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ABSTRACT 

 

Nanofluids are the new developed thermal fluids with enhanced thermophysical 

properties which can improve heat transfer performance of various applications. By 

introducing nanoparticles with high thermal conductivity in the car radiator coolant 

can enhance the effective thermal conductivity of coolant which improves the 

performance of cooling system. Alumina, silica and copper oxide nanoparticles with 

ethylene glycol-water mixture (60:40) have been used in 3-dimentional car radiator 

simulations to study fluid flow patterns and heat transfer performance. Heat transfer 

performance for ethylene glycol-water mixture based nanofluids at different 

nanoparticle concentrations has been studied. Heat transfer coefficients are determined 

by numerical simulations with varying coolant velocities. It is found that overall heat 

transfer performance is improved using nanofluids with high effective thermal 

conductivity. Results display significant increase in heat transfer performance of 

coolant in car radiator with an increase in the particle loading. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

A car radiator is a type of heat exchanger and it plays an important role in the 

cooling system of vehicle. The main function of a car radiator is to transfer the 

excessive heat from the engine in order to avoid overheating and engine failure. A 

typical car radiator is as shown in Figure 1. A large amount of heat is produced by 

advanced automotive internal combustion engines when the air mixture and gasoline 

is combusted in the combustion chamber. This heat energy forces the piston to be 

pushed down inside the engine to turn the crankshaft and then generate power to drive 

vehicle.  

 

 

Figure 1 Parts of Car Radiator [1] 

There are approximately 1/3 of the thermal energy is used to power the vehicle 

out of all the heat generated from the combustion of fuel. The next 1/3 of the heat is 
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dissipated to the surrounding through the exhaust system. The remaining 1/3 of the 

excess heat which trapped in the main component of vehicle such as engine oil, 

cylinder walls, pistons and valves need to dispose to avoid overheating. Thus, 

advanced automotive engines normally adopted the most effective liquid cooling 

system to take care of the heat removal job.  

Effective engine cooling is necessary to maintain engine performance, engine 

life and safety. In a liquid cooling system, the heat produced from the engine cooling 

and air conditioning process is removed through the circulation of car coolant in the 

engine cooling jacket to the car radiator as illustrated in Figure 2. The heat from the 

coolant is then dissipated to the fins of the car radiator and atmosphere when air flow 

into it through conduction and convection. Cool coolant that flow out from the radiator 

will then recirculate again in the jacket. The function of the cooling system is not only 

to carry off the excess heat but also control the temperature of the engine at its 

operating temperature range which then generate the best performance of the car 

engine.  

 

Figure 2 Cooling cycle in the car radiator system [2] 

 

To enhance heat transfer performance of car radiator, a wide range of different 

fluids and its operating conditions are investigated in different previous studies. These 

applications would benefit to improve heat transfer properties like the enhanced 

thermal conductivity of the working fluid. Implementation of such fluids into the 



12 

 

existing systems can lead to an improved working efficiency and a better design of the 

overall system.  

Nanofluids, with their improved heat transfer properties, are reliable to be these 

working fluids. These fluids are beneficial in various industries such as transportation, 

electronics, medical, manufacturing as well as nuclear engineering due to the enhanced 

thermophysical properties. Recently, there are many researchers show their interest on 

nanofluids and evaluate the enhancement of heat transfer capacity. Eastman et al. [3], 

Liu et al. [4], Hwang et al. [5], Yu et al. [6] and Mintsa et al. [7] mentioned that 

nanofluids has potential to enhance thermal quality as compared to conventional 

coolant. This newly introduced category of nanofluids have unique structures different 

from conventional solid-liquid mixtures in which nano-sized particles (typically of 

length 1-100 nm) of metals and non-metals are dispersed. The most utilised coolant 

now in automobile industry are water and ethylene glycol (EG) which have much 

lower thermal conductivity than the base fluid that has added with nanoparticles such 

as silver, copper and iron. 

The new breakthrough technology has emerged the needs for more efficient 

car radiator in automotive industry now-a-days. Over recent years, one of the main 

scientific research interest is to enhance thermal conductivity of the working fluid. The 

enhancement of thermal conductivity of nanofluids as coolant in the car radiator 

application is important to ensure the efficiency of car cooling system. The previous 

researches investigate the laminar flow of nanofluids flowing in car radiator. However, 

few study are available on the turbulent flow of nanofluid. The results indicate that it 

is one of the important factor to improve performance of car radiator. Hence, this study 

is important to compare the fluid flow (laminar and turbulent) and heat transfer 

characteristics of a car radiator using 60% ethylene glycol and 40% water by mass 

(60:40 EG/W) based on different types of nanoparticles as coolants with different 

volume concentration numerically. Conventional coolant is used for comparison 

purpose for its thermal and hydraulic performance in car radiator. This analysis can 

predict the result of heat transfer and thermal conductivity enhancement at the end of 

project. 
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1.2 Problem Statement 

In order to prevent overheating and failure of engine, cooling is required to 

remove the excessive heat losses in thermodynamics processes which resulted from 

heating and friction in the combustion chamber surfaces. Equipment design of a car 

radiator plays an important role in producing a high efficiency of cooling system and 

ensuring good performances in engine operation. Various car radiator systems such as 

shell and tube heat exchangers, double tube heat exchanges and plate heat exchangers 

are characterised by its high surface area per unit volume for enhanced heat transfer 

purpose. It should be highlighted that the surface area of car radiator has significant 

impact on the heat transfer capacity. Large radiator may perform a better heat loss, but 

will occupy the space under the bonnet. Thus, good selection of coolants to dissipate 

heat efficiently are prerequisites for maximum engine operation and maintaining its 

operating temperature within a specific range. By using nanofluids as coolant in car 

radiator, heat transfer performance can be improved and the size of radiator can be 

reduced at the same time. 

 

 

1.3 Objectives  

In this study, the Computational Fluid Dynamics (CFD) simulation tool, 

ANSYS Fluent 15.0 is used to analyse the heat transfer behavior of 3-Dimensional 

numerical model of car radiator. The main objectives of this study are: 

a) To study and compare heat transfer of fluid in car radiator with and without 

nanoparticles using CFD simulation.  

b) To study and compare heat transfer of car radiator with nanofluids as coolants 

at varying nanoparticles loading.  

c) To study and compare heat transfer of car radiator with nanofluids as coolants 

in various flow regime. 
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1.4 Scope of Study 

This study would be significant for the fundamental of numerical study of 

nanofluids in car radiator. The focus of this project will be on analysing and comparing 

the heat transfer of car radiator using nanofluids with different concentration, type of 

nanoparticles and type of coolant flow.  

 

The heat flow distribution in the car radiator is analyzed under multiple 

concentration of nanoparticles and also by using the different types of nanoparticles 

which is copper oxide (CuO), alumina (Al2O3) and silicon dioxide (SiO2). The heat 

transfer and fluid flow characteristic of different types of flow (turbulent and laminar) 

will be studied. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Heat Transfer 

Heat transfer is the study of the rates of energy transfer and it is described as a 

form of energy that can be transferred from one system to another system due to 

temperature difference [8]. The heat transfer only occur when there is temperature 

difference and it can be transferred from one body to another body when there is 

temperature difference as a forcing force between the two bodies. The science of 

thermodynamic also concern with the total amount of energy changes when a system 

alter from equilibrium state to other state [9]. There are three different modes of heat 

transfer which are conduction, convection and radiation. The similarity of all the three 

modes is that heat is only transferred between two systems when there is temperature 

difference which is high temperature to low temperature. The differences between 

conduction and convection are conduction is due to the collisions, diffusions or 

vibration of the particles in the system whereas convection is the result of heat transfer 

between conduction and fluid. For radiation, it does not require any medium to occur 

as radiation can occur in a vacuum state. 

