
i

GPU-Accelerated Web Application for Metocean Descriptive Statistics

By

Muhammad Kamal Iqramuddin bin Kamal Arifin

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

Information and Communication Technology

MAY 2015

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

32610

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

GPU-Accelerated Web Application for Metocean Descriptive Statistics

By

Muhammad Kamal Iqramuddin bin Kamal Arifin

A project dissertation submitted to the

Information and Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

INFORMATION AND COMMUNICATION TECHNOLOGY

Approved by,

……………………………………………..

(Dr Nordin bin Zakaria)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2015

iii

CERTIFICATION OF ORIGINALIY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

……………………………………………………………...

MUHAMMAD KAMAL IQRAMUDDIN KAMAL ARIFIN

iv

Abstract

In today’s real world application, many researchers and developers are using Graphic

Processing Unit (GPU) to accelerate non-graphical application. Modern GPUs which are

massively parallel general-purpose processors has a big advantages on big data analytics

in terms of power efficiency, compute density and scalability. In oil and gas industries,

metocean data is being generated, collected and analyzed at an unprecedented scale.

Metocean data which is observed measurements of current, wave, sea level and

meterological data are regularly collected by major oil and gas companies. This data, is

usually collected by specialist companies and distributed to paying parties who will deploy

their scientist and engineers to analyze and forecast information based on the information.

The analyses of metocean data provide crucial information needed for operation or design

work that has health, safety and environment (HSE) and economic consequences.

Therefore, this paper proposed GPU-accelerated web applications for metocean

descriptive statistics to improve the current CPU based implementation. Metocean

descriptive statistics is the analysis of metocean data that helps provide important

information required for operation that has health and safety as well as economic

consequences. The application will utilize GPU to perform descriptive statistics for

metocean data. The implementations of GPU for metocean descriptive statistics is

expected to provide a better raw performance, better cost-performance ratios, and better

energy performance ratios. The main objective of this project is to develop a GPU-

accelerated application for metocean descriptive statistic and a web-based application that

links to the GPU-accelerated application, besides demonstrate the capabilities of GPU in

performing non-graphical calculation.

 This research is important as it will help particular oil and gas companies in

making a better, real-time business decision which has health, safety and environment

(HSE) and economic consequences. In this research, we propose to have a GPU-

accelerated backend for the web application that will be use by metocean user and

engineer. The system will utilize GPU to perform a descriptive statistics for metocean

data. The GPU-accelerated implementations of descriptive statistics is expected to have a

v

better raw performance, better cost-performance ratios, and better energy performance

ratios.

vi

ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest to the Almighty Allah S.W.T for

granting me endurance and persistence to complete this Final Year Project. My deep

appreciation and thanks I owe to my parents and family members for their endless support

and encouragement.

To my supervisor, Dr. Nordin bin Zakaria, thank you for your guidance and assistance. I

am really grateful for his willingness to help me out and spend a lot of time guiding me

towards this project completion. Your kindness, constructive feedback and guidance are

very much appreciated.

I would also like to express my gratitude and thanks to Mr. Ade Wahyu Ramadhani for

his cooperation and advice and to all the parties involved throughout the project

completion.

Last but not least, thanks to all my friends and those who have helped me out directly and

indirectly in completing this project.

vii

Table of Contents

Abstract …………………………………………………… iv

Acknowledgment …………………………………………………… vi

List of Figures …………………………………………………… ix

List of Tables …………………………………………………… x

1.0 Introduction …………………………………………………… 1

1.1 Background …………………………………………………… 1

1.2 Problem Statement …………………………………………………… 2

1.2.1 How to improve the existing

system of metocean data descriptive

statistics system

…………………………………………………… 2

1.3 Objectives …………………………………………………… 3

1.4 Scope of Study …………………………………………………… 3

1.5 Relevancy of the project …………………………………………………… 3

2.0 Literature Review …………………………………………………… 4

2.1 Introduction …………………………………………………… 4

2.2 What is GPU? …………………………………………………… 5

2.3 Graphic Processing Unit (GPU)

vs Central Processing Unit (CPU)

…………………………………………………… 5

2.4 Metocean Data …………………………………………………… 6

2.5 Descriptive Statistics for

Metocean Data

…………………………………………………… 8

2.6 The needs of GPU computing in

data analysis

…………………………………………………… 9

2.7 Comparative Study …………………………………………………… 10

3.0 Methodology …………………………………………………… 12

3.1 Data Gathering …………………………………………………… 12

3.1.1 Online Research …………………………………………………… 14

3.1.2 Academic Research …………………………………………………… 12

3.1.3 Empirical studies, personal

experience and keen experience in

GPU computing

…………………………………………………… 14

3.2 Development Methodology …………………………………………………… 15

viii

3.3 Requirement Definition …………………………………………………… 16

3.4 System Architecture …………………………………………………… 17

3.5 Integration and System Testing …………………………………………………… 18

3.6 Hardware and Software Required …………………………………………………… 19

3.6.1 Required Software …………………………………………………… 19

3.6.2 Required Hardware …………………………………………………… 20

3.7 Planned Methodology …………………………………………………… 20

3.8 Gantt chart …………………………………………………… 22

3.9 Key Milestone …………………………………………………… 24

4.0 Result and Discussion …………………………………………………… 25

4.1. Metocean User Requirement …………………………………………………… 25

4.2 Activity Diagram …………………………………………………… 33

4.3 Use Case Diagram of the System …………………………………………………… 34

4.4 Evaluation of ArrayFire …………………………………………………… 35

4.5 Code Evaluation …………………………………………………… 37

4.6 How System will Help the

Operations
…………………………………………………… 42

4.7 Performance Comparison of CPU

and GPU in processing dataset
…………………………………………………… 42

5.0 Conclusion …………………………………………………… 43

5.1 Conclusion …………………………………………………… 43

5.2 Recommendation …………………………………………………… 44

6.0 References …………………………………………………… 45

ix

List of Figures

Figure 1: How GPU Acceleration

works

…………………………………………………… 4

Figure 2: Comparison of CPU and

GPU core

…………………………………………………… 6

Figure 3: Google ANN vs Stanford AI

Lab ANN

…………………………………………………… 9

Figure 4: Architectural difference

between CPU and GPU

…………………………………………………… 10

Figure 5: Computational Power GPU

vs CPU

…………………………………………………… 11

Figure 6: Iterative development model …………………………………………………… 13

Figure 7: System Architecture …………………………………………………… 15

Figure 8: Planned Methodology …………………………………………………… 19

Figure 9: Expected web application

interface (List Metocean Grid Point)

