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ABSTRACT 

 

The increasingly popular Model Predictive Control (MPC) strategy has been used in 

many process units either to improve the performance, save utility costs, or create a 

robust process able to cater to multiple variables. This project focuses on the 

development of model-based control for a distillation column in the Process Control 

laboratory at Universiti Teknologi PETRONAS (UTP) separating an ethanol-water 

and IPA-acetone mixtures. Specifically, the controller inputs are the reflux flow and 

the reboiler steam flow, while the outputs are distillate and bottom compositions 

respectively. Previous works have attempted to determine the dynamics of said 

column, therefore the MPC to be developed in this project is based on two of the 

derived models, one is a 2 X 2 Wood and Berry model and the other an inferential 

model. A comparison between the developed MPC controllers with standard PID 

controller is done to demonstrate the effectiveness and reliability of the MPC 

controller.        
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

The increase in knowledge and subsequent development of technology associated with 

industrial processes have resulted in increased demands for more efficient processing 

facilities able to supply products that meet the specifications as requested by the global 

consumer. That, in turn, will add to the existing demands of energy, product 

intermediates, and other raw materials to feed the industry. In that aspect, the oil and 

gas and petrochemical industries remained relevant due to an increased demand for 

fossil fuel products. Incidentally, one of the most important process in the industry is 

distillation. This can be seen as there are over 40000 columns operating worldwide 

(Rewagad & Kiss, 2012). 

 

Distillation is defined as a process in which a mixture of two or more liquid or vapour 

is separated into its individual components with the desired purity by adding or 

removing heat (Adel, Elamvazuthi, & Hanif, 2009; Tham, 2009). It can be performed 

in a batch or continuous operation, with various types of column depending upon the 

nature of the feed, column internals, and number of product streams (Tham, 2009). 

 

The highly nonlinear properties of a distillation column resulted in a complex model 

of the process, while simplifying it may lead to the development of an inaccurate 

model (Baiesu, 2011). In this report, a model-based controller will be developed for a 

binary pilot plant distillation column. In literature reviews further explained in Chapter 

2, it was acknowledged that the main advantages of choosing model predictive control 

(MPC) are its ability to minimize cost functions and it can handle both input and output 

constraints (Martin, Odloak, & Kassab, 2013). 

 

Therefore, choosing MPC to govern the control actions for a distillation process may 

result in products that meet specifications and the process parameters can be easily 
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changed to suit the production demands without having the process spiral out of 

control. This, however, is dependent on the type of model used to represent the process 

and its accuracy, and also the configuration of the control system. 

 

1.2 Problem Statement 

 

The issue with model-based control is that the model developed by one research may 

not be suitable for application in another, or to be used by other distillation columns. 

This posed a unique opportunity in which every distillation column may have its own 

process model and control strategy, as is with other unit operations. Hence, in this 

study, the MPC performance in controlling a binary distillation column (ethanol-water 

and IPA-acetone mixtures) will be compared using various models to determine the 

best model structure. 

 

1.3 Objectives 

 

The work involved in this project will be based on the binary pilot plant distillation 

column in UTP laboratory. The two objectives of this study are: 

 

1.       To develop and evaluate MPC controllers from a 2x2 Wood and Berry model 

(Abdul Mutalib, 2014) and an inferential model (E.Zani, 2014). 

 

2.       To evaluate and compare the performance of the MPC developed in objective 1 

against standard PID controllers. 

 

To achieve these objectives, steps taken and their proposed time frame are detailed in 

Chapter 3. Since understanding the subject matter is important before undertaking any 

project work, a literature review is done and presented in Chapter 2. 
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1.4 Scope of Study 

 

The project is focused on developing a model-based control for the binary pilot plant 

distillation column located at the Process Control Laboratory in UTP. Previous works 

have dealt with developing and identifying the model of the distillation column. 

Therefore in this project it is not intended to develop a different process model unless 

the existing ones are not suitable to be used or not accurate. The scope of this project 

is limited to computer-aided simulation of the resultant model and MPC strategy, and 

will not be implemented to the actual column. However, data from previous studies 

using the column may be used as a comparison to the simulation data gathered from 

this project. 
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CHAPTER 2 

 

LITERATURE REVIEW  

 

2.1 Model-based Control 

 

By definition, model-based control or Model Predictive Control (MPC) is not 

referencing to any specific control strategy. However, it is used to refer to a wide range 

of control methods that use the model of the process to be controlled in order to gain 

the control signals. The final objective would then be to minimize a cost function 

(Camacho & Alba, 2013). Several examples of process models that have been used to 

represent distillation are the Wood and Berry model, the fundamental model, and the 

multi model representation (Martin et al., 2013; Mishra, Khalkho, Kumar, & Dan, 

2013; Truong, Ismail, & Razali, 2010). 

According to Darby and Nikolaou (2012), MPC has become the standard approach to 

deal with constrained, multivariable process control in the industries. Specifically, in 

the petrochemical industry, it is used to control large multivariable processes (Stewart, 

Venkat, Rawlings, Wright, & Pannocchia, 2010). In keeping the relevance of this 

proposal to its intended subject, Section 2.3 is dedicated towards the application of 

MPC in distillation column. 

Other applications of MPC not limited to chemical engineering industries are 

demonstrated in studies aimed at developing a climate control system for buildings, 

one of them using stochastic MPC (Oldewurtel et al., 2012; Široký, Oldewurtel, Cigler, 

& Prívara, 2011). The electrical engineering field had also benefited from using MPC 

based one work which explored its model design and implementation to a permanent-

magnet synchronous motor (PMSM) to represent an electrical motor drive (Bolognani, 

Bolognani, Peretti, & Zigliotto, 2009). 

One paper summarized the structure and function of the MPC as follows: for every 

interval, the controller predicts the future output response of the process by a set 

number of steps where the value predicted is based on past and future actuation (Kumar 

& Ahmad, 2012). Then, the future control actions are calculated by minimizing the 

cost function. However, only the first step of this calculation is implemented. After 



5 
 

each implementation, the predicted control action is corrected using the same steps as 

mentioned above. 

 

Figure 2.1: MPC Structure (Camacho & Alba (2013)) 

Based on Figure 2.1, the process model is used to calculate predicted future values, 

based on past and current values and the proposed future control actions. The optimizer 

then calculates the actions to be taken with consideration to the cost function and the 

process constraints (Camacho & Alba, 2013). 

Seborg, Edgar, and Mellichamp (2006) summarized the implementation of MPC into 

eight steps: (i) Initial controller design. The controlled, manipulated, and disturbance 

variables are specified to determine the structure of the MPC. (ii) Pre-test activity. 

Plant instrumentation relevant to the implementation of the MPC is checked and the 

DCS loops are tested to verify their performance. (iii) Plant test. Pseudorandom Binary 

Sequence (PRBS) or step change is used to determine the effect of manipulated and 

disturbance variables to the process response. (iv) Model development. From (iii), the 

data is used to develop the dynamic model of the process, including an accuracy 

characterization of the model. (v and vi) Control system and operator interface design, 

simulation, and training. Based on control and optimization objectives, constraints, 

and the dynamic model, the MPC is designed by evaluation and modification of the 

initial controller in (i). After simulation to evaluate the controller performance, 

operators are trained to understand the relationship between input and output for an 

MPC. (vii) Installation and Commissioning. The system is installed and evaluated in 

a prediction mode where the model prediction is compared to the actual value, but 
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control actions are only taken by the existing control system. (viii) Measuring results 

and monitoring performance. The performance of the MPC is evaluated by comparing 

process values to the target and constraints. A continuous monitoring of the system is 

important to ensure no degradation of performance occur during its lifetime. 

Among the advantages of model-based control are its inherent robustness, low cost of 

computation to solve the optimization problem, and the ability to handle process 

constraints (Darby & Nikolaou, 2012; Kumar & Ahmad, 2012). The ability to predict 

future dynamics in a finite horizon, the control action may be employed early on. MPC 

can also be employed to a variety of processes, both linear and nonlinear. It also 

intrinsically contains compensation for time delays and compensates for disturbances 

like a feed-forward control (Kumar & Ahmad, 2012). 

 

2.2 Binary Distillation Column 

 

Distillation is highly significant among the separation processes in industries because 

it can be used to separate liquid and vapour mixtures in a large scale (Ravagnani, Reis, 

Filho, & Wolf-Maciel, 2010). It is the most practical and most extensively applied 

fluid separation method in process industries. The relevance of distillation is such that 

for large companies, investing for innovation in its technology is crucial to stay 

competitive (Olujić, Jödecke, Shilkin, Schuch, & Kaibel, 2009). 

Based on the column types, conventional distillation may be divided into packed bed 

distillation and plate or tray distillation. In Figure 2, the schematic of a conventional 

tray distillation column is provided, showing feed (F), distillate (D), bottom product 

(B), reflux (R), condenser (Qc), and reboiler (Qr). However, apart from the 

conventional distillation, there exists several other distillation techniques such as 

vacuum, cryogenic, extractive, reactive, pressure swing (PSD), and azeotropic 

distillation (Naik et al., 2014). These distillation methods are selected based on the 

components to be separated. 
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Figure 2.2: Schematic diagram of a conventional distillation column (Jana (2010)) 

A study which dealt with a heat integration distillation technique, namely the vapour 

recompression column, to separate an ethanol-water mixture to 90mol% ethanol purity 

(Enweremadu, Waheed, & Ojediran, 2009). According to another study, this method 

has the prospective for significant energy savings for fractionating a close-boiling 

mixture (Jana, 2010). This was confirmed in the first paper, although the system 

performance value was cited as “unrealistically high” due to assumption of several 

parameter (Enweremadu et al., 2009). 