In this study, heat transfer is an important factor because car radiator involved 

heat exchange process. With the theory of heat transfer, the rates of heat transfer to or 

from a system, heating and cooling time in a heat transfer and variation of temperature 

can be determined through conducting the CFD simulation with proper assumption. 

 

2.1.1 Conduction 

Conduction is the transfer of heat energy within bodies of matter due to 

temperature difference occurred between them. Conduction involved the transfer of 

kinetic energy within particles of matter and it take place in solids, liquids and gases. The 
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heat will flow from a body which has higher temperature to lower temperature until steady 

state is reached. In car radiator, conduction is observed in heat transfer within tubes and 

fins. The equation to calculate the rate of heat transfer of conduction is stated as below: 

𝑄𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑘𝐴∆𝑇

𝐿
 

 

(1) 

Where k is the conductivity of material (Wm-1K-1), A is the cross-sectional 

surface area (m2), ∆𝑇 is the temperature difference between two ends (K) and L is the 

length of heat transfer between two ends (m) [10].  

 

2.1.2 Convection  

 

Convection involved two elements in heat transfer which are solid and adjacent 

moving fluid. At constant pressure, the density is inversely proportional to the 

temperature, the adjacent air to the hot surface becomes hotter and buoyant as its 

density decreases [9]. The cooler fluid will then replace the hotter fluid and form a 

fluid circulation. The heat from the coolant is transfer to the tube wall and when the 

air flow across the car radiator, the heat will be carried off through convection. The 

Newton’s law of cooling can be applied here in order to know the rate of heat exchange 

between the two systems which is as shown in equation (2): 

𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = ℎ𝐴(𝑇𝑠 − 𝑇𝑓) 

 

 

(2) 

At which 𝑇𝑓  is the temperature of fluid, A is the surface area, 𝑇𝑠  is the 

temperature of the surface object and h is the convection heat transfer coefficient. 

 

2.1.2.1 Mode of Convection  

a) Natural Convection: Heat transfer is caused by the motion of fluid and on a 

solid surface as shown in Figure 3. This phenomena involves fluid circulation 

as the fluid will move upward when it gets warm and decreases in density, the 

cooler fluid which is denser will sink and replace the hot fluid due to buoyancy 

forces.  
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Figure 3 The Cooling of a Hot Plate by Natural Convection [9] 

  

b) Forced Convection: The fluid flow to the surface through external forces such 

as pump and fan. The rate of heat transfer is enhanced due to the rapid 

movement of air flow over a hot plate as shown in Figure 4. Higher flow rate 

of forced convection than natural convection has shown higher heat transfer 

rate in forced convection than natural convection. The heat transfer of car 

radiator in this study is forced convection because the hot coolant is pumped 

into the car radiator to remove the excess heat.  

 

Figure 4 The Cooling of a Hot Plate by Forced Convection [9] 

 

2.1.2.2 Heat Transfer Coefficient 

In convection, heat transfer coefficient depends on the characteristic in the 

boundary layer of fluid. According to the equation 3, it is influenced by the motion of 

fluid, surface geometry, and an assortment of fluid thermodynamic and transport 

properties [9]. The relationship of heat transfer coefficient in a car radiator between 

Nusselt number, fluid conductivity and diameter of tube is stated as below: 

h =
𝑁𝑢𝑘

𝐷ℎ
 (3) 
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Where Nu is the Nusselt number (dimensionless), k is the conductivity of fluid 

(Wm-1K-1), Dh is the hydraulic diameter of tube (m). The relationship clearly shows 

that heat transfer coefficient of convection is directly proportional to Nusselt number 

and fluid conductivity but inversely proportional to the diameter of tube. It can be 

predicted in this study that the change of Nusselt number will influence the value of 

heat transfer coefficient and also influence the rate of heat transfer directly.  

 

2.1.2.3 Reynolds number 

Reynolds number is a dimensionless number which provides the ratio of 

inertial forces to viscous forces. These two forces can quantify the importance of them 

in a given flow condition. Basically, Reynolds number is affected by fluid flow 

velocity, viscosity and dimension of fluid boundary and the relationship as stated 

below: 

Re =
𝜌𝑣𝐷ℎ

𝜇
 (4) 

Where ρ is the density of fluid (kgm-3), v is the velocity of fluid flow (ms-1), μ 

is the dynamic viscosity (Nsm-2) and Dh is the diameter of the tube in car radiator (m). 

From equation above, velocity of the flow is directly proportional to the Reynolds 

number. In this study, both laminar flow and turbulent flow are considered and 

calculated by varying Reynolds number and velocity of the fluid.  

 

2.2 Computational Fluid Dynamics (CFD) 

CFD is a numerical study to investigate the fluid flow behaviour and its heat 

transfer phenomena in a 3-Dimensional or a 2-Dimensional space numerically. The 

method that applies to solve and analyse problem is by discretising the geometry into 

several small volumes and the algorithm is solved for the temperature and velocity 

profile. Discretization of the geometry into smaller volumes is called mesh generation 

and the size of the mesh can influence the accuracy of the solution. Energy equation, 

momentum equation (Navier stokes equation) and the continuity equation are used to 

solve the problem.  
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CFD simulation can use to perform analysis over the car radiator with 

nanofluids as coolants. Thus, ANSYS Fluent 15.0 is used to study the fluid flow 

behaviour of nanofluids in car radiator. Previously, there are extensive works have 

done on the analysis of heat transfer performance of car radiator using various 

simulation tools.  

 

2.2 Relevant Work 

The conventional coolants such as water, ethylene glycol (EG) and water used 

in car radiator to dissipate excess heat is restricted as an energy-efficient heat transfer 

fluid due to its low thermal conductivity characteristic. Hence, the thermal 

conductivity of coolant is a primary factor on heat transfer coefficient between coolant 

and heat transfer surface which are fins and tube. Numerous research have been 

performed to enhance the thermal conductivity of conventional coolant fluid by 

suspending nanoparticle materials with nanometres (nm) size in the range of 1 to 100 

nm in liquids which is also known as “nanofluids”. The idea of nanofluids is a term 

introduced by Choi and Eastman [3] to study the new developed of nanotechnology 

working fluid that has a higher thermal properties compare to other conventional 

coolant or base fluids. According to Das et al. [10], Trisaksri and Wongwises [11] and 

Wang and Mujumdar [12] have concluded the research completed at this area. The 

literature review specifies that the size, shape, and volume fraction of the nanoparticles 

as well as on the type of the nanoparticles and of the base fluid is used to characterise 

the properties of nanofluid. They have summarized that that the thermal conductivity 

of the nanofluid is higher than its base fluid [13, 14]. 

Researchers have claimed that nanofluids technology has potential to improve 

the heat transfer performance of car radiator as nanoparticles have higher thermal 

conductivity than conventional heat transfer fluid as shown in Figure 5. Leong et al. 

