

Multivariate Statistical Process Monitoring On Structural Fault

by

Afifah Binti Mohamad Saidi

16968

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor Of Engineering (Hons)

(Chemical Engineering)

MAY 2015

Universiti Teknologi PETRONAS

32610, Bandar Seri Iskandar

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

Multivariate Statistical Process Monitoring On Structural Fault

by

Afifah Binti Mohamad Saidi

16968

A project dissertation submitted to the

Chemical Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CHEMICAL ENGINEERING)

Approved by,

(Ir. Dr. Abd Halim Shah Bin Maulud)

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR, PERAK

May 2015

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

AFIFAH BINTI MOHAMAD SAIDI

iv

ABSTRACT

In modern plants there are many operating variables measured by sensors and logged into

the process system database. Thus the amount of available data needs to be analyzed is

enormous and they are highly correlated. This creates a demand for a system to monitor,

control and analyzes this complex processes data to ensure the monitored process stays

within desired conditions, by recognising anomalies in the process behaviour and

subsequently correcting it. Statistical Process Monitoring (SPM) meets the demands; it is

a system capable of detecting fault occurrence. In this context, the anomalies or faults

studied is specifically the fault in structure, which is a type of fault resulted from an

alteration of the processes main characteristics. SPM can be broken down into two

methods which are univariate and multivariate methods. Multivariate methods or

multivariate statistical process monitoring (MSPM) method take into account the

correlation among the process variables and measurements; and it is capable to accurately

characterize the behaviour of the processes, subsequently detecting faults, for which

univariate method unable to adequately perform. MSPM method studied in this research

project is Dynamic Principal Component Analysis (DPCA) method specifically on its

structural fault detection ability, along with Hotelling’s (T
2
-statistic) and Squared

Prediction Error (Q-statistic) techniques. The accuracies of fault detection ability of

DPCA method will be compared with Principal Component Analysis (PCA) method.

v

ACKNOWLEDGEMENTS

 The author gratefully acknowledges the supervisor for this project, Ir. Dr. Abd

Halim Shah Bin Maulud, for his continuous support and assistance provided throughout

this project and Universiti Teknologi PETRONAS for providing the necessary equipment

and facilities to conduct this project.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENT v

TABLE OF CONTENTS vi

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF APPENDICES x

CHAPTER 1: INTRODUCTION 1

 1.1 Background Study 1

 1.2 Problem Statement 3

 1.3 Objectives & Scopes of Study 4

CHAPTER 2: LITERATURE REVIEW & THEORY 5

 2.1 Types of Process Fault 5

 2.2 Statistical Process Monitoring 6

 2.3 Principal Component Analysis (PCA) 7

 2.4 Dynamic Principal Component Analysis (DPCA) 9

 2.5 Fault Detection 9

 2.5.1 Hotelling’s (T
2
-Statistic) 9

 2.5.2 Squared Prediction Error, SPE (Q-Statistic) 11

CHAPTER 3: METHODOLOGY 12

 3.1 CSTR Model Development 12

 vi

 3.1.1 CSTR Modelling Equation 14

 3.2 Simulation of Faults 16

 3.3 Project Tools 17

 3.4 Gantt Chart and Key Milestone 18

 3.5 Project Process Flow 19

CHAPTER 4: RESULT AND DISCUSSION 20

 4.1 CSTR Simulation Model 20

 4.2 Base Data 21

 4.3 Fault Data 23

 4.3.1 Drift in Reaction Kinetics 23

 4.3.2 Drift in Heat Transfer Coefficient 25

 4.3.3 Drift in Heat Transfer Coefficient and

 Reaction Kinetics) 27

 4.4 Statistical Analysis 29

 4.4.1 PCA and DPCA 29

 4.4.2 T
2
-Statistics and Q-Statistic 29

 4.5 Summary of Fault Detection Time 36

CHAPTER 5: CONCLUSION AND RECOMMENDATION 41

REFERENCES 42

APPENDICES 45

vii

vii

LIST OF FIGURES

Figure 1.1 Process Monitoring Loop 2

Figure 1.2 General Fault Diagnosis Framework 3

Figure 3.1 Schematic representation of CSTR 13

Figure 3.2 Matlab Simulink 17

Figure 4.1 CSTR MATLAB Simulation Model 20

Figure 4.2 Product concentration base data . 21

Figure 4.3 Product temperature base data 21

Figure 4.4 Product flowrate base data 22

Figure 4.5 Product concentration fault data . 23

Figure 4.6 Product temperature fault data 23

Figure 4.7 Product flowrate fault data 24

Figure 4.8 Product concentration fault data . 25

Figure 4.9 Product temperature fault data 25

Figure 4.10 Product flowrate fault data 26

Figure 4.11 Product concentration fault data 27

Figure 4.12 Product temperature fault data 27

Figure 4.13 Product flowrate fault data 28

Figure 4.14 PCA T
2
-statistics 30

Figure 4.15 DPCA T
2
-statistics 30

Figure 4.16 PCA T
2
-statistics 31

Figure 4.17 DPCA T
2
-statistics 31

Figure 4.18 PCA T
2
-statistics 32

Figure 4.19 DPCA T
2
-statistics 32

Figure 4.20 PCA Q-statistics 33

Figure 4.21 DPCA Q-statistics . 33

Figure 4.22 PCA Q-statistics 34

Figure 4.23 DPCA Q-statistics 34

Figure 4.24 PCA Q-statistics 35

Figure 4.25 DPCA Q-statistics 35

viii viii

viii

LIST OF TABLES

Table 3.1 Default operating parameters 14

Table 3.2 Gantt Chart and Key Milestone 18

Table 4.1 T
2
-statistics thresholds 29

Table 4.2 Detection time Drift in Reaction Kinetics (T
2
-statistic) 36

Table 4.3 Detection time Heat Transfer Coefficients (T
2
-statistic) 36

Table 4.4 Detection time Drift in Reaction Kinetics &

 Heat Transfer Coefficients (T
2
-statistic) 36

Table 4.5 Detection time Drift in Reaction Kinetics (Q-statistic) 37

Table 4.6 Detection time Heat Transfer Coefficients (Q-statistic) 37

Table 4.7 Detection time Drift in Reaction Kinetics &

 Heat Transfer Coefficients (Q-statistic) 37

x

ix

LIST OF APPENDICES

Appendix 1 Matlab Source Code of CSTR System (for base data) 45

Appendix 2 PCA for Base Data 50

Appendix 3 PCA for Drift in Reaction Kinetics 52

Appendix 4 PCA for Drift in Heat Transfer Coefficient 54

Appendix 5 PCA for Drift in Reaction Kinetics & Heat Transfer

 Coefficient 55

Appendix 6 DPCA for Base Data . 57

Appendix 7 DPCA for Drift in Reaction Kinetics 59

Appendix 8 DPCA for Drift in Heat Transfer Coefficient 62

Appendix 9 DPCA for Drift in Reaction Kinetics & Heat Transfer

 Coefficient 64

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND STUDY

Robert M. Solow, an economist at Massachusetts Institute of Technology

received a Nobel Prize in 1987, for his work in identifying the sources of economic

growth. Professor Solow came with a conclusion that the immensity of an economy’s

growth is the result of technological advances (Crowl & Louvar, 2011). It is also can

be deduce that the industrial growth is too, rely on technology advancement.

Industrial evolution, which mean more complex processes, high pressure facilities

operation, more reactive chemicals, and many more complexities in controlling this

industrial plant operations. Not to forget that, this industry has to cope with the

demands on production efficiency, to maintain and improve product quality, and the

pressure to comply with increasingly stringent safety and environmental regulations.