…………………………………………………… 23

Figure 10: Expected web application

interface (Set Metocean Grid Point)

…………………………………………………… 24

Figure 11: Expected web application

interface (Descriptive Statistics)

…………………………………………………… 25

Figure 12: Expected descriptive

analysis output

…………………………………………………… 26

Figure 13: Activity Diagram of the

System

…………………………………………………… 30

Figure 14: Use Case Diagram of the

System

…………………………………………………… 32

Figure 15: Programming interface

(Visual Studio 2013 IDE)

…………………………………………………… 33

Figure 16: Expected display interface

for output using console

…………………………………………………… 34

Figure 17: Performance Comparison

of CPU and GPU

……………………………………………………

x

List of Tables

Table 1: Gantt Chart ………………………………………………… 20

1

1.0 Introduction

1.1 Background

 A graphics processing unit (GPU) is a specialized electronic circuit typically use to

rapidly manipulate and alter memory to accelerate the creation of images in a frame

buffer intended for output to a display. It is very efficient at manipulating computer

graphics and image processing. Modern GPUs use most of their transistors to do

calculations related to 3D computer graphics. Because most of these computations

involve matrix and vector operations, more studies on the use of GPU for non-graphical

calculation have been carried out by scientists and engineers. Many areas including

molecular dynamics, quantum chemistry, numerical analytics, physics, etc. have been

using GPU to implement algorithms as regard to it computational power. Their highly

parallel structure makes them more effective than general-purpose CPUs for algorithms

where processing of large blocks of data is done in parallel. Video games and other

graphical areas have long benefited from improved GPU performance. GPU can now

afford to perform general numerical computing tasks like artificial neural networks.

 In oil and gas industries, metocean data are collected and generated at an

exceptional scale. Metocean is term use in oil and gas industries to describe the physical

environment near a particular location associated with offshore platform. Metocean

data includes measurements of current, wave, sea level and other meteorological data.

The data are regularly collected on site by major oil and gas (O&G) companies. The

analyses of metocean data provide essential information needed for operations or

design work that has health and safety and economic consequences.

 The processing of big data such as metocean data often require a lot of times and

resources. Modern GPUs which are massively parallel general-purpose processors can

provide extensive computational power in processing big data analytics. There are a

few published works which used GPUs implementation in their system that shows

notable performance gains. The utilization of GPU in big data analytics are becoming

a trend in today’s world and has been applied in many field of works. The application

of GPU in descriptive statistic of metocean data is expected to assist companies in oil

and gas industries to make a better and real-time business decision.

2

1.2 Problem Statement

1.2.1 How to improve the existing system of metocean data descriptive

statistics system

 The current implementation of the system is using CPU backend

which can be greatly improved by using a GPU backend. The highly parallel

structure of GPU makes it more effective than general-purpose CPUs for

algorithms where processing of large blocks of data is done in parallel. This

implementation may improve the performance of the system and assist the

oil and gas companies to make a better and real-time business decision.

3

1.3 Objectives

1.3.1 Develop a GPU-accelerated application for descriptive statistics of

metocean data.

1.3.2 Develop a web-based application that links to the GPU-accelerated

application.

1.3.3 To demonstrate the capabilities of GPU in performing non-graphical

calculation.

1.4 Scope of Study

This project aims at using GPU computing as an alternative to handle the descriptive

analysis of metocean data by using ArrayFire, an open source software library for GPU

computing in its implementation. The main purpose is to do the descriptive analysis

faster and consequently making it suitable for real-time applications. The high parallel

architecture of the GPU are highly compatible to process high volume data such as the

metocean data in a parallel manner.

 The implementation of GPU computing in analysis of metocean data is aimed to

improve the performance as compared to CPU implementation.

1.5 Relevancy of the project

The relevancy of the project is this project can help in making better and real time

business decision. Besides, the analyses of the metocean data which is an output of the

system might have health and safety as well as economic consequences, will be greatly

improved by the implementation of this project.

4

2.0 Literature Review

2.1. Introduction

Many researchers and programmers from different fields has started utilizing GPU

(Graphic Processing Unit) to improve performance and maximize efficiency in field of

work such as physics, signal and image processing, and visualization techniques (Owens

et al. 2007). Applications which was optimized for GPUs are known as GPU-accelerated

applications. GPU-accelerated application offers better application performance by

offloading compute-intensive portions of the application to the GPU (NVIDIA

Corporation, 2015). For example, Oil and Gas industry has also applying GPU to

accelerate their work in seismic processing application such as Acceleware, Tsunami

RTM, GeoStar Seismic Suite etc.

 Traditionally, GPU only handles computation involve in graphics whereas

computing in application was handled by CPU. Nowadays, with GPU-accelerated

computing, CPU is use together with GPU to accelerate scientific, analytics, engineering,

and consumer and enterprise applications. It offers higher performance by offloading

compute-intensive part of the application to GPU while remaining of the code still runs

on the CPU. From the user point of view, applications improved its performance and run

significantly faster (NVIDIA Corporation, 2015). Figure 1 illustrates how GPU

acceleration works, which show compute-intensive functions are handle by GPU while

the rest of sequential CPU code are handle by CPU.

Figure 1: How GPU Acceleration works

5

2.2. What is GPU?

GPU which stands for Graphical Processing Unit is a specialized microprocessor that

serves to accelerate the process of rendering two-dimensional charts or three dimensions.

Back in 1970s, it was initially used in arcade system boards to accelerate the drawing of

spite graphics for arcade games. (“Graphics Processing Unit”, 2015) In recent years,

demanding applications with substantial parallelism increasingly utilize the parallel

computing abilities of GPU to achieve higher performance and efficiency. With the use of

GPU, application with long execution times which was thought to be impractical in the

past feasible (Nickolls & Dally, 2010). GPU, over time has evolved from configurable

graphic processor to programmable parallel processor better known as general purpose

graphic processing unit (GPGPU) which can perform both graphics and computing

applications. Non-graphical calculation that a GPU can perform are large matric and

vector operation, sequence matching, speech recognition, databases, sort and search

operation etc.

