- = am mg e me
R e]

— e s

-
-
= - - -

- —

-

A Map-matching Algorithm to Improve Vehicle
Tracking Systems Accuracy

Agung Dewandaru

Universiti Teknologi Petronas

June 25, 2008

Status of thesis

Title u['th('sih'[A Map-matching Algorithm to Improve Vehicle Tracking Systems A('m.lm(fd
I. AGUNG DEWAND:RU

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Uni-
versiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

. This thesis is classified as

:I Confidential
Non Confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for years.

Remarks on disclosure:

Endorsed by

Endorsdd 1 N\\\\&

Sig‘nnl.uu-. ol Supervisor

] O Y, " Batu Gajah Nalaysia
dong Catur Yogyakarta - y

) il Date:___2S {)08
Date: [

Signature of Author
JI. Anggrek 217 Perumnas Con-

UNIVERSITI TEKNOLOGI PETRONAS
Approval by Supervisor(s)

The undersigned certily that they have read, and recommended to the
Postgraduate Studies Programme for acceptance, a thesis entitled " A
Map-matching Algorithim to Improve Vehicle Tracking Systems Accuracy”
submitted by (Agung Dewandaru) for the fulfillment of the requirements for

the degree of (Master of Science in Information Technology)

Date
X
- N
Signature . - aj\\
Main supervisor : Neds mpy spee
Date : 2S j [1‘3’_3-
co-Supervisor 1 : %‘

1/

TITLE PAGE
UNIVERSITI TEKNOLOGI PETRONAS
A Map-matching Algorithm to Improve Vehicle Tracking Systems Accuracy
By

Agung Dewandaru

A THESIS
SUBMITTED TO THE POSTGRADUATE STUDIES
PROGRAMME
AS A REQUIREMENT FOR THE
DEGREE OF MASTER OF SCIENCE
IN INFORMATION TECHNOLOGY
BANDAR SERI ISKANDAR
PERAK
JUNE, 2008

Declaration

I hereby declare that the thesis is based on my original work except for quotations and
citations which have been duly acknowledged. I also declare that it has not been previ-

ously or concurre for any other degree at UTP or other institutions.

Signature :

Name : Agung Dewandaru

Date :

Acknowledgement

First of all, the praise should be for Allah for all His grace and bounty. For one of His
most important gift to mankind is their curiosity through things, effectively flowering the
science and advance the humanity.

Many thanks should be addressed to Universiti Teknologi Petronas for giving me
the opportunity to present a very fruitful research work. 1 would especially give my
appreciation to my thesis advisors, Dr Abas and Dr Nasir for patiently guide me for this
lengthy thesis work and for their challenging, clear-cut research objectives. Last, thanks
to all my family, especially Nina and Ibrahim for all their supports which are very vital

to the completion of this work.

Abstract

The satellite-based vehicle tracking systems accuracy can be improved by augmenting the
positional information using road network data, in a process known as map-matching.
Map-matching algorithms attempt to estimate vehicle route and location in a particular
road map (or any restricting track such as rails, etc), in spite of the digital map errors and
GPS inaccuracies. Point-to-curve map-matching is not fully suitable to the problem since
it ignores any historical data and often gives inaccurate, unstable, jumping results. The
better curve-to-curve matching approach consider the road connectivity and measure the
curve similarity between the track and the possible road path (hypotheses), but mostly
does not have any way to manage multiple route hypotheses which have varying degree of
similarity over time. The thesis presents a new distance metric for curve-to-curve map-
matching technique, integrated with a framework algorithm which is able to maintain
many possible route hypotheses and pick the most likely hypothesis at a time, enabling
future corrections if necessary, therefore providing intelligent guesses with considerable
accuracy. A simulator is developed as a test bed for the proposed algorithm for various
scenarios, including the field experiment using Garmin e-Trex GPS Receiver. The results
showed that the proposed algorithm is able to improve the map-matching accuracy as
compared to the point-to-curve algorithm.

Keywords: map-matching, vehicle tracking systems, Multiple Hypotheses Tech-

nique, Global Positioning System.