Because a distillation column has multiple input and multiple output variables, and 

due to the nonlinear behaviour, there will be difficulty when designing the control 

strategy for the process. As was mentioned in another, a system which is multivariable 

and nonlinear results in a complex control problem due to various input and output 

couplings (Fernandez de Canete, Gonzalez, del Saz-Orozco, & Garcia, 2010). 

The unique characteristics of high purity binary composition distillation column like 

the complex dynamics, high nonlinearity and the interaction between the control loops 
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makes dual composition control a challenging problem (Biswas, Ray, & Samanta, 

2009).  

Another difficulty in distillation is that eventhough composition control is important, 

online composition analyser are expensive and hard to maintain. Relating temperature 

to composition also is not a reliable method since tray temperature does not correspond 

to the composition at each stage. Thus, in one study, the authors used inferential 

control to regulate product purity in a reactive distillation column (Bahar & Özgen, 

2010). 

In another study, the use of Adaptive Feedback Linear Control (AFLC) managed to 

simulate successful control of a high purity distillation column. The rationale behind 

choosing this mode of control on a distillation column is to study the effect of 

parameter uncertainty and input saturation on Feedback Linearization Control (Biswas 

et al., 2009). 

 

2.3 Model-based Control on Binary Distillation Column 

 

MPC can and have been used in a wide range of industrial applications. From Section 

2.1 several works were mentioned. This section will emphasize on research and 

application of MPC on binary distillation columns. It was stated that there are over a 

thousand application of MPC in distillation processes (Martin et al., 2013). 

The reason why these studies are important is because traditional linear models 

representing distillation column dynamics and used in linear controllers only perform 

well in a limited range of the operating point and is not designed to handle large 

disturbances (Biswas et al., 2009). 

Furthermore, from the economic viewpoint, control of distillation columns is crucial 

since the operation method affects the quality of the product, production rate, and 

utility usage (Szabó, Németh, & Szeifert, 2012). Therefore, effective control may 

result in products that meet specification as well as help in reduction of utility costs. 

In one study, it was mentioned that there are three ways to model a distillation column 

which are fundamental modelling, empirical modelling, and hybrid modelling. These 
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are part of the nonlinear models available to be used in a nonlinear MPC (Camacho & 

Alba, 2013). From all of the mentioned models, fundamental modelling is the easiest 

to explain and the simplicity of the model can be adjusted based on the level of 

accuracy of the assumptions made during the modelling. Meanwhile, in empirical 

modelling, the experimental data of a distillation column is used to create a correlation 

between the input and output. The hybrid modelling method combines empirical and 

fundamental modelling to gain benefits from both methods. However, a decision must 

be made to determine which method to be used on parts of the model (Truong et al., 

2010).  

One study which used the empirical method was done by taking data from an industrial 

distillation column and fitting it as a second-order transfer function with dead time  

(Baiesu, 2013). The model was then used to determine the PID parameters of a 

controller which provided sufficiently good control over the process. Another work 

which demonstrated the use of an Internal Model Control while the process is modelled 

by the Wood and Berry model also managed to get good control performance even 

with disturbance included (Mishra & Dan, 2013). 

Apart from that, a comparison of MPC and PID controllers on a DWC distillation 

column separating a ternary mixture of Benzene-Toluene-Xylene (BTX) are illustrated 

in one study (Rewagad & Kiss, 2012). The authors selected the best PID controller 

based on their previous study on the same system and compared its performance with 

an MPC developed in the paper. It was concluded that the MPC reacts consistently 

accurate to the disturbance and set point changes applied to the system with smaller 

overshoot and settling time as compared to the PID controller (Kiss & Rewagad, 2011; 

Rewagad & Kiss, 2012). 

Another paper concluded in their review, upon comparing multi-loop PID controllers 

to MPC and other advanced control strategies to control a DWC distillation column, 

that the MPC is the best controller to be used when SISO control is not sufficient. It 

was mentioned that the benefits of using advanced MIMO such as MPC are the 

significantly shorter settling time and better control performance (Kiss & Bildea, 

2011). 

Another work reviewed was concerning the effects of tuning parameters to the model 

predictive control in a binary distillation column. A 2x2 Wood and Berry model was 
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used to describe the distillation column. By changing the tuning parameters, 

manipulated input and the horizon, to the step response model, it was discovered that 

at certain tuning parameters, the MPC performed better than other types of control 

(Mishra et al., 2013).   
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CHAPTER 3  

METHODOLOGY 

  

In this chapter, the project and simulation activities are presented in the form of 

flowcharts followed by explanation and a brief description of the distillation column 

to be simulated is also provided. The final section of this chapter provides an expected 

timeline of the project in FYP 1 and FYP II along with key milestones.  

For all works in this report, the models used are: 

Model 1 by Abdul Mutalib (2014): 

[
𝑥𝐷

𝑥𝐵
] = [

0.187

1.29𝑠 + 1

−0.0086

0.73𝑠 + 1
0.0031

0.96𝑠 + 1

−0.00024

0.84𝑠 + 1

]
𝑅(𝑠)
𝑆(𝑠)

 

Model 2 by E.Zani (2014): 

𝑥𝐷 = 0.114𝑇15 + 0.131𝑇𝑅 + 1.65 

Where: 

 𝑥𝐷 = Acetone composition at the top product 

 𝑥𝐵 = Acetone composition at the bottom product 

 𝑇15 = Temperature at the 15th tray 

 𝑇𝑅  = Temperature of the reflux  
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3.1 Project Activities 
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3.1.1 Collect Information for Simulation 

 

Literature review is done to study how distillation works as well as to obtain 

information on how to utilize the software (MATLAB) for the purposes of this project. 

The relevant literature is found in Chapter Two, and the simulation activities are 

explained in the next section. 

 

3.1.2 Validate Models 

 

To ensure that the models used are a correct representation of the process, a validation 

of the models are done. This involves recreating the steps on how the models were 

developed. If the model is not an acceptable representation of the process, or if the 

model needs modification, an alternative model is to be proposed. This is the case with 

the inferential model being used in this project, where it is used alongside available 

data to develop a new model based on its correlation. 

 

3.1.3 Simulate Set point or Disturbance Change with MPC 

 

The simulation of set point and disturbance changes is then done using MATLAB to 

study the effectiveness of the MPC controller developed in regulating the process. A 

detailed explanation of the steps are available in the next section. 

 

  



14 
 

3.2 MATLAB Simulation Activities 
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3.2.1 Input Plant Model into MATLAB 

 

To define the plant model in MATLAB, a variable must be used to contain each of the 

transfer functions present. In this case, the 2x2 Wood and Berry model has four transfer 

functions. Therefore, each transfer function will be defined as its own variable. The 

variables will then be defined as a matrix, thus compiling the model as one variable in 

matrix form. The example below shows how one of the models are defined in the 

MATLAB workspace. 

 

 

3.2.2 Developing Transfer Function for Model 2 

 

The model developed by E.Zani (2014) was an inferential model which only predicts 

the top composition based on temperature of the top tray (tray 15) and temperature of 

the reflux liquid. It is not in the form of transfer functions or state-space equations, 

therefore cannot be entered into MATLAB as a plant model. 

Using the model, the top composition of 672 data points from a previous ethanol-water 

separation were predicted, and their respective bottom composition estimated from the 

top composition. With this data, the transfer function for model 2 was derived using 

methods explained in Abdul Mutalib (2014). The resulting plant model is given in a 

2x2 Wood and Berry model form: 

[
𝑥𝐷

𝑥𝐵
] =

[
 
 
 
−0.08481

11.66𝑠 + 1

−9.06 × 10−5

2.105𝑠 + 1
0.0727

11.66𝑠 + 1

7.788 × 10−5

2.10𝑠 + 1 ]
 
 
 
𝑅(𝑠)
𝑆(𝑠)

 



16 
 

 

3.2.2 Importing Model to MPC Design Tool 

 

In MATLAB workspace, the function ‘mpctool’ opens the Control and Estimation 

Tools Manager (from here on, for simplicity, the term MPC Toolbox will be used to 

refer to the Tools Manager) which is used in this project for the purposes of specifying 

the controller parameters and simulating all scenario.  

To import the model defined in the workspace, the Plant Model Importer will list all 

variables defined and their properties. Selecting the appropriate variable and clicking 

the import button will set the variable as the plant model for the MPC Toolbox. 

 

 

Figure 3.1: The Control and Estimation Tools Manager in MATLAB 
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Figure 3.2: The Plant Model Importer in MATLAB 

 

3.2.3 Specifying MPC Parameters  

 

In the controller menu, the MPC parameters can be specified. For the purposes of this 

project, the parameter specification is limited to the Model and Horizon tab and the 

Weight Tuning tab. A full list of parameter values studied and their effects on input 

and output variables are available in the appendices. 
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3.2.4 Simulating Controller for Different Scenario 

 

After the MPC parameters are specified, the controller can be tested in various user-

defined conditions. The scenario menu allows for set point and disturbance change for 

all variables defined in the model. In this project, the set point changes are set as a step 

signal and disturbance changes are set as pulse signals.  