2.3. Graphic Processing Unit (GPU) vs Central Processing Unit (CPU)

GPU has a parallel architecture consisting thousands of small cores designed for handling

multiple task simultaneously while CPU consist of few cores optimized for sequential

serial processing. CPU can perform complex operations on a single or few streams of data

efficiently, however for handling many streams of data simultaneously GPU is more

reliable (NVIDIA Corporation, 2015). To simply understand the difference between GPU

and CPU, figure 2 shows the comparison of cores in GPU and CPU. CPU consists of a

few cores optimized for sequential serial processing while GPU has a massively parallel

architecture consisting of thousands of smaller, more efficient cores designed for handling

multiple task simultaneously.

6

Figure 2: Comparison of CPU and GPU core

2.4. Metocean Data

Metocean is an abbreviation of the words "Meteorology" and "Oceanography". The term

metocean data is use in offshore industry to describe physical environment data near an

offshore platform.

“Metocean studies involve a lot of statistical analyses in the fields of data validation,

determination of normal and extreme metocean conditions and data transformation.” (van

Os, Caires & van Gent, 2011)

Metocean data is data collected by observing measurements of current, wave, sea level,

temperature and wind. The data are regularly collected in situ by major oil and gas (O&G)

companies. Essential information needed for operations or design work that has health and

safety as well as economic effect can be provided by metocean analysis. Other than,

avoiding high costs for installation and operation, metocean data also help to cut the

construction costs with more accurate and less conventional design conditions. As there is

no universal wave spectral model which can be applied to all storms in the world, it is a

must to support offshore operational planning for the optimal design of offshore

installations beside to ensure offshore safety and environmental protection. It is very

important and necessary to conduct environmental study during the entire phases of

offshore oil and gas exploration and production at the exposed installation area. (Vannak,

Liew & Zheng Yew, 2013)

7

Metocean data is usually collected by specialist companies. These data is then distributed

to paying parties that is interested in obtaining the data. Based on the information obtained,

these companies will deploy their scientist and engineers to analyze and forecast new

information. Processing and analysis of large data set such as metocean data, requires long

hours on performance workstation and servers, especially when methods such as ARIMA

and fuzzy logic is deployed involving large time periods and number of geographical

locations.

Presently, there are more than 10, 000 offshore production structures worldwide. With the

increase of world energy demand, the number will surely increase as oil and gas companies

competing to explore areas to find new sources of hydrocarbon. To avoid an operation of

determining new sites to be disrupted by any dangerous occurrence, regional sea state

condition surveys are done before the activities. In deep water regions, due to extreme

metocean condition, offshore structures are often exposed to dangerous conditions. Wave

forces has reportedly causing damage to offshore drilling platform. In general, the most

crucial loads to be measured during the overall design of the offshore structure because

the loads are applied to the structure from all directions. A hindcast database which

contains important data such as wave heights, wave directions, current amplitude and

direction spectral information as well as wind speed over a long period of time supplies

the environmental data needed. Hindcast is application or tool used to forecast the

phenomenon of previous/pre-years metocean situations using a computer model based on

historical events of wind-wave or atmospheric conditions. Therefore, it can be generated

or modeled only after the real events have occurred (Vannak, Liew & Zheng Yew, 2013).

8

2.5. Descriptive Statistics for Metocean Data

Descriptive statistics is set of brief descriptive coefficients that summarizes a given data

set, which can either be a representation of the entire population or a sample. The measures

used to depict the information are measures of central tendency and measures of variability

or dispersion. Measures of central tendency include the mean, median and mode, while

measures of variability include the standard deviation, variance, the minimum and

maximum value in the data set, kurtosis and skewness. Descriptive statistics give a

valuable summary of the sample when performing empirical and analytical analysis.

Although past information is useful in any analysis, the future possibility should also be

consider. (“Descriptive Statistic”, 2015).

In designing, installation and running operations in a safe and efficient manner in oil and

gas industries, metocean conditions is one of the most important factor. Extreme event

related to the environmental loads can have a damaging effect to the offshore structures.

However, the estimation of the metocean conditions and its extreme occurrences is

complicated since interpretation of the information obtained must be validate to produce

reliable environmental loads based on specified return period of the design. This data can

be collected in many ways in which, one them is the actual standard measurement system

obtained from instrumented buoy. However this data might not be accurate due to missing

data or errors, thus it is not sufficient to depend entirely on the measured data alone. Not

only that, to reduce errors in measuring extreme values of the environmental loads,

measured data have to be observed for long period (Mayeetae, Liew, Abdullah, 2012).

Hence, the standard practice is to use hindcast data to derive metocean design criteria if

there are insufficient or missing measured data. (Vannak, Liew & Zheng Yew, 2013).

9

2.6. The needs of GPU computing in data analysis

 Metocean data is a large volume of data. A very high computing power are needed

in order to analyze the data efficiently. Nowadays, data scientist increasingly using GPUs

for big data analytics to improve performance and make better, real-time business decision

(NVIDIA Corporation, 2015).

 For example, Nvidia partnered with research team at Stanford University has create

the world’s largest artificial neural network using GPU-accelerated servers. This artificial

network is 6.5 times bigger than Google-created artificial neural network back in 2012.

Diagram 3 illustrates the graph of parameters against number of servers of both network.

The graph shows that Google have 1000 CPU-based servers which totals up to 16, 000

CPU cores that consist of 1.7 billion of parameters while Stanford AI Lab with 16 GPU-

accelerated servers and consist of 11.2 billion of parameters. This shows that GPU-

accelerated system capabilities is better in comparison to CPU-based system in processing

large scale analytics (Parrish, 2013).

Figure 3: Google ANN vs Stanford AI Lab ANN

 Studies by Ren Wu, Bin Zhang, and Meichun Hsu from HP Laboratories prove that

their GPU-accelerated system can be 200-400 times faster than MineBench, their baseline

benchmark, running on a single CPU core and about 50 - 88 times faster than their highly

optimized CPU version running on a single core. Though using a large cluster of machines

and specially designed hardware accelerators can offer equivalent performance, very large

10

cluster and expensive custom designed hardware is needed. The research also shows that

GPU based approach gives best cost-performance ratio and offers better energy-

performance ratio than cluster.

2.7. Comparative Study

 We can compare the performance of CPU and GPU in term of architecture and

computational power. CPU can perform complex operations on a single or few streams of

data efficiently, however for handling many streams of data simultaneously GPU is more

reliable. (NVIDIA Corporation, 2015) Diagram 4 and 5 show the comparison for CPU

and GPU.