Modern industrial processes are dealing with enormous amount of data,

coming from many variables that need to be monitored and recorded continuously day

to day. Standard (traditional) process controllers maintain operation conditions, by

compensating disturbances and changes occurring in the process, however its ability

is limited. Changes in processes, in which standard controllers cannot handle

adequately, are called faults. A fault is defined as an unpermitted deviation of

characteristic property or variable of the system. Fault can severely deteriorate

2

production process, causing production outage, and worst case scenario, catastrophic

industrial incident. Thus, it is significant for these processes, a rapid fault detection

method that response effectively to fault occurrences. Fault detection, along with fault

identification, fault diagnosis and process recovery form the basis of process

monitoring.

FIGURE 1.1 Process Monitoring Loop

Process monitoring goal is to ensure the success of the planned operations by

recognizing anomalies in the process behavior. This project studies a process

monitoring method known as multivariate statistical process monitoring (MSPM),

which capable of analyzing a vast number of highly correlated variable data in a

process plant control system. The MSPM methods studied are Principal Component

Analysis (PCA) and Dynamic Principal Component Analysis (DPCA) for relationship

modelling which exists between process variables, along with Hotelling's T
2
-statistic,

and Q-statistic (Squared Prediction Error) are used for fault detection, due to their

capability in providing an indication of abnormal variability within and outside

normal process workspace.

3

1.2 PROBLEM STATEMENT

As mentioned earlier, complex processes, with thousand of operating variables

data needed to be continuously monitored and controlled to ensure the processes

operating within the specified operating conditions. Commonly in industry, the

monitoring system of these processes works based on a general principle framework,

in this context it is the general fault diagnosis framework. Based on Figure 1, there are

many types of disturbances or faults that could occur in a process.

FIGURE 1.2 General Fault Diagnosis Framework (Venkatasubramanian et.al, 2003)

In this project, focus is given on structural failures, of which it is capable to

“result in a change in the information flow between various variables”

(Venkatasubramanian, et.al. 2003). An example of a structural failure would be

failure of a controller, a stuck valve, or a leaking pipe and so on. In this project,

structural fault are simulated in Continuous Stirred Tank Reactor (CSTR) in Matlab

Simulink, the fault data obtained will be statistically analyzed using Principal

Component Analysis (PCA) and Dynamic Principal Component Analysis (DPCA)

method, along with Hotelling's T
2
-statistic, and SPE’s Q-statistic, and their fault

detection ability will be mutually compared. Principal Component Analysis (PCA) is

a variable-reduction technique, and it determines the number of components to retain,

4

for which technically, a principal component can be defined as a linear combination

of optimally-weighted observed variables. An extension of PCA to handle process

dynamics are known as Dynamic Principal Component Analysis (DPCA).

In this project, structural fault is the main object of study. Fault in structure

“occur due to hard failures in equipment” (Venkatasubramanian et.al 2003). Change

in a process structure will caused a change in the information flow between various

variables. Thus, it means that the data collected from various variables are highly

correlated when they are affected by a structural fault.

1.3 OBJECTIVES AND SCOPE OF STUDY

The main objective of this project is to investigate the structural fault detection

performance of DPCA method, along with Hotelling's T
2
-statistic, and Q-statistic

(Squared Prediction Error) technique, for which DPCA method fault detectability

accuracies will be compared with PCA method. The scope of this project is to utilize

CSTR simulation model to generate structural fault.

To achieve the main objective, the sub-objectives of this project are as the following:

1. To develop structural fault case study using Continuous Stirred Tank Reactor

 (CSTR) computer simulation model in MATLAB Simulink

2. To compare fault detection performance of PCA and DPCA using, Hotelling’s

 T
2
-statistic and Q-statistic (SPE) techniques

5

CHAPTER 2

LITERATURE REVIEW & THEORY

2.1 TYPES OF PROCESS FAULTS

 In general, fault can be defined as a deviation from an acceptable range of an

observed variable or designated parameter associated with a process (Himmelblau,

1978). This defines a fault as a process anomaly; it can be a case such as high

temperature in a reactor or low product quality and so on. Referring to Figure 1, there

are three types of faults, which are “structural fault (structural failures & controller

malfunction), variable fault (process disturbance), and gross errors (sensor and

actuator failure)” (Venkatasubramanian et.al. 2003).

 Variables fault is a change of variable parameter that exceeds the acceptable

range of the observed variables. “Failures in parameter happen when there is a

disturbance entering the process from the environment through one or more variables”

(Venkatasubramanian et.al. 2003). An example for such fault is a change in

temperature or change in concentration of reactant from its steady state value in

reactor feed. Variable faults are rather easily detectable via univariate process

monitoring methods. Fault in structures is the changes or deviation of the main

characteristics governing the processes from ideal operating conditions (Hollender,

2010). Structural faults are rather difficult to detect compared to variable faults and

this is the type of faults being studied in this project.

6

2.2 STATISTICAL PROCESS MONITORING

 The objective of SPM is to ensure success of the planned operation by

recognizing anomalies of the behaviour (Chiang & Russell, 2001). SPM can be

divided into univariate methods and multivariate methods. Modern process control

system becoming more complex and the current commonly employed SPM method

(univariate) are inadequate. Univariate statistical charts ignore the correlation among

other variables and measurements; thus it is incapable to accurately characterize the

behaviour of the current industrial process (Chiang & Russell, 2001).

 Univariate approaches are adequate for investigating and understanding simple

systems. Classical univariate data analysis plot the columns of data together two at a

time, followed by plotting each variable for all samples and look for trends. These

approaches lead to frustration because of information overload and the time and effort

required making each plot. Therefore, assumptions are made due to absence of an

effective way to analyse all data simultaneously, which eventually lead to

inconclusive result. Univariate methods may provide an oversimplistic and

overoptimistic assessment of the data. Mean, average, and standard deviations and a

lot of other statistics that describe one variable, but provide no information on how

that one variable relates to others. Univariate method failed to detect the variable

inter-relationships that may exist, as it assumes all variables are independent of each

other.

 Multivariate Statistical Process Monitoring (MSPM) address some of the

limitations of univariate monitoring techniques by considering all the data

simultaneously and extracting information on the ‘directionality’ of the process

variations. MSPM are a commonly used method to solve problems occurred in plant

operation caused by uncertainty, disturbances, faults and incomplete knowledge of the

process, and its’ performance depends on how well the model describes relationships

between the variables (Venkatasubramanian et.al. 2003).

 MSPM also provides monitoring charts that can detect fault and gives warning

signal earlier than the classical univariate chart (Chiang & Russell, 2001).

7

Multivariate methods can be as simple as analysing two variables right up to millions,

“it address univariate methods weakness by considering all the data simultaneously,

and extracting information on the directionality of the variations” of one variable

relative to the other (Martin et.al. 1996). This is known as covariance or correlation, it

describe the influence that variables has on each other. Multivariate methods identify

variables that contribute most to the overall variability in the data, it helps to isolate

those variables that are related – in other words, that co-vary with each other.

Multivariate methods present the result in a highly graphical manner, into a one

interpretable picture.

2.3 PRINCIPAL COMPONENT ANALYSIS (PCA)

The basis of MSPM is the projection methods of principal components

analysis (PCA), for which the primary objectives are data summarisation,

classification of variables, outlier detection, early warning of potential anomalies, as

well as providing data for fault identification. PCA reduce the dimensionality of the

variables data, by forming a new set of variables called principal components, which

are a linear combination of the original measured variables and which explain the

maximal amount of variability in the data (Russell et.al. 2000). These principle

components are sets of new uncorrelated variables.

PCA determines a set of orthogonal vectors called loading vector and it is

ordered by the amount of variance explained in the loading vector direction. PCA can

greatly simplify data into lower-dimensional space without any loss of variance

between variables, and finding a few linear combinations which can be used to

summarized the data with a minimal loss of information. It preserves the correlation

structure between process variables and captures variability of the data.