[16] found out that there are approximately 18.7% reduces at the frontal area of a car 

by adding 2% of copper nanoparticles into the coolant. This is because the high thermal 

characteristics of nanofluids generates the better heat performance, reduce fuel 

consumption and consequently lower the operating costs.  
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Figure 5 Thermal conductivity of typical material [15] 

 

Xie et al. [17] conducted an experimental study on the thermal conductivity 

behaviour of Al2O3 nanoparticle in water, oil, and EG. They recorded an enhancement 

of the thermal conductivities of the suspensions when nanoparticles is added into base 

fluids. It is proven that thermal conductivity ratios increases with the volume fraction 

of nanoparticles but reduces with increasing thermal conductivity of the base fluid. 

Eastman et al. [18] have investigated the effectiveness of thermal conductivity 

of nanofluid consisting of Cu, CuO and Al2O3 nanometer-sized particles dispersed in 

EG and base fluid. The experimental result indicates that nanofluid consisting of 

nanometer-sized particles dispersed in EG has a much higher effective thermal 

conductivity than pure EG. An increment of 40% of thermal conductivity of EG is 

found for a nanofluid consisting 0.3% of Cu nanoparticle in EG basefluid as compared 

to other nanofluids with the same particle loading. It is determined that Cu/EG 

nanofluids have been recorded to show outstanding thermal conductivity improvement 

compared to other nanofluids containing oxide particles.  

Farajollahi et al. [19] pointed out in their experimental work that base fluid 

consisting of nanoparticle results in significant improvement of heat transfer. They 

examined the capability of heat transfer of water basefluid consisting Al2O3 and TiO2 

nanoparticles for turbulent flow by investigating its convective heat transfer 
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coefficient and Nusselt number. Peclet number, volume fraction of nanoparticles and 

type of nanoparticles play an important role in the enhancement of heat transfer. 

Different nanofluids have different optimum nanoparticle concentration. In 

comparison, Al2O3-H2O nanofluid are able to transfer more heat at higher nanoparticle 

concentrations, whereas at a certain Peclet number, TiO2-H2O nanofluid possess better 

heat transfer characteristic at its optimum nanoparticle loading than Al2O3-H2O 

nanofluid.  

Vajjha et al. [20] conducted a 3D numerical study of laminar flow and forced 

convective heat transfer of Al2O3 and CuO nanofluids in EG in the flat tubes of an 

automobile radiator. They stated heat transfer enhanced better in nanofluid over the 

base fluid. This paper developed the new correlations for viscosity and thermal 

conductivity of nanofluids as a function of particle loading and temperature. The result 

observed that nanofluid generated a remarkable enhancement of heat transfer 

coefficient along the flat tubes compared to the base fluid. They presented convective 

heat transfer coefficient and the local and the average friction factor increase with 

particle loading of the nanofluids and Reynolds numbers.  

Besides the thermophysical properties of basefluid, the type of flow across the 

tube influence the heat transfer behaviour of nanofluids. Pantzali et al. [21] performed 

experimental study on result of performance of in a commercial herringbone-type plate 

heat exchanger (PHE) by adding a 4% volume concentration of CuO in water as a 

coolant. They compared several of flow (laminar and turbulent) of nanofluid in the 

heat exchanger and found that the turbulence flow of nanofluid is favourable if there 

is an increase in its thermal conductivity and significant increase in viscosity. Or else, 

it is beneficial to work in laminar conditions with a need to control the instability of 

the nanoparticle suspension.  

Maiga et al. [22] performed numerical study of Al2O3 nanofluid in laminar flow 

along the circular tubes and between parallel disks. They reported increase in heat 

transfer characteristic particle volume concentration and Reynolds numbers from 250 

to 1000. However, there is a drastic adverse effect on wall shear stress compared to 

the basefluid. They observed irrelevant effect on the heat transfer enhancement with 

the flow between the disks.  
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According to Patel et al. [23], the temperature profile and flow behaviour 

prediction of radiator played a dominant role for designer. Computational Fluid 

Dynamics (CFD) can be used to study the performance of the radiator at the early stage. 

The solving of mathematical equations and numerical analysis is very useful for 

studying the chemical reaction, heat transfer and fluid flow. Pressure distribution, 

temperature gradients and flow parameters can be resolved in a shorter time and lower 

cost as experimental work is eliminated.  Sulaiman et al. [24] had carried out CFD 

modeling simulation of air flow distribution from the automotive radiator fan. The 

model of the fan geometries are developed and the result showed that the design of the 

fan blade was inappropriate and the error of average outlet air velocity is 12.5%. 

Authors inferred that the CFD simulation is an effective tool to enhance the 

performance of car radiator as the result obtained is a useful information for further 

investigation 

After a comprehensive study of the existing literature, it is clear that nanofluids 

have potential to use as coolant in car radiator due to the excellent heat transfer 

performance. CFD analysis is a useful tool to study thermal performance of different 

coolant in car radiator. This project will study the heat transfer performance of a car 

radiator using ethylene glycol and water mixture (60:40 wt %) of Al2O3, CuO and SiO2 

nanofluids as coolants at various concentrations (1 vol %, 3 vol % and 5 vol %) using 

ANSYS Fluent 15.0. The thermal characteristics of nanofluids operated in car radiator 

will be compared with 0 vol % ethylene glycol and water mixture (60:40 wt %). The 

effect of concentration in volume fraction of nanoparticles and the type of flow on the 

thermal conductivity will be analysed. Al2O3, CuO and SiO2 nanoparticles are selected 

in this research.  

 

2.3 Governing Equation 

The problem under investigation is a three-dimensional steady and forced 

convection flow of nanofluids flowing inside a flat tube having width of 0.025 m, 

height of 0.0015 m, and length of 0.105 m. The nanofluids are assumed to be in single 

phase, incompressible and enter the flat tube with uniform axial velocity and 

temperature. The single phase model equations include the equation of continuity, 

momentum equation and energy equation (ANSYS Fluent 15.0). The continuity and 

momentum equations are used to calculate velocity vector. The energy equation is used 
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to calculate temperature distribution and wall heat transfer coefficient. The equation 

for conservation of mass or continuity equation can be written as follows: 

 

2.3.1 Mass Conservation Equation 

The equation for conservation of mass, or continuity equation, can be written 

as follows: 

𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑣⃑) = 𝑠𝑚 (5) 

Equation (5) is the general form of the mass conservation equation, and is valid 

for both incompressible compressible flows. The source Sm is the mass added to the 

continuous phase from the dispersed second phase (e.g., due to vaporization of liquid 

droplets) and any user-defined sources. 

 

2.3.2 Momentum Conservation Equation 

Conservation of momentum in an inertial (non-accelerating) reference frame is 

described by: 

𝜕

𝜕𝑡
(𝜌 𝑣⃑) + ∇(𝜌 𝑣⃑ 𝑣⃑) = −∇p + ∇(𝜏̿) + 𝜌𝑔⃑ + 𝐹⃑ (6) 

Where p is the static pressure, is the stress tensor, and 𝜌𝑔⃑  and 𝐹⃑  are the 

gravitational body force and external body forces (e.g., that arise from interaction with 

the dispersed phase), respectively. F also contains other model dependent source terms 

such as porous-media and user-defined sources. 