Figure 4: Architectural difference between CPU and GPU

11

Figure 5: Computational Power GPU vs CPU

12

3.0 Methodology

 This chapter covers all the methodology that will be used throughout the project. After

defining the problems and objectives that need to be achieved in Chapter 1, the next step is

conducting the literature review on publications, previous works and books relevant to the project.

The time allocated for each section is sufficient in order to meet with the project dateline for each

chapter. For the studies done by previous authors, most of the information is obtained from books

and journals which can be found in the Information Resource Centre as well as websites.

3.1. Data Gathering

Data gathering is the process of collecting relevant data from research papers and

information from the Internet for literature review and to be use in the project. These are

the method and platform used to collect data and information for the project.

3.1.1. Online Research

Nvidia CUDA Zone (https://developer.nvidia.com/get-started-parallel-computing) and

AMD OpenCL Zone (http://developer.amd.com/tools-and-sdks/opencl-zone/) provide

information on GPU computing as well as Cuda and OpenCL. This pages also provide

downloads for CUDA driver for Nvidia GPU and AMD OpenCL APP SDK for AMD

GPU. ArrayFire Documentation (http://www.arrayfire.com/docs/index.htm) is the main

source of reference to learn about ArrayFire. This page provide informations such as build

instruction, tutorials, list of functions and example. ArrayFire website also provide forum

to connect with the ArrayFire community and pick up acceleration tips and innovative best

practices. It was recently make open-source and this forum is medium for experts and

developers to share knowledge and information. Below are the question asked and answer

by the experts from Arrayfire. Attach is the link to the forum discussion on topic of “Read

CSV file”. The answer provided is very precise and really helpful for the development of

the project.

https://groups.google.com/forum/#!msg/arrayfire-users/Nrwy080ShdM/U2FhA_ng_cMJ

https://developer.nvidia.com/get-started-parallel-computing
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://www.arrayfire.com/docs/index.htm
https://groups.google.com/forum/#!msg/arrayfire-users/Nrwy080ShdM/U2FhA_ng_cMJ

13

Question:

Hi, I am trying to read in CSV file and then do some statistical studies on the data, but I

can't seem to find any example on how to read in CSV file. Can someone help me please?

If possible, I want to make the first row as the header. Thank you.

Answer:

Hi, I would suggest you to look at a CSV parser or write your own parser.

You will need to parse the data, store it in a host side data structure and then copy it to

ArrayFire. There is currently no way to load a file into a device side array directly.

Question:

Hi, I have created my own parser using standard C++ library. How do I store the data in

the host and copy to ArrayFire? Thank you.

Answer:

You can use one of the copy constructors in ArrayFire. For example:

// Create a six-element array on the host

 float hA[] = {0, 1, 2, 3, 4, 5};

// Which can be copied into an ArrayFire Array using the pointer copy

// constructor. Here we copy the data into a 2x3 matrix:

 array A(2, 3, hA);

The full list of constructors can be found in the documentation:

http://arrayfire.com/docs/group__construct__mat.htm

14

3.1.2. Academic Research

Through IEEE websites and Google Scholars, researcher was able to get some research

papers and literature review on similar topics that will be assessed. By reading and

analyzing these research papers, researcher was able to get deeper understanding on GPU

computing and help researcher to recognize issues and gap to be solved.

3.1.3. Empirical studies, personal experience and keen experience in GPU

computing

This topic is new to the researcher, so this require researcher to learn the topic and the way

to implement this area in real life through many sources such as books, journal, forums etc.

By researching and learning from tutorials and other resources on GPU computing,

researcher was able to have more understanding on the research area.

15

3.2. Development Methodology

In this project, iterative development model is chosen to be implemented. This model is

combination of both iterative method and incremental build model. The iterative

development model is a method of software development where the product is designed,

implemented and tested incrementally until the product is finished. This is because during

software development, there may be more than one iteration in progress at the same time.

For example, initially this research was to be use with OpenCL, then after a few discussion

ArrayFire was proposed as the medium instead. Overall software development

methodology and software development process determines the relationship between

iterations and increments. The main ideology of using this method is developing system

through repeated cycles (iterative) and is smaller chunks at time (incremental), which will

allow the developers to use the knowledge that has been collected during development of

earlier version of the system. At each iteration, design modifications are made and new

functional capabilities are added.

Figure 6: Iterative development model

16

3.3. Requirement Definition

Requirement definition would require researcher to list out any ideas of project and select

a project topic as the Final Year project title. Then, researcher must identify the problem

and objective of the project prior to the project title. After few discussions with FYP

supervisor, researcher have chosen descriptive statistic for metocean data using GPU

platform as the topic. Study on project background ad preliminary research study are

crucial element in this phase to gather all the information and study the trend within the

scope of GPU computing. Study on project background and preliminary research study

would require researcher to find research papers and other information related to the

project title. Once all the requirements are collected, the next step will be drafting the

literature review.

The goal of this project is to develop a GPU- accelerated web-based application that able

to perform descriptive statistic of metocean data. In order to meet the objective, some

research and discussion on existing application were conducted to further understand the

requirement of the project. The project will be conducted with two different operating

system which are Windows 8 and Linux Ubuntu. The software use in this project is Visual

Studio 2013 for Windows 8 with ArrayFire libraries. Defining of such necessary

requirement could ease the task in later stage.

17

3.4. System Architecture

During the design phase, system architecture is established to identify and describe the

fundamental structure abstraction as well as process flow of the whole system. The system

architecture is the conceptual model that defines the structure, behavior and flow of the

system. Figure below show a high-level architectural schematic diagram of the system.

The primary actors in the figure are: the metocean engineer, researcher, and metocean

user. Metocean engineer are engineers and specialist from the Metocean department, the

researcher is the researcher that develops the system and metocean user refers to

operational users - the end-users who makes use of the metocean data and its analysis in

their routine and design operations. Both Metocean engineer and metocean user work with

the system via a web frontend, which is web portal. The web portal interfaces to an

ArrayFire Backend, a collection of ArrayFire function that perform metocean data

descriptive statistic. The researcher are responsible for adding functions to the ArrayFire

Backend. The addition has to be manually, involving source code adaptation.

Figure 7: System Architecture

18

3.5. Integration and System Testing

This project require integration module between hardware, software and database. This

project is created separately and the output is used in the next module. The module is

separated because this module is created separately in every iteration. This project is

incrementally integrate to make it a complete project which is a web-based application

using GPU platform.