8

A set of n observations and m process variables stacked into a matrix X:

 (1)

The loading vectors are calculated by solving the stationary points of the optimization

problem (2)

where v ∈ R
m

The stationary points of (1) can be computed via the singular value decomposition

(SVD): (3)

where U ∈ R
n x n

 and V ∈ R
 m x m

 are unitary matrices and Σ ∈ R
 n x m

 is the matrix

containing the non-negative singular values.

Eq (3) is equivalent to solving an eigenvalue decomposition of the covariance matrix

S of the data set: (4)

where V (loading matrix) is the orthogonal and Λ (eigenvalue) is the diagonal (Golub

& Loan, 1983) and the new loading matrix P is then built from the columns of V.

The data set is then projected into a lower dimensional score matrix T:

 (5)

9

2.4 DYNAMIC PRINCIPAL COMPONENT ANALYSIS (DPCA)

Monitoring system based on PCA approach assumes observations at any time

instant statistically independent to observations in the past time. However, in typical

industrial processes, assumption is only valid for long sampling intervals i.e. 2 to 12

hours. X
T
 is the m-dimensional observation vector in the training set at time instance

t. By performing PCA on the data matrix in Eq. (6), a multivariate autoregressive

(AR) model is extracted from the data. The Q-statistic is then the squared prediction

error of the model. If enough lags l are included in the data matrix, the Q-statistic

becomes statistically independent between time instances, and the threshold Eq. (12)

is justified. This approach is known as dynamic PCA (DPCA).

 For shorter sampling intervals and faster fault detection, the PCA methods are

extended to take into account the serial correlations, by augmenting each observation

vector with the previous l observations and stacking the data matrix as following

(Chiang & Russell, 2001):

 (6)

2.5 FAULT DETECTION

 2.5.1 Hotelling’s (T
2
-Statistic)

Multivariate process control techniques were established by Hotelling in his

1947 pioneering paper, in which he applied multivariate process control methods to a

bombsights problem (Hotelling, 1947). Multivariate process control procedure should

fulfill four conditions: (1) an answer to the question ‘Is the process in control?’ must

10

be available; (2) an overall probability for the event ‘Procedure diagnoses an out-of-

control state inaccurately’ must be specified; (3) the relationships among the

variables–attributes should be taken into account; and (4) an answer to the question ‘If

the process is out of control, what is the problem?’ should be available (Jackson,

1991). Multivariate control chart for process mean is based greatly upon Hotelling's-

T
2
 distribution, which was introduced by Harold Hotelling on 1947. Hotelling's T

2
-

distribution is the multivariate analogue of the univariate t-distribution for the use of

standard value μ or individual observations [(Sultan, 1986), (Blank, 1988), &

(Morrison, 1990)].

For an observation vector x and assuming that Λ=ΣTΣ is invertible, the T
2

–

statistic can be obtained from the PCA and DPCA representation respectively Eq. (5)

as such:

 (7)

By including the matrix P the loading vectors associated with the a largest

singular values, the T
2
-statistic is then computed as (Jackson & Mudholkar, 1979) :

 (8)

where, Σa contains the first a rows and columns of Σ, and x is an observation vector

of dimension m. The T
2
-statistic threshold is:

 (9)

and for a normalised data set, the T
2
-statistic threshold is derived as:

 (10)

where Fα (a, n - a) is the upper 100α% critical point of the F-distribution with a and

n - a degrees of freedom (Kourti & MacGregor, 1995).

11

2.5.2 Squared Prediction Error, SPE (Q-Statistic)

 The Q-statistic, also known as the squared prediction error (SPE), is a squared

2-norm measuring the deviation of the observations to the lower dimensional PCA

representation (Russell et.al. 2000).

For robust monitoring of the portion of the measurement space corresponding to the

m – a smallest singular values, Q-statistic would be of better use:

 (11)

where r is the residual vector, a projection of observation x into residual space

(Russell et.al. 2000). The threshold for Q-statistic can be approximated as (Jackson &

Mudholkar, 1979) :

 (12)

Where cα is the normal deviate which corresponds to (1- α) percentile.

 (13)

12

CHAPTER 3

METHODOLOGY

3.1 CSTR MODEL DEVELOPMENT

In a normal operation of a continuous flow stirred-tank reactor (CSTR), the

contents are well stirred and it runs with continuous flow of reactants, as well as the

products. The CSTR normally runs at a steady state condition, with a uniform

distribution of concentration and temperature throughout the reactor. For this project,

the CSTR system will be modelled using Matlab Simulink software. This model is

then used to generate a sample of baseline data (without faults) to be tested and used

as benchmark later on, thus the following assumption are made:

1. Heat losses from the process are negligible (well insulated)

2. The mixture density and heat capacity are assumed constant

3. There are no variations in concentration, temperature, or reaction rate

throughout the reactor as it is perfectly mixed

4. The exit stream has the same concentration and temperature as the entire

reactor liquid

5. The overall heat transfer coefficient is assumed constant

13

6. No energy balance around the jacket is considered. This means that the jacket

temperature can directly be manipulated in order to control the desired reactor

temperature.

7. The reactor is a flat bottom vertical cylinder and the jacket is around the

outside and the bottom.

The CSTR simulation model in Matlab Simulink will be build based on these

predefined parameters and operating conditions (Table 3.1).

TABLE 3.1 Default operating parameters (Jana, 2011).

Operating Parameter Notation Value

Cross sectional area of the reactor, ft2 Ac 10.36

Concentration of reactant A in the exit stream, lb-

mol/ft3
CA 0.05

Concentration of reactant A in the feed stream,

lb-mol/ft3

CAin 0.9

Diameter of cylindrical reactor, ft D 3.6319

Activation energy, BTU/ lb-mol E 30000

Volumetric feed flow rate, ft3/h Fin 20

Height of the reactor liquid, ft h 3.8610

Heat of reaction, BTU/ lb-mol -∆Hr -30000

FIGURE 3.1: Schematic representation of CSTR

14

Universal gas constant, BTU/ (lb-mol)(R) R 1.987

Frequency factor, h-1 α 7.08 x 1010

Multiplication of mixture density and heat

capacity, BTU/ (ft3)(R)
ρCp 37.5

Reactor temperature, R T 650

Feed temperature, R Tin 600

Jacket temperature, R Tj 70.0

Overall heat transfer coefficient, BTU/(ft2)(R)(h) Ui 150

 3.1.1 CSTR Modelling Equation

Total Continuity Equation:

Mass inflow rate = Fi

Mass outflow rate = Fo

Rate of mass accumulation within reactor = (14)

Ac is cross-sectional area of reactor and h is the height of the reactor liquid.

 (15)

The reactor holdup, V and the exit flow rate Fo can be related as:

For this CSTR, (16)

Combining equations 15 and 16:

 (17)

15

Component Continuity Equation:

Mass inflow rate component A = FiCAf,

Mass outflow rate component A = FoCA,

Rate of generation of component A = – (–rA)V

Rate of accumulation of component A within the reactor =

where –rA is the rate of consumption of chemical species A. The basic balance

equation then becomes,

 (18)

Substituting equation 15 into 17 and simplifying,

 (19)

For the given first-order reaction,

 (20)

Combining equations 18 and 19,

Energy input rate = FiCpTf

Energy output rate = FoCpT + UiAh(T-Tj)

Energy added by exothermic reaction = (21)

Energy accumulation rate:

 (22)

16

Using equation 22 and further simplifying:

 (23)

And therefore, this is the final form of the energy balance equation.