 

2.3.3 Energy equation 

ANSYS FLUENT solves the energy equation in the following form: 

𝜕

𝜕𝑡
(𝜌𝐸) + ∇(𝑣⃑ (𝜌𝐸 + 𝑝)) = ∇(𝐾𝑒𝑓𝑓∇T − ∑ℎ𝑗𝐽𝑗⃗⃗ 

𝑗

+ ( 𝜏𝑒̿𝑓𝑓 𝑣⃑)) + 𝑆ℎ (7) 

Where 𝐾𝑒𝑓𝑓 is the effective conductivity, and 𝐽𝑗⃗⃗  is the diffusion flux of species 

J. The first three terms on the right-hand side of Equation represent energy transfer 
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due to conduction, species diffusion, and viscous dissipation, respectively. 𝑆ℎ includes 

the heat of chemical reaction, and any other volumetric heat sources. 
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CHAPTER 3 

METHODOLOGY 

 

 

3.1 Research Methodology  

The goal of this research is to investigate the heat transfer in the car radiator 

using nanofluids as coolant. Various nanofluids are taken into consideration: Alumina 

(Al2O3), Copper oxide (CuO) and Silica (SiO2). Heat transfer performances of car 

radiator using ethylene glycol/water (60:40) basefluid are analysed with varying 

nanoparticles concentration which are 1 vol%, 3 vol%, and 5 vol%. The project will 

be studied numerically by using ANSYS Fluent 15.0 to formulate a 3-Dimensional 

numerical model which can be used to analyze the behavior of fluid flow in car radiator 

and heat transfer of car radiator in different type of coolant flow. The nanofluids as 

coolant are studied at different Reynolds’s number conditions for coolant (laminar and 

turbulent), 100 ≤ Re ≤ 10000. 

The selected design parameters are first inserted in Design Modeler to create a 

three-dimensional model of various geometric shaped solid fins. This design will be 

meshed using four distinctly different size meshes depending on different surface and 

part of car radiator. These mesh sizes are ranged from coarse to fine. The boundary 

conditions will be inserted based on the selected nanofluid as well as type of flow. The 

selected model will set to run until convergence is achieved. This procedure will be 

followed for each of the nanofluid, nanoparticle concentration and flow regime.  
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3.2 Overview of CFD ANSYS Simulation 

The process flow diagram below describes the procedure followed to perform 

CFD simulations from initial stage to the end of the study. The sequence of steps 

followed in solving the problem is presented in a flowchart as shown in the Figure 6. 

 

Figure 6 Flowchart of CFD ANSYS Simulation 
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3.2.1 Geometry Modeling  

A 3-Dimensional model of a radiator which consist of air flow duct serpentine 

finned-tube exchanger as shown in Figure 7 is considered for analysis purpose. The 

detail measurement of the radiator are summarised in Table 1. In this study, only one 

part of radiator with dimension is constructed which consist of one long rectangular 

tube and 25 fins attached at the both side of the tube as shown in Figure 8. Air flow 

domain is constructed to consider the air flow across the car radiator when the car is 

moving. The same geometry and dimension will be used throughout the simulation for 

all the nanofluids. The tube is set to fluid and the fins of car radiator are set to solid. 

The object will be imported to mesh after the geometry is completed.  

 

 

 

 

Figure 7 Car Radiator Model under Consideration with Dimensions 
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Table 1 Core geometry of flat tubes, continuous fins, and operating conditions of a 

radiator 

Number Description Dimension 

1 Tube height 0.0015 m 

2 Tube length 0.105 m 

3 Tube width 0.025 m 

4 Fin height 0.006 m 

5 Fin width 0.025 m 

6 Fin Thickness 0.0001 m 

7 Distance between fins 0.002 m 

8 Number of fins 25 

9 Air side hydraulic diameter, Dh 0.0247 m 

10 Coolant side hydraulic diameter, Dh 0.04038 m 

11 Air Temperature (Ta) 303 K 

12 Coolant Temperature (Tc) 363 K 

13 Material Aluminum 

 

 

 
 

Figure 8 Geometry Modeling Using Design Modeler 
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3.2.2 Mesh Generation 

Mesh is defined as the open spaces in a net or network. Good quality of mesh is 

important for rapid convergence, accurate result and shorter time taken to generate 

mesh. The project is started with automatic meshing method available in ANSYS mesh 

cell to analyse its quality. In this study, constant body size of meshing of 0.003 m is 

set for air domain and 0.0004 m is set for tube and fins as shown in Figure 9. Finer 

mesh quality at the complicated region such as fins is applied for a better result. The 

number of elements for the geometry at the final mesh is 314 728. Several testing has 

been conducted in order to generate the best mesh size. The same mesh size is used for 

all simulation. After the meshes have been developed, inlet and outlet faces of car 

radiator and air domain have been assigned and named for further analysis in FLUENT.  

 

 

Figure 9 Geometry of Meshing 

A variety of mesh quality metrics can be analysed in order to determine the 

mesh quality generated. In this study, skewness and orthogonal quality and smoothness 

have significant importance to evaluate the quality of the mesh. The maximum 

skewness obtain is 0.984737 as shown in Figure 10. By referring to Table 2, it is in the 

range excellent quality of meshing. 

Minimum cell orthogonality is an important indicator of mesh quality.  As 

mentioned in the ANSYS User’s Guide, the values for orthogonality can vary between 

0 and 1 with lower values indicating poorer quality cells. The minimum orthogonality 

should not be below 0.01 with the average value significantly larger.  For the 

orthogonal quality as shown in Figure 11, the minimum value obtain is 3.083291 and 

considered an acceptable quality of mesh. 
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Figure 10 Skewness 

 

Table 2 Skewness Ranges and Cell Quality 

Value of Skewness Cell Quality 

0 degenerate 

< 0.02 bad (sliver) 

0.25 - 0.02 poor 

0.5 - 0.25 fair 

0.75 - 0.5 good 

0.75 - 1 excellent 

1 equilateral 

 

 

 

Figure 11 Orthogonal quality 

 

3.2.3 Setup Physics  

After the mesh is completed, the geometry model must be checked before 

proceeding to setup in ANSYS Fluent 15.0. The procedure of the general setup is as 

shown below. 
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3.2.3.1 General  

In general setup, pressure based, absolute velocity formulation, steady and 3D 

double precision are initialised for this study as shown in Figure 12. Pressure based is 

selected as the flow of nanofluids is incompressible flow. 

 

 

Figure 12 General Setup 

 

 

3.2.3.2 Models  

In this study, heat transfer is investigated and thus energy equation is enabled 

(Figure 13). Laminar flow is assumed and setup when the flow is in the range of 100 

< Re < 1000 as shown in Figure 14. Whereas, Standard ĸ-ɛ turbulent model is used 

with enhanced wall treatment for turbulent modelling when the flow is in the range of 

5000 < Re < 10000 which is turbulent flow as described in Figure 15. 



32 

 

 

 

 

 

 

Figure 13 General Setup 

 

 

 
 

Figure 14 Laminar Model Setup 
 

Figure 15 Turbulent Model Setup 

 

3.2.3.3 Materials  

There are two kind of bodies in this geometry which are solid and fluid. Solid 

is defined for the fins part and the material is aluminum. Whereas, fluid is referring to 

the coolant in the tube and air flow across the flow domain. All the properties can be 

extracted from the FLUENT database except the thermophysical properties of 

nanofluids and basefluid as the properties are highly dependent on temperature. 