First, this system need to be integrate between software and hardware which consist of

Visual Studio 2013 and AMD Radeon HD 7470 to enable GPU computing using

OpenCL. This integration was possible by using AMD OpenCL APP SDK for AMD

GPU. OpenCL are used to give an application access to a graphics processing unit for

non-graphical computing.

Secondly, integration between the applications programmed using Visual Studio with

database in which the metocean data is stored. This integration will allow the application

to retrieve the metocean data from the database which then will be used by the

application. The retrieved data will be used by the application to perform descriptive

statistic of the data.

Third, the integration between GPU backend with the web frontend which is the web

portal that act as the interface to the metocean user and metocean engineer. The

integration will allow metocean user and metocean engineer to use the function and

modules specified at the GPU backend.

Finally, after the integration of all components are done, metocean user and metocean

engineer can use the web interface to perform descriptive statistics of the metocean data.

19

3.6. Hardware and Software Required

3.6.1. Required Software

 ArrayFire libraries

 ArrayFire is a blazing fast software library for GPU computing. Its easy-to-

use API and array-based function set make GPU programming simple. A

few lines of code in ArrayFire can replace dozens of lines of raw GPU code,

saving you valuable time and lowering development cost.

 ArrayFire utility

o Sort

o Mean

o Variance

o Standard Deviation

o Covariance

o Median

 Visual Studio 2013

 Visual Studio 2013 is an integrated development environment (IDE) from

Microsoft. It is used to develop computer programs for Microsoft Windows,

as well as web sites, web applications and web services. Visual Studio

includes a code editor supporting IntelliSense (the code completion

component) as well as code refactoring. The integrated debugger works

both as a source-level debugger and a machine-level debugger.

20

3.6.2. Required Hardware

 OpenCL or Cuda enabled Graphic Processing Unit. But in this project we are using

AMD Radeon HD 7470, which is an OpenCL enabled GPU.

GPU Name Caicos

Transistor 370 million

Interfaces PCIe 2.0 x 16

Clock Speed 750 MHz

Memory Clock Speed 900 MHz

Effective Memory Clock Speed 3600 MHz

Memory Bus 64 bit

Memory Size 1024 MB

Memory Type GDDR5

Memory Bandwidth 28.8 GB/s

21

OpenCL 1.2

Shading Units 160

Texture Mapping Units 8

Render Output Units 4

Compute Unit 2

Pixel Rate 3.00 GPixel/s

Texture Rate 6.00 GTexel/s

Floating-Point Performance 240.0 GFLOPS

3.7. Planned Methodology

Figure 8: Planned Methodology

Selection and
confirmation on project

title

Analyse the topic and
propose the scope of
studies of the project

Understand the basic
concept of GPU

computing and ArrayFire

Parameter consideration
and data gathering

Develop GPU accelerated
web-based application

for metocean data
descriptive statistic

Analyse the result and
discussion

Conclusion and
documentation

22

3.8. Gantt chart

Activity/Period
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Planning

Discussion with SV

Selection of project topic

Identify the problem

Define objectives of project

Study on project background

Preliminary research work

Literature review

Evaluate OpenCL

Evaluate ArrayFire

Installing ArrayFire

Familiarise with ArrayFire

Utility

Analysis and Design

Draft the system flow

Design system component

Design user interface

Coding ArrayFire application

Implementation

Implement ArrayFire for

Metocean Descriptive Statistics

Implement

Minimum/Maximum function

Implement Median function

Implement Range, Mean

function

Implement Standard Deviation,

Standard Error Mean and

Variance Function

23

Implement Kurtosis and

Skewness Function

Link PHP to Application code

Maintenance

Testing

Unit test

Integration test

System test

Acceptance test

Important Dates

Submission of interim report

Proposal defense

Pre-SEDEX

Viva

Project submission

Table1: Gantt Chart

24

3.9. Key Milestone

FYP1

Milestones Week

Proposal Week 3

Interim Report Week 12

Proposal Defence Week 13

FYP2

Milestones Week

Progress Report Week 7

Pre-SEDEX Week 10

VIVA Week 13

Final Report Week 14

25

4.0 Result and Discussion

4.1. Metocean User Requirement

The figures below show the snapshots of the web application interface that will be use

by metocean user and metocean engineer.

Figure 9: Expected web application interface (List Metocean Grid Point)

On this page is the metocean user will define the criteria for the grid points. First, the

user will choose the region on which the database is residing. The list of regions area

Sea Fine, Sea Coarse, Ma Kasar and Java. Then, the user is required to define the

latitude and longitude (latlong) of the location and range from the latlong defined.

“List points” button will bring the user to next page, while “Reset” button will set the

fields of each item to the preconfigure values.

26

Figure 10: Expected web application interface (Set Metocean Grid Point)

This page will show the list of grid point which fulfill the criteria describe in the previous

page. The metocean user will choose a grid point from the list and copy the value of the

grid point into the grid point text box. “Set Point” button will read the value in the text

box and set the value as grid point. “Proceed to Analysis” will bring the user to Analysis

page while “Back” button will bring user to the previous page.

27

Figure 11: Expected web application interface (Descriptive Statistics)

On the Analysis page, there are five tabs which are Descriptive Statistics tabs, Time Series

Analysis tabs, Frequency Distribution Analysis tabs and Statistical-Forecasting tabs. This

project focus on the Descriptive Statistics. In this page, user will define the start and end

date, variable, options for displaying the result, directional variable (if required), number

of directional segment and percentiles. The list of variables are Wind Speed (m/s), Total

Variance of Total Spectrum (m^2), Peak Period (sec), Sea Total Variance (m^2), Sea Peak

Spectral Period (sec), First Spectral Moment of Total Spectrum (m^2/s), Second Spectral

Moment of Total Spectrum (m^2/s2), Significant Wave Height (m), Angular Spreading

Function and In-Line Variance Ratio. Options for displaying results are All, Monthly,

Yearly and Yearly Months. The user require to check the “Directional” check box button

if the user want to include the Directional Variable in the output. The list of Directional

Variables are Wind Direction (deg), Wave Direction (deg), Sea Direction (deg), Swell

Direction (deg) and Dominant (deg). The list of number of directional segments are 8, 12

and 16. By default, the value of number of directional segment is 8. The user also require

to define the percentiles. “Analyze button” will instruct the application to perform the

28

analysis as well as generate and output the result, while “Reset” button will set all fields

to preconfigure value.