Abstrak

Kejituan Sistem Pengesan Kenderaan berdasarkan satelit boleh dipertingkatkan den-
gan memperlengkapkan informasi posisi memakai data jejaring jalan, dalam sebuah proscs
yang dikenali sebagai map-matching. Algoritma map-matching mencuba memperkirakan
jalan dan lokasi pada peta jalan, walaupun ketidakjituan pada peta dijital dan GPS.
Map-matching jenis titik-ke-kurva tak sepenuhnya tepat diterapkan karena mengabaikan
data scjarah dan seringkali memberikan hasil yang tidak jitu, tidak stabil, dan melompat.
Pendekatan kurva-ke-kurva lebih baik karena mempertimbangkan konektifitas dan men-
gukur kemiripan kurva antara track kenderaan dan rute jalan yang mungkin (hipotesis),
namun tidak memenej beberapa hipotesis yang memiliki darjah kemiripan kurva yang
berubah-ubah. Thesis ini mengandungi secbuah metrik jarak untuk teknik map-matching
kurva-ke-kurva, digabungkan dengan sebuah framework algoritma yang boleh memper-
gunakan banyak hipotesis rute dan memilih hipotesis paling tepat pada satu saat, dan
membolehkan pembetulan pada masa hadapan bila diperlukan, sechingga menghasilkan
tebakan cerdas dengan kejituan yang baik. Sebuah simulator telah dibangun sebagai test
bed untuk algoritma ini dengan bermacam senario, termasuk ujikaji di lapangan memakai
receiver GPS Garmin e-Trex. Hasilnya menunjukkan bahwa algoritma yang dicadangkan
boleh mempertingkatkan kejituan map-matching apabila dibandingkan dengan algoritma
titik-ke-kurva.

Kata kunci: map-matching, Sistem Pengesan Kendaraan, Multiple Hypotheses Tech-
nique, Sistem Kedudukan Sejagat (GPS).

Contents

1 Introduction

2 Background

2.1 Measuring Accuracy
2.2 Global Positioning System
221 GPSerror factors . . « v v v vv v v m b e e e
2.22 Minimizing GPSerror
2.23 Augmenting GPS: Dead reckoning and Inertial Navigation System
2.24 Application of GPS in vehicle tracking systems
23 OnMapping
23.1 Map Projection
23520 Datatmil o 5N i e i % ik e ol e
2,:3:8. . IMADDINGOLTOT . . it B 55 5 15 5 et he fet el o o o e B
24 Map-matching
2.5 Parametrizing Curves
2.6 Algorithm and Data Structure
2.6.1 List and Linked List,
Zi0.21 BEBCK ¢ & v s 5 518 5 e e e e e
G ree . e e O
264 TreeTraversal\ v v vt e o v eie e e e
2.6.5 Backracldngs oidi. wiili o s fh e ke st
2.6.6 Measuring the performance of an algorithm

2.7 Summary

3 Literature Review

3.1

Map-matching strategies

3.1.1

The point-to-point and point-to-curve

map-matching

3.1.2 The curve-to-curve matching

viii

o TN V=T = > T < L B < T SO

i e e et et e e o S U O
e S I =2 B = > T) R - S SO - SO SO o T < I o B o

19
19

3.1.3 Artificial Neural Network approach 22

3.1.4 Adaptive-Network Fuzzy Inference System Approach (ANFIS) . . 25

3.2 Global and Incremental map-matching 25
3.3 Metrics used in curve-to-curve map-matching 25
3.4 The Framework for Map-matching Metrics 27
3.4.1 Road Reduction Filter (RRF) 28
3.4.2 Multiple Hypotheses Technique 28

3.5 Measuring Map-matching accuracy 29
T 30
The Development of Arc Distance Metric 32
4.1 The Metric Design u.... 32
4.2, TheImplementation s s 0 @95 5 5 5 56 4 o m n v 0 n v e 35
4.3 The Arc Distance Metric in the Light of a Distance Metric Criteria . . . 37
4.3.1 Non-negativity (dggm(z,y) >0) o
4.3.2 The distance is zero for equivalent curves (84, (z,%) = 0 if and only if z =

1) 5 ane L PR Pl v N T L 37

4.3.3 Symmetry (0aam(z,y) = daam(y,x)) 37
4.34 Triangle Inequality’ @ o 0o 5 0 52 5 0 0 v v o v o e 5 e 37

4.4 Simple benchmarking 39
Managing multiple hypotheses 42
5.1 Algorithm Design L 42
5.1.1 Spatial Mismatch 42
5.1.2 Incremental Algorithm with Backtracking Ability 43
9.1.3 The Algorithm Description 45
5.1.4 The Outline of Execution 49
9.1.5 Detailed Data Structure and the Notation 50
9.1.6 Hypotheses Reduction 52
9.1.7 Basic Pruning Technique 52
5.1.8 Hypotheses Compaction Technique 53
9.1.9 Hypotheses Merging Technique 55

5.2 Implemen et om a7
a:2.1. ‘The Core Algorithms .t it e e 58
5.2.2 The Hypotheses Compaction Algorithm 70

0.3 SUMMETY « =z » s o e L S e 71

ix

6 The ViTracker Simulator
6.1 Simulator Design
6.2 Implementation

6.2.1 Playback of the recorded trajectory
6.2.2 Implementing the simulation capability
6.2.3 User interface and presentation
6.2.4 Editing Map in ViTracker
6.2.5 Test Bed for map-matching Algorithms
6.2.6 Data File Specification

