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ABSTRACT 

 

This report will discuss about MapReduce and how it handles big data. In this report, 

Metocean (Meteorology and Oceanography) Data will be used as it consist of large 

data. As the number and type of data acquisition devices grows annually, the sheer 

size and rate of data being collected is rapidly expanding. These big data sets can 

contain gigabytes or terabytes of data, and can grow on the order of megabytes or 

gigabytes per day. While the collection of this information presents opportunities for 

insight, it also presents many challenges. Most algorithms are not designed to 

process big data sets in a reasonable amount of time or with a reasonable amount of 

memory. MapReduce allows us to meet many of these challenges to gain important 

insights from large data sets. The objective of this project is to use MapReduce to 

handle big data. MapReduce is a programming technique for analysing data sets that 

do not fit in memory. The problem statement chapter in this project will discuss on 

how MapReduce comes as an advantage to deal with large data. The literature review 

part will explain the definition of NoSQL and RDBMS, Hadoop Mapreduce and big 

data, things to do when selecting database, NoSQL database deployments, scenarios 

for using Hadoop and Hadoop real world example. The methodology part will 

explain the waterfall method used in this project development. The result and 

discussion will explain in details the result and discussion from my project. The last 

chapter in this project report is conclusion and recommendation 
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CHAPTER 1: INTRODUCTION 

 

1.1  BACKGROUND 

 

Metocean according to an article in Definition-of is the abbreviation of 

“Meteorology” and “Oceanography” that is commonly used in the offshore industry. 

The term describes the physical environment usually vicinal an offshore platform. 

Metocean data is the observation measurement of wind, atmospheric pressure, air, 

temperature, waves, current, water level, salinity, water temperature, etc. (Metocean 

database description,2014) These data are regularly collected in situ by major oil and 

gas (O&G) companies. Metocean analyses serve crucial information needed for 

operations or design work that has health and safety and economic corollary.  

Typically, Metocean data is collected by specialist companies and distributed to 

paying parties who will then set up scientists and engineers to analyze and forecast 

information based on the information. The data, confidential in nature, will be passed 

around in large storage devices, or stored in a networked device to be downloaded 

and studied when needed. For large data set, processing and analysis typically 

requires long, expensive hours on high-performance workstations and servers, 

especially when methods such as ARIMA and fuzzy logic is deployed involving 

large time periods and number of geographical locations. 

MapReduce definition according to an article in Search Cloud Computing is a 

software framework that allows developers to write their own programs that will 

process massive amounts of data that is unstructured in parallel across a stand-alone 

computers or distributed cluster of processors. MapReduce is known as the heart of 

Hadoop. MapReduce concept is quite simple to understand especially for those who 

are familiar with the clustered scale-out data processing solutions.  

According to an article about MapReduce in IBM, the term MapReduce itself 

actually refers to two separate and discrete tasks that Hadoop programs perform. The 

first task is the map job, which will takes a set of data and converts it into another set 
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of data, where individual elements are broken down into tuples (key/value pairs). 

The reduce job on the other hand, takes the output from a map as input and then 

combines those data tuples into a smaller set of tuples. As the sequence of the name 

MapReduce implies, the reduce job will always be performed after the map job. 

 

1.2  PROBLEM STATEMENT 

 

When dealing with Metocean data, big data were involved. More complex data of 

meteorological and oceanographic data may include multiple levels of nesting. In the 

past, these data usually modeled into relational tables but it has not fit into the two 

dimensional row column structure naturally. Other alternatives to store the big and 

complex data need to be considered. When handling complex data, other than 

RDBMS, NoSQL can be a lot of help. In NoSQL databases, the multi-level nesting 

and hierarchies can be easily represented. NoSQL database are primarily non-

relational database.  

SQL database are vertically scalable. Problem rise when the database need to be 

scaled, hardware boost is needed on which the DBMS System is installed.  On the 

other hand, NoSQL are horizontally scalable. More nodes need to be added and 

distribution network need to be created based on our need and power is required. 

Load on the database will be reduced thus increase the scalability.  

 

 

1.3  OBJECTIVES  

 

The objective of this project is to use Hadoop to process Metocean Data. Descriptive 

statistics will be done to display the processed data. MATLAB will be used as a 

platform to do the descriptive statistics. Descriptive statistics in this project will 

consists of mean, mode, median, maximum and minimum value.  
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1.4  SCOPE OF STUDY 

 

Descriptive statistics. Descriptive statistics according to an article in Investopedia 

titled “Descriptive Statistics” is a set of brief descriptive coefficients that summarizes 

a given data set, which can either be a representation of the entire population or a 

sample. The measures used to describe the data set are measures of central tendency 

and measures of variability or dispersion. The measures of central tendency include 

mode, mean, median while measures of variability include the standard deviation (or 

variance), maximum and minimum variables, kurtosis and skewness.  Descriptive 

statistics provides a useful summary of security returns.  

This happens when performing empirical and analytical analysis, as they provide a 

historical account of return behavior. The expectations of future events need to be 

considered although past information is useful in any analysis. In other words, 

descriptive statistics helps describe, show or summarize data in a meaningful way. 

However, descriptive statistics does not allow us to make conclusions beyond the 

data we have analyzed or reach conclusions regarding any hypotheses we might have 

made. They are simply a way to describe our data. 
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CHAPTER 2: LITERATURE REVIEW AND/OR THEORY 

 

2.1  DEFINITION OF NOSQL AND RELATIONAL DATABASE 

MODEL (RDBMS) 

 

Database is the assemblage of organized data (Christopher Heng,2014). When 

someone has a lot of files, it is not convenient to save the files with names like 

“doc1”, “doc2”, and “doc3”. It is inefficient and it will consume a lot of time to 

retrieve the files back.  Database programs were designed to help store tons of data in 

an organized way so it will be easier to retrieve them back. According to O.S Tezer 

(2014) there are two types of database model; relational model and the model-less 

(NoSQL) approach. 