3.2 SIMULATION OF FAULTS

 Once base data is generated by MATLAB Simulink model, a simulation of

non-ideal operating conditions is fabricated and run to obtain a set of structural fault

data. This is done in MATLAB Simulink by adding disturbances, for example; a sine

wave function or random number function for measurement noise. The data will be

studied using the PCA, DPCA, Hotelling’s and SPE to detect the presence of any such

faults. The results from each fault detection method would then be compared to

investigate the accuracies of each methods utilized. For fault simulation, the Simulink

model is slightly modified. The structural fault studied in this project will be as

following:

1) Drift in heat transfer coefficient

 Eg: fouling of heat exchanger

 Drift ranges: 1%, 5%, and 10%

2) Drift in reaction kinetics

 Eg: catalyst deactivation

 Drift ranges: 1%, 5% and 10%

3) Simultaneous simulation (Drift in heat transfer coefficient and reaction

kinetics)

 Eg: simultaneous simulation (Eg: fouling of heat exchanger and

catalyst deactivation)

 Drift ranges: 1%, 5% and 10%

17

 A sine wave function, random number function or ramp tool can be added

added as disturbances input to simulate the structural faults occurrence at 1%, 5% and

20% drift. Therefore, nine fault data sets corresponding to the different drift levels are

generated, with each set consist of n = 5000 observations.

3.3 PROJECT TOOLS

 The primary tool used for this project is the MATLAB software, specifically

the SIMULINK simulation environment. MATLAB, (MATrix LABoratory), is a high

level computing software for numerical computations and graphics developed by

MathWorks. The SIMULINK simulation environment is a separate feature of

MATLAB which is a data graphical programming tool. It is widely used in control

theory as it allows the user to model, simulate and analyse dynamic systems.

FIGURE 3.2 MATLAB Simulink

18

3.4 GANTT CHART AND KEY MILESTONE

Table 3.2 Gantt Chart and Key Milestone

No Details 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Development of

CSTR Simulation

Model

2. Generation of Base

Data and Fault Data

3. Data Analysis using

using PCA and DPCA

method, with T
2
-

Statistic and Q-

statistic Technique

4. Preparation and

Submission of

Progress Report

5. Project Work

Continues

6. Pre-EDX

7. Submission of Draft

Report

8. Submission of

Dissertation (soft

bound)

9. Submission of

Technical Paper

10. Oral Presentation

11. Submission of Project

Dissertation (hard

bound)

Gantt chart

Key Milestone

19

3.5 PROJECT PROCESS FLOW

This is the process flow for this research project that must be so that the objectives of

the study can be successfully achieved.

Development of CSTR model in MATLAB and
Simulation of Base Data

Simulation of Structural Fault in the CSTR
model to obtain fault data set

Data Analysis:

Data set obtained analyzed using PCA and
DPCA along with T2 –statistic (Hotellings’)

and Q-statistic (SPE) techniques

Result & Discussion:

Comparison of PCA and DPCA fault
detection performance

20

CHAPTER 4

RESULT AND DISCUSSION

4.1 CSTR SIMULATION MODEL

 Based on the CSTR simulation model, there are three main inputs, namely

feed flowrate, temperature and concentration denoted as Fin, Tin and Ca,in. The three

main outputs which are recorded are the product flowrate, temperature and

concentration denoted as F, T and Ca. The CSTR computer simulation modelled in

MATLAB Simulink is shown in Figure 4.1.

FIGURE 4.1 CSTR MATLAB Simulation Model

21

4.2 BASE DATA

 CSTR simulation model will generate two types of output data, the first one is

a base data. This base data set is then normalized to 0 mean and unit variance and

becomes the input for the MATLAB function princomp, which calculates the loading

vector (V), eigenvalues (Λ) and the score matrix (T). Only the loading vectors

corresponding to the a largest singular values will be retained.

 The base data obtained in the graphs (figure 6, 7, and 8) shown below above

are the base data generated without structural faults. The effects of noise are evident

in all the graphs.

FIGURE 4.2 Product concentration base data

22

FIGURE 4.3 Product temperature base data

FIGURE 4.4 Product flowrate base data

23

4.3 FAULT DATA

 4.3.1 Drift in Reaction Kinetics

FIGURE 4.5 Product concentration fault data

FIGURE 4.6 Product temperature fault data

24

FIGURE 4.7 Product flowrate fault data

As can be seen in the fault data for drift in reaction kinetics, the variation among flowrate and temperature for different

fault levels are almost non-existent but stark differences can be seen among concentration data. This could be due to the fact

that at higher activation energies, reaction would not proceed fast and thereby consuming lesser reactants.

25

4.3.2 Drift in Heat Transfer Coefficient

FIGURE 4.8 Product concentration fault data

FIGURE 4.9 Product temperature fault data

26

FIGURE 4.10 Product flowrate fault data

 As for fault data of drift in overall heat transfer coefficients, it can be observed that drift for different fault levels are

present in all three variables of product flowrate, concentration and temperature. This could be due to the fact that drifts in

overall heat transfer coefficients capable of affecting all three variables. For example, temperature increased reduces the rate of

reaction (as the reaction is not in favour of high temperature). Thus, lesser reactants consumed resulting in overflow of

unreacted reactant in the CSTR system.

27

4.3.3 Drift in Heat Transfer Coefficient & Drift in Reaction Kinetics)

FIGURE 4.11 Product concentration fault data

FIGURE 4.12 Product temperature fault data

28

FIGURE 4.13 Product flowrate fault data

 Simultaneous simulation of structural fault; drift in overall heat transfer coefficients and reaction kinetics shows stark

differences in all three variables of product flowrate, concentration and temperature. This could probably because simultaneous

structural fault occurence can affect or upset a system more severely compared to the effect of only one structural fault

occurrence

29

4.4 STATISTICAL ANALYSIS

 4.4.1 PCA and DPCA

 The PCA is done for normalized base data to obtain the loading matrix, score

matrix and latent. PCA for the fault data is then done by using loading matrix of base data

and T
2
 calculated using latent (which store variance) of the base data. For DPCA, the

time lag shift is introduced to the input/output variables matrix. The chosen time lag shift

was 2 sample lag.. Two PCs is retained for PCA and three PCs is retained for DPCA

method. Source code for simulation of PCA and DPCA in Matlab are available on

appendices.

 4.4.2. T
2
-statistics and Q-statistics

 The PCA and DPCA data are first tested using T
2
-statistics. The thresholds

calculated using Eq. (2.10) is shown in the table below

Parameter PCA DPCA

a 2 4

n 5000 5000

Tα
2
(95.0% confidence limit) 6.641 7.825

Tα
2
(99.0% confidence limit) 9.223 11.36

TABLE 4.1 T
2
-statistics thresholds

 To model using Q-statistics, the residual matrix of the data is required. This

residual matrix captures the variations beyond the a loading vectors. The residual matrix

for PCA and DPCA is obtained from Eq.(2.10). The threshold for Q-statistics is obtained

from Eq.(2.12). Source code for simulation of T
2
-statistic and Q-statistic in Matlab are

available on appendices

30

T
2
-statistics (Drift in Reaction Kinetics)

 FIGURE 4.14 PCA T
2
-statistics FIGURE 4.15 DPCA T

2
-statistics

31

T
2
-statistics (Drift in Heat Transfer Coefficient)

 FIGURE 4.16 PCA T
2
-statistics FIGURE 4.17 DPCA T

2
-statistics

32

T
2
-statistics (Drift in Heat Transfer Coefficient & Drift in Reaction Kinetics)

 FIGURE 4.18 PCA T

2
-statistics FIGURE 4.19 DPCA T

2
-statistics

33

Q-statistics (Drift in Reaction Kinetics)

 FIGURE 4.20 PCA Q-statistics FIGURE 4.21 DPCA Q-statistics

34

Q-statistics (Drift in Heat Transfer Coefficient)

 FIGURE 4.22 PCA Q-statistics FIGURE 4.23 DPCA Q-statistics

35

Q-statistics (Drift in Heat Transfer Coefficient & Drift in Reaction Kinetics)

 FIGURE 4.24 PCA Q-statistics FIGURE 4.25 DPCA Q-statistics

36

4.5 SUMMARY OF FAULT DETECTION TIME

 The summary of the fault detection time for the three types of simulated structural

faults using Hotelling’s T
2
-statistic are in Table 4.2, 4.3 , and 4.4 while the fault detection

time for the three types of simulated structural faults using SPE’s Q-statistic are in Table

4.5, 4.6, and 4.7.