 

Table 3.1: Set Point for Simulation 

Model Top Composition Set 

Point 

Bottom Composition Set 

Point 

Model 1 0.6 0.3 

Model 2 0.3 0.1 

 

Table 3.2: Values for Disturbance Rejection Simulation 

Disturbance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

Top 

Composition 

0.1 0.2 0.3 - - - 

Bottom 

Composition 

0.1 0.2 0.3 - - - 

Reflux 0.1 0.2 0.5 1 2 5 

Steam 0.1 0.2 0.5 1 2 5 
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3.2.5 Comparison with PID 

 

To compare the MPC with PID controller, a 1-1/2-2 PID control strategy was created 

in Simulink. The same set point and disturbance changes were applied to the system 

as in the MPC simulation, and the results were compared with the performance of the 

MPC controller. Tuning of the PID controllers were done automatically using 

MATLAB itself. The figure below shows how a 1-1/2-2 PID control loop is set up for 

controlling the process. 

 

 

Figure 3.3: 1-1/2/2 PID loop using Simulink in MATLAB 
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3.3 Description of the Distillation Column 

 

The MPC for binary distillation column will be modelled based on the distillation 

column located in the process control laboratory in Block 3 of Universiti Teknologi 

PETRONAS. A brief description of the column of interest is provided below. 

 

Table 1.3: Distillation Column Description 

Construction Material Stainless Steel 

Height 5.5 m 

Diameter 0.15 m 

Number of Trays 15 

Type of Tray Bubble Cap 

Tray Spacing 0.35 m 

Feed Tray Trays 3, 7, or 11 

Maximum Feed Flowrate 110 L/min 

Reboiler Duty 9.36 x 106  J/hr 

Measurable Temperature 0.0-150.0o C 

Measurable Pressure 0.00-4.00 bar 

Control System Honeywell Experion PKS DCS 
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3.4 Gantt Chart and Project Milestone 

 

Table 3.4: Gantt Chart for FYP I 

                  Week 

 

Activity 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Project selection               

Literature review               

Methodology and 

planning 

              

Extended 

proposal drafting 

              

Extended 

proposal 

submission 

              

Proposal defence               

Project Work               

Interim report 

drafting 

              

Interim report 

submission 
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Table 3.2: Gantt Chart for FYP II 

                  Week 

 

Activity 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Develop MPC 

for Model 1 

              

Validate Model 1               

Progress Report 

Submission 

              

Simulation Work 

on Model 1 and 2 

              

Pre SEDEX               

Comparison of 

MPC with PID 

              

Submission of 

softbound report 

              

Submission of 

Technical Paper 

              

Oral Presentation               

Submission of 

hardbound 

dissertation 

              

 

Legend:     Proposed duration of work 

      Milestone 
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CHAPTER 4: 

RESULTS AND DISCUSSION 

 

4.1 Set point Change on Model 1 

 

Based on the study by Abdul Mutalib (2014), in deriving the model, data obtained 

show an acetone top composition ranging from 0.54 to 0.73, and a bottom composition 

of 0.45 to 0.66. The top composition set point for this simulation is 0.6. For the bottom 

composition, a value of 0.3 was chosen. Each MPC parameter studied was measured 

against its ability to track the process to the required set point. 

 

Figure 4.1: Effect of Control Interval on Controlled Variables for Top Composition Set Point 

 

Figure 4.2: Effect of Control Interval on Controlled Variables for Bottom Composition Set Point 
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As can be seen from Figures 4.1 and 4.2, the control interval does not affect the process 

output. However, it does affect the input variable movements. For all the control 

intervals, the reflux flow obtains steady-state at 7.9. At a control interval of 5, it can 

be seen that the reflux and steam flow maximum values are approaching the steady-

state. Thus, for the control interval, a value of 5 is selected. 

 

Figure 4.3: Effect of Prediction Horizon on Controlled Variables for Top Composition Set Point 

 

Figure 4.4: Effect of Prediction Horizon on Controlled Variables for Bottom Composition Set Point 
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be sufficiently large that the controller performance is no longer affected by further 
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seen, however, that the input response begins to level off at a prediction horizon value 

of 50. 

 

Figure 4.5: Effect of Control Horizon on Controlled Variables for Top Composition Set Point 

 

Figure 4.6: Effect of Control Horizon on Controlled Variables for Bottom Composition Set Point 

 

The control horizon values were increased from 1 to 50 in six trials. The results for 
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Figure 4.7: Effect of Reflux Weight on Controlled Variables for Top Composition Set Point 

 

Figure 4.8: Effect of Reflux Weight on Controlled Variables for Bottom Composition Set Point 

 

Figure 4.9: Effect of Reflux Rate Weight on Controlled Variables for Top Composition Set Point 
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Figure 4.10: Effect of Reflux Rate Weight on Controlled Variables for Bottom Composition Set Point 

 

The reflux weight changes were observed to have a significant impact on the controlled 

variables. It can be seen from the figures that an increase in reflux weight caused the 

controller to not be able to reach the top composition set point value. In addition, even 

though the bottom composition set point was not reached, the change in reflux weight 

had decreased the steady state value even further. On the contrary, the reflux rate 
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Figure 4.11: Effect of Steam Weight on Controlled Variables for Top Composition Set Point 
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Figure 4.12: Effect of Steam Weight on Controlled Variables for Bottom Composition Set Point 

 

Figure 4.13: Effect of Steam Rate Weight on Controlled Variables for Top Composition Set Point 

 

Figure 4.14: Effect of Steam Rate Weight on Controlled Variables for Bottom Composition Set Point 
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Steam weight and steam rate weight were observed to have no effect on the controlled 

variable output. For both parameters, the top composition set point value were 

maintained, and the bottom composition set point were still not reached even after 

varying the parameter values. The steam movement, on the other hand, were 

significantly affected. At steam weight of 0, the steam input was 103, and at 0.1, the 

steam value dropped to 0. 

 

Figure 4.15: Effect of Top Composition Weight on Controlled Variables for Top Composition Set Point 

 

Figure 4.16: Effect of Top Composition Weight on Controlled Variables for Bottom Composition Set Point 
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relative weight against bottom composition set point also has to be taken into 

consideration. 

 

Figure 4.17: Effect of Bottom Composition Weight on Controlled Variables for Top Composition Set Point 

 

Figure 4.18: Effect of Bottom Composition Weight on Controlled Variables for Bottom Composition Set Point 
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Figure 4.19: Effect of Overall Performance on Controlled Variables for Top Composition Set Point 

 

Figure 4.20: Effect of Overall Performance on Controlled Variables for Bottom Composition Set Point 
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Table 4.1: Parameter Values of MPC Controller for Model 1 

           Trials 

 

 

Parameter 

1 2 3 4 5 6 7 8 9 10 11 

Best 

Value 

Selected 

Control Interval 0.1 0.2 0.5 1 2 5 10 - - - - 5 

Prediction Horizon 1 2 5 10 20 50 100 - - - - 100 

Control Horizon 1 2 3 5 10 50 - - - - - 2 

Reflux Weight 0 0.01 0.02 0.05 0.1 0.2 0.5 - - - - 0 

Reflux Rate Weight 0 0.01 0.02 0.05 0.1 0.2 0.5 - - - - 0 

Steam Weight 0 0.01 0.02 0.05 0.1 0.2 0.5 - - - - 0.1 

Steam Rate Weight 0 0.01 0.02 0.05 0.1 0.2 0.5 - - - - 0 

xd Weight 0 0.1 0.2 0.3 0.5 0.7 - - - - - 0.7 

xb Weight 0 1 2 3 5 10 - - - - - 1 

Overall Performance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.8 

 

These values were used to test the top and bottom composition set point as well as the 

controller’s performance during disturbance rejection. The results of the set point test 

on top and bottom composition showed that the controller was able to track the top 

composition set point. The plant input is also reasonable. The controller was not able 

to achieve the desired set point for the bottom composition. A noteworthy observation 

is that although there is no weight on reflux and only a small weight on steam, the 

controller did not attempt any large movement for a long duration to achieve the set 

point. 

 

Figure 4.21: Plant Input and Output Response for Top Composition Set Point 
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Figure 4.22: Plant Input and Output Response for Top Composition Set Point 
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4.2 Set Point Change on Model 2 

 

In the development of transfer functions for model 2, the top and bottom composition 

acquired using the inferential model range from 0.33 to 0.58 and 0.05 to 0.26 

respectively. For simulation purposes, the top and bottom composition set point values 

are set at 0.3 and 0.1. 

 

Figure 4.23: Effect of Control Interval on Controlled Variables for Top Composition Set Point in Model 2 

 

Figure 4.24: Effect of Control Interval on Controlled Variables for Bottom Composition Set Point in Model 2 
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interval value of 0.5 onwards, it can be seen that the set point of both controlled 

variables were achievable. 

 

Figure 4.25: Effect of Prediction Horizon on Controlled Variables for Top Composition Set Point in Model 2 

 

Figure 4.26: Effect of Prediction Horizon on Controlled Variables for Bottom Composition Set Point in Model 2 
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Figure 4.27: Effect of Control Horizon on Controlled Variables for Top Composition Set Point in Model 2 

 

Figure 4.28: Effect of Control Horizon on Controlled Variables for Bottom Composition Set Point in Model 2 
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Figure 4.29: Effect of Reflux Weight on Controlled Variables for Top Composition Set Point in Model 2 

 

Figure 4.30: Effect of Reflux Weight on Controlled Variables for Bottom Composition Set Point in Model 2 

 

Figure 4.31: Effect of Reflux Rate Weight on Controlled Variables for Top Composition Set Point in Model 2 
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Figure 4.32: Effect of Reflux Rate Weight on Controlled Variables for Bottom Composition Set Point in Model 2 

 

The reflux weight and reflux rate weights were not affecting the composition values 

in which changes in the reflux rate weight did not improve nor worsen the values. As 

can be seen from the reflux weight graph, only at a weight of 0 can the top and bottom 

compositions be reached. However, the resultant reflux and steam movement were so 

high that it is highly unfeasible for the controller to be able to achieve said value in 

real applications. Therefore, a small value of 0.1 is taken for the reflux weight, and the 

remaining parameters which have not been tuned will compensate for achieving the 

composition set points. 

