paper. 

The effect of pre-treatment is evaluated by observing the thickness of the 

mixture solution (supernatant) taken after the pre-treatment took place. From the 

observation made in Figure 3, the color of supernatants is getting thicker when the 

pre-treatment time is increase from 2 to 12 minutes. And also, the amount of solution 

is decreased as the pre-treatment time increase. This is due to the loss of liquid phase 

due to the vaporization activity which may indirectly affect the solution amount and 

the alkaline concentration. This statement is also agreed by Rashid et al. (2011). 

 

Figure 11: The photo of pre-treated sample (filtrate) at 0 N ofNaOH 
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 4.3.2 Effect of pre-treatment on OPF weight loss 

 The total weight loss of OPF is crucial in determining the effectiveness of 

pre-treatment used. To study that, the weight value for each biomass sample is 

measured before and after heating and a graph of weight loss against pre-treatment 

time for both heating method is plotted.  

 

Figure 12: Time Course of OPF Weight Loss for Two Heating Method 

 

Figure 6 shows that, the final weight loss is higher when it is pre-treated by 

using microwave assisted alkali pre-treatment compared to conventional alkali pre-

treatment. One of the reasons that might contribute to this factor is might be due to 

the ability of microwave that has the ability to enhance some kind of reactions during 

the pre-treatment (S. Zhu et al, 2006).The ability of microwave in producing a very 

rapid drying is very convincing even without the need to overheat the atmosphere 

temperature compared to conventional heating, hence it caused the materials heated 

to vaporize faster and eventually increase the weight loss. 
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 4.3.3 Effect of pre-treatment on morphology structure 

 On the other hand, the effect of pretreatment is studied by comparing the 

morphology structure on the surface of pretreated OPF biomass with 0 N and 0.25 N 

of NaOH at pretreatment time of 12 minutes and non treated OPF biomass by using 

SEM (Scanning Electron Microscopy) method.  

 

 

 

 

Figure 7: SEM image of OPF analyzed at optimum condition (Magnification = 1200x) 

(a) (b) 

(c) (d) 

(e) 
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 From the washed solid residue, 1.0(±0.01) gram of OPF solid residue is dried 

in dried oven under 105°C for 24 hours. After 24 hours of drying, the samples are 

taken out and put inside a desiccator for few minutes until it reach room temperature. 

Figure 7 shows the morphology structure of OPF biomass from SEM analysis before 

and after pretreated with NaOH solution. The findings revealed the effect 

ofpretreatment on lignin structure and crystalline structure of biomass. Figure 7(e) 

shows the structure of raw untreated OPF is hard and rigid. The crystalline structure 

is still in densely-packed condition. The effect of conventional heating is represents 

by Figure 7(a) and (b) whereby conventional heating do not give too much different 

in altering the crystalline structure of OPF biomass. However, from Figure 7(c) and 

(d) which shows the effect of microwave pretreatment on crystalline structure, it can 

be observed that the porosity of OPF lignocellulosic biomass is higher compared to 

conventional heating and microwave pretreatment is aggressively reduce the 

cellulose crystallinity. 
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4.4 Enzymatic Activity Determination 

From the enzymatic activity determination, the absorbance at 540 nm for all 

TricodermaReesei assay mixtures, blanks and controls, and glucose standards is 

being considered. The value obtained from the spectrophotometer is recorded and 

summarized as below. 

Sample Conc. Rep. Content 
Absorbance 

1 2 Average 

Blank 
-  - 

1.5 mL buffer 
-  -  -  

-  -  - -  -  

Substrate 

control 

- 1 1.5 mL buffer 

+ paper strip 

0.010 0.010 0.010 

- 2 0.007 0.007 0.007 

Glucose 

standard 

(mg/mL) 