TABLE 4.2 Detection time for Drift in Reaction Kinetics; (Hotelling’s T
2
-statistic)

Case PCA DPCA

95.0%

confidence limit

99.0%

confidence

limit

95.0%

confidence limit

99.0%

confidence limit

1% 0 0 0 0

5% 30.20 40.50 0 0

20% 7.20 13.10 0 0

TABLE 4.3 Detection time for Drift in Heat Transfer Coefficients; (T
2
-statistic)

Case PCA DPCA

95.0%

confidence limit

99.0%

confidence

limit

95.0%

confidence limit

99.0%

confidence limit

1% 0 9.50 4.9 44.20

5% 0 7.21 0 9.10

20% 0 5.09 0 8.00

TABLE 4.4 Detection time for Simultaneous Simulation of (Drift in Reaction Kinetics &

Heat Transfer Coefficients); (Hotelling’s T
2
-statistic)

Case PCA DPCA

95.0%

confidence limit

99.0%

confidence

limit

95.0%

confidence limit

99.0%

confidence limit

1% 25.5 28.0 1.5 0

5% 8.9 21.9 31.5 44.0

20% 0.9 4.92 20.0 36.5

37

TABLE 4.5 Detection time for Drift in Reaction Kinetics; (SPE’s Q -statistic)

Case PCA DPCA

95.0%

confidence limit

99.0%

confidence

limit

95.0%

confidence limit

99.0%

confidence limit

1% 0.9 13.0 0.3 43.2

5% 1.0 9.5 0.34 36.1

20% 0.5 8.1 0.3 27.9

TABLE 4.6 Detection time for Drift in Heat Transfer Coefficients; (SPE’s Q -statistic)

Case PCA DPCA

95.0%

confidence limit

99.0%

confidence

limit

95.0%

confidence limit

99.0%

confidence limit

1% 49.89 49.9 49.0 49.9

5% 48.0 49.9 34.1 36.9

20% 46.5 48.5 0.1 0.56

TABLE 4.7 Detection time for Simultaneous Simulation of (Drift in Reaction Kinetics &

Heat Transfer Coefficients); (SPE’s Q -statistic)

Case PCA DPCA

95.0%

confidence limit

99.0%

confidence

limit

95.0%

confidence limit

99.0%

confidence limit

1% 48.0 48.9 8.1 48.2

5% 3.5 7.65 2.0 24.5

20% 0 0 0 0

 Figure 4.14 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics); by using PCA method with Hotelling’s T
2
-statistics. The

95% and 99% threshold are obtained from T
2
-statistics analysis on the data. The result of

PCA analysis on the 1% Drift in Reaction Kinetics data shows that no fault is detected.

This probably due to small drifts value or could probably because PCA method is

incapable or not sensitive enough of detecting the fault occurrences. In contrary, fault is

detected by PCA analysis on 5% and 20% Drift in Reaction Kinetics data, and the fault

detection time are summarized in Table 4. Fault is detected earlier on 20% Drift in

Reaction Kinetics compared 5% drift, probably because larger value of fault is easier to

be detected.

38

 Figure 4.15 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics); by using DPCA method with Hotelling’s T
2
-statistics. The

95% and 99% threshold are obtained from T
2
-statistics analysis on the data. The result of

DPCA analysis on 1%, 5% and 20% Drift in Reaction Kinetics data shows that all fault

are detected at time zero. This probably because DPCA method has better capability of

detecting this faults occurrence compared to PCA method. The fault detection time are

summarized in Table 4.

 Figure 4.16 shows the result of statistical analysis done on structural fault data

(Drift in Heat Transfer Coefficients); by using PCA method with Hotelling’s T
2
-statistics.

The 95% and 99% threshold are obtained from T
2
-statistics analysis on the data. The

result of PCA analysis on 1%, 5% and 20% Drift in Heat Transfer Coefficients data

shows that all fault are detected (by 95% thresholds) at time zero. As for 99% threshold,

the earliest fault detection time is recorded on 20% drift, followed by 5% drift and 1%

drift. The fault detection time are summarized in Table 5.

 Figure 4.17 shows the result of statistical analysis done on structural fault data

(Drift in Heat Transfer Coefficients); by using DPCA method with Hotelling’s T
2
-

statistics. The 95% and 99% threshold are obtained from T
2
-statistics analysis on the

data. The result of DPCA analysis on Drift in Heat Transfer Coefficients data shows that

all fault are detected (by 95% thresholds) at time zero except for 1% fault drift. As for

99% threshold, the earliest fault detected is on 20% drift, followed by 5% drift and 1%

drift fault. The fault detection time are summarized in Table 5.

 Figure 4.18 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using PCA method with

Hotelling’s T
2
-statistics. The 95% and 99% threshold are obtained from T

2
-statistics

analysis on the data. The results of PCA analysis on all the drift level data shows that

fault are detected and the fault detection times are summarized in Table 6.

39

 Figure 4.19 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using DPCA method with

Hotelling’s T
2
-statistics. The 95% and 99% threshold are obtained from T

2
-statistics

analysis on the data. The results of DPCA analysis on all the drift level data shows that

fault are detected and the fault detection times are summarized in Table 6.

 Figure 4.20 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics); by using PCA method with SPE’s Q-statistics. The 95% and

99% threshold are obtained from Q-statistics analysis on the data. The results of PCA

analysis on all the drift level data shows that fault are detected and the fault detection

times are summarized in Table 7.

 Figure 4.21 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics); by using DPCA method with SPE’s Q-statistics. The 95%

and 99% threshold are obtained from Q-statistics analysis on the data. The results of

DPCA analysis on all the drift level data shows that fault are detected and the fault

detection times are summarized in Table 7.

 Figure 4.22 shows the result of statistical analysis done on structural fault data

(Drift in Heat Transfer Coefficients); by using PCA method with SPE’s Q-statistics. The

95% and 99% threshold are obtained from Q-statistics analysis on the data. The results of

PCA analysis on all the drift level data shows that fault are detected and the fault

detection times are summarized in Table 8.

 Figure 4.23 shows the result of statistical analysis done on structural fault data

(Drift in Heat Transfer Coefficients); by using DPCA method with SPE’s Q-statistics.

The 95% and 99% threshold are obtained from Q-statistics analysis on the data. The

results of DPCA analysis on all the drift level data shows that fault are detected and the

fault detection times are summarized in Table 8.

40

 Figure 4.24 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using PCA method with

SPE’s Q-statistics. The 95% and 99% threshold are obtained from Q-statistics analysis on

the data. The results of PCA analysis on all the drift level data shows that fault are

detected and the fault detection times are summarized in Table 9.

 Figure 4.25 shows the result of statistical analysis done on structural fault data

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using DPCA method with

SPE’s Q-statistics. The 95% and 99% threshold are obtained from Q-statistics analysis on

the data. The results of DPCA analysis on all the drift level data shows that fault are

detected and the fault detection times are summarized in Table 9.

41

CHAPTER 5

CONCLUSION AND RECOMMENDATION

 The objective of this work is to investigate structural fault detection performance

of DPCA method with comparison to PCA. The significant of the study is to fill the gap

of knowledge in fault detection specifically on structural fault detection. The structural

change in CSTR model was successfully simulated using Simulink in MATLAB and the

data obtained was used as feeding data to PCA based monitoring approaches i.e. PCA,

and DPCA.

 Based on the result obtained, in general DPCA shows a better performance by

detecting faults earlier compared to PCA. Therefore, it can be concluded that structural

fault can be detected using Multivariate statistical Process Monitoring based methods i.e.

PCA, DPCA and so on. Thus it is too can be concluded that the objectives of the project

are successfully achieved.

Nevertheless, the suggested work for future is as below:

1. Continuing this research work by doing more types of structural fault simulation.

2. Replacing CSTR simulation model with a more complex system/process to

increase the similarities of this research work to the real operating process plant.