 



33 

 

Determination of thermophysical properties 

Nanofluids 

Nanofluids Al2O3, CuO and SiO2 are investigated in this study. The properties 

of nanoparticles are shown in Table 3 below: 

Table 3 Properties of nanoparticles [25] 

Type of material Density 

(kg/m3) 

Specific heat 

(J/kg K) 

Thermal conductivity (W/m K) 

Al2O3 (45 nm) 3600 765 36 

CuO (29 nm) 6500 533 17.65 

SiO2 (20 nm) 2220 745 1.4 

 

The thermophysical properties of all types of nanofluids as coolants are 

strongly dependent on the temperature and type of nanoparticle. It is noticed that the 

density, thermal conductivity, and dynamic viscosity seems to be higher than the base 

fluid. The thermal conductivity of each nanofluids are assumed to be constant because 

the variation of the thermal conductivity with temperature is relatively small. On the 

other hand, the specific heat of nanofluids appear significantly lower than the base 

fluid. The thermophysical properties of nanofluids flow in tube are calculated using 

the following equation (8–10), accordingly at below. The values of constants A1 and 

A2 are shown in Table 4. 

Density: ρ𝑛𝑓 = (1 − φ) ρ𝑏𝑓 +  ρ𝑝φ  (8) 

Specific heat:  C𝑝𝑛𝑓 =
φ ρ𝑝C𝑝𝑝+(1−φ) ρ𝑏𝑓C𝑏𝑓

 ρ𝑛𝑓
 (9) 

Viscosity: 
𝜇𝑛𝑓

𝜇𝑏𝑓
= 𝐴1𝑒

(𝐴2φ) (10) 

 

Table 4 Constant of the viscosity correlation for different nanofluids 

Nanoparticles A1 A2 

Al2O3 (45 nm) 0.983 12.959 

CuO (29 nm) 0.9197 22.8539 

SiO2 (20 nm) 1.092 5.954 
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Basefluid Properties 

To find the thermophysical properties of nanofluid, the information for the 

properties of base fluid is required. The properties basefluid (60:40 EG/W) is obtained 

from ASHRAE Handbook [26]. The values of properties also varies with temperature 

and the relation of this effect is given in the equation (11-14) below: 

 

Density:   ρ𝑏𝑓 = −0.0024𝑇2 + 0.963𝑇 + 1009.8 (11) 

Viscosity: 
𝜇𝑏𝑓 = 𝐴4𝑒

𝐵4
𝑇  (12) 

Where 𝐴4 = 0.555 × 10−3;  𝐵4 = 2664 

Thermal conductivity:              k𝑏𝑓 = −3 × 10−6𝑇2 + 0.0025𝑇 + 0.1057 (13) 

Specific Heat:   C𝑝𝑏𝑓 = 4.2483𝑇 + 1882.4   (14) 

The above equations are valid within the temperature range of 293 K ≪ T ≪ 363 K. 

 

In the equation (11-14), the subscripts p, b and nf refer to the particles, 

basefluid, and nanofluid respectively. 𝜑 is volume fraction of the nanoparticle added 

to the basefluid.  

Figure 16 presents the material setup for the fins of car radiator in Fluent. Since 

the material of fins is aluminum and the properties is available in Fluent database, the 

properties is used for all simulations. For air domain, the setup is shown in Figure 17. 

The air properties is chosen from the Fluent database. 
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Figure 16 Material Setup for fins 

 

 
Figure 17 Material Setup for air domain 
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Due to the reason that the properties of nanofluids and basefluid is varied with 

temperature. Polynomial function for the properties of density, specific heat and 

viscosity need to be developed and set up for accurate result.  

 

3.2.3.4 Boundary Condition  

 

Numerical calculations are performed in both laminar and turbulent flow 

regimes based on 60:40 EG/W from a volumetric concentration of 0 % to 5 % for 

Al2O3, CuO, and SiO2 nanoparticles. Uniform axial velocity and temperature are given 

at the inlet of radiator. For this study, the inlet velocity is determined by the Reynolds 

number of the flow. The Reynolds number at the inlet flow of coolant was varied from 

100 to 1000 for laminar flow and from 5000 to 10000 for turbulent flow, whereas the 

inlet velocity of air is constant at 4.4 m/s. The inlet velocity for coolants are identified 

and calculated using the formula below 

𝑢𝑖𝑛 =
𝑅𝑒𝜇

𝜌𝐷ℎ
   (15) 

The inlet temperature of coolant and air has been taken as 90°C (363 K) and 

30°C (303 K), respectively. All along the fin and tube wall, a no-slip boundary 

condition is imposed for velocity. At the outlet section of the tube and air domain, 

pressure outlet boundary condition is adopted.  

 

 

3.2.4 Solution  

Method of calculation, references value, number of iteration and calculation is 

determined in this step.    

 

3.2.4.1 Solution Method  

For laminar flow which is illustrated in Figure 18, the solution method used is 

Semi-Implicit Method for Pressure Linked Equations-Consistent (SIMPLEC) scheme 

for better result. In spatial discretization, least square cell based gradient is used with 
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standard pressure, first order upwind momentum and energy for performing the CFD 

simulations over the car radiator geometry. Then the solution is initialized and the 

number of iteration is set to 1000 for the solution to converge.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Laminar Solution Method 

 

The absolute criteria in continuity, x-velocity, y-velocity and z-velocity in 

residual equation is set to 1e-05 and energy to 1e-07 in order to increase the accuracy 

of result as shown in Figure 19. 

 

Figure 19 Residual Convergence 

 

For turbulence condition as shown in Figure 20, Coupled scheme for turbulent 

flow are used as algorithms. In spatial discretization, least square cell based gradient 
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is used with standard pressure, second order upwind momentum and energy, first order 

upwind turbulent kinetic energy and dissipation rate for the simulation. The absolute 

criteria in continuity, x-velocity, y-velocity, z-velocity, kinetic and epsilon in residual 

equation is set to 1e-05 while for energy is set to 1e-07.  

 

Figure 20 Turbulent Solution Method 

 

3.2.4.2 Solution Initialization 

Standard Initialization is set for solution initialization in both turbulent and 

laminar condition of flow as shown in Figure 21. The simulation is then run after the 

solution has been initialised. 

 

 

Figure 21 Solution Initialization 
 

 

3.2.5 Results  

 

CFD post processor is launched to verify the results calculated in form of 

graphical result such as temperature profile, velocity profile, graphs for heat transfer 

coefficient with Reynolds number, graphs for Nusselt number with Reynolds number, 

graphs for heat transfer coefficient along the tube (Z) with Reynolds number. The data 
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and information that used to plot the graphs is exported to excel for further analysis 

and calculation purpose.  

 

3.2.5.1 Contours of Temperature  

Iso-surface is created at z = 0.025 m and the temperature contour of the forced 

convection varies with flow rate and nanoparticles are shown using CFD post after 

every simulation and calculation is converged (Figure 22).  