Each and every database system will use a different database model that is suitable 

for them. The selection of database model is very important as it is the first step to 

determine how the database model will work and handle the data. The Relational 

Model is the most popular and widely used database model. Although it is the most 

popular database model, it has several issues that were not being solved. Then comes 

the new model NoSQL that were promised to solve the problems faced by Relational 

Model users. NoSQL also offers interesting functionality as a bonus.  

NoSQL according to an article in Techopedia is a class of database management 

system (DBMS). It does not follow all the rules of a relational database management 

system and it cannot use the traditional SQL to query its data. NoSQL normally 

misunderstood as the replacement of SQL and RDBMS. NoSQL actually the 

complementary of RDBMS and SQL. The implementation of NoSQL-based system 

usually involves large databases where SQL and relational model of databases 

couldn’t handle due to performance problems. Some examples implementations of 

NoSQL are Google’s BigTable, Facebook’s Cassandra database and Amazon’s 

SimpleDB and Dynamo. Meanwhile Relational Database management system 

(RDBMS) is a database engine or system based on the relational model (Techopedia, 
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2014). Data in RDBMS must be presented and stored as relations. For an example, 

tables will have relationships which each other; primary key and foreign key. 

 

 

2.2  HADOOP, MAPREDUCE AND BIG DATA 

 

Hadoop by definition according to Search Cloud Computing site, is a free, Java-

based programming framework. Hadoop supports the processing of large data sets in 

distributed computing environment. Sponsored by the Apache software Foundation, 

Hadoop is part of the Apache project. To understand Hadoop, one have to understand 

the two fundamental things about it (Gualtieri, 2013). They are; How Hadoop store 

files and How Hadoop process the data. Imagine that you have a large file and it is so 

large that it did not fit into your PC’s capacity. At the end of the day, you will not be 

able to store the file. But with Hadoop, you can store files that is bigger that what can 

be stored on one particular node or server. You will be able to store very large files 

or even many files that you want.  

The second characteristic for Hadoop is the ability to process data or at least provide 

a framework for processing data. This is called Map/Reduce. Map/Reduce, rather 

than taking the conventional step of moving data over a network to be processed by 

software uses a smarter approach tailor made for big data sets. For a really large data 

sets, moving the data over a network can be very slow. Imagine opening a very large 

file on laptop. This will takes a very long time or forever for some old laptops. 

Worse case is laptop will stop working and reboot itself. MapReduce, rather than 

moving the data to the software, it moves the processing software to the data.  

In another article, Hadoop was explained by defining the modules in it. Hadoop is 

made up of “modules”, which each modules carries out a particular task that is 

essential for a computer system designed for big data analytics (Bernard Marr, 2014). 

These four modules are Distributed File-System, MapReduce, Hadoop Common and 

Yarn. Bernard and Gueltieri both agreed that Distributed File System and 
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MapReduce are the two most important or fundamental thing in Hadoop. Distributed 

File System or HDFS (Hadoop Distributed File System) serves the purpose in 

allowing data to be stored in an easy accessible format, across a large number of 

linked storage devices. The method called “file system” is used by a computer to 

store data so it can be easily found and used. This is usually determined by the 

computer’s operating system. Hadoop system however, uses its own file system that 

sits “above” file system of the host computer – it can be easily accessed using any 

computer running any supported operating system. 

Hadoop Common, is the other module in Hadoop which provides the tools in Java 

that is needed for the user’s computer system such as Windows or Unix. This is to 

read the data stored under the Hadoop file system. The final module in Hadoop is 

YARN. YARN serves the purpose of managing resources of the systems storing the 

data and running the analysis. Numerous other procedures, libraries or features have 

come to be considered part of the Hadoop “framework” over the years, but HDFS 

(Hadoop Distributed File System) , MapReduce, Hadoop Common and YARN are 

the principle four (Bernard Marr, 2014). According to Ravi in his article “What is a 

“Hadoop”? Explaining Big Data to the C-Suite” the big deal about Hadoop is the 

flexibility, scalability and economics.  

By definition, according to dictionary.com, flexible is susceptible of modification or 

adaption; adaptable. Hadoop is flexible as we can store any data and can run any 

analysis. Scalability according to Wikipedia is the ability of a system, network, or 

process to handle an increasing amount of work in a capable manner or the ability for 

it to be enlarged to accommodate the growth. Hadoop can be considered as a scalable 

ecosystem as the ability for Hadoop to accommodate growth of data can start at 1 

Terabyte per 3-nodes and can grow up to petabytes per 1000s nodes. Economical or 

economics according to the definition in the free dictionary site is sparing in the 

amount of items involved to achieve a desired result. Hadoop is considered 

economics as the cost per Terabytes at a fraction of traditional options.  
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2.3  THINGS TO DO WHEN SELECTING DATABASE 

 

Before selecting database model, there are several things that need to be considered. 

According to Jnan Dash (2013), the two most important things one needs to consider 

when selecting a database are characteristics of data and the volatility of the data 

model. In case that the selected data consist of a simple tabular structure, it should be 

adequate to use the relational model. For example, data like an accounting 

spreadsheet does not need to use the model-less (NoSQL) approach.  

Data that might have multiple levels of nesting tend to be more complex. This type 

of data normally modelled into relational tables. But a problem occurs when these 

data are not fit to the two-dimensional row-column structure of relational tables. 

Some examples for multiple levels of nesting type of data are geo-spatial, molecular 

modelling and engineering parts. NoSQL database should be considered as an option 

as the multi-level nesting and hierarchies will be easily presented in the JavaScript 

Object Notation format used by some NoSQL products. 