3. The continuation of the structural fault detection using other MSPM techniques

and proceeded with fault identification and fault diagnosis.

42

REFERENCES

Kourti, T., & MacGregor, J. F. (1995). Process analysis, monitoring and diagnosis,

using multivariate projection methods. CHEMOM</cja:jid> Chemometrics and

Intelligent Laboratory Systems, 28(1), 3-21.

MacGregor, J., & Cinar, A. (2012). Monitoring, fault diagnosis, fault-tolerant control

and optimization: Data driven methods. CACE Computers and Chemical

Engineering, 47, 111-120.

Villegas, T., Fuente, M. J., Rodriguez, M., th Wseas International Conference on

Computational Intelligence, M.-M. S., & Cybernetics, C. (2010).

Principalcomponent analysis for fault detection and diagnosis. Experience with a

pilot plant. Int. Conf. Comput. Intell. Man-Mach. Syst. Cybern. Proc.

International Conference on Computational Intelligence, Man-Machine Systems

and Cybernetics - Proceedings, 147-152.

Zhang, Y., Zhang, L., & Zhang, H. (2012). Fault Detection for Industrial Processes.

Mathematical Problems in Engineering Mathematical Problems in

Engineering, 2012 (8-9), 1-18.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003). A review of

process fault detection and diagnosis:Part I: Quantitative model-based methods.

CACE</cja:jid> Computers and Chemical Engineering, 27(3), 293-311.

Himmelblau, D. M. (1978). Fault detection and diagnosis in chemical and petrochemical

processes. Amsterdam: Elsevier press.

Chiang, L. H., Braatz, R. D., & Russell, E. (2001). Fault detection and diagnosis in

industrial systems. London; New York: Springer.

43

Russell, E. L., Chiang, L. H., & Braatz, R. D. (2000). Fault detection in industrial

processes using canonical variate analysis and dynamic principal component

analysis. Chemometrics and Intelligent Laboratory Systems Chemometrics and

Intelligent Laboratory Systems, 51(1), 81-93

J., M., & C, V. (2005). Fault Detection Using Dynamic Principal Component Analysis by

Average Estimation. 2nd International Conference on Electrical and Electronics

Engineering (ICEEE) and XI Conference on Electrical Engineering (CIE 2005).

Mexico City, Mexico.

Hotelling, H., (1947), “Multivariate Quality Control Illustrated by Air Testing of Sample

Bombsights”, C.Eisenhart et. al. Pp.111-184

Jackson JE. (1991). A User Guide to Principal Components. Wiley: New York.

Jana, A.K. (2011). Chemical Process Modelling and Computer Simulation (2
nd

 ed.)

Delhi: PHL Learning Private Limited.

Haridy, S., & Wu, Z. (2009). Univariate and multivariate control charts for monitoring

dynamic-behavior processes: a case study. from http://hdl.handle.net/2099/8485

Hotelling, H. (1947). Multivariate Quality Control: Techniques of Statistical Analysis.

New York: McGraw Hill.

Blank, R. E. (1988). Multivariate X-bar and R Charting Techniques. Presented at the

ASQC’s Annual Quality Congress Transactions.

Morrison, D. F. (1990). Multivariate statistical Methods, 3rd Ed. New York: McGraw-

Hill, Inc.

http://hdl.handle.net/2099/8485

44

Sultan, T. I. (1986). An Acceptance Chart for Raw Materials of Two Correlated

Properties. Quality Assurance, 12, 70-72

Alt, F. B. (1985). Multivariate Quality Control. Encyclopedia of Statistical Sciences, 6,

110-122.

Jackson, J. E., & Mudholkar, G. S. (1979). Control Procedures for Residuals Associated

With Principal Component Analysis. Technometrics Technometrics, 21(3), 341-

349.

Crowl, D. A., & Louvar, J. F. (2011). Chemical Process Safety : Fundamentals With

Applications. Upper Saddle River, NJ: Prentice Hall.

J.J. Downs, E.F. Vogel, (1993). Comput. Chem. Eng. 17. 245–255.

Slišković, D., Grbić, R., & Hocenski, Ž. (2012). Multivariate Statistical Process

Monitoring 9.

Martin, E. B., Morris, A. J., & Zhang, J. (1996). Process performance monitoring using

multivariate statistical process control. IEE Proceedings - Control Theory and

Applications, 143(2), 132-144.

Hollender, M. (2010). Collaborative process automation systems. from

 http://app.knovel.com/hotlink/toc/id:kpCPAS0001/collaborative-process-

 automation

45

APPENDICES

Matlab Source Code of CSTR System (for base data)

function [sys,x0,str,ts] = ...

 s_reactor1a (t,x,u,flag,xinit)

%--

% S-function for Reactor block

% States: x = [V, VCa, VT, Tc, Ts]

% Input: u = [Fin, Tin, Cain, Tcin, Fsin, Fcin, F]

% Output: y = [F, T, Ca, V, Tc, Ts, Fs]

% Parameters: params = [Ma, rhoa, Cpa,...

% At, Ap, Lp, g, ...

% alpha, E, R, lambda,...

% Uc, Ac, rhoc, Cpc, Vc,...

% Vj, hos, Aos, Ms, Avp, Bvp, Hs_hc ...

% xinit]

% xinit = [48, 11.76, 28800, 594.64, 0.245, 600, 40, 49.9, 0.0803, 719]

%--

xinit=[40, 40*0.05, 40*650, 640, 650]; %V, VCa, VT, Tc, Ts

params = [100, 50, 0.75, ...

 10.36, 0.1076, 6.56, 0.414720000000E+09 , ... %g = 31.99846 (s)

 7.08e10 , 30000, 1.99, -30000, ...%alpha = 1.9667e+007 (s)

 120, 250, 62.3, 1, 3.85, ...%Uc = 0.0417 (s), 150 (h)

 18.83, 1000, 56.5, 18, -8744.4, 15.70, 939, 30000 ... %hos = 0.2778 (s), 1000(h)

 xinit];%Units in Btu etc

switch flag,

 %%%%%%%%%%%%%%%%%%

 % Initialization %

 %%%%%%%%%%%%%%%%%%

 case 0,

 [sys,x0,str,ts]=mdlInitializeSizes(xinit);

 %%%%%%%%%%%%%%%

 % Derivatives %

 %%%%%%%%%%%%%%%

 case 1,

 sys=mdlDerivatives(t,x,u,params);

 %%%%%%%%%%

 % Update %

 %%%%%%%%%%

 case 2,

 sys=mdlUpdate(t,x,u,params);

 %%%%%%%%%%%

 % Outputs %

 %%%%%%%%%%%

 case 3,

 sys=mdlOutputs(t,x,u,params);

 %%%%%%%%%%%%%%%%%%%%%%%

 % GetTimeOfNextVarHit %

46

 %%%%%%%%%%%%%%%%%%%%%%%

 case 4,

 sys=mdlGetTimeOfNextVarHit(t,x,u,params);

 %%%%%%%%%%%%%

 % Terminate %

 %%%%%%%%%%%%%

 case 9,

 sys=mdlTerminate(t,x,u,params);

 %%%%%%%%%%%%%%%%%%%%

 % Unexpected flags %

 %%%%%%%%%%%%%%%%%%%%

 otherwise

 error(['Unhandled flag = ',num2str(flag)]);

end

% end sfun_sub

% ===

function [sys,x0,str,ts]=mdlInitializeSizes(xinit)

sizes = simsizes;

sizes.NumContStates = 5; %i.e. V, VCa, VT, Tc, Ts

sizes.NumDiscStates = 0;

sizes.NumOutputs = 7; %i.e. F, T, Ca, V, Tc, Ts, Fs

sizes.NumInputs = 7; %i.e. Fin, Tin, Cain, Tcin, Fsin, Fcin, F

sizes.DirFeedthrough = 7;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%

% initialize the initial conditions

%

%statenum = sizes.NumContStates;