 

Figure 4.33: Effect of Steam Weight on Controlled Variables for Top Composition Set Point in Model 2 
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Figure 4.34: Effect of Steam Weight on Controlled Variables for Bottom Composition Set Point in Model 2 

 

Figure 4.35: Effect of Steam Rate Weight on Controlled Variables for Top Composition Set Point in Model 2 

 

Figure 4.36: Effect of Steam Rate Weight on Controlled Variables for Bottom Composition Set Point in Model 2 
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The steam weight and rate weight are also seen to not affect the composition values. 

With the reflux weight set at 0.1, the steam weight and rate weight can be set to 0 since 

every other value will result in a larger deviation of composition from its set point.  

 

Figure 4.37: Effect of Top Composition Weight on Controlled Variables for Top Composition Set Point in Model 

2 

 

Figure 4.38: Effect of Top Composition Weight on Controlled Variables for Bottom Composition Set Point in 

Model 2 
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composition is more important in the process is needed to determine the appropriate 

value of the top composition weight. In this case, a top composition weight value of 1 

was selected. 
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Figure 4.39: Effect of Bottom Composition Weight on Controlled Variables for Top Composition Set Point in 

Model 2 

 

Figure 4.40: Effect of Bottom Composition Weight on Controlled Variables for Bottom Composition Set Point in 

Model 2 

As a contrast to the top composition weight, an increase in the bottom composition 

weight results in a bottom composition value closer to the set point, while at the same 

time driving the top composition away from its set point value. Since the top 

composition weight was given a value of 1, a bottom composition value of less than 1 
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Figure 4.41: Effect of Overall Performance on Controlled Variables for Top Composition Set Point in Model 2 

 

Figure 4.42: Effect of Overall Performance on Controlled Variables for Bottom Composition Set Point in Model 

2 

 

The overall performance parameter favours the bottom composition at 0, and for all 

other value favour the top composition. Therefore, if the top composition is given a 

priority, any non-zero value for the controller overall performance will give a good set 
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Table 4.2: Parameter Values of MPC Controller for Model 2 

           Trials 

 

 

Parameter 

1 2 3 4 5 6 7 8 9 10 11 

Best 

Value 

Selected 

Control Interval 0.1 0.2 0.5 0.6 0.7 1 2 5 10 - - 0.7 

Prediction Horizon 1 2 5 6 8 10 50 100 - - - 100 

Control Horizon 1 2 5 10 20 30 50 - - - - 2 

Reflux Weight 0 0.1 0.2 0.3 0.5 1 2 - - - - 1 

Reflux Rate Weight 0 0.1 0.2 0.3 0.5 1 2 - - - - 0.1 

Steam Weight 0 0.1 0.2 0.3 0.5 1 2 - - - - 0 

Steam Rate Weight 0 0.1 0.2 0.3 0.5 1 2 - - - - 0 

xd Weight 0 0.1 0.2 0.3 0.5 1 2 - - - - 1 

xb Weight 0 0.1 0.2 0.3 0.5 1 2 - - - - 1 

Overall Performance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 

 

The table above provided the summary of all the selected values for the MPC tuning 

parameters studied. These tuning parameters are used for both the set point change and 

the disturbance rejection simulations. The results of the set point change can be seen 

in the figures below. 

For both top composition and bottom composition, the set point value was not reached. 

Instead, there is an offset where the process goes into steady-state well below the set 

point. It can also be seen that the steam input movement are sudden and very large for 

both cases. This could be due to model mismatch in which the model was not able to 

accurately describe the relationship between the steam input and the controlled 

variables. 
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Figure 4.43: Plant Input and Output Response for Top Composition Set Point in Model 2 

 

Figure 4.44: Plant Input and Output Response for Top Composition Set Point in Model 2 
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4.3 Disturbance Rejection on Model 1 

Simulations for studying the MPC’s ability in disturbance rejection are done by 

simulating disturbances in all variables. As can be seen in Appendix C, the controller 

is able to restore steady-state for both composition outputs in the process for all 

disturbances studied. However, there are slight variability in the time required for the 

controller to achieve disturbance rejection. 

 

Figure 4.45: Output Response to 0.1 Reflux Disturbance in Model 1 

 

Figure 4.46: Output Response to 0.2 Reflux Disturbance in Model 1 
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Figure 4.47: Output Response to 0.5 Reflux Disturbance in Model 1 

 

Figure 4.48: Output Response to 1.0 Reflux Disturbance in Model 1 
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Figure 4.49: Output Response to 2.0 Reflux Disturbance in Model 1 

 

Figure 4.50: Output Response to 5.0 Reflux Disturbance in Model 1 
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Figure 4.51: Time for Reflux Flow Disturbance Rejection in Model 1 

 

The MPC controller’s ability to restore steady state to the process after a reflux flow 

disturbance is constant throughout the tested values. For all the disturbance sizes, the 

controller was able to restore the top composition to steady state within 20 seconds, 

and the bottom composition at 10 seconds. 

 

Figure 4.52: Output Response to 0.1 Steam Disturbance in Model 1 
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Figure 4.53: Output Response to 0.2 Steam Disturbance in Model 1 

 

Figure 4.54: Output Response to 0.5 Steam Disturbance in Model 1 
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Figure 4.55: Output Response to 1.0 Steam Disturbance in Model 1 

 

Figure 4.56: Output Response to 2.0 Steam Disturbance in Model 1 
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Figure 4.57: Output Response to 5.0 Steam Disturbance in Model 1 

 

Figure 4.58: Time for Steam Flow Disturbance Rejection in Model 1 

 

The MPC controller was also tested for its performance during a steam flow 

disturbance. For all the disturbance sizes, the top and bottom compositions were 

restored to their steady state conditions within 24 seconds after the introduction of the 

disturbance. 
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Figure 4.59: Output Response to 0.1 Top Composition Disturbance in Model 1 

 

Figure 4.60: Output Response to 0.2 Top Composition Disturbance in Model 1 
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Figure 4.61: Output Response to 0.3 Top Composition Disturbance in Model 1 

 

Figure 4.62: Time for Top Composition Disturbance Rejection in Model 1 
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Figure 4.63: Output Response to 0.1 Bottom Composition Disturbance in Model 1 

 

Figure 4.64: Output Response to 0.2 Bottom Composition Disturbance in Model 1 
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Figure 4.65: Output Response to 0.3 Bottom Composition Disturbance in Model 1 

 

Figure 4.66: Time for Bottom Composition Disturbance Rejection in Model 1 
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composition, the top composition took 15 seconds to return to steady state.  

In reverse, the bottom composition took 15 seconds to return to steady state when a 
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of bottom composition disturbance. 
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4.4 Disturbance Rejection on Model 2 

 

Similar to the results presented for model 1, the MPC controller for this model also 

showed that it is able to restore steady-state conditions to the process after a 

disturbance was introduced. The data obtained during simulation is available in 

Appendix C. 

 

Figure 4.67: Output Response to 0.1 Reflux Disturbance in Model 2 

 

Figure 4.68: Output Response to 0.2 Reflux Disturbance in Model 2 
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Figure 4.69: Output Response to 0.5 Reflux Disturbance in Model 2 

 

Figure 4.70: Output Response to 1.0 Reflux Disturbance in Model 2 
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Figure 4.71: Output Response to 2.0 Reflux Disturbance in Model 2 

 

Figure 4.72: Output Response to 5.0 Reflux Disturbance in Model 2 
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Figure 4.73: Time for Reflux Flow Disturbance Rejection in Model 2 

 

During the reflux flow disturbance test, the time taken for both compositions to be 

eliminated from disturbance vary for as much as 20 seconds from one disturbance size 

to the other. It was also observed that during all trial values, except at 0.1 and 1, the 

difference between the time the top composition reached steady state and the bottom 

composition reaching its steady state is 20 seconds.  