Figure 12: Expected descriptive analysis output

The output will show the grid point and the descriptive analysis result. The result include

frequency, minimum, maximum, median, range, mean, standard deviation, standard error

mean, variance, kurtosis and skewness.

 Minimum

 The smallest value in the data set.

 Maximum

 The largest value in the data set.

 Median

 The sample median is in the middle of the data: at least half the

observations are less than or equal to it, and at least half are greater than or

equal to it. To calculate the median, the data must be sort from smallest to

largest values. If N is odd, the sample median is the value in the middle. If

N is even, the sample median is the average of the two middle values. For

29

example, when N = 5 and you have data x1, x2, x3, x4, and x5, the median

= x3. When N = 6 and you have ordered data x1, x2, x3, x4, x5,and x6:

 where x3 and x4 are the third and fourth observations.

30

 Range

 The range is the difference between the largest and smallest data value in

the data set.

 R = Maximum – Minimum

 Mean

 Mean is the sum of all observations divided by the number of (nonmissing)

observations.

 The formula for mean is

 Notation

Term Description

xi i th observation

N number of nonmissing observations

 Standard deviation

 Standard standard deviation provides a measure of the spread of the data.

 The formula for standard deviation is

 Notation

Term Description

xi i th observation

 mean of the observations

N number of nonmissing observations

31

 Standard error mean

 The standard error of the mean is calculated as the standard deviation

divided by the square root of the sample size.

 The formula for standard error mean is

 Notation

Term Description

s standard deviation of the sample

N number of nonmissing observations

 Variance

 Variance is the measure of how far the data are spread from the mean.

 Formula

 Notation

Term Description

xi i th observation

 mean of the observations

N number of nonmissing observations

 Kurtosis

 Kurtosis is the measure of how different a distribution is from the normal

distribution. A positive value usually indicates that the distribution has a

sharper peak than the normal distribution. A negative value indicates that the

distribution has a flatter peak than the normal distribution.

32

 Formula

 Notation

Term Description

xi i th observation

mean of the observations

N number of nonmissing observations

s standard deviation of the sample

 Skewness

 Skewness is a measure of asymmetry. A negative value indicates skewness

to the left, and a positive value indicates skewness to the right. A zero value

does not necessarily indicate symmetry.

 Formula

 Notation

Term Description

xi ith observation

mean of the observations

N number of nonmissing observations

s standard deviation of the sample

33

4.2. Activity Diagram

Figure 13: Activity Diagram of the System

First, user need to define Region, Latitude and Longitude (LatLong) and the range from

the LatLong. Then, the system will generate a list of grid points based on the criteria

defined by user. User will select a grid point from the list and set the grid point. Then, the

system will analyze the data based on the user input.

34

4.3. Use Case Diagram of the System

Figure 14: Use Case Diagram of the System

Metocean engineer responsibility is to upload the metocean data into the system database.

Metocean user will define the grid point required and analyze the data.

35

4.4. Evaluation of ArrayFire

The programming interface in which the researcher will write the ArrayFire code

for the system is Visual Studio 2013 IDE. Figure below show the snapshots of the

programming interface.

Figure 15: Programming interface (Visual Studio 2013 IDE)

36

Figure 16: Expected display interface for output using console

37

4.5. Code evaluation

#include <arrayfire.h>

#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <sstream>

#include <fstream>

#include <string>

#include <time.h>

void readInputFile(void);

time_t start = time(0);

const int numPatterns = 400000;

double CCYYMM[numPatterns], DDHHmm[numPatterns], WD[numPatterns], WS[numPatterns], ETOT[numPatterns],

TP[numPatterns], VMD[numPatterns], ETTSea[numPatterns], TPSea[numPatterns], VMDSea[numPatterns],

ETTSw[numPatterns], TPSw[numPatterns], VMDSw[numPatterns], MO1[numPatterns], MO2[numPatterns],

HS[numPatterns], DMDIR[numPatterns], ANGSPR[numPatterns], INLINE[numPatterns];

using namespace af;

int main(int argc, char *argv[])

{

 readInputFile(); // read data from file

 array A = array(numPatterns, 1, CCYYMM); //creation of array for CCYYMM

 array B = array(numPatterns, 1, DDHHmm); //creation of array for DDHHmm

 array C = array(numPatterns, 1, WD); //creation of array for WD

 array D = array(numPatterns, 1, WS); //creation of array for WS

 array E = array(numPatterns, 1, ETOT); //creation of array for ETOT

 array F = array(numPatterns, 1, TP); //creation of array for TP

 array G = array(numPatterns, 1, VMD); //creation of array for VMD

 array H = array(numPatterns, 1, ETTSea);//creation of array for ETTSea

 array I = array(numPatterns, 1, TPSea); //creation of array for TPSea

 array J = array(numPatterns, 1, VMDSea);//creation of array for VMDSea

 array K = array(numPatterns, 1, ETTSw); //creation of array for ETTSw

 array L = array(numPatterns, 1, TPSw); //creation of array for TPSw

 array M = array(numPatterns, 1, VMDSw); //creation of array for VMDSw

 array N = array(numPatterns, 1, MO1); //creation of array for M01

 array O = array(numPatterns, 1, MO2); //creation of array for M02

 array P = array(numPatterns, 1, HS); //creation of array for HS

 array Q = array(numPatterns, 1, DMDIR); //creation of array for DMDIR

 array R = array(numPatterns, 1, ANGSPR);//creation of array for ANGSPR

 array S = array(numPatterns, 1, INLINE);//creation of array for INLINE

 af_print(mean(A)); //calculate and print mean for CCYYMM

 af_print(mean(B)); //calculate and print mean for DDHHmm

 af_print(mean(C)); //calculate and print mean for WD

 af_print(mean(D)); //calculate and print mean for WS

 af_print(mean(E)); //calculate and print mean for ETOT

 af_print(mean(F)); //calculate and print mean for TP

 af_print(mean(G)); //calculate and print mean for VMD

 af_print(mean(H)); //calculate and print mean for ETTSea

 af_print(mean(I)); //calculate and print mean for TPSea

 af_print(mean(J)); //calculate and print mean for VMDSea

 af_print(mean(K)); //calculate and print mean for ETTSw

 af_print(mean(L)); //calculate and print mean for TPSw

 af_print(mean(M)); //calculate and print mean for VMDSw

 af_print(mean(N)); //calculate and print mean for M01

 af_print(mean(O)); //calculate and print mean for M02

38

 af_print(mean(P)); //calculate and print mean for HS

 af_print(mean(Q)); //calculate and print mean for DMDIR

 af_print(mean(R)); //calculate and print mean for ANGSPR

 af_print(mean(S)); //calculate and print mean for INLINE

 std::cout << std::endl;