%pend = length(params);

%xinit = params(pend-statenum+1:pend);

x0 = xinit;

%

% str is always an empty matrix

%

str = [];

%

% initialize the array of sample times

%

ts = [0 0];

% end mdlInitializeSizes

% ===

function sys=mdlDerivatives(t,x,u,params)

%disp('--');

t;

Ma = params(1);

rhoa = params(2);

Cpa = params(3);

47

At = params(4);

Ap = params(5);

Lp = params(6);

g = params(7);

alpha = params(8);

E = params(9);

R = params(10);

lambda = params(11);

Uc = params(12);

Ac = params(13);

rhoc = params(14);

Cpc = params(15);

Vc = params(16);

Vj = params(17);

hos = params(18);

Aos = params(19);

Ms = params(20);

Avp = params(21);

Bvp = params(22);

Hs_hc = params(23);% btu/lbm, i.e. = 522.4877cal/g;

rho = rhoa;

Cp = Cpa;

%Inputs

%i.e. Fin, Tin, Cain, Tcin, Fsin, Fcin, F

Fin = u(1);

Tin = u(2);

Cain = u(3);

Tcin = u(4);

Fsin = u(5);

Fcin = u(6);

Fout = u(7);

%States

%i.e. V, VCa, VT, Tc, Ts

V = x(1);

VCa = x(2);

VT = x(3);

Tc = x(4);

Ts = x(5);

Ca = VCa/V;

if Ca < 1e-30, Ca = 0; end

T = VT/V;

%Start: Calculate derivative for Ts (Version 2)----------------------------

%Xs = 0.5; %open loop, fixed steam inlet valve

Pj = exp(Avp/Ts+Bvp);

rhos = Ms*Pj/(R*Ts);

drhos_over_dTs = Ms/R * (-1-Avp/Ts) * Pj /Ts/Ts;

%ws = Fsin * rhos;

if Pj<35,

 ws = 112*Fsin*sqrt(35-Pj);

else

 ws=0;

end

Fs = ws/rhos;

Qj = -hos*Aos*(Ts-T);

wc = -Qj/Hs_hc; %steam condensate outlet

%dTs = (ws-wc) / Vj / drhos_over_dTs;

dTs = 0 ;% Set dTs always zero for this case

48

%end---

%Derivatives

F = Fout;

dV = Fin - F;

dVCa = Fin*Cain - F*Ca - V*alpha*exp(-E/(R*T))*Ca;

dVT = Fin*Tin - F*T - lambda*V*alpha*exp(-E/(R*T))*Ca / (rho*Cp) - Uc*Ac/(rho*Cp)*(T-Tc)

- Qj/(rho*Cp);

dTc = Fcin*(Tcin-Tc)/Vc + Uc*Ac/(rhoc*Vc*Cpc)*(T-Tc);

%Start: Gravity Flow --

%gc = g;

%Dt = sqrt(At*4/pi); %tank diameter

%ff = 3.8488e+003;%12.6239; %friction factor

%Kf = Ap*rho*2*ff/gc/Dt;

%h = V/At;

%dF = g*h/Lp*Ap - Kf*gc*F*F/(Ap*rho)/Ap; %dv = 0.0107*h - 0.00205*v*v;

%End---

%States: V, VCa, VT, Tc, Ts

sys(1) = dV;

sys(2) = dVCa;

sys(3) = dVT;

sys(4) = dTc;

sys(5) = dTs;

% end mdlDerivatives

% ===

function sys=mdlUpdate(t,x,u,params)

sys = [];

% end mdlUpdate

% ===

function sys=mdlOutputs(t,x,u,params)

%States

%i.e. V, VCa, VT, Tc, Ts

%disp('mdlOutputs --------------------------')

V = x(1);

VCa = x(2);

VT = x(3);

Tc = x(4);

Ts = x(5);

Ca = VCa/V;

if Ca < 1e-30, Ca = 0; end

T = VT/V;

%Inputs

%i.e. Fin, Tin, Cain, Tcin, Fsin, Fcin, F

F = u(7);

Ms = params(20);

Avp = params(21);

Bvp = params(22);

R = params(10);

Pj = exp(Avp/Ts+Bvp);

Fsin = u(5);

49

rhos = Ms*Pj/(R*Ts);

if Pj<35,

 ws = 112*Fsin*sqrt(35-Pj);%Fsin = extent of valve opening

else

 ws=0;

end

Fs = ws;%/rhos;

%Output

%i.e. F, T, Ca, V, Tc, Ts, Fs, alphaout

sys(1) = F;

sys(2) = T;

sys(3) = Ca;

sys(4) = V;

sys(5) = Tc;

sys(6) = Ts;

sys(7) = Fs;

% end mdlOutputs

% ===

function sys=mdlGetTimeOfNextVarHit(t,x,u,params)

sys = [];

% end mdlGetTimeOfNextVarHit

% ===

function sys=mdlTerminate(t,x,u,params)

sys = [];

% end mdlTerminate

%F = 40 - 10*(48-V);%control

%Fc = 49.9 - 4*(600-T);%control

%%Fc = Fc_prev;

%Start: control for steam inlet valve-------------------------

%Ptt = 3+(T-510)*12/200;%control for steam inlet valve

%Pc = 7+2*(12.6-Ptt);%control for steam inlet valve

%Xs = (Pc-9)/6;%control for steam inlet valve

%if Xs>1, Xs=1; end%control for steam inlet valve

%if Xs<0, Xs=0; end%control for steam inlet valve

%end--

%Start: Calculate derivative for Ts (Version 1)----------------------------

%Xs = 0.5; %open loop, fixed steam inlet valve

%Pj = exp(Avp/Ts+Bvp);

%if Pjin < Pj, Xs=0;end %

%ws = 112*Xs*sqrt(Pjin-Pj);

%Qj = -hos*Aos*(Ts-T);

%wc = -Qj/939; %steam condensate outlet

%drhos = (ws-wc)/Vj;

%rhos_new = rhos + 0.002*drhos;%assume step size of simulation 0.002

%PjTj = fsolve(@steam,[Pj Ts],optimset('Display','off'),rhos_new,Ms,R,Avp,Bvp);

%Ts_new = abs(PjTj(2));

%dTs = (Ts_new - Ts)/0.002;

%end---

50

PCA for Base Data

clear all; clc;

load('cstr_data.mat')

cstr=cstr(1:5000,2:8);

mn=mean(cstr); %mean

sd=std(cstr); %standard deviation

save('cstr_data_HE.mat','mn','sd','-append');

save('cstr_data_CAT.mat','mn','sd','-append');

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component

analysis

save('cstr_data_HE.mat','coeff','latent','-append');

save('cstr_data_CAT.mat','coeff','latent','-append');

[coeff_row,coeff_column]=size(coeff);

for i=1:8, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

mn_score=mean(score); %mean of score matrix

sd_score=std(score); %standard deviation of score matrix

save('cstr_data_HE.mat','mn_score','sd_score','-append');

save('cstr_data_CAT.mat','mn_score','sd_score','-append');

[score_row, score_column]=size(score); %state column size for normalization

loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0;

no_princomp=2; %no of retained component.

score=score(:,1:no_princomp);

score_square=(score_norm.^2);

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:5000,

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))’;

tsquare(i,1)=sum(column_t(i,:));

end

i=0;

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

%[r_row, r_column]=size(r);

51

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):cstr_column,1));

theta2=sum(latent((no_princomp+1):cstr_column,1).^2);

theta3=sum(latent((no_princomp+1):cstr_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

%SPE_threshold99=g*chisquare_99 %SPE limit alternative 2

%SPE_threshold95=g*chisquare_95

%SPE_threshold99=g*h*((1-(2/(9*h))+(z_99*((2/(9*h))^0.5)))^3) %SPE limit alternative 3

%SPE_threshold95=g*h*((1-(2/(9*h))+(z_95*((2/(9*h))^0.5)))^3)

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', ..