 

Figure 22 Temperature Contour 
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3.3 Key Milestone 

  

Title Selection

By 10-10-2014

Fimiliar with 
ANSYS 
software

By 7-11-2014

Generation of 
geometry

By 30-11-2014

Mesh Generation 

By 20-12-2014

CFD Simulation

By 1-3-2014

- Modelling 
(Boundary 
Condition/Material)

- Solving 

- Postprocessing

(Velocity/Pressure)
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3.4 Gantt Chart 
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1 Selection of Project Topic                             

2 Preliminary Research Work                             

3 Submission of Extended Proposal                             

3 Proposal Defence                             

4 Preparation of Extended Proposal                             

5 Submission of Interim Draft Report                             

6 Submission of Interim Report                             

7 Project Work Continues                             

8 Submission of Progress Report                             

9 Pre-SEDEX                             

10 Submission of Draft Final Report                             

11 
Submission of Dissertation (soft 

bound) 
              

              

12 Submission of Technical Paper                             

13 Viva                             

14 
Submission of Project Dissertation 

(Hard Bound)  
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CHAPTER 4 

 RESULT AND DISCUSSION 

 

The enhancement of thermal conductivity of nanofluids is one of the important 

requirement for car radiator application for the car radiator to operate efficiently. It is 

important to analyse the effect of flow condition of coolants in car radiator in the heat 

transfer performance. In this study, both type of fluid flow (laminar and turbulent) and 

heat transfer characteristics of a car radiator using 60% ethylene glycol and 40% water 

by mass (60:40 EG/W) based on different types of nanoparticles including Al2O3, CuO, 

and SiO2 as coolants with different volume concentration (1 vol %, 3 vol % and 5 

vol %) are investigated numerically. Conventional coolant is used for comparison 

purpose for its thermal and hydraulic performance in car radiator. The expected result 

such as temperature contour, heat transfer coefficient variation, Nusselt number as 

function of Reynolds number and heat transfer coefficient along the tube are presented 

to demonstrate the effects of using different types and volume concentration of 

nanofluids on these parameters. The result can be served for designing an effective and 

efficient car radiator in the future.  

 

4.1 Effect of Temperature on Heat Transfer Characteristics  

Table 5 presents the effect of temperature contour on heat transfer 

characteristic for different nanoparticle, different concentration and type of flow. 

Reasonable temperature distribution is obtained and simulated for all the nanoparticles 

including Al2O3, CuO, and SiO2 as coolant. The temperature of coolant is drop from 

higher inlet temperature to lower outlet temperature due to the loss of heat from the 

coolant to the tube wall and fins through conduction and convection. Higher 

temperature is observed at the upper section of the radiator of car radiator as compared 

to the bottom section of car radiator due to the reason of coolant flow from the inlet to 

the outlet of car radiator and the forced convection induced by the air and coolant. 
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(a) 

 

EG/W

(60:40) 

0% Re:     100        500        1000      5000       7500     10000 

             

 

  

 

 

(b) 

 

Al2O3 

 

1% Re:     100        500       1000        5000      7500     10000 

             

 

3% Re:     100         500       1000       5000      7500     10000 

             

5% Re:      100         500       1000       5000      7500    10000 
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(c) 

 

CuO 

1% Re:      100         500       1000       5000      7500    10000 

              

 

3% Re:      100         500       1000       5000      7500    10000 

             

 

 

5% Re:      100        500       1000      5000     7500    10000 
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(d) 

 

SiO2 

1% Re:         100        500       1000      5000     7500    10000 

             

 

3% Re:     100         500       1000       5000      7500    10000 

             

5% Re:     100         500       1000       5000      7500    10000 

             

 

Table 5 Contours of Temperature on the Iso-Surface at z=0.025 (a) EG/W (b) Al2O3 

(c) CuO and (d) SiO2  

From the table above, there are obvious difference in the temperature contour 

between laminar and turbulent flow. The range of drop in temperature varies from 1 

K-10 K depending on the flow condition of coolants.  

To study the influence of coolant Reynolds number on the channel 

performance, different coolant velocity for different nanoparticles at various 

concentrations are invetigated numerically. The lowest coolant outlet temperature is 

reported for the lowest inlet velocity or lowest Reynolds number for 1 vol %, 3 vol % 

and 5 vol % concentration.  

Figures 23 shows the effect of coolant Reynolds number on coolant outlet 

temperatures respectively. With increase in coolant Reynolds number, coolant outlet 

temperature increases. This may be attributed to the lesser residence time for coolant 

to transfer heat to the air. Similar result had been found in previous work [27]. 
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Figure 23  Effect of Coolant Reynolds Number Variation on Coolant Outlet 

Temperature (a) 1 vol % (b) 2 vol % and (c) 3 vol % 
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In Figure 24, the decrease in temperature along the length of the tube when the 

coolant flow in the tube is illustrated. The plot specifically shows the bulk fluid 

temperature which is the coolant temperature and the wall temperatures for 1 vol% of 

Al2O3 nanofluid along the tube. We can infer that for all the simulations, the 

temperature difference between the wall and the coolant becomes almost constant after 

changing over the (small) developing flow region. This implies that the flow is fully 

developed and the heat coming in from the wall is increasing with the local fluid 

temperatures linearly.  

 
Figure 24 Wall temperature and bulk fluid temperature along the length of tube of 

Al2O3 in 1 vol %  

 

The air that flow across the car radiator also resulted in the increase of air 

temperature from the inlet temperature of 303 K to a higher temperature due to 

convection phenomena. The temperature contour in Figure 25 shown that the area 

behind the car radiator when the air is flow in front of the car radiator has higher 

temperature. 
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Figure 25 Temperature Contour of Air Domain 

 

For the effect of coolant Reynolds number on air outlet temperatures as 

illustrated in Figure 26, it is observed the air outlet temperature increases with the 

increase of Reynolds number. The higher the velocity of the fluid the higher the rate 

of heat transfer and thus the higher the air outlet temperature. This result can be seen 

for all type of nanoparticles and concentration of nanoparticles.  

 

 

Figure 26 Effect of Coolant Reynolds Number Variation on Air Outlet Temperature 

of Al2O3 in 1 vol % 
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4.2 Convective Heat Transfer of Nanofluids 

The heat transfer capability of using different types of nanofluids in a radiator 

is studied. Figure 27 shows the variation of a local heat transfer coefficient along the 

tube length for various particle concentrations of Al2O3, CuO, and SiO2 nanoparticles 

at laminar flow. As the wall temperature and outside condition are same, the amount 

of heat loss by coolant is nearly constant for different flow rates, hence the moving 

average graphs of local heat transfer coefficient along the duct length is plotted. The 

first few points are not considered due to variation of temperature at the entry region. 

The heat transfer coefficient appear to be extremely large at Z=0 m since the inlet 

velocity was kept constant at constant laminar flow (Re = 100) and the thermal 

boundary layer’s thickness is assumed to be zero at the inlet of the tube. The result 

reported that heat transfer coefficient reduces gradually until the fully developed 

region is reached and the constant values is obtained. This result is comparable with 

the results achieved by Vajjha et al. [18] and and Gunnasegaran et al. [27]. As shown 

in Figure 27, there are difference in heat transfer coefficient among all the nanofluids 

selected in this study. The significant outcome is that all types of nanofluids are able 

to improve heat transfer in car radiator better than pure EG/Water.  
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Figure 27 Variation of Heat Transfer Coefficient along the Tube Length for Various 

Nanofluids i.e. (a) Al2O3 (b) CuO and (c) SiO2 in Laminar Flow (Re = 100). 
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the heat transfer by fins. However, high local heat transfer coefficient is predicted at 

turbulent flow conditions than laminar flow conditions. 