 

Figure 4.74: Output Response to 0.1 Steam Disturbance in Model 2 
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Figure 4.75: Output Response to 0.2 Steam Disturbance in Model 2 

 

Figure 4.76: Output Response to 0.5 Steam Disturbance in Model 2 
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Figure 4.77: Output Response to 1.0 Steam Disturbance in Model 2 

 

Figure 4.78: Output Response to 2.0 Steam Disturbance in Model 2 
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Figure 4.79: Output Response to 5.0 Steam Disturbance in Model 2 

 

Figure 4.80: Time for Steam Flow Disturbance Rejection in Model 2 

 

When the controller was tested for disturbance in the steam flow, the bottom 

composition took between 19.4 and 19.8 seconds to return to steady state. On the other 

hand, the top composition took between 18.5 to 19.7 seconds, signifying that the top 

composition is more affected by disturbances in the steam flow as compared to reflux 

flow. 
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Figure 4.81: Output Response to 0.1 Top Composition Disturbance in Model 2 

 

Figure 4.82: Output Response to 0.2 Top Composition Disturbance in Model 2 
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Figure 4.83: Output Response to 0.3 Top Composition Disturbance in Model 2 

 

Figure 4.84: Time for Top Composition Disturbance Rejection in Model 2 
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Figure 4.85: Output Response to 0.1 Bottom Composition Disturbance in Model 2 

 

Figure 4.86: Output Response to 0.2 Bottom Composition Disturbance in Model 2 
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Figure 4.87: Output Response to 0.3 Bottom Composition Disturbance in Model 2 

 

Figure 4.88: Time for Bottom Composition Disturbance Rejection in Model 2 

For both top and bottom composition disturbances, the time taken for both controlled 
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the increase in time taken to return to steady state during a bottom composition 
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4.5 Comparison with PID control 

 

To perform comparison with a PID controller, a 1-1/2-2 PID controller pairing was 

done for both models as described in the methodology. The tuning of the PID 

controllers were done by MATLAB. The resultant controller tuning are as shown 

below. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.89: Tuning of (a) first and (b) second PID controller for model 1 and (c) first and (d) second PID 

controller for model 2 
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4.5.1 Model 1 

 

 

Figure 4.90: Top and Bottom Composition at Top Composition Set Point using PID in Model 1 

 

For the top composition set point at 0.6, the PID controller was able to reach the set 

point within 20 seconds with a small overshoot. The bottom composition was slightly 

affected but was restored within the same time the top composition set point was 

reached. This performance is comparable to the MPC controller, where it also managed 

to achieve the set point within 20 seconds. In addition, the MPC controller did not have 

any overshoot.  

However, when comparing the effects of the top composition set point on the bottom 

composition, the MPC controller had upset the bottom composition and did not attempt 

to restore it. However, the bottom composition upset is a small value of 0.01. 

  

Figure 4.91: Top and Bottom Composition at Bottom Composition Set Point using PID in Model 1 

 

The bottom composition set point was achieved by the PID controller within 15 

seconds of the simulation. It was also able to restore the disturbance caused on the top 
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composition within 20 seconds. This is a better performance as compared to the MPC 

controller which was not able to reach the bottom composition. 

 

4.5.2 Model 2 

 

 

Figure 4.92: Top Composition at Top Composition Set Point using PID in Model 2 

 

The PID controller for model 2 showed that it was able to achieve the top composition 

set point of 0.3 in 80 seconds. When compared with the MPC controller, the PID 

controller performed better in which it was able to reach the set point value.  

 

Figure 4.93: Bottom Composition at Top Composition Set Point using PID in Model 2 

 

The PID controller was also able to restore the bottom composition to 0 within the 

same time for the top composition to achieve its set point. This is comparably better 

than the MPC controller which did not manage to restore the bottom composition. 
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Figure 4.94: Bottom Composition at Bottom Composition Set Point using PID in Model 2 

 

Figure 4.95: Top Composition at Bottom Composition Set Point using PID in Model 2 

 

When tested for the bottom composition set point, it was discovered that the PID 

controller was able to bring the process to the desired value in 80 seconds. However, 

the effects on top composition was significant. There is a big movement of top 

composition away from 0 during the first 20 seconds before returning to steady state. 

This is not favourable since a small change in the bottom composition would affect 

the top composition greatly. 

In comparison, the MPC controller was not able to reach the bottom set point value of 

0.1. Instead, there is an offset of more than 50% of the desired set point. Nevertheless, 

the MPC controller did not affect the top composition as severely as the PID controller. 

The top composition remained at a small value in steady state instead of 0.    
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 

In the beginning of this project, it was intended to develop MPC controllers for two 

models, one of them is a 2x2 Wood and Berry model, and the other an inferential 

model. The first model was used as is, while the second model was used to develop a 

new set of transfer functions based on available data. 

The MPC controller developed for model 1 was able to control the process when the 

top composition set point was changed. However, it was unable to do so with a change 

in the bottom composition. The disturbance rejection performance, nevertheless, 

showed that it was able to restore the process to its initial condition in a short period. 

In comparison, the MPC controller developed for model 2 did not manage to perform 

as expected. Neither the top composition nor bottom composition set point was 

reached. This could be due to model mismatch or an error in tuning. Despite that, the 

controller was able to perform well during disturbance rejection. 

Both controllers were also compared to PID controllers for each process model. It was 

conclusive that the PID controller was able to perform better for model 1. For model 

2, however, it was able to achieve the desired bottom composition set point with a 

large movement in the top composition. 
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5.2 Recommendation 

 

Several recommendations can be given for future works. Among them are: 

 

1. Revise the models used to create an MPC controller 

For an MPC controller to be developed, the model describing the process has to be as 

accurate as possible. To do this, a large number of data is required to account for the 

process dynamics. Since the models used were developed using a limited amount of 

data, it is recommended that the models be improved with more data. 

 

2. Expand the number of simulation runs to fit in different set point values 

In this project, the simulation is limited to one set point value per controlled variable. 

To be able to measure the performance of an MPC controller, it must be tested over a 

range of set point values. This will give a better representation of the true ability of the 

MPC controller. 

  

3. Use a simulation of the distillation column to develop the MPC controller 

Other software which can simulate the distillation column as well as have an MPC 

controller tool can be used to develop the controller. Using this method, the distillation 

column parameters can be changed as well, giving a more realistic result. 
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APPENDIX 

Appendix A: Tuning of MPC for Model 1 

 

I. Changes to Control Interval 

 

 

 

  

0.1 0.2 0.5 1 2 5 10

10 10 10 10 10 10 10

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Min 0 0 0 0 0 0 0

Steady 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Max 0.00843 0.00901 0.00815 0.00612 0.00313 0.00028 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 180 72.7 27.1 15.3 10.2 8.14 7.91

Min 0 0 0 0 0 0 0

Steady 7.9 7.9 7.9 7.9 7.9 7.9 7.9

Max 1740 656 241 147 109 104 102

Min 0 0 0 0 0 0 0

Steady 102 102 102 102 102 102 102

xb=0.3 Max 0.00367 0.00332 0.00316 0.00325 0.0033 0.00331 0.00331

Min 0 0 0 0 0 0 0

Steady 0.00367 0.00332 0.00316 0.00325 0.0033 0.00331 0.00331

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 0.263 0.124 0.0525 0.0322 0.0217 0.0181 0.0177

Min 0 0 0 0 0 0 0

Steady 0.0196 0.0178 0.0169 0.0174 0.0177 0.0177 0.0177

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Steam

xd

xb

Reflux

Steam

xd

xb

Reflux

Steam

Weights

Horizon

Control Interval

Prediction Horizon

Control Horizon

Overall

Reflux
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II. Changes in Prediction Horizon 

 

  

5 5 5 5 5 5 5

1 2 5 10 50 100 200

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Min 0 0 0 0 0 0 0

Steady 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Max 0 0 0.000254 0.000288 0.000313 0.000316 0.000318

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 8.28 8.28 8.15 8.14 8.12 8.12 8.12

Min 0 0 0 0 0 0 0

Steady 7.9 7.9 7.9 7.9 7.9 7.9 7.9

Max 107 107 104 104 103 103 103

Min 0 0 0 0 0 0 0

Steady 102 102 102 102 102 102 102

xb=0.3 Max 0.00337 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331

Min 0 0 0 0 0 0 0

Steady 0.00337 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 0.0184 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181

Min 0 0 0 0 0 0 0

Steady 0.018 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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III. Changes in Control Horizon 

 

  

5 5 5 5 5 5

100 100 100 100 100 100

1 2 3 5 10 50

0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0

Weight 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1

xd=0.6 Max 0.6 0.6 0.6 0.6 0.6 0.6

Min 0 0 0 0 0 0

Steady 0.6 0.6 0.6 0.6 0.6 0.6

Max 0.000428 0.000316 0 0 0 0

Min 0 0 0 0 0 0

Steady 0 0 0 0 0 0

Max 7.9 8.12 8.28 8.28 8.28 8.28

Min 0 0 0 0 0 0

Steady 7.9 7.9 7.9 7.9 7.9 7.9

Max 102 103 103 107 107 107

Min 0 0 0 0 0 0

Steady 102 102 102 102 102 102

xb=0.3 Max 0.00332 0.00331 0.00331 0.00331 0.00331 0.00331

Min 0 0 0 0 0 0

Steady 0.00332 0.00331 0.00331 0.00331 0.00331 0.00331

Max 0 0 0 0 0 0

Min 0 0 0 0 0 0

Steady 0 0 0 0 0 0

Max 0.0177 0.0181 0.0181 0.0181 0.0181 0.0181

Min 0 0 0 0 0 0

Steady 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177

Max 0 0 0 0 0 0

Min 0 0 0 0 0 0

Steady 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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IV. Changes in Reflux Weight 

 

  

5 5 5 5 5 5 5

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0.01 0.02 0.05 0.1 0.2 0.5

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0.6 0.598 0.593 0.56 0.466 0.28 0.0736

Min 0 0 0 0 0 0 0

Steady 0.6 0.598 0.593 0.56 0.466 0.28 0.0736

Max 0.000316 0.0101 0.00998 0.00941 0.00782 0.00466 0.00122

Min 0 0 0 0 0 0 0

Steady 0.000316 0.00992 0.00983 0.00928 0.00773 0.00464 0.00122

Max 8.12 3.27 3.24 3.05 2.54 1.51 0.395

Min 0 0 0 0 0 0 0

Steady 7.9 3.2 3.17 2.99 2.49 1.5 0.394

Max 103 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 102 0 0 0 0 0 0

xb=0.3 Max 0.00331 0.00331 0.00328 0.00309 0.00258 0.00155 0.000404

Min 0 0 0 0 0 0 0

Steady 0.00331 0.00331 0.00328 0.00309 0.00258 0.00155 0.000404

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 0.0181 0.018 0.0179 0.0169 0.014 0.00835 0.00218