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('T, (hr)')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp));

%F alpha (no_princomp, (no of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp));

%F alpha (no_princomp, (no of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

52

title('T-square Chart','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2')

'--------------------end of program----------------------'

PCA for Drift in Reaction Kinetics

clear all; clc;

load('cstr_data_CAT.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff)

for i=1:8, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for normalization loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0

no_princomp=2; %no of retained component

score_square=(score_norm.^2)

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:5000, %T-square loop

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

53

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):7,1));

theta2=sum(latent((no_princomp+1):7,1).^2);

theta3=sum(latent((no_princomp+1):7,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99],

'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Reaction Kinetics','FontWeight','bold')

xlabel('T, (hr)')

ylabel('Q, PCA')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Reaction Kinetics','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2, PCA')

'--------------------end of program----------------------'

54

PCA for Drift in Heat Transfer Coefficient

clear all; clc;

load('cstr_data_HE.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff)

for i=1:8, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for normalization loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0

no_princomp=2; %no of retained component

score=score(:,1:no_princomp);

score_square=(score_norm.^2)

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:5000,

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0;

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):7,1));

theta2=sum(latent((no_princomp+1):7,1).^2);

theta3=sum(latent((no_princomp+1):7,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

55

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Heat Transfer Coefficient','FontWeight','bold')

xlabel('T, (hr)')

ylabel('Q, PCA')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T^2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Heat Transfer Coefficient','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2, PCA')

'--------------------end of program----------------------'

PCA for Drift in Reaction Kinetics & Heat Transfer Coefficient

clear all; clc;

load('cstr_data_CAT_HE.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff)

for i=1:8, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for normalization

56

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0

no_princomp=2; %no of retained component

score=score(:,1:no_princomp);

score_square=(score_norm.^2)

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:5000,

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0;

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):7,1));

theta2=sum(latent((no_princomp+1):7,1).^2);

theta3=sum(latent((no_princomp+1):7,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Reaction Kinetics & Heat Transfer Coefficient','FontWeight','bold')

xlabel('T, (hr)')

ylabel('Q, PCA')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

57

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('T-square Chart Drift in Reaction Kinetics & Heat Transfer

Coefficient','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2, PCA')

'--------------------end of program----------------------'

DPCA for Base Data

clear all; clc;

load('cstr_data.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

if i==1;

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

end

n=0;

else

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

end

end

n=0;

end

save('dpca_all_column.mat','cstr_tlshift');

%---------------------------DPCA----------------------------------%

clear all; clc;

load('dpca_all_column.mat')

cstr=cstr_tlshift;

mn=mean(cstr); %mean

sd=std(cstr); %standard deviation

save('dpca_all_column_CAT.mat','mn','sd','-append');

save('dpca_all_column_HE.mat','mn','sd','-append');

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

58

end

i=0;

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component

analysis

save('dpca_all_column_CAT.mat','coeff','latent','-append');

save('dpca_all_column_HE.mat','coeff','latent','-append');

[coeff_row,coeff_column]=size(coeff);

for i=1:cstr_column, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

mn_score=mean(score); %mean of score matrix

sd_score=std(score); %standard deviation of score matrix

save('dpca_all_column_CAT.mat','mn_score','sd_score','-append');

save('dpca_all_column_HE.mat','mn_score','sd_score','-append');

[score_row, score_column]=size(score); %state column size for normalization loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0;

no_princomp=3; %no of retained component

save('dpca_all_column_CAT.mat','no_princomp','-append');

save('dpca_all_column_HE.mat','no_princomp','-append');

score=score(:,1:no_princomp);

score_square=(score_norm.^2);

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:score_row,

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0;

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):cstr_column,1));

theta2=sum(latent((no_princomp+1):cstr_column,1).^2);

theta3=sum(latent((no_princomp+1):cstr_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

59

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('T, (hr)')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2')

'--------------------end of program----------------------'

DPCA for Drift in Reaction Kinetics

clear all; clc;

load('cstr_data_CAT.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

if i==1;

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

60

end

n=0;

else

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

end

end

n=0;

end

save('dpca_all_column_CAT.mat','cstr_tlshift','-append');

%-------------------------------------DPCA--------------------------%

clear all; clc;

load('dpca_all_column_CAT.mat')

cstr=cstr_tlshift;

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff

[coeff_row,coeff_column]=size(coeff)

for i=1:cstr_column, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for normalization loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0

score_square=(score_norm.^2)

for i=1:score_row, %T-square loop

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)'; %back projection from the score matrix

r=cstr_norm-backprojection; %residual

q=r.*r; %the Q/SPE statistics

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):score_column,1));

61

theta2=sum(latent((no_princomp+1):score_column,1).^2);

theta3=sum(latent((no_princomp+1):score_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Reaction Kinetics','FontWeight','bold')

xlabel('T, (hr)')

ylabel('Q, DPCA')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Reaction Kinetics','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2, DPCA')

'--------------------end of program----------------------'

62

DPCA for Drift in Heat Transfer Coefficient

clear all; clc;

load('cstr_data_HE.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

if i==1;

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

end

n=0;

else

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

end

end

n=0;

end

save('dpca_all_column_HE.mat','cstr_tlshift','-append');

%-------------------------------------DPCA------------------------%

clear all; clc;

load('dpca_all_column_HE.mat')

cstr=cstr_tlshift;

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff);

for i=1:cstr_column, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for normalization loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0;

score_square=(score_norm.^2);

for i=1:score_row, %T-square loop

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0;

63

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)'; %back projection from the score matrix

r=cstr_norm-backprojection; %residual

q=r.*r; %the Q/SPE statistics

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):score_column,1));

theta2=sum(latent((no_princomp+1):score_column,1).^2);

theta3=sum(latent((no_princomp+1):score_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0));

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Heat Transfer Coefficient','FontWeight','bold')

xlabel('T, (hr)')

ylabel('Q, DPCA')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title('Drift in Heat Transfer Coefficient ','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2, DPCA')

'--------------------end of program----------------------'

64

DPCA for Drift in Reaction Kinetics & Heat Transfer Coefficient

clear all; clc;

load('cstr_data_CAT_HE.mat')

cstr=cstr(1:5000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

if i==1;

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

end

n=0;

else

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

for n=1:no_lag,

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

end

end

n=0;

end

save('dpca_all_column_HE.mat','cstr_tlshift','-append');

%-------------------------------------DPCA------------------------%

clear all; clc;

load('dpca_all_column_HE.mat')

cstr=cstr_tlshift;

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop

for i=1:cstr_column, %normalization loop

norm_column=(cstr(:,i)-mn(i))./sd(i);

cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff);

for i=1:cstr_column, %convert latent to square matrix

latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for normalization loop

for i=1:score_column, %normalization loop

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

score_norm(:,i)=nSCORE_column;

end

i=0;

score_square=(score_norm.^2);

for i=1:score_row, %T-square loop

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

tsquare(i,1)=sum(column_t(i,:));

end

i=0;

65

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)'; %back projection from the score matrix

r=cstr_norm-backprojection; %residual

q=r.*r; %the Q/SPE statistics

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):score_column,1));

theta2=sum(latent((no_princomp+1):score_column,1).^2);

theta3=sum(latent((no_princomp+1):score_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0));

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title(' Drift in Reaction Kinetics & Heat Transfer Coefficient ','FontWeight','bold')

xlabel('T,(hr)')

ylabel('Q, DPCA ')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of

sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of

sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

'LineWidth', 2, 'Color','r');

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

'Location','NorthEastOutside')

title(' Drift in Reaction Kinetics & Heat Transfer Coefficient','FontWeight','bold')

xlabel('T, (hr)')

ylabel('T^2, DPCA')

'--------------------end of program----------------------'