 

Addition of nanoparticles with different particle loading in coolant has 

significant importance towards efficient heat transfer. It is observed that all types of 

nanoparticles with high thermal conductivity increases heat transfer coefficient. The 

results demonstrate that replacing ordinary coolant with nanofluid gives high heat 

transfer rate along the duct. Heat transfer coefficient is found to be increased by the 

increase in nanoparticle concentration in ethylene glycol-water mixture at fixed 

Reynolds number. It can be seen from Figure 27 and Figure 28 that concentration of 

alumina, copper oxide and silica at 5 vol % shows higher heat transfer coefficient than 

the base-fluid alone. 
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Figure 28 Variation of Heat Transfer Coefficient along the Duct Length for Various 

Nanofluids (a) Al2O3 (b) Cuo and (c) Sio2 in Turbulent Flow for Re = 7500 

 

4.3 Influence of Coolant Reynolds Number on Average Heat Transfer Coefficient 

and Average Nusselt Number 

4.3.1 Average Heat Transfer Coefficient 

The thermal performance of radiator is influenced by the coolant Reynolds 

number. It plays a vital role in controlling the temperature of engine to avoid 

overcooled or overheated. The coolant Reynolds number and air Reynolds number is 

controlled to ensure that the radiator is operating at optimum temperature. To control 

the coolant Reynolds number, coolant pump and thermostat is required in engine [16]. 

Figure 29 presents the effect of coolant Reynolds number in determining the 

radiator’s thermal performance at a constant air inlet velocity of 4.4 m/s. At the coolant 

side, it is observed that the average heat transfer coefficient was increased with 

Reynolds number.  
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Figure 29 Variation of Average Coolant Heat Transfer Coefficient with the Coolant 

Reynolds Number at Different Nanoparticle Concentrations in Ethylene Glycol-

Water Mixture i.e. (a) 1 Vol % (b) 3 Vol % and (c) 5 Vol % 
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The improvement for the average heat transfer coefficient during laminar flow 

conditions (100 – 1000) for 3 vol % alumina, copper oxide and silica based nanofluids 

is estimated to be about 27.28 %, 32.97 % and 10.23 % respectively. When coolant 

Reynolds number is increased from 5000 to 10000, the percentage increase in average 

heat transfer coefficient in EG/Water mixture with 3 vol % of alumina, copper oxide 

and silica is found to be about  30.07 %, 35.55 % and 13.50 % respectively. Copper 

oxide based nanofluids exhibits high thermal performance than alumina and silica 

during laminar and turbulent flow conditions due to high thermal conductivity. 

However, under certain conditions of turbulent flow, alumina based nanofluids 

showed better average heat transfer coefficient than copper oxide based nanofluids. 

Similar trends are found in few studies by Heris et al. [29, 30]. 

 

4.3.2 Average Nusselt Number 

As illustrated in Figure 30, the Nusselt number for the nanofluid as a function 

of different Reynolds number and volume concentration of nanoparticles are 

investigated. The figure shows the Nusselt number increased uniformly with Reynolds 

number and concentration loading of nanoparticles. This is due to the changes in 

thermophysical properties of nanofluid when there is a slight increase in nanoparticles 

which caused the density, thermal conductivity, and viscosity increased and the 

slightly decreasing in the specific heat. In order to ensure improvement in heat transfer 

in nanofluid, the Brownian motion of the nanoparticles plays a vital role. The 

nanoparticles move randomly in the fluid and resulting in the decrease of the boundary 

layer thickness and thus enhancing the heat transfer from wall to the bulk fluid. 

Results show that the heat transfer coefficient and Nusselt number can be 

enhanced by adding nanoparticles to the base fluid. Enhancement of heat transfer by 

the nanofluid may be resulted from two aspects. First, the incremented particles 

concentration which increase the thermal conductivity of the mixture. Second, chaotic 

movement of ultrafine particles accelerates the energy exchange between the fluid and 

the wall of the car radiator. However, it should be noted that increasing the particles 

concentration raises the fluid viscosity and consequently decreases the overall heat 

transfer behavior. But the results shown in Figures 29 and 30 indicate that increasing 

in particles concentration raises the heat transfer coefficient and Nusselt number 
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respectively. This is due to the fact that the change in the thermal conductivity is more 

effective than the change in the fluid viscosity on heat transfer enhancement of 

nanofluid at higher concentration. 
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Figure 30 Variation of Nusselt Number with the Coolant Reynolds Number at 

Different Nanoparticle Concentrations in Ethylene Glycol-Water Mixture i.e. (a) 1 

vol % (b) 3 vol % and (c) 5 vol % 

 

4.4 Correlation development for Nusselt number 

 

The Nusselt number for the nanofluid as a function of Reynolds number and 

volume concentration of nanoparticles are investigated. The Nusselt number is found 

to be increased uniformly with Reynolds number and concentration of nanoparticles. 

The Nusselt number and Prandtl number are significantly influenced by the 

thermophysical properties of the coolant nanofluid i.e. density, viscosity, thermal 

conductivity and specific heat capacity. Correlations are developed for Nusselt number 

(Nu) in terms of Reynolds number and particle concentration (ϕp) for laminar and 

turbulent flow conditions. It is found that Prandtl number has negligible effect on the 

Nusselt number in case of laminar and turbulent flow conditions due to low 

temperature difference. The correlation are given as  
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For turbulent flow 
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Performance of correlation for Nusselt number is shown in Figure 31 for 

laminar and turbulent flow conditions. The presented correlation for laminar flow 

exhibits 1.79 % average absolute deviation (AAD) and the sum of squared errors (SSE) 

is found to be 2.58. The correlation shows ±7.5 % mean absolute error. The AAD of 

the Nusselt number correlation for turbulent flow is found to be 6.81 % and all the data 

points are in agreement within ±20 of mean absolute error.    
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Figure 31 Performance of Correlation for Predicting Nusselt Number at (a) Laminar 

Flow Conditions and (b) Turbulent Flow Conditions.
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Conclusion 

 

The heat transfer characteristic of ethylene glycol-based of SiO2, Al2O3 and CuO 

nanofluids were numerically investigated in laminar and turbulent flow regimes in a 

car radiator using ANSYS Fluent 15.0. A 3D geometry of car radiator were developed 

and heat transfer performance of a car radiator using ethylene glycol and water mixture 

(60:40 wt %) of Al2O3, CuO and ZnO nanofluids as coolants at various concentrations 

(1 vol %, 3 vol % and 5 vol %) were discussed. To calculate the nanofluid viscosity, 

specific heat as a function of temperature and nanoparticle volume concentration, new 

correlations from previous literature review were used. The Nusselt numbers for both 

flow condition at different coolant Reynolds number and nanoparticle concentrations 

with the same air Reynolds number was compared and studied. The effects of the 

temperature contour on heat transfer for different nanoparticle, different concentration 

and type of flow of nanofluids are considered in this work. The correlations are 

developed for Nusselt number as a function of Reynolds number and particle 

concentration. As presented in the result and discussion, the following conclusion can 

be determined: 

 

i. Local heat transfer coefficient decreases gradually with distance along the 

duct until the fully developed region is reached in laminar flow conditions.  

ii. The thermal performance of car radiator using nanofluid or EG/Water 

coolant is enhanced with coolant Reynolds number and nanoparticle 

concentrations. 

iii. The overall heat transfer coefficient increases slightly with enhancing 

coolant Reynolds number and nanoparticle concentrations
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iv. Copper oxide and alumina based nanofluids showed higher thermal 

efficiency than silica based nanofluids in laminar and turbulent flow 

conditions. 

v. Nanofluid is reliable to be a new developed coolant for a car cooling system 

when the size of the car radiator is an important factor. 