Data volatility according to article in its bldrdoc website is the rate of change in the 

amount of stored data over a period of time. It is important to know whether the data 

model is going to be changed or evolved easily over a period of time or is it going to 

stay the same. The facts about the data model are unknown at the design time is 

known and so flexibility is very important. In many companies that use the MySQL 

database system, they will spend many hours cautioning their users to design the 

right schema the first time. Later revisions made after that will slow or stop the 

database from operating. Any potential changes needed to be done must be minimal 

to avoid the slowing or stopping process of the database. The “get it right first” 

approach might not have worked in the new world of dynamic schema where 

changes are made daily, hourly even every minute to fit the ever changing data 

model. It might work in the old static schema. So a great flexibility type of database 

is required and NoSQL is the answer.  

As for Stephen Pimentel (2014) data model, query language, scalability, concurrency 

control and consistency model are the things that needed to be considered when 

selecting database. Data model can be considered as one of the fundamental issues 
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that have to do with the “structure” of your data. Some might just be expressed in 

normalized tables and for some data centered on structured objects that will be 

converted easily into the embedded JSON documents. For some data they might 

consist of nodes and links. As for the simple one, there might just be like a dictionary 

with values and keys. Application data can be categorized on any of these categories; 

one or more. Thus it is hard to make decision on which database solution needed 

because most of the database solution only support a single data model; graph, 

document, key-value or relational. Things for the queries will get complicated if the 

data model is poorly matched and it will also harm the overall performance. 

A query language might not be a concern if the applications used are very well-suited 

to access the data through application programming interface (API). Because not all 

application that were used requires a separate query language. Applications often 

concurrent with each other, they don’t just perform a single write. They need to 

perform the whole sets of reads and writes as determined by the business logic. Some 

systems may support single row or documents only. The strongest form of 

concurrency control is to support transactions with full Atomicity, Consistency, 

Isolation, Durability (ACID) properties over numerous keys on any node in the 

cluster. However, even systems claiming to offer transactions vary significantly in 

their performance and support for Atomicity, Consistency, Isolation, Durability 

(ACID) properties. 

Operational database normally have numerous clients performing updates 

concurrently. They definitely need a mechanism that can control and handle potential 

conflict updates. The mechanisms used by these systems varies widely. There are 

systems that can offers only the weak consistency guarantees. For an example, 

eventually consistent system guaranteed that a key will return the most recent 

updated value after a sufficient period of inactivity. The conflicting values then will 

be managed by application clients. In contrary, a system with a strong level of 

consistency will guarantee that any write acknowledged to a client will be 

understandable and readable by all clients.  

Terry Orsborn (2013) has the same idea with Stephen Pimentel that scalability is 

important when selecting database. According to Stephen Pimentel (2014) 

application will grow over time. In older times, people might want to replace the 
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server with the larger one which is expensive. Sometimes this approach is referred to 

“vertical” scaling. The latest alternative introduced is the “horizontal” scaling. It 

allows user to add commodity hardware to a distributed cluster that makes it cheaper 

that “vertical” scaling. It is very challenging to provide transactions over distributed 

cluster when multi-client operations rely on transactional guarantees for the database 

operations. Majority of the NoSQL systems does have the jettisoned support for the 

transactions to provide a simpler distributed designs and it will appears simpler for 

the database designers but not for the programmers.  

According to Terry Osborn (2013) internal users and external customers, they don’t 

readily differentiate between local and remote assets and they come to expect a near-

instantaneous reply from technology. For an example, user usually assumes that 

when they want to retrieve data from the internet, they will get it quickly as it is 

when they retrieved data from the data hosted on their computer. A Relational 

Database Management System (RDBMS) underpins most enterprise applications, 

where any sluggishness within this layer will inevitably bubble up and interrupt the 

rest of the information-processing environment. A scalable Relational Database 

Management System (RDBMS) are able to support ever-growing quantities of data, 

users and transactions without involving any new hardware costs. Several best 

methods for increasing scalability according to Terry Osborn (2013) is to include 

data compression, in-memory processing, database virtualization, and exploiting the 

power of multi-processor servers. 

 

 

2.4  WHY CHOOSE NOSQL OVER RDBMS 

 

NoSQL does not require a tight schema binding up front. When handling data that 

the schema is not properly defined or it is expected to change over time, the 

traditional RDBMS with rigid schema will makes things be a little bit difficult. Sure, 

we can make things work but it will required an extra effort front and then extra 

effort for the life of the application. With NoSQL, that problem will go away.  
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2.5  NOSQL DATABASE DEPLOYMENTS 

 

2.5.1  SESSION STORE 

 

As the application have grown in scale, it is very hard for the web application 

developers to handle session information using the relational technology. A 

global session store (one that manages session information for each user who 

visited a website) is the right approach. NoSQL begin to be one of the best 

options in storing web application session information. This is due to the 

unstructured nature of session data that make it easier to store data in a 

schema-less document that in a structured or more rigid RDBMS record. It is 

critical to have the low-latency to session data to ensure a great user 

experience  

 

2.5.2  USER PROFILE STORE 

 

Ability to login and user profiles are needed for all web applications. Another 

example where the key value characteristics of NoSQL comes into play is the 

global user profile store. User preference, user ID, multiple ID mappings and 

any additional user information can be stored using NoSQL database so that 

the application can quickly search for a user and authenticate access. The 

“always on” and the scale-out characteristics of NoSQL are very essential to 

any web application. Recently, TuneWiki drafted a BlogSpot on how they use 

NoSQL as a user profile store.  
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2.5.3  CONTENT AND METADATA STORE 

 

Integration of different learning tools into a single platform from text-heavy 

data such as articles, digital content and eBooks is needed by companies like 

McGraw-Hill. Metadata in content-driven application is the most heavily 

accessed data because the response time is slow. To build custom content-

driven application using NoSQL, document databases particularly gives the 

flexibility to store a wide variety of content and provide fast access to it. 