Min 0 0 0 0 0 0 0

Steady 0.0177 0.0177 0.0175 0.0165 0.0138 0.00827 0.00218

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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V. Changes in Reflux Rate Weight 

 

  

5 5 5 5 5 5 5

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0.01 0.02 0.05 0.1 0.2 0.5

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Min 0 0 0 0 0 0 0

Steady 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Max 0.000316 0.00894 0.0101 0.0101 0.0097 0.00971 0.00994

Min 0 0 0 0 0 0 0

Steady 0.000316 0 0 0 0 0 N/A

Max 8.12 7.9 7.9 7.9 7.9 7.9 4.56

Min 0 0 0 0 0 0 0

Steady 7.9 7.9 7.9 7.9 7.9 7.9 N/A

Max 103 102 102 102 102 102 29.5

Min 0 0 0 0 0 0 0

Steady 102 102 102 102 102 102 N/A

xb=0.3 Max 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331 0.00332

Min 0 0 0 0 0 0 0

Steady 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331 0.00332

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 0.0181 0.018 0.0179 0.0179 0.0177 0.0177 0.0177

Min 0 0 0 0 0 0

Steady 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

sim time=1000s

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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VI. Changes to Steam Weight 

 

  

5 5 5 5 5 5 5

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

Weight 0 0.01 0.02 0.05 0.1 0.2 0.5

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Min 0 0 0 0 0 0 0

Steady 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Max 0.000316 0.000316 0.0101 0.0101 0.0101 0.0101 0.0101

Min 0 0 0 0 0 0 0

Steady 0.000316 0.000316 0.00994 0.00994 0.00994 0.00994 0.00994

Max 8.12 8.12 3.28 3.28 3.28 3.28 3.28

Min 0 0 0 0 0 0 0

Steady 7.9 7.9 3.21 3.21 3.21 3.21 3.21

Max 103 103 0.00246 0.000393 0 0 0

Min 0 0 0 0 0 0 0

Steady 102 102 0.00242 0.000388 0 0 0

xb=0.3 Max 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331

Min 0 0 0 0 0 0 0

Steady 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181

Min 0 0 0 0 0 0 0

Steady 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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VII. Changes to Steam Rate Weight 

 

  

5 5 5 5 5 5 5

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0.01 0.02 0.05 0.1 0.2 0.5

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Min 0 0 0 0 0 0 0

Steady 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Max 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101

Min 0 0 0 0 0 0 0

Steady 0.00994 0.00994 0.00994 0.00994 0.00994 0.00994 0.00994

Max 3.28 3.28 3.28 3.28 3.28 3.28 3.28

Min 0 0 0 0 0 0 0

Steady 3.21 3.21 3.21 3.21 3.21 3.21 3.21

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

xb=0.3 Max 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331

Min 0 0 0 0 0 0 0

Steady 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331 0.00331

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Max 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181

Min 0 0 0 0 0 0 0

Steady 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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VIII. Changes to Top Composition Weight 

 

  

5 5 5 5 5 5 5

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0 0 0 0 0 0

xd Weight 0 0.1 0.2 0.3 0.5 0.7 1

xb Weight 1 1 1 1 1 1 1

xd=0.6 Max 0 0.584 0.596 0.598 0.599 0.6 0.6

Min 0 0 0 0 0 0 0

Steady 0 0.584 0.596 0.598 0.599 0.6 0.6

Max 0 0.00983 0.01 0.0101 0.0101 0.0101 0.0101

Min 0 0 0 0 0 0 0

Steady 0 0.00968 0.00988 0.0101 0.0101 0.00994 0.00994

Max 0 3.19 3.25 3.27 3.27 3.27 3.28

Min 0 0 0 0 0 0 0

Steady 0 3.12 3.19 3.2 3.21 3.21 3.21

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

xb=0.3 Max 12.1 0.323 0.0823 0.0367 0.0132 0.00676 0.00331

Min 0 0 0 0 0 0 0

Steady 12.1 0.323 0.0823 0.0367 0.0132 0.00676 0.00331

Max 0.2 0.00543 0.00139 0.000609 0.00022 0.000112 0

Min 0 0 0 0 0 0 0

Steady 0.2 0.00535 0.00136 0.000609 0.00022 0.000112 0

Max 64.9 1.76 0.449 0.201 0.0732 0.0369 0.0181

Min 0 0 0 0 0 0 0

Steady 64.5 1.73 0.44 0.196 0.0708 0.0362 0.0177

Max 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 0 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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IX. Changes to Bottom Composition Weight 

 

  

5 5 5 5 5 5

100 100 100 100 100 100

2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0

Weight 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0 0 0 0 0

xd Weight 0.7 0.7 0.7 0.7 0.7 0.7

xb Weight 0 1 2 3 5 10

xd=0.6 Max 0.6 0.6 0.599 0.597 0.592 0.568

Min 0 0 0 0 0 0

Steady 0.6 0.6 0.599 0.597 0.592 0.568

Max 0.01 0.0101 0.0101 0.01 0.00996 0.00956

Min 0 0 0 0 0 0

Steady 0.00995 0.00994 0.00992 0.0099 0.00981 0.00942

Max 3.28 3.27 3.27 3.26 3.23 3.1

Min 0 0 0 0 0 0

Steady 3.21 3.21 3.2 3.19 3.16 3.04

Max 0 0 0.000393 0.000881 0.00242 0.00931

Min 0 0 0 0 0 0

Steady 0 0 0.000387 0.000868 0.00239 0.00918

xb=0.3 Max 0 0.00676 0.027 0.0606 0.167 0.64

Min 0 0 0 0 0 0

Steady 0 0.00676 0.027 0.0606 0.167 0.64

Max 0 0.000112 0.000448 0.00102 0.00281 0.0108

Min 0 0 0 0 0 0

Steady 0 0.000112 0.000448 0.001 0.00277 0.0106

Max 0 0.0369 0.147 0.331 0.991 3.5

Min 0 0 0 0 0 0

Steady 0 0.0362 0.144 0.324 0.892 3.43

Max 0 0 0 0 0 0

Min 0 0 0 0 0 0

Steady 0 0 0 0 0 0

Weights

Overall

Reflux

Steam

Horizon

Control Interval

Prediction Horizon

Control Horizon

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb
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X. Changes to Overall Performance 
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Appendix B: Tuning of MPC for Model 2 

 

I. Changes to Control Interval 

 

  

0.1 0.2 0.5 0.6 0.7 1 2 5 10

10 10 10 10 10 10 10 10 10

2 2 2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1 1 1

xd=0.3 Max 0.179 0.173 0.173 0.3 0.3 0.3 0.3 0.3 0.3

Min 0 0 0 0 0 0 0 0 0

Steady 0.173 0.173 0.173 0.3 0.3 0.3 0.3 0.3 0.3

Max 0 0 0 0 0 0 0 0 0

Min -0.153 -0.15 -0.148 0 0 0 0 0 0

Steady -0.148 -0.148 -0.148 0 0 0 0 0 0

Max 0 0 0 0 0 0 0 0 0

Min -213 -116 -48.3 -2.54E+04 -2.19E+04 -1.55E+04 -8.09E+03 -3.65E+03 -2.21E+03

Steady -3.08 -2.47 -2.42 -1.27E+03 -1.27E+03 -1.27E+03 -1.27E+03 -1.27E+03 -1.27E+03

Max 954 822 560 4.79E+06 4.20E+06 3.14E+06 1.94E+06 1.31E+06 1.20E+06

Min 0 0 0 0 0 0 0 0 0

Steady N/A N/A N/A 1.19E+06 1.19E+06 1.19E+06 1.19E+06 1.19E+06 1.19E+06

xb=0.1 Max 0 0 0 0 0 0 0 0 0

Min -0.051 -0.05 -0.0494 0 0 0 0 0 0

Steady -0.0494 -0.0494 -0.0494 0 0 0 0 0 0

Max 0.0438 0.0429 0.0424 0.1 0.1 0.1 0.1 0.1 0.1

Min 0 0 0 0 0 0 0 0 0

Steady 0.0424 0.0424 0.0424 0.1 0.1 0.1 0.1 0.1 0.1

Max 60.8 33.2 13.8 0 0 0.00E+00 0 0 0

Min -0.923 0.235 0.339 -9.85E+03 -8.48E+03 -6010 -3.14E+03 -1.42E+03 -858

Steady 0.244 N/A N/A -494 -494 -494 -494 -494 -494

Max 371 320 218 1.86E+06 1.63E+06 1.22E+06 7.35E+05 5.10E+05 4.67E+05

Min 0 0 0 0 0 0 0.00E+00 0 0

Steady N/A N/A N/A 4.63E+05 4.63E+05 4.63E+05 4.63E+05 4.63E+05 4.63E+05
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xb
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II. Changes to Prediction Horizon 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

1 2 5 6 8 10 20 50 100

2 2 2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1 1 1

xd=0.3 Max 0.173 0.173 0.173 0.3 0.3 0.3 0.3 0.3 0.3

Min 0 0 0 0 0 0 0 0 0

Steady 0.173 0.173 0.173 0.3 0.3 0.3 0.3 0.3 0.3

Max 0 0 0 0 0 0 0 0 0

Min -0.149 -0.149 -0.149 0 0 0 0 0 0

Steady -0.148 -0.148 -0.148 0 0 0 0 0 0

Max 0 0 0 0 0 0 0 0 0

Min -34.9 -34.7 -34.8 -2.19E+04 -2.19E+04 -2.19E+04 -2.19E+04 -2.19E+04 -2.19E+04