6.70 1 1.0 mL buffer 

+ 0.5 mL 

glucose 

dilution 

0.763 0.766 0.765 

5.00 1 0.229 0.229 0.229 

3.30 1 0.468 0.469 0.469 

2.00 1 0.271 0.271 0.271 

Enzyme 

control 

Dilution 1 1 
1.0 mL buffer 

+ 0.5 mL 

enzyme 

dilution 

0.007 0.733 0.370 

Dilution 2 1 0.552 0.553 0.553 

Dilution 3 1 0.391 0.392 0.392 

Dilution 4 1 0.308 0.308 0.308 

Dilution 5 1 0.212 0.212 0.212 

Mixture 

assay 

Dilution 1 1 

1.0 mL buffer 

+ 0.5 mL 

enzyme 

dilution + 

paper strip 

0.398 0.391 0.395 

Dilution 1 2 0.411 0.411 0.411 

Dilution 2 1 0.379 0.379 0.379 

Dilution 2 2 0.394 0.394 0.394 

Dilution 3 1 0.294 0.294 0.294 

Dilution 3 2 0.247 0.247 0.247 

Dilution 4 1 0.285 0.285 0.285 

Dilution 4 2 0.285 0.240 0.263 

Dilution 5 1 0.154 0.154 0.154 

Dilution 5 2 0.151 0.152 0.152 
Table 6: Summary of Enzymatic Activity Determination 

 

From the data obtained, the graph of absorbance at 540nm against glucose 

concentrations (mg/0.5 mL) is plotted in order to get the correlation coefficient.  
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Figure 8: Graph of Absorbance at 540nm vs Glucose Concentration 

Referring to the graph in Figure 8, by using the standard curve equation, 

Y = 0.079X + 0.097 

The glucose amount released by each sample tube after enzyme blank subtraction is 

calculated. For the example, 

Glucose concentration determination for enzyme control at Dilution 1, 

Abs540nm, Y = 0.730 

Hence, substituting the value Y of into the standard curve equation will give the 

amount of glucose released, X. In this case, X = 16.025 mg/0.5 mL. 

Abs at 540nm Glucose Conc. (mg/0.5mL) Enzyme Concentration 

0.730 16.025 0.013 

0.553 11.532 0.010 

0.392 7.456 0.008 

0.308 5.342 0.005 

0.212 2.911 0.003 

Table 7: Glucose Concentration for Enzyme Control at Abs 540nm 
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Figure 9: Graph of enzyme dilution vs glucose 

 

From Figure 9, the concentration of enzymes which have released exactly 2.0 

mg of glucose is obtained by plotting the enzyme concentration against amount of 

glucose released. In this case, concentration of T.Reeseienzyme required to produce 

2.0 mg of glucose is approximately 0.0038 mg/mL. The value will later be used in 

preparing the saccharification process. 

Filter Paper Unit (FPU) is calculated from the value of enzyme concentration above. 

According to NREL (2008), FPU is actually referring to the amount of enzyme 

activity that when assayed, will produce an equivalent amount sugars equal to 2.0 mg 

of glucose. 

FPU =  
0.37

0.0038
= 97.36 FPU/mL  
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4.5 Enzymatic Saccharification 

 Saccharification is performed in incubator shaker under temperature of 50°C 

for 72 hours with shaking rotation of 150 rpm. 0.1 mL of aliquot is removed for 

every 12 hours of time interval after the flask contents are well mixed. The sample is 

later be subjected to HPLC analysis to study the amount of glucose released by 

analysing the peak area obtained from HPLC. Table 6 shows the summary of peak 

area from HPLC. 

Pre-treatment Time 

(min) 

Peak Area After 72 hours of Saccharification 

HP 0 N 

NaOH 

HP 0.25 N 

NaOH 

MW 0 N  

NaOH 

MW 0.25 N 

NaOH 

2 867 5234 1382 1992 

4 2483 1809 1424 1836 

8 2074 3544 1671 1824 

12 2191 2012 2014 1438 

Untreated OPF 2768 
Table 8: Peak Area from HPLC for all samples 

 

To measure the amount of glucose released, a calibration curve from the standard 

glucose calibration is needed to convert the peak area to concentration unit. Figure 

10 reveals the calibration curve obtained for glucose. 

 

Figure 10: Glucose Calibration Curve 
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 After that, the peak area data is later translated into concentration unit by 

using the standard curve equation obtained from the calibration curve graph above. 

Table 9 shows the summary of glucose yield concentration calculated.The graph of 

reducing sugars (glucose) yield versus pre-treatment time is plotted. 