 

2.5.4  MOBILE APPLICATIONS 

 

It is very critical for the developer to update and enhance mobile applications 

without any service disruption. NoSQL database comes in handy as it allows 

developer to store user information and application content in a schema-less 

format. This allows developers to make modification or changes to the 

mobile applications quickly and without major database infrastructure 

changes. User will not experience any interrupt problem when using the 

application. Kobo and Playtika that serve millions of users across the globe 

are some examples of popular companies that use NoSQL and take it as 

advantage for their mobile applications.  

 

 

2.6  HADOOP AND NOSQL 

 

Hadoop refers to an ecosystem of software packages, including HDFS, MapReduce, 

and a whole host of other software packages to support the import and export of data 

into and from HDFS (Hadoop Distributed File System). By having a Hadoop cluster, 
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it literally means a cluster of machines all running in general ecosystem with a large 

distributed file system to support the large scale computation. NoSQL refers to non-

relational or at least non-SQL database solutions such as MongoDB,  HBase (also a 

part of the Hadoop ecosystem), CouchDB, Cassandra,  Riak,  etc.. Hadoop is a 

computing framework and NoSQL is Not Only SQL databases. 

 

 

2.7  SCENARIOS FOR USING HADOOP 

 

When a user types in a query, it is not that practical to exhaustively scan millions of 

items. It does make sense instead to create an index and use it to rank items and then 

find the best matches. A distributed indexing capability is provided by Hadoop. 

According to an article in IBM site, Solr offers the indexing capabilities and other 

powerful search capabilities such as central configuration system, reliability and 

scalability and failover and recovery. Solr is an enterprise search tool from the 

Apache Lucene project. Hadoop runs on a cluster or collection of commodity, 

shared-nothing x86 servers. Servers in a Hadoop cluster (sizes from 50, 100 to even 

2000+ nodes) can be added or removed at will as the system will detects and 

compensates for system or hardware problems on any server. In spite of 

systemchanges or failure, Hadoop can deliver data and can run large-scale, high-

pperformance processing batch jobs as it is a self-healing and fault tolerant. 

 

 

2.7.1  THREE DISTINCT SCENARIOS FOR HADOOP  

 

Hadoop as an ETL(Extract, Transform and Load) and Filtering 

Platform 
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Extracting valuable signal from lot of noise became one of the biggest 

challenges with high volume data sources. It is a good way to go to load 

large, raw data into a MapReduce platform for initial processing. Raw data 

can be read by Hadoop platform, appropriate filters and logic can be applied, 

and structured summary or refined data set can be set as an output. This 

output (e.g., hourly index refreshes) can be further analysed or serve as an 

input to a more traditional analytic environment like SAS. Any business 

problem required a small percent of a raw data feed. Hadoop becomes a great 

tool for extracting these pieces. 

 

Hadoop as an exploration engine  

 

Using tools to analyse data where it sits makes sense once the data is in the 

MapReduce cluster. New data can be added to the existing pile without 

having to re-index all over again as the refined output is in a Hadoop 

cluster.  In other words, new data can be added to existing data 

summaries.  The data can be loaded into corporate systems once it is distilled 

so users have wider access to it. 

 

Hadoop as an Archive.   

 

Most of the historical data doesn’t need to be accessed and kept in a SAN 

environment. The historical data is usually archived by disk or tape to 

secondary storage or sent offsite. When these data is needed for analysis, it is 

painful and costly to retrieve back and load it back up. Most people don’t 

even bother using the historical data for their analytics.  With cheap storage 

in a distributed cluster, a lot of data can be kept “active” for a continuous 

analysis. Hadoop is very efficient as it allows the generation of different 

index types in one cluster by allowing better utilization of hardware. 
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2.8  HADOOP REAL WORLD EXAMPLES 

 

LinkedIn 

 

LinkedIn is an enormous data accumulation whose value is connections. It 

currently computes more than 100 billion personalized recommendations 

every week and powering an ever growing assortment of products, including 

Groups You May Like, Jobs You May be Interested In, Ad Targeting, and 

News Relevance. LinkedIn leverages Hadoop by using knowledge aggregated 

to transform raw data to rich features from LinkedIn’s 125 million member 

base. The company then uses Lucene to do a real-time recommendations, and 

in addition to Lucene on Hadoop to bridge offline analysis with user-facing 

services. The streams of user-generated information, referred to as a “social 

media feeds”, may contain valuable, real-time information on the LinkedIn 

member opinions, activities, and mood states. 

 

CBS Interactive 

 

Hadoop is used by CBS Interactive as the web analytics platform, processing 

one Billion weblogs daily as it grows from 250 million events per day from 

hundreds of web site properties. CBS Interactive are the online division for 

the broadcast network CBS. They are the largest premium online content 

network and listed as in top 10 global web property.  Some of the brands 

include:  CNET, TV.com, Last.fm, CBS Sports, 60 Minutes, etc. To crunch 

web metrics, CBS Interactive migrated its processing from a proprietary 

platform to Hadoop. The goal was to achieve fault-tolerance and scalability, 

more robustness, and significant reduction of processing time to reach SLA 

(Service-Level Agreement); over 6 hours of reduction so far. They built an 
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ETL framework called Lumberjack, built based on python and streaming to 

enable this. 

 

Explorys and Cleaveland Clinic 

 

Explorys, founded in 2009 in partnership with the Cleveland Clinic, is one of 

the largest clinical repositories in the United States with 10 million lives 

under contract. The Explorys healthcare platform is based upon a massively 

parallel computing model that enables subscribers to search and analyse 

patient populations, treatment protocols, and clinical outcomes. With billions 

of clinical and operational events already curated, Explorys helps healthcare 

leaders leverage analytics for break-through discovery and the improvement 

of medicine. HBase and Hadoop are at the centre of Explorys. Already 

ingesting billions of anonymised clinical records, Explorys provides a 

powerful and HIPAA compliant platform for accelerating discovery. 