Steady -2.05 -2.06 -2.24 -1.27E+03 -1.27E+03 -1.27E+03 -1.27E+03 -1.27E+03 -1.27E+03

Max 17.3 47 180 4.20E+06 4.20E+06 4.20E+06 4.20E+06 4.20E+06 4.20E+06

Min 0 0 0 0 0 0 0 0 0

Steady N/A N/A N/A 1.19E+06 1.19E+06 1.19E+06 1.19E+06 1.19E+06 1.19E+06

xb=0.1 Max 0 0 0 0.1 0.1 0 0 0 0

Min -0.0494 -0.0496 -0.0495 0 0 0 0 0 0

Steady -0.0494 -0.0494 -0.0494 0.1 0.1 0 0 0 0

Max 0.0424 0.0424 0.0424 0 0 0.1 0.1 0.1 0.1

Min 0 0 0 0 0 0 0 0 0

Steady 0.0424 0.0424 0.0424 0 0 0.1 0.1 0.1 0.1

Max 9.96 9.9 9.95 0 0 0 0 0 0

Min 0 0 0 -8.48E+03 -8.48E+03 -8.48E+03 -8.48E+03 -8.48E+03 -8.48E+03

Steady 0.582 0.568 0.553 -494 -494 -494 -494 -494 -494

Max 6.73 18.3 69.9 1.63E+06 1.63E+06 1.63E+06 1.63E+06 1.63E+06 1.63E+06

Min 0 0 0 0 0 0 0 0 0

Steady N/A N/A N/A 4.63E+05 4.63E+05 4.63E+05 4.63E+05 4.63E+05 4.63E+05

Reflux

Steam
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III. Changes to Control Horizon 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100 100

1 2 5 10 20 30 50

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.3 Max 0.169 0.3 0.173 0.173 0.173 0.173 0.173

Min 0 0 0 0 0 0 0

Steady 0.169 0.3 0.173 0.173 0.173 0.173 0.173

Max 0 0 0 0 0 0 0

Min -0.146 0 -0.148 -0.148 -0.148 -0.148 -0.148

Steady -0.146 0 -0.148 -0.148 -0.148 -0.148 -0.148

Max 0.479 0 0 0 0 0 0

Min -0.878 -2.19E+04 -34.8 -34.8 -34.8 -34.8 -34.8

Steady N/A -1.27E+03 N/A N/A N/A N/A N/A

Max 0 4.20E+06 5.55E+03 5.87E+03 5.93E+03 5.94E+03 5.94E+03

Min -2.32E+03 0 0 0 0 0 0

Steady N/A 1.19E+06 N/A N/A N/A N/A N/A

xb=0.1 Max 0 0 0 0 0 0 0

Min -0.0506 0 -0.0493 -0.0493 -0.0496 -0.0496 -0.0496

Steady -0.0506 0 -0.0493 -0.0493 -0.0492 -0.0492 -0.0492

Max 0.0436 0.1 0.0425 0.0424 0.0426 0.0426 0.0426

Min 0 0 0 0 0 0 0

Steady 0.0436 0.1 0.0425 0.0424 0.0426 0.0426 0.0426

Max 0 0 9.86 9.86 9.86 9.86 9.86

Min -0.403 -8.48E+03 -1.83 .1.97 -2 -2 -2

Steady N/A -494 N/A N/A N/A N/A N/A

Max 920 1.63E+06 2.16E+03 2.28E+03 2.31E+03 2.31E+03 2.31E+03

Min 0 0 0 0 0 0 0

Steady N/A 4.63E+05 N/A N/A N/A N/A N/A

Reflux

Steam

xd

xb

Reflux

Steam

xd

xb

Weights

Overall

Reflux

Steam

Horizon
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Control Horizon
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IV. Changes to Reflux Weight 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0 0.1 0.2 0.3 0.5 1 2

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.3 Max 0.3 0.173 0.173 0.173 0.173 0.173 0.173

Min 0 0 0 0 0 0 0

Steady 0.3 0.172 0.173 0.173 0.173 0.173 0.173

Max 0 0 0 0 0 0 0

Min 0 -0.148 -0.148 -0.148 -0.148 -0.148 -0.148

Steady 0 -0.148 -0.148 -0.148 -0.148 -0.148 -0.148

Max 0 0 0 0 0 0 0

Min -2.19E+04 -0.00344 -0.00078 -0.00034 -0.00012 0 0

Steady -1.27E+03 -0.00292 -0.00074 -0.00033 -0.00012 0 0

Max 4.20E+06 0 0 0 0 0 0

Min 0.00E+00 -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03

Steady 1.19E+06 -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03

xb=0.1 Max 0 0 0 0 0 0 0

Min 0 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494

Steady 0 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494

Max 0.1 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425

Min 0 0 0 0 0 0 0

Steady 0.1 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425

Max 0 0 0 0 0 0 0

Min -8.48E+03 -0.00133 -0.0003 -0.00013 0 0 0

Steady -494 -0.00113 -0.00029 -0.00013 0 0 0

Max 1.63E+06 1.92E+03 1.92E+03 1.92E+03 1.92E+03 1.93E+03 1.93E+03

Min 0 0 0 0 0 0 0

Steady 4.63E+05 547 546 546 546 546 546
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Steam

xd

xb
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xd

xb

Weights
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V. Changes to Reflux Rate Weight 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0.1 0.2 0.3 0.5 1 2

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.3 Max 0.173 0.173 0.173 0.173 0.173 0.173 0.173

Min 0 0 0 0 0 0 0

Steady 0.172 0.172 0.173 0.173 0.173 0.173 0.173

Max 0 0 0 0 0 0 0

Min -0.148 -0.148 -0.148 -0.148 -0.148 -0.148 -0.148

Steady -0.148 -0.148 -0.148 -0.148 -0.148 -0.148 -0.148

Max 0 0 0 0 0 0 0

Min -0.00344 -0.00288 -0.00263 -0.00256 -0.00254 -0.00252 -0.00252

Steady -0.00292 -0.00274 -0.00261 -0.00256 -0.00254 -0.00252 -0.00252

Max 0 0 0 0 0 0 0

Min -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03 -6.72E+03

Steady -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03 -1.90E+03

xb=0.1 Max 0 0 0 0 0 0 0

Min -0.0494 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494

Steady -0.0494 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494 -0.0494

Max 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425

Min 0 0 0 0 0 0 0

Steady 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425

Max 0 0 0 0 0 0 0

Min -0.00133 -0.00112 -0.00102 -0.00099 -0.00098 -0.00098 -0.00098

Steady -0.00113 -0.00106 -0.00101 -0.00099 -0.00098 -0.00098 -0.00098

Max 1.92E+03 1.92E+03 1.92E+03 1.92E+03 1.92E+03 1.92E+03 1.89E+03

Min 0 0 0 0 0 0 0

Steady 547 547 547 547 547 547 547
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VI. Changes to Steam Weight 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0 0 0 0 0 0

Weight 0 0.1 0.2 0.3 0.5 1 2

Rate Weight 0 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.3 Max 0.173 0.0988 0.0988 0.0988 0.0988 0.0988 0.0988

Min 0 0 0 0 0 0 0

Steady 0.172 0.0988 0.0988 0.0988 0.0988 0.0988 0.0988

Max 0 0 0 0 0 0 0

Min -0.148 -0.0847 -0.0847 -0.0847 -0.0847 -0.0847 -0.0847

Steady -0.148 -0.0847 -0.0847 -0.0847 -0.0847 -0.0847 -0.0847

Max 0 0 0 0 0 0 0

Min -0.00344 -1.81 -1.81 -1.81 -1.81 -1.81 -1.81

Steady -0.00292 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17

Max 0 0 0 0 0 0 0

Min -6.72E+03 -0.00241 -0.0006 -0.00027 0 0 0

Steady -1.90E+03 -0.00118 -0.0003 -0.00013 0 0 0

xb=0.1 Max 0 0 0 0 0 0 0

Min -0.0494 -0.0282 -0.0282 -0.0282 -0.0282 -0.0282 -0.0282

Steady -0.0494 -0.0282 -0.0282 -0.0282 -0.0282 -0.0282 -0.0282

Max 0.0425 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242

Min 0 0 0 0 0 0 0

Steady 0.0425 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242

Max 0 0.518 0.494 0.518 0.518 0.518 0.518

Min -0.00133 0 0 0 0 0 0

Steady -0.00113 0.333 0.333 0.333 0.333 0.333 0.333

Max 1.92E+03 0.00069 0.000168 0 0 0 0

Min 0 0 0 0 0 0 0

Steady 547 0.000341 0 0 0 0 0
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VII. Changes to Steam Rate Weight 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0.1 0.2 0.3 0.5 1 2