 af_print(median(A)); //calculate and print median for CCYYMM

 af_print(median(B)); //calculate and print median for DDHHmm

 af_print(median(C)); //calculate and print median for WD

 af_print(median(D)); //calculate and print median for WS

 af_print(median(E)); //calculate and print median for ETOT

 af_print(median(F)); //calculate and print median for TP

 af_print(median(G)); //calculate and print median for VMD

 af_print(median(H)); //calculate and print median for ETTSea

 af_print(median(I)); //calculate and print median for TPSea

 af_print(median(J)); //calculate and print median for VMDSea

 af_print(median(K)); //calculate and print median for ETTSw

 af_print(median(L)); //calculate and print median for TPSw

 af_print(median(M)); //calculate and print median for VMDSw

 af_print(median(N)); //calculate and print median for M01

 af_print(median(O)); //calculate and print median for M02

 af_print(median(P)); //calculate and print median for HS

 af_print(median(Q)); //calculate and print median for DMDIR

 af_print(median(R)); //calculate and print median for ANGSPR

 af_print(median(S)); //calculate and print median for INLINE

 std::cout << std::endl;

 af_print(stdev(A)); //calculate and print standard deviation for CCYYMM

 af_print(stdev(B)); //calculate and print standard deviation for DDHHmm

 af_print(stdev(C)); //calculate and print standard deviation for WD

 af_print(stdev(D)); //calculate and print standard deviation for WS

 af_print(stdev(E)); //calculate and print standard deviation for ETOT

 af_print(stdev(F)); //calculate and print standard deviation for TP

 af_print(stdev(G)); //calculate and print standard deviation for VMD

 af_print(stdev(H)); //calculate and print standard deviation for ETTSea

 af_print(stdev(I)); //calculate and print standard deviation for TPSea

 af_print(stdev(J)); //calculate and print standard deviation for VMDSea

 af_print(stdev(K)); //calculate and print standard deviation for ETTSw

 af_print(stdev(L)); //calculate and print standard deviation for TPSw

 af_print(stdev(M)); //calculate and print standard deviation for VMDSw

 af_print(stdev(N)); //calculate and print standard deviation for M01

 af_print(stdev(O)); //calculate and print standard deviation for M02

 af_print(stdev(P)); //calculate and print standard deviation for HS

 af_print(stdev(Q)); //calculate and print standard deviation for DMDIR

 af_print(stdev(R)); //calculate and print standard deviation for ANGSPR

 af_print(stdev(S)); //calculate and print standard deviation for INLINE

 std::cout << std::endl;

 af_print(var(A)); //calculate and print variance for CCYYMM

 af_print(var(B)); //calculate and print variance for DDHHmm

 af_print(var(C)); //calculate and print variance for WD

 af_print(var(D)); //calculate and print variance for WS

 af_print(var(E)); //calculate and print variance for ETOT

 af_print(var(F)); //calculate and print variance for TP

 af_print(var(G)); //calculate and print variance for VMD

 af_print(var(H)); //calculate and print variance for ETTSea

 af_print(var(I)); //calculate and print variance for TPSea

 af_print(var(J)); //calculate and print variance for VMDSea

39

 af_print(var(K)); //calculate and print variance for ETTSw

 af_print(var(L)); //calculate and print variance for TPSw

 af_print(var(M)); //calculate and print variance for VMDSw

 af_print(var(N)); //calculate and print variance for M01

 af_print(var(O)); //calculate and print variance for M02

 af_print(var(P)); //calculate and print variance for HS

 af_print(var(Q)); //calculate and print variance for DMDIR

 af_print(var(R)); //calculate and print variance for ANGSPR

 af_print(var(S)); //calculate and print variance for INLINE

 double seconds_since_start = difftime(time(0), start);

 std::cout << seconds_since_start << " seconds" << std::endl; //calculate processing time

 system("pause");

 return 0;

 }

 void readInputFile(void)

 {

 std::ifstream inputFile("SF001120(1).csv"); //open input file

 std::ofstream outputFile;

 outputFile.open("Output.csv");

 std::string line;

 int y = 0;

 while (std::getline(inputFile, line))

 {

 std::stringstream lineStream(line);

 std::string cell;

 int x = 0;

 while (std::getline(lineStream, cell, ','))

 {

 if (x == 0)

 {

 CCYYMM[y] = atof(cell.c_str());

 }

 else if (x == 1)

 {

 DDHHmm[y] = atof(cell.c_str());

 }

 else if (x == 2)

 {

 WD[y] = atof(cell.c_str());

 }

 else if (x == 3)

 {

 WS[y] = atof(cell.c_str());

 }

 else if (x == 4)

 {

 ETOT[y] = atof(cell.c_str());

 }

 else if (x == 5)

 {

 TP[y] = atof(cell.c_str());

 }

 else if (x == 6)

 {

 VMD[y] = atof(cell.c_str());

 }

 else if (x == 7)

40

 {

 ETTSea[y] = atof(cell.c_str());

 }

 else if (x == 8)

 {

 TPSea[y] = atof(cell.c_str());

 }

 else if (x == 9)

 {

 VMDSea[y] = atof(cell.c_str());

 }

 else if (x == 10)

 {

 ETTSw[y] = atof(cell.c_str());

 }

 else if (x == 11)

 {

 TPSw[y] = atof(cell.c_str());

 }

 else if (x == 12)

 {

 VMDSw[y] = atof(cell.c_str());

 }

 else if (x == 13)

 {

 MO1[y] = atof(cell.c_str());

 }

 else if (x == 14)

 {

 MO2[y] = atof(cell.c_str());

 }

 else if (x == 15)

 {

 HS[y] = atof(cell.c_str());

 }

 else if (x == 16)

 {

 DMDIR[y] = atof(cell.c_str());

 }

 else if (x == 17)

 {

 ANGSPR[y] = atof(cell.c_str());

 }

 else if (x == 18)