 

 

 

5.2 Recommendations 

 

The project provides a foundation for the fluid flow analysis of a car radiator 

with nanofluids. With the limited time, the results obtained were found to be 

satisfactory. It is clearly observed that heat transfer can be enhanced by using nanofluid 

with higher nanofluid concentration. When compared to conventional coolant 

(EG/Water), rate of heat transfer is greater when nanofluid is used as coolant on same 

radiator model. By this it can be concluded that the size of the radiator can be reduced 

by using nanofluid as coolant.  

A continued study in various aspects towards a better design of the radiator and 

different types of nanofluids are suggested below: 

• To study different type of nanoparticles other than the nanoparticles in this 

study and compare the different of their thermal performance in the radiator 

• Optimizing the dimensions of the car radiator and type of fins for heat transfer 

analysis purpose.
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Type of 

Nanofluid 
Conc. k (W/m∙k) 

Coolant 

Velocity 

(m/s) 

Coolant 

Density 

(kg/m3) 

Coolant 

Mass 

Flowrate 

(kg/s) 

Tc in-Tc out (K) Cp (J/kg∙K) Q(W) Tb-Tw (K) hc (W/m2∙K) Nu 

Al2O3 

1% 0.471428648 

0.069 1073.321 0.002 9.087 3395.169 73.428 7.245 1821.327 9.543 

0.344 1069.817 0.012 2.036 3442.392 83.149 6.573 2273.298 11.911 

0.688 1069.271 0.024 1.047 3449.638 85.638 6.425 2394.956 12.548 

3.439 1068.754 0.119 0.139 3456.484 56.999 0.709 14452.262 75.721 

5.159 1068.705 0.178 0.028 3457.129 17.494 0.194 16174.622 84.745 

6.878 1068.754 0.237 0.139 3456.484 113.999 0.046 442152.492 2316.611 

3% 0.495194448 

0.085 1123.671 0.003 7.566 3255.148 75.985 6.896 1979.880 10.373 

0.426 1120.780 0.015 1.745 3293.051 88.427 6.270 2534.077 13.277 

0.852 1120.305 0.031 0.874 3299.200 88.668 6.134 2597.430 13.609 

4.258 1119.878 0.154 0.112 3304.702 57.156 0.636 16147.756 84.604 

6.388 1119.840 0.231 0.023 3305.198 17.448 0.174 18030.644 94.470 

8.517 1119.878 0.308 0.112 3304.702 114.313 0.046 443706.645 2324.754 

5% 0.522407115 

0.106 1174.138 0.004 6.274 3125.743 78.446 6.534 2157.440 11.304 

0.528 1171.731 0.020 1.425 3156.509 89.760 5.947 2712.001 14.209 

1.057 1171.346 0.040 0.710 3161.375 89.557 5.829 2760.624 14.464 

5.283 1171.006 0.199 0.091 3165.674 57.197 0.436 23578.081 123.535 



66 

 

7.925 1170.975 0.299 0.018 3166.056 17.515 0.156 20130.673 105.473 

10.567 1171.006 0.399 0.091 3165.674 114.393 0.046 442822.975 2320.124 

CuO 

1% 0.482728894 

0.069 1103.055 0.002 10.771 2693.132 71.391 7.183 1786.041 9.358 

0.346 1099.106 0.012 2.586 2708.406 85.866 6.512 2369.601 12.415 

0.692 1098.414 0.025 1.312 2711.008 87.168 6.331 2474.186 12.963 

3.460 1097.768 0.122 0.172 2713.417 57.032 0.743 13802.121 72.315 

5.190 1097.708 0.184 0.034 2713.638 17.097 0.204 15063.893 78.926 

6.920 1097.701 0.245 0.017 2713.666 11.564 0.116 17985.560 94.233 

3% 0.517398304 

0.100 1210.545 0.004 7.311 2697.806 76.685 6.655 2070.637 10.849 

0.498 1207.750 0.019 1.691 2708.590 88.835 6.034 2645.602 13.861 

0.996 1207.290 0.039 0.847 2710.329 89.042 5.899 2712.176 14.210 

4.981 1206.877 0.194 0.109 2711.884 57.150 0.610 16826.844 88.162 

7.472 1206.839 0.291 0.021 2712.025 16.557 0.161 18457.875 96.708 

9.962 1206.834 0.388 0.010 2712.043 10.397 0.086 21639.626 113.379 

5% 0.550865392 

0.145 1318.502 0.006 4.910 2700.661 81.483 6.161 2376.562 12.452 

0.723 1316.560 0.031 1.098 2708.170 91.214 5.634 2909.088 15.242 

1.445 1316.259 0.061 0.544 2709.316 90.475 5.538 2935.809 15.382 

7.227 1315.996 0.307 0.068 2710.314 56.715 0.503 20263.833 106.170 

10.841 1315.973 0.460 0.014 2710.401 16.855 0.134 22636.452 118.601 
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14.455 1315.970 0.613 0.007 2710.412 11.519 0.075 27498.546 144.076 

SiO2 

1% 0.425333577 

0.072 1059.455 0.002 8.830 3372.247 73.386 7.836 1682.985 8.818 

0.361 1056.037 0.012 2.062 3418.312 86.593 7.171 2170.041 11.370 

0.722 1055.466 0.025 1.035 3425.892 87.059 7.020 2228.374 11.675 

3.608 1054.952 0.123 0.136 3432.696 57.124 0.749 13709.825 71.831 

5.412 1054.904 0.184 0.028 3433.322 17.491 0.206 15279.540 80.056 

7.215 1054.952 0.245 0.136 3432.696 114.247 0.749 27419.649 143.662 

3% 0.427494115 

0.080 1082.654 0.003 8.284 3227.299 74.248 7.777 1715.450 8.988 

0.398 1079.478 0.014 1.923 3269.009 87.025 7.123 2195.362 11.502 

0.796 1078.954 0.028 0.963 3275.802 87.299 6.980 2247.363 11.775 

3.978 1078.484 0.138 0.126 3281.863 57.107 0.728 14092.915 73.838 

5.968 1078.441 0.207 0.026 3282.418 17.483 0.200 15747.005 82.505 

7.957 1078.484 0.277 0.126 3281.863 114.214 0.728 28185.830 147.677 

5% 0.436274848 

0.088 1105.866 0.003 7.763 3094.514 75.188 7.628 1771.141 9.280 

0.439 1102.925 0.016 1.791 3132.238 87.538 6.986 2251.709 11.798 

0.878 1102.445 0.031 0.895 3138.323 87.658 6.850 2299.478 12.048 

4.389 1102.017 0.156 0.116 3143.729 57.110 0.700 14650.229 76.758 

6.584 1101.977 0.234 0.024 3144.221 17.504 0.192 16401.920 85.936 

8.779 1102.017 0.312 0.116 3143.729 114.219 0.700 29300.458 153.517 
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EG/Water 0% 0.394133 

0.063 1048.274 0.002 9.913 3395.690 71.595 8.365 1538.048 8.058 

0.315 1044.442 0.011 2.356 3417.291 85.305 7.675 1997.273 10.464 

0.629 1043.788 0.021 1.187 3420.895 86.008 7.512 2057.437 10.780 

3.147 1043.194 0.106 0.158 3424.151 57.117 0.827 12404.449 64.992 

4.720 1043.138 0.159 0.032 3424.455 17.470 0.228 13785.393 72.227 

6.293 1043.194 0.212 0.158 3424.151 114.233 0.827 24808.899 129.984 

 

 