 

Foursquare 

 

Foursquare is a mobile, location and social networking start-up aimed at 

letting your friends in almost every country know where you are and figuring 

out where they are. As a platform foursquare is now aware of 25+ million 

venues worldwide, each of which can be described by unique signals about 

who is coming to these places, when, and for how long. To reward and incent 

users foursquare allows frequent users to collect points, prize “badges,” and 

eventually, coupons, for check-ins. 

Foursquare is built on enabling better mobile + location + social networking 

by applying machine learning algorithms to the collective movement patterns 

of millions of people. The ultimate goal is to build new services which help 
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people better explore and connect with places. Foursquare engineering 

employs a variety of machine learning algorithms to distil check-in signals 

into useful data for app and platform.  Foursquare is enabled by a social 

recommendation engine and real-time suggestions based on a person’s social 

graph. 

Matthew Rathbone, foursquare engineering, describes the data analytics 

challenge as follows: 

“With over 500 million check-ins last year and growing, we log a lot of data. 

We use that data to do a lot of interesting analysis, from finding the most 

popular local bars in any city, to recommending people you might know. 

However, until recently, our data was only stored in production databases and 

log files. Most of the time this was fine, but whenever someone non-technical 

wanted to do some ad-hoc data exploration, it required them knowing 

SCALA and being able to query against production databases. 

This has become a larger problem as of late, as many of our business 

development managers, venue specialists, and upper management eggheads 

need access to the data in order to inform some important decisions. For 

example, which venues are fakes or duplicates (so we can delete them), what 

areas of the country are drawn to which kinds of venues (so we can help them 

promote themselves), and what are the demographics of our users in Belgium 

(so we can surface useful information)?” 

To enable easy access to data foursquare engineering decided to use Apache 

Hadoop, and Apache Hive in combination with a custom data server (built in 

Ruby), all running in Amazon EC2. The data server is built using Rails, 

MongoDB, Redis, and Resque and communicates with Hive using the ruby 

Thrift client. 
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CHAPTER 3: METHODOLOGY/PROJECT WORK 

 

Methodology used in this project is waterfall methodology.  It is also referred to as a 

linear-sequential life cycle model. It is quite simple to understand. Each phase in a 

waterfall model must be completed before the next phase can begin and there is no 

overlapping in the phases. Waterfall model is the earliest SDLC approach that was 

used for software development. The waterfall model illustrates the software 

development process in a linear sequential flow; hence it is also referred to as a 

linear-sequential life cycle model. This means that any phase in the development 

process begins only if the previous phase is complete. In waterfall model phases do 

not overlap. 

 

3.1 WATERFALL MODEL DESIGN 

 

In "The Waterfall" approach, the whole process of software development is divided 

into separate phases. In Waterfall model, typically, the outcome of one phase acts as 

the input for the next phase sequentially. 

 

Figure 3.1 : Waterfall Model 
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3.2 PHASES IN WATERFALL MODEL 

3.2.1 REQUIREMENT ANALYSIS 

 

All possible requirements of the system to be developed are captured in this 

phase and documented in a requirement specification doc. For this project, 

MATLAB and Metocean data are the basic requirement that were identified. 

The Metocean data were used is a sample of a coordinate taken from the real 

database. The data consists of more than 440000 rows. 

 

Figure 3.2 : Metocean data sample 

3.2.2 SYSTEM DESIGN 

 

The requirement specifications from first phase are studied in this phase and 

system design is prepared. System Design helps in specifying hardware and 

system requirements and also helps in defining overall system architecture. In 

this phase, the hardware used in this project are laptop and its components. 

Since that mapreduce is running from the desktop, no extra database storage 

needed since the data had been saved manually in the computer’s hard disk.   
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3.2.3 IMPLEMENTATION  

 

With inputs from system design, the system is first developed in small 

programs called units, which are integrated in the next phase. Each unit is 

developed and tested for its functionality which is referred to as Unit Testing. 

In this phase, the system is built from the maximum function that consists of 

a script, mapper and reducer function. The system will then be tested and if 

there is no error, other analysis such as minimum and mean will be developed 

and tested. 

 

3.2.4 INTEGRATION AND TESTING 

 

All the units developed in the implementation phase are integrated into a 

system after testing of each unit. Post integration the entire system is tested 

for any faults and failures. After all the analysis have been developed and 

tested, it will then be implemented in the Metocean Analysis interface to test 

it as a system. 

 

3.2.5 DEPLOYMENT OF SYSTEM 

 

Once the functional and non-functional testing is done, the product is 

deployed and shown to supervisor. 
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3.2.6 MAINTENANCE 

 

Maintenance will be done if there is any updates or bugs that need to be fixed 

 

All these phases are cascaded to each other in which progress is seen as 

flowing steadily downwards (like a waterfall) through the phases. The next 

phase is started only after the defined set of goals are achieved for previous 

phase and it is signed off, so the name "Waterfall Model". In this model 

phases do not overlap. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1  HORTONWORKS SANDBOX 

 

Sandbox is a personal, portable Hadoop environment that comes with a dozen 

interactive Hadoop tutorials. Sandbox includes many of the most exciting 

developments from the latest HDP distribution, packaged up in a virtual 

environment. It is the easiest way to get started with enterprise Hadoop. Sandbox 

comes with a dozen hands-on tutorials that will be the guide through the basics of 

Hadoop. The Sandbox includes the Hortonworks Data Platform in an easy to use 

form. Our own datasets can be added, and it can be connected to the existing tools 

and applications. New functionality can be tested with the Sandbox before placing it 

into production. These screenshots are the example of tested data using Hortonworks 

Sandbox. 