 {

 INLINE[y] = atof(cell.c_str());

 }

 x++;

 }

 std::cout << CCYYMM[y] << ", " << DDHHmm[y] << ", " << WD[y] << ", " << WS[y] << ", "

<< ETOT[y] << ", " << TP[y] << ", " << VMD[y] << ", " << ETTSea[y] << ", " << TPSea[y] << ", " << VMDSea[y] << ", " <<

ETTSw[y] << ", " << TPSw[y] << ", " << VMDSw[y] << ", " << MO1[y] << ", " << MO2[y] << ", " << HS[y] << ", " <<

DMDIR[y] << ", " << ANGSPR[y] << ", " << INLINE[y] << std::endl;

 outputFile << CCYYMM[y] << ", " << DDHHmm[y] << ", " << WD[y] << ", " << WS[y] << ",

" << ETOT[y] << ", " << TP[y] << ", " << VMD[y] << ", " << ETTSea[y] << ", " << TPSea[y] << ", " << VMDSea[y] << ", " <<

ETTSw[y] << ", " << TPSw[y] << ", " << VMDSw[y] << ", " << MO1[y] << ", " << MO2[y] << ", " << HS[y] << ", " <<

DMDIR[y] << ", " << ANGSPR[y] << ", " << INLINE[y] << std::endl;

 y++;

 if (y == numPatterns){ break; }

 }

 std::cout << "\nNumber of line = " << y << std::endl;

41

 std::cout << "\nDone Execute" << std::endl;

 outputFile.close();

 }

42

4.6. How System will Help the Operations

This system will help in improving the performance of the current metocean data

descriptive statistic system. The GPU-accelerated web application is expected to

have higher performance and can process larger data set than existing system.

4.7. Performance Comparison of CPU and GPU in Processing Dataset

Figure below shows the tabulation of the number of dataset versus the processing

time:

Figure 17: Performance Comparison of CPU and GPU

Based on the result, we can conclude that with the increase amount of dataset the

GPU shows a better performance in term of processing time compared to CPU.

Increased performance in processing time and less time required to process large

number of datasets shows that a GPU-accelerated is more effective in processing

a large amount of data.

384

776

1147

1530

1728

391

777

1110

1529

1708

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100000 200000 300000 400000 447049

Ti
m

e
 (

s)

dataset

Performance Comparison of CPU and GPU

CPU GPU

43

5.0 Conclusion and recommendation

5.1. Conclusion

This research consist of two phases which are FYP 1 and FYP 2. The first phase

was concerning on the setting up of the environment for ArrayFire. This phase

focusing on installing ArrayFire libraries on Windows and Linux. The part also

include learning about ArrayFire utility which consist of sort, mean, variance,

standard deviation, covariance, median and correlation coefficient functions from

the documentation in ArrayFire webpage. Researcher also has learn from example

that was included in the webpage to understand more about ArrayFire. Other than

that, researcher has learn to develop a C++ application which utilizes ArrayFire

library.

In the second part, the researcher has develop the application where the

knowledge accumulated in FYP 1 is utilized. By using GPU in the

implementation, it was expected to improve the performance of the system in

comparison to existing CPU based system. GPUs which are massively parallel

general-purpose processors are more reliable in terms of power efficiency,

compute density and scalability on big data analytics, thus, the application of GPU

in descriptive statistic of metocean data is expected to assist companies in oil and

gas industries to make a better and real-time business decision.

During this phases, some of the challenges that the researcher has faced is

difficulty in installing the ArrayFire libraries. This is because the researcher are

not use to installing libraries from source which make it a challenge to the

researcher. Besides that, the researcher also facing a problem in understanding the

code for GPU computing as this area is a new area of knowledge to the researcher.

44

5.2. Recommendation

In the future, the researcher would like to recommend to have a basic knowledge

in GPU computing specifically OpenCL and CUDA. This is because this research

are mainly on GPU computing and by having enough knowledge on the area will

help the research and development to go smoothly. It is also recommended to add

more parameters in comparing the performance between GPU and CPU besides

processing time.

45

References

1. Van Os, J., Caires, S., Van Gent, M.R.A. (2011) Guidelines for Metocean Data

Analysis. Proc. 21th Int. Offshore and Polar Eng. Conference, Maui, Hawaii, USA,

June 2011.

2. NVIDIA Corporation (2015). What is GPU Accelerated Computing? [ONLINE]

Available at: http://www.nvidia.com/object/what-is-gpu-computing.html. [Last

Accessed 21 March 2015].

3. Owens, J. D., Houston, M., Luebke, D., Green, S., John E. S., and Phillips J. C.,

(2008). GPU Computing. Proceedings of the IEEE. 96 (5), pp.879-899

4. Suchard, M. (n.d.). Understanding GPU Programming for Statistical Computation:

Studies in Massively Parallel Massive Mixtures. Journal of Computational and

Graphical Statistics, 419-438.

5. R. Wu, B. Zhang, and M. Hsu, "Clustering billions of data points using GPUs," in

UCHPC-MAW'09: Proceedings of the combined workshops on UnConventional

high performance computing workshop plus memory access workshop, Ischia,

Italy, 2009, pp. 1-6.

6. NVIDIA Corporation (2015). Data Science. [ONLINE] Available at:

http://www.nvidia.com/object/data-science-analytics-database.html. [Last

Accessed 21 March 2015].

7. Vannak, D., Liew, M.S., Yew, G.Z., (2013) Time Domain and Frequency Domain

Analyses of Measured Metocean Data for Malaysian Waters Guidelines for

Metocean Data Analysis. World Academy of Science, Engineering and

Technology International Journal of Environmental, Ecological, Geological and

Geophysical Engineering, 7(8), 299-304.

8. Z. Mayeetae, M. S. Liew and M. N. Abdullah, "Validating Hindcast Metocean

Parameter with Measured Environmental Loads of Malaysian Water," APSEC-

ICCER, Surabaya, 2012.

9. R Mokhtari, M Stumm. IPDPS, (2014) BigKernel—High Performance CPU-GPU

Communication Pipelining for Big Data-style Applications.

46

10. Kevin Parrish (2013). Nvidia GPUs Power World's Largest Virtual Brain.

[ONLINE] Available at: http://www.tomsitpro.com/articles/stanford-nvidia-gpu-

cuda-machine_learning,1-1104.html.[Last Accessed 21 March 2015].