xd Weight 1 1 1 1 1 1 1

xb Weight 1 1 1 1 1 1 1

xd=0.3 Max 0.173 0.1 0.0992 0.099 0.0989 0.0989 0.0988

Min 0 0 0 0 0 0 0

Steady 0.172 0.1 0.0992 0.099 0.0989 0.0989 0.0988

Max 0 0 0 0 0 0 0

Min -0.148 -0.086 -0.0851 -0.0849 -0.0848 -0.0848 -0.0847

Steady -0.148 -0.086 -0.0851 -0.0849 -0.0848 -0.0848 -0.0847

Max 0 -1.81 -1.81 -1.81 -1.81 -1.81 -1.81

Min -0.00344 -1.14 -1.16 -1.16 -1.16 -1.17 -1.17

Steady -0.00292 -1.14 -1.16 -1.16 -1.16 -1.17 -1.17

Max 0 0 0 0 0 0 0

Min -6.72E+03 -36.1 -9.08 -4.04 -1.46 -0.364 -0.0911

Steady -1.90E+03 N/A N/A N/A N/A N/A N/A

xb=0.1 Max 0 0 0 0 0 0 0

Min -0.0494 -0.0285 -0.0283 -0.0283 -0.0283 -0.0283 -0.0283

Steady -0.0494 -0.0285 -0.0283 -0.0283 -0.0283 -0.0283 -0.0283

Max 0.0425 0.0245 0.0243 0.0243 0.0242 0.0242 0.0242

Min 0 0 0 0 0 0 0

Steady 0.0425 0.0245 0.0243 0.0243 0.0242 0.0242 0.0242

Max 0 0.518 0.518 0.518 0.518 0.518 0.518

Min -0.00133 0 0 0 0 0 0

Steady -0.00113 0.327 0.332 0.332 0.333 0.333 0.333

Max 1.92E+03 10.4 2.61 1.16 0.419 0.105 0.0262

Min 0 0 0 0 0 0 0

Steady 547 N/A N/A N/A N/A N/A N/A
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VIII. Changes to Top Composition Weight 

 

  

0.7 0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100 100

2 2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0 0 0 0 0 0

Weight 0 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0 0

xd Weight 0 0.1 0.2 0.3 0.5 1 2

xb Weight 1 1 1 1 1 1 1

xd=0.3 Max 0 0.00401 0.0154 0.0326 0.0759 0.173 0.253

Min 0 0 0 0 0 0 0

Steady 0 0.00401 0.0154 0.0326 0.0758 0.172 0.253

Max 0 0 0 0 0 0 0

Min 0 -0.00344 -0.0132 -0.028 -0.0652 -0.148 -0.218

Steady 0 -0.00344 -0.0132 -0.028 -0.0652 -0.148 -0.218

Max 0 0 0 0 0 0 0

Min 0 0 -0.00029 -0.00061 -0.00143 -0.00344 -0.00605

Steady 0 0 -0.00026 -0.00056 -0.00129 -0.00292 -0.00416

Max 0 0 0 0 0 0 0

Min 0 -156 -600 -1.27E+03 -2.95E+03 -6.72E+03 -9.86E+03

Steady 0 -44.1 -170 -359 -836 -1.90E+03 -2.79E+03

xb=0.1 Max 0 0 0 0 0 0 0

Min -0.116 -0.115 -0.11 -0.104 -0.0869 -0.0494 -0.0181

Steady -0.116 -0.115 -0.11 -0.104 -0.0869 -0.0494 -0.0181

Max 0.1 0.0987 0.0949 0.0891 0.0747 0.0425 0.0156

Min 0 0 0 0 0 0 0

Steady 0.1 0.0987 0.0949 0.0891 0.0747 0.0425 0.0156

Max 0 0 0 0 0 0 0

Min 0 0 -0.00011 -0.00024 -0.00055 -0.00133 -0.00235

Steady 0 0 -0.0001 -0.00022 -0.0005 -0.00113 -0.00161

Max 4.53E+03 4.47E+03 4.30E+03 4.04E+03 3.38E+03 1.92E+03 705

Min 0 0 0 0 0 0 0

Steady 1.28E+03 1.27E+03 1.22E+03 1.14E+03 960 547 202
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IX. Changes to Bottom Composition Weight 

 

  

0.7 0.7 0.7 0.7 0.7 0.7

100 100 100 100 100 100

2 2 2 2 2 2

0.8 0.8 0.8 0.8 0.8 0.8

Weight 0.1 0.1 0.1 0.1 0.1 0.1

Rate Weight 0 0 0 0 0 0

Weight 0 0 0 0 0 0

Rate Weight 0 0 0 0 0 0

xd Weight 1 1 1 1 1 1

xb Weight 0 0.1 0.2 0.5 1 2

xd=0.3 Max 0.3 0.298 0.291 0.253 0.173 0.076

Min 0 0 0 0 0 0

Steady 0.3 0.298 0.291 0.253 0.172 0.0758

Max 0 0 0 0 0 0

Min -0.258 -0.256 -0.251 -0.218 -0.148 -0.0652

Steady -0.258 -0.256 -0.251 -0.218 -0.148 -0.0652

Max 0 0 0 0 0 0

Min 0 0 -0.00022 -0.00121 -0.00344 -0.00695

Steady 0 0 -0.0002 -0.00108 -0.00292 -0.00501

Max 0 0 0 0 0 0

Min -1.17E+04 -1.16E+04 -1.13E+04 -9.86E+03 -6.72E+03 -2.96E+03

Steady -3.31E+03 -3.29E+03 -3.22E+03 -2.79E+03 -1.90E+03 -832

xb=0.1 Max 0 0 0 0 0 0

Min 0 -0.00085 -0.00334 -0.0181 -0.0494 -0.0869

Steady 0 -0.00085 -0.00334 -0.0181 -0.0494 -0.0869

Max 0 0.000734 0.00287 0.0156 0.0425 0.0747

Min 0 0 0 0 0 0

Steady 0 0.000734 0.00287 0.0156 0.0425 0.0747

Max 0 0 0 0 0 0

Min 0 0 0 -0.00047 -0.00133 -0.00269

Steady 0 0 0 -0.00042 -0.00113 -0.00194

Max 0 33.2 130 706 1.92E+03 3.38E+03

Min 0 0 0 0 0 0

Steady 0 9.44 36.9 201 547 961
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X. Changes to Overall Performance 
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Appendix C: Test for Disturbance Rejection on MPC 

 

I. Reflux as Disturbance in Model I 

Trial 1 2 3 4 5 6 

Type Pulse Pulse Pulse Pulse Pulse Pulse 

Size 0.1 0.2 0.5 1 2 5 

Period (s) 5 5 5 5 5 5 

xd time to steady state (s) 16.5 15 17.7 18.8 19.6 19.8 

xd value at steady state 0 0 0 0 0 0 

xb time to steady state (s) 10 10 10 10 10 10 

xb value at steady state 0 0 0 0 0 0 

 

II. Steam Flow as Disturbance in Model I 

Trial 1 2 3 4 5 6 

Type Pulse Pulse Pulse Pulse Pulse Pulse 

Size 0.1 0.2 0.5 1 2 5 

Period (s) 5 5 5 5 5 5 

xd time to steady state (s) 19.6 19.6 19.6 19.6 23.4 25 

xd value at steady state 0 0 0 0 0 0 

xb time to steady state (s) 20 20 17.8 17.8 20 20 

xb value at steady state 0 0 0 0 0 0 

 

III. Top Composition as Disturbance in Model I 

Trial 1 2 3 

Type Pulse Pulse Pulse 

Size 0.1 0.2 0.3 

Period (s) 5 5 5 

xd time to steady state (s) 5 5 5 

xd value at steady state -0.00035 -0.00069 -0.00104 

xb time to steady state (s) 15 15 15 

xb value at steady state 0 0 0 
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IV. Bottom Composition as Disturbance in Model I 

Trial 1 2 3 

Type Pulse Pulse Pulse 

Size 0.1 0.2 0.3 

Period (s) 5 5 5 

xd time to steady state (s) 15 15 15 

xd value at steady state 0 0 0 

xb time to steady state (s) 5 5 5 

xb value at steady state 0 0 0 

 

V. Reflux as Disturbance in Model 2 

Trial 1 2 3 4 5 6 

Type Pulse Pulse Pulse Pulse Pulse Pulse 

Size 0.1 0.2 0.5 1 2 5 

Period (s) 5 5 5 5 5 5 

xd time to steady state (s) 50.1 52.2 65.8 51 51.2 66.3 

xd value at steady state 0 0 0 0 0 0 

xb time to steady state (s) 52.1 70.3 51.5 51.5 70.3 51.9 

xb value at steady state 0 0 0 0 0 0 

 

VI. Steam Flow as Disturbance in Model 2 

Trial 1 2 3 4 5 6 

Type Pulse Pulse Pulse Pulse Pulse Pulse 

Size 0.1 0.2 0.5 1 2 5 

Period (s) 5 5 5 5 5 5 

xd time to steady state (s) 19.2 18.5 19 19.7 19.7 18.5 

xd value at steady state 0 0 0 0 0 0 

xb time to steady state (s) 19.4 19.4 19.4 19.4 19.8 19.7 

xb value at steady state 0 0 0 0 0 0 

 

VII. Top Composition as Disturbance in Model 2 

Trial 1 2 3 

Type Pulse Pulse Pulse 

Size 0.1 0.2 0.3 

Period (s) 5 5 5 

xd time to steady state (s) 12.4 12.8 13.1 

xd value at steady state 0 0 0 

xb time to steady state (s) 12.3 12.7 13.2 

xb value at steady state 0 0 0 
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VIII. Bottom Composition as Disturbance in Model 2 

Trial 1 2 3 

Type Pulse Pulse Pulse 

Size 0.1 0.2 0.3 

Period (s) 5 5 5 

xd time to steady state (s) 12 13.1 13.3 

xd value at steady state 0 0 0 

xb time to steady state (s) 11.8 12.8 13.6 

xb value at steady state 0 0 0 

 