Pre-treatment 

Time (min) 

Reducing Sugar Concentration after 72 hours Saccharification (g/L) 

OPF Treated 

with HP 0 N 

NaOH 

OPF Treated 

with HP 0.25 

N NaOH 

OPF Treated 

with MW 0 N 

NaOH 

OPF Treated with 

MW 0.25 N 

NaOH 

2 0.331 0.646 0.368 0.412 

4 0.447 0.399 0.371 0.401 

8 0.418 0.524 0.389 0.399 

12 0.426 0.413 0.413 0.371 

Untreated OPF 0.467 
 

Table 9: Summary of Reducing Sugar Concentration 

 

From the data obtained, the glucose concentration is further calculated to get 

the percentage reducing sugar yield by using the formula provided by Beszedes et al. 

(2012). The summary of the glucose yield percentage calculated is shows in Table 8: 

𝐘𝐆 =
𝐆𝐥𝐮𝐜𝐨𝐬𝐞 𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 (

𝐠
𝐋) ×  𝐕𝐨𝐥𝐮𝐦𝐞𝐡𝐲𝐝𝐫𝐨𝐥𝐲𝐬𝐢𝐬(𝐋)

𝐎𝐏𝐅 𝐛𝐢𝐨𝐦𝐚𝐬𝐬 𝐥𝐨𝐚𝐝𝐢𝐧𝐠𝐝𝐫𝐲 (𝐠)
 × 𝟏𝟎𝟎% 

Where, 

Volumehydrolysis  = 0.025 L (25 mL) 

OPF biomass loadingdry = 0.5 g 

Pre-treatment 

Time (min) 
Glucose Yield Percentage After Saccharification at 72 Hours (%) 

 
OPF Treated with 

HP 0 N NaOH 

OPF Treated with 

HP 0.25 N NaOH 

OPF Treated with 

MW 0 N NaOH 

OPF Treated with 

MW 0.25 N NaOH 

2 16.527 32.306 18.388 20.591 

4 22.366 19.931 18.539 20.028 

8 20.888 26.199 19.432 19.985 

12 21.311 20.664 20.671 18.590 

Untreated OPF 23.395 

 

Table 10: Glucose Yield Percentage 
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Figure 11: Graph of Glucose Yield Concentration vsPretreatment Time at 72 Hours of Saccharification 

 

Figure 11 reveals the influence of microwave pre-treatment and conventional 

pre-treatment on reducing sugar yield from the pre-treated OPF biomass. After the 

period of 72 hours of incubation, the highest reducing sugar yield for microwave-

alkali-assisted pre-treatment and conventional-alkali-assisted pre-treatment is at the 

lowest pre-treatment time, t = 2 min which are 0.646 g/L (32.31%) and 0.412 

g/L(20.59%) respectively. However, the amount of reducing yield is decreasing as 

pre-treatment time increases for microwave-assisted-alkali and conventional-

assisted-alkali pre-treatment. S. M. Nomanbhay (2013) mentioned in his literatures 

that extended period of pre-treatment may be resulted in the loss carbohydrates of the 

pre-treatment liquor which can reduce the amount of reducing yields at the moment 

hydrolysis process is conducted. That may be one of the reason on why the amount 

of reducing sugar yield by microwave-assisted-alkali (MW with 0.25 N of NaOH) 

shows the lowest concentration amount of reducing sugar yield at t = 12 min which 

is 0.372 g/L. this is eventually makes the method of using microwave at low setting 

in combination with dilute 0.25 N of NaOH gives least efficiency in pre-treating the 

OPF biomass. This is contradicts with the results of microwave-assisted-alkali 

pretreatment which has more capacity to increase the yield of reducing sugar 

compared to conventional-alkali-assisted pre-treatment reported by other literatures. 