 

4.2  PROCESS DATA WITH APACHE PIG 

 

Figure 4.1 Lines of codes for processing data using Apache Pig 

This lines of code will load data from a Comma Separated Values (CSV) file using 

PigStorage. The file is stored in the file browser. The second line of code will 

generate column 0, 1 and 8 that contains the details of the player id, year and number 

of runs. After that it will filter number of runs that is greater than 0 only. The next 
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line of codes indicates that the year will be grouped since that there are multiple rows 

that displayed the same year with different value of runs. The 5th line will generate 

the maximum number of run for each year and lastly the result will be dump.  

 

 

Figure 4.2 Count, Maximum and Sum operation 

Figure 4.2 shows the line of codes using count, max and sum operations. 

 

Figure 4.3 Time taken to complete task 

The time taken to complete each task is faster from the 1st try to the 2nd try.  
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4.1.2 EXPLORE DATA WITH APACHE PIG FROM THE GRUNT 

SHELL 

 

In this tutorial, the author learn on how to lead data file into the Hadoop 

Distributed File System (HDFS), learn about “FOREACH” and “FILETER” 

with examples, howto store values into Hadoop Distributed File System 

(HDFS) and the Grunt shell’s command.  

hadoop fs -put movies.txt /user/hue 

/*user need to type pig to go into grunt shell*/ 

grunt> Movies = LOAD '/user/hadoop/movies.txt' USING PigStorage(',') as (id,name,year,rating,duration); 

DUMP Movies; /*This line of codes will display all the content in the file 

Describe Movies; /*this line of code will describe the type of content that is saved in the file (e.g. int, string,etc.) 

grunt>movies_greater_than_three_point_five = FILTER Movies BY rating>3.5; /* this command will filter movies 

that is greater than 3.5 

grunt> foreachexample= foreach movies_greater_than_three_point_five generate year,rating,name; 

grunt> dump foreachexample; 

grunt> STORE movies_greater_than_three_point_five INTO  '/user/hadoop/movies_greater_than_three_point_five' 

USING PigStorage (','); 

 

 

 

Figure 4.4 Dump movies 
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Figure 4.5 Describe movies 

 

Figure 4.6 Display movies greater than 3.5 

 

Figure 4.7 Time taken to run command 

Dump content command takes longer time approximately around 2 minutes. 
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4.2  MATLAB AND MAPREDUCE 

To do analysis using MapReduce with MATLAB, user have to create a file that 

contain the data and add it to the path. In my case, Metocean Data file for one 

coordinate were created in CSV format. Some coding need to be done to retrieve the 

data and run the analysis using MapReduce.  MATLAB provides a slightly different 

implementation of the MapReduce technique with the MapReduce function. 

MapReduce uses a datastore to process data in small chunks that individually fit into 

memory. Each chunk goes through a Map phase, which formats the data to be 

processed. Then the intermediate data chunks go through a Reduce phase, which 

aggregates the intermediate results to produce a final result. The Map and Reduce 

phases are encoded by map and reduce functions, which are primary inputs 

to MapReduce. There are endless combinations of map and reduce functions to 

process data, so this technique is both flexible and extremely powerful for tackling 

large data processing tasks. 

MapReduce lends itself to being extended to run in several environments. The utility 

of the MapReduce function lies in its ability to perform calculations on large 

collections of data. Thus, MapReduce is not well-suited for performing calculations 

on normal sized data sets which can be loaded directly into computer memory and 

analysed with traditional techniques. Instead, use MapReduce to perform a statistical 

or analytical calculation on a data set that does not fit in memory. 

Each call to the map or reduce function by MapReduce is independent of all others. 

For example, a call to the map function cannot depend on inputs or results from a 

previous call to the map function. It is best to break up such calculations into 

multiple calls to MapReduce. 
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4.2.1  MAPREDUCE ALGORITHM PHASES 

 

MapReduce moves each chunk of data in the input datastore through several 

phases before reaching the final output. The following figure outlines the 

phases of the algorithm for MapReduce. 

 

Figure 4.8: MapReduce algorithm 

The algorithm has the following steps:  

1. mapreduce reads a chunk of data from the input datastore using [data,info] = 

read(ds), and then calls the map function to work on that chunk. 

2. The map function receives the chunk of data, organizes it or performs a 

precursory calculation, and then uses theadd and addmulti functions to add 

key-value pairs to an intermediate data storage object called 

a KeyValueStore. The number of calls to the map function by mapreduce is 

equal to the number of chunks in the input datastore. 

3. After the map function works on all of the chunks of data in the 

datastore, mapreduce groups all of the values in the 

intermediate KeyValueStore object by unique key. 

4. Next, mapreduce calls the reduce function once for each unique key added by 

the map function. Each unique key can have many associated 
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values. mapreduce passes the values to the reduce function as 

a ValueIterator object, which is an object used to iterate over the values. 

The ValueIterator object for each unique key contains all the associated 

values for that key. 

5. The reduce function uses the hasnext and getnext functions to iterate through 

the values in the ValueIterator object one at a time. Then, after aggregating 

the intermediate results from the map function, the reduce function adds final 

key-value pairs to the output using theadd and addmulti functions. The order 

of the keys in the output is the same as the order in which the reduce function 

adds them to the final KeyValueStore object. That is, mapreducedoes not 

explicitly sort the output. 

 

4.3  MAPREDUCE PLATFORM/OPTION 

MATLAB has numerous capabilities for exploring and analyzing big data 

sets. Among them is MapReduce, a powerful, and established programming 

technique for applying filtering, statistics and other general analysis methods 

to big data. 

The MapReduce functionality built into MATLAB enable user to analyze 

data that does not fit into memory. By running your MapReduce based 

algorithms in parallel (using Parallel Computing Toolbox), the processing 

resources on the desktop can be utilize better without changing any of the 

algorithms.  