S. Zhu et al (2005) reported that the amount of reducing sugar yield concentration 

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14

G
lu

co
se

 Y
ie

ld
 P

e
rc

e
n

ta
ge

 (
%

)

Pre-Treatment Time (min)

HP 0 N NaOH

HP 0.25 N NaOH

MW 0 N NaOH

MW 0.25 N NaOH

Untreated OPF



44 
 

from the enzymatic hydrolysis of pre-treated wheat straw is the highest at higher 

concentration which is 42.9 g/L. Same case study were also reported by Md S 

Umikalsum et al (1998) in the treatment of OPEFB. However, there were cases 

where the low concentration of NaOH is found to be more effective such as the one 

reported by Soto et al (1994) where 0.5% of NaOH is found to be more effective that 

3% of NaOH in the treatment of sunflower hull and Latif et al (1994) in the treatment 

of grass straw. 

Nevertheless, different pattern of graph is observed for reducing sugar yield 

from both conventional and microwave without alkali pre-treatment whereby the 

amount of reducing sugar produced is increasing as pre-treatment time increases. 

Notably, the amount of reducing yield is higher for conventional pre-treatment 

compared to microwave pre-treatment at each time of interval. 

Based on the study made by Gabhane et al. (2011), it shows that microwave 

heating can only be efficient at the temperature more than 200°C. The statement is 

agreed by Hu et al. (2008) who mentioned in his literature, the reducing sugar yield 

is higher after undergoes microwave pre-treatment compared to conventional pre-

treatment only when the temperature reached 190°C. The reason is explained by 

Budarin et al (2010) whereby at temperature below 180°C, the polar molecules in 

cellulose will experience less freedom hence it prevents them to rotate and move, 

which resulting in poorer interaction in the end. 

On the other hand, the difference observed on the rate of reducing sugar yield 

may be due to the changes take place in the cellulose structure which led to the 

increment of susceptibility to enzyme attack (Cowling, 1975). The changes take 

places is involving the pore structure, lignin and hemicelluloses removal, particle 

size, crystallinity and also degree of polymerization (Fan et al, 1980). Other reason is 

maybe due to higher free water content during hydrolysis (Maurya et al., 2013). 

From overall observation, it can be noticed that the enzymatic hydrolysis is 

less efficient based on the inconsistency of reducing sugar yields for both microwave 

and conventional pre-treatment. Major factors that contribute to this distraction is 

may be due to low biomass loading. The low amount of biomass loading lead to the 

less yield of reducing sugar since the hemicelluloses and cellulose available is less 

(Maurya et al., 2013). 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

A large amount of unexploited OPF could serve a great benefit in producing 

bio-ethanol. From this study, characterization of OPF found that it contains high 

amount of carbon element of 43.46% hence make it suitable to be used as the 

feedstock for bio-ethanol production. SEM analysis reveals that microwave and 

conventional pre-treatment are reliable in altering and reducing the crystalline 

structure of OPF biomass for further penetration of enzyme. For without-alkali-

assisted pre-treatment, the highest glucose yield reading is recorded at the highest 

pre-treatment time, 0.426 g/L for conventional heating and 0.413 g/L for microwave 

heating. Meanwhile, notably, at the lowest pre-treatment time of 2 minutes of alkali-

assisted pre-treatment with 02.5 N of NaOH gives the highest yield of reducing sugar 

concentration of 0.646g/L for conventional heating compared to microwave heating 

which only yield 0.412 g/L. Optimization of saccharification conditions managed to 

produce high percentage reducing sugar yield of 32.31% for conventional pre-

treatment and 26.20% for microwave pre-treatment. 
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5.2 Recommendation 

It is recommended that other type of enzymes other than TricodermaReesei 

should be tested to maximize the reducing sugar yield during hydrolysis. Other 

recommendation is that to get and analyse the reading of glucose concentration 

during saccharification (enzymatic hydrolysis) from HPLC for every 24 hours 

instead of by analysing the glucose concentration at 72 hours only. Hence, the 

efficiency of enzymatic hydrolysis at different incubation time can be optimized and 

compared. Besides, the level of biomass loading should be taken into consideration 

before conducting the enzymatic hydrolysis in order to maximize the yield of 

reducing sugar. 
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APPENDICES 

 

Appendix 1 

 

Appendix 1: The photo taken during enzymatic activity determination 

 

Appendix 2 

 

Appendix 2: The photo taken during saccharification process of OPF 

 

 