To analyze data in MATLAB using MapReduce:  

 Specify the data that is going to be analyzed using datastore 

 Create map and reduce functions in MATLAB 

 Execute map and reduce functions using mapreduce 

While MATLAB MapReduce is optimized for array-based analysis, it is fully 

compatible with Hadoop MapReduce. 
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4.4  CODE SAMPLE  

In this section, there will be code sample for interface, the mapper and 

reducer function.    

4.4.1 INTERFACE CODE 

 

function varargout = metoceanInterface(varargin) 

% METOCEANINTERFACE MATLAB code for metoceanInterface.fig 

%      METOCEANINTERFACE, by itself, creates a new METOCEANINTERFACE or raises the 

existing%      singleton*. 

%      H = METOCEANINTERFACE returns the handle to a new METOCEANINTERFACE or the 

handle to 

%      the existing singleton*. 

% 

%      METOCEANINTERFACE('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in METOCEANINTERFACE.M with the given input arguments. 

% 

%      METOCEANINTERFACE('Property','Value',...) creates a new METOCEANINTERFACE or 

raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before metoceanInterface_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to metoceanInterface_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help metoceanInterface 

  

% Last Modified by GUIDE v2.5 17-Aug-2015 00:23:04 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @metoceanInterface_OpeningFcn, ... 

                   'gui_OutputFcn',  @metoceanInterface_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

     gui_State.gui_Callback = str2func(varargin{1}); 

end  

if nargout 

     [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

     gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before metoceanInterface is made visible. 

function metoceanInterface_OpeningFcn(hObject, eventdata, handles, varargin)  
% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to metoceanInterface (see VARARGIN) 
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% Choose default command line output for metoceanInterface 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

%function bgroup1_SelectionChangeFcn(hObject, eventdata, handles) 

  

set(handles.t1,'String','') 

set(handles.t2,'String','') 

set(handles.t3,'String','') 

set(handles.t4,'String','') 

set(handles.t5,'String','') 

set(handles.t6,'String','') 

set(handles.t7,'String','') 

set(handles.t8,'String','') 

set(handles.t9,'String','') 

set(handles.t10,'String','') 

set(handles.t11,'String','') 

set(handles.t12,'String','') 

set(handles.t13,'String','') 

set(handles.t14,'String','') 

set(handles.t15,'String','') 

set(handles.t16,'String','') 

set(handles.t17,'String','') 

  

  

% --- Executes on key press with focus on pushbutton2 and none of its controls. 

function pushbutton2_KeyPressFcn(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL) 

%   Key: name of the key that was pressed, in lower case 

%   Character: character interpretation of the key(s) that was pressed 

%   Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% --- Executes when selected object is changed in bgroup1. 

function bgroup1_SelectionChangedFcn(hObject, eventdata, handles) 

% hObject    handle to the selected object in bgroup1  

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

met = get(handles.bgroup1,'SelectedObject') 

out1 = get (met,'String') 

  

switch out1 

    case 'Maximum' 

%------------------------------------------------------------ 

%maximum value Wind Speed 

ds.SelectedVariableNames = 'WS'; 

type maxMetDataMapperWS.m 

type maxMetDataReducerWS.m 

maxDataWS = mapreduce(ds, @maxMetDataMapperWS, @maxMetDataReducerWS); 

  

%------------------------------------------------------------------- 

b = readall(maxDataWS) 

set(handles.t2,'String', b.Value) 

 

    case 'Minimum' 

 

%minimum value Wind Speed 

ds.SelectedVariableNames = 'WS'; 

type minMetDataMapperWS.m 

type minMetDataReducerWS.m 

minDataWS = mapreduce(ds, @minMetDataMapperWS, @minMetDataReducerWS); 
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%------------------------------------------------------------------- 

 

am = readall(minDataWS) 

 

set(handles.t1,'String', am.Value) 

 

    case 'Mean' 

         

%mean value Wind Speed 

ds.SelectedVariableNames = 'WS'; 

type meanMapperWS.m 

type meanReducerWS.m 

meanDataWS = mapreduce(ds, @meanMapperWS, @meanReducerWS); 

  

%------------------------------------------------------------------- 

 

a1 = readall(meanDataWS) 

 

    case 'Maximum documentation' 

        % 

        publish('MaximumValue.m','pdf'); 

        winopen('html/MaximumValue.pdf'); 

    case 'Minimum documentation' 

        % 

        publish('MinimumValue.m','pdf'); 

        winopen('html/MinimumValue.pdf'); 

    case 'Mean documentation' 

        % 

        publish('MeanValue.m','pdf'); 

        winopen('html/MeanValue.pdf'); 

    case 'Mean by group documentation' 

        % 

        publish('meanByGroup.m','pdf'); 

        winopen('html/meanByGroup.pdf'); 

    case 'None' 

        % 

end 

 

4.4.2  MAPPER CODE SAMPLE 

 function maxMetDataMapperWS (data, info, intermKVStore)  
partMax = max(data.WS); 
add(intermKVStore, 'WindSpeedMaximum',partMax); 

  
 function minMetDataMapperWS (data, info, intermKVStore) 

partMax = min(data.WS); 
add(intermKVStore, 'WS',partMax); 

 function meanGroupMapperWS(data, ~, intermKVStore) 
 

dat = data.WS; 
day = data.MM; 
notNaN =~isnan(dat); 
day = day(notNaN); 
dat = dat(notNaN); 

  
% find the unique days in this chunk 
[intermKeys,~,idx] = unique(day, 'stable'); 

  
% group delays by idx and apply @grpstatsfun function to each group 
intermVals = accumarray(idx,dat,size(intermKeys),@countsum); 
addmulti(intermKVStore,intermKeys,intermVals); 

  
function out = countsum(x) 
n = length(x); % count 
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s = sum(x); % mean 
out = {[n, s]}; 

  
function meanMapperWS (data, info, intermKVStore) 
data(isnan(data.WS),:) = []; 

  
% Record the partial counts and sums and the reducer will accumulate them. 
partCountSum = [length(data.WS), sum(data.WS)]; 
add(intermKVStore, 'PartialCountSum',partCountSum); 

 

4.4.3  REDUCER CODE SAMPLE 

  

function minMetDataReducerWS(intermKey, intermValIter, outKVStore) 
minVal = inf; 
while hasnext(intermValIter) 

    minVal = min(getnext(intermValIter), minVal); 
end 
% The key-value pair added to outKVStore will become the output of mapreduce  
add(outKVStore,'WS Minimum',minVal); 

  
function meanGroupReducerWS(intermKey, intermValIter, outKVStore) 

  
n = 0; 
s = 0; 

  
% get all sets of intermediate results 
while hasnext(intermValIter) 

     intermValue = getnext(intermValIter); 
     n = n + intermValue(1); 
     s = s + intermValue(2); 

end 
  

% accumulate the sum and count 
mean = s/n; 
% add results to the output datastore 
add(outKVStore,intermKey,mean); 

 
 function meanReducerWS(intermKey, intermValIter, outKVStore) 
  

% intermKey is 'PartialCountSumDelay' 
count = 0; 
sum = 0; 
while hasnext(intermValIter) 

    countSum = getnext(intermValIter); 
    count = count + countSum(1); 
   sum = sum + countSum(2); 

end 
  

mean = sum/count; 
  % The key-value pair added to outKVStore will become the output of mapreduce  

add(outKVStore,'MeanWS',mean); 
  

function maxMetDataReducerWS(intermKey, intermValIter, outKVStore) 
maxVal = -inf; 
while hasnext(intermValIter) 

    maxVal = max(getnext(intermValIter), maxVal); 
end 
% The key-value pair added to outKVStore will become the output of mapreduce  
add(outKVStore,'Wind Speed Maximum',maxVal); 
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4.5  INTERFACE 

 

 

Figure 4.9 : Metocean analysis interface 

 

Figure 4.10 : Result when maximum analysis is being selected 
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Figure 4.11: Result in pdf when documentation is selected 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

Hadoop is an interesting thing to learn. The demand for someone who have 

knowledge on how to handle big data nowadays are increasing by day. So for people 

who have knowledge in Hadoop, they have an added advantage. It takes time to learn 

something new and it can be frustrating sometimes in learning Hadoop. There are 

times where you arrive at dead end and you need to start over again. But in the end, 

when things goes right and the expected result were achieved, there are no words that 

can describe how satisfied you are.  

 

5.1  HORTONWORKS SANDBOX AND MATLAB IN 

PROCESSING BIG DATA 

Hortonworks Sandbox and MATLAB, both tools allow user to process their big data 

using Hadoop. It is up to individual to choose which environment to use. Based on 

my experience using both tools, Hortonworks Sandbox is “friendlier” to beginner in 

Hadoop. Sandbox comes with dozens of tutorials and they did separate the tutorials 

based on category for the ease of using it. The tutorials categories are for developers, 

administrators, data scientists and analysts and partner tutorials. MATLAB also 

comes with their own tutorials on their site; Mathworks. But it is quite hard for 

someone who are not familiar with MATLAB to understand the tutorial.  

Sandbox interface is very attractive and symbols used can be easily understand by 

the user. For beginner to learn Hadoop it is recommended for them to use Sandbox. 

But for those who want to play with some coding, they can choose MATLAB.  

34 



 

Figure 5.1: Hortonworks Sandbox interface 

 

5.2  HADOOP CHALLENGES 

 

 5.2.1  TALENT GAP 

 

Hadoop is a relatively new technology. It is quite difficult to find an entry-

level programmers that have sufficient Java skills to be productive with 

MapReduce. The providers are trying their best to place SQL technology on 

Hadoop because of the talent gap that exist. It is easier to find those with SQL 

skills rather than MapReduce.  

 

5.2.2 DATA SECURITY ISSUE 

 

Even though new technologies and tools are surfacing, another challenge 

centers on the fragmented data security issues in Hadoop. A great step to 
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make Hadoop a secured environment is the Kerberos authentication protocol. 

Hadoop does not have the easy to use, full feature tools for data management, 

data cleansing and metadata. The most important tools that are lacking are 

standardization and data quality.  

 

5.2.3 INEFFICIENCY  

 

MapReduce is not the best solution for all problems. For simple request for 

information and problems that can be break into each independent unit, 

Hadoop can be considered good. But the problem is, it can be inefficient 

when dealing with iterative and interactive analytic tasks. MapReduce is file-

intensive. Iterative algorithms will require multiples map-shuffle or sort 

reduce phases to be completed because nodes don’t intercommunicate except 

through sorts and shuffles. This will create multiples files between the 

MapReduce phases and will result in inefficiency for advanced analytic 

computing. 

 

Hadoop based analytic complexity grows as data mining, predictive modeling and 

advanced statistics become the norm. Usage growth is driving the need for more 

analytical sophistication. 

Hadoop’s framework brings a new set of challenges related to the compute 

infrastructure and underlined network architectures. As Hadoop graduates from 

pilots to a mission critical component of the enterprise IT infrastructure, integrating 

information held in Hadoop and in Enterprise RDBMS becomes imperative. 

Finally, adoption of Hadoop in the enterprise will not be an easy journey, and the 

hardest steps are often the first. Then, they get harder. Weaning the IT organizations 

off traditional DB and EDW models to use a new approach can be compared to 

moving the moon out of its orbit with a spatula… but it can be done. 
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