7 The Experiment and Results

L - L T
7.1.1 The Vehicle Route
7.1.2 The Device Setup

7.2 The Experiment
7.3 The Results

8 Discussion

8.1 The Arc Distance Metric performance
8.2 Last Distance Estimation Error
8.3 Refining the model

8.4 Backtracking and Correction Performance

8.5 Hypothesis Tree Reduction Techniques Results

8.5.1 Two Ways Internodes Hypotheses Generation Filter
8.6 The Convergence of Hypotheses
8.7 Complexity analysis of the Alporithn s s nh e e e
8.7.1 Complexity of TraverseTree()
8.72 Complexity of Grow() v v v o o

8.7.3 Complexity of CompactTree()

9 Conclusions

L T T Ay S ot U S S
9.2" Buture Works .ol & o & « riendie Db E R e
9,211 “Model Improvermenl k. e e

A The Vehicle trajectory derived from GPS

73
73
74
74
74
75
75
76
76

78
78
78
79
79
80

82
82
86
86
87
90
91
91
92
92
92
92

93
93
94
94
94

100

B ViTracker Tutorial 116

B.1 Introduction 116
B.2' BasicUBBES « « 5 s 5 5 ¢ 4 o5 4.5 e ioin o s 5t s x e e e e m e 116
B.3 Digitizinga Map 117

x1

List of Figures

100 ResearcBLATER : o v @ il ii e et 8 sl sl e i Bal R o G s e ek Al s 2
2.1 Blocked Satellite LOS and Multipath Problem 6
2.2 Example of Differencing Techniques 8
2.3 The Problem of Map-matching. s 12
2i4 An exampleiofitree! . . v aimma w3 s s 5 e v e & s s e e s e 15
3.1 Map-matching Strategieso 21
3.2 Some ANN Solution Architecture 23
3.3 Fréchet and Hausdorff Distance Comparison 27
4.1 Metric version 1 compubation . . « e s6 % % 5 6 58 b 8 s s s e 5 33
4.2 Equivalent curves is considered dissimilar compared to a very different curves 34
4.3 Illustrated explanation to calculate the Are Distance Metric 36
4.4 ADM, Fréchet and Hausdorff Distance Comparison 39
5.1 A scenario where backtracking is necessary 43
5.2 Hypotheses Tree Generation and Choosing the Winner 46
5.3 Hypotheses Generation StepBy Stepo oo oo 48
5.4 Flowchart of the algorithm 49
5.5 class diagram for hypothesisnode 50
5.6 simpler notation for a hypothesisnode 51
9.7 Hypotheses compaction technique« v v oo v o v vt a o v o 54
5.8 Regular hypotheses tree without merging 56
5.9 Hypotheses Tree with Merging Technique 57
5.10 Map-matching algorithm and Arc Distance Metric 71
6.1 ViTracker snapshot and interface layout 75
7.1 The Experiment Data and Map Matching Result 81
B.1: "The road sitnationiatili= L0085 5 2 i e R il el 82

xii

8.1
8.2
8.3
8.4

Curve similarity using Are Distance Metric

................. 85
The Number of Correction vs Simulation Time 87
Example of backtracking in the experiment 89
The Effect of Hypotheses Pruning 91

xiil

List of Tables

2.1 GPS Error Sources and Magnitude (in meter) 5
2.2 A network representation example L 13
41 Sebl Curva A pointy & 5 <5 s i n it i ey s s G E 35 E 8 s 8 i 40
42 Set1: Curve Bpolobas. .« s & ¢ v @ vonw e o8 &id 5 8 5 6 &5 5 5 & & o 40
43 Set 2: Curve A points oL e e e e e 41
44 “Set2: Cutva/B poitss 5 5 5 5 & 7 ¢t m i H o e vre e A B s e b w 41
5.1 Reduction algorithms and their traits 52
7.1 Performance of the Algorithm ¢ v s i v cmw s ms o 5 = 5 5 4 s 80
Al Relevant Raw Trajectoryr . : « « « ¢ & o a0 s o0 wr i w5 5 o 3 115

xiv

Chapter 1
Introduction

The demand and application of vehicle tracking system is rapidly increasing, due to its
usefulness in terms of commercial or personal aspects, and also due to the availability
of Global Navigation Satellite System (GNSS) such as GPS which had started in 1995.
There is a broad range of applications of the vehicle tracking system, such as in-car
navigation systems, advanced traveler information, dynamic route guidance systems, fleet
management, collision avoidance systems, or even emergency rescue technology assisted
by such system. The technologies involved are also varying from the use of satellite, radio
communication link, RFID tag/sensors, gyrometer, odometer, and also the use of camera
to provide data for scene analysis.

These Vehicle Tracking Systems applications typically require continuous and accurate
positioning information on the vehicle traveling on the road network. Many of them also
need real-time display of the vehicle location on road in a map with a great accuracy [1].
In order to achieve that, the system needs to use the available digital road map data
and to integrate that with the estimate locational data of the vehicle provided by the
GNSS. This process is called map-matching which is based on a particular algorithm,
and typically has assumption that the vehicle always takes place on one link of the road
network.

Map-matching (and its visual user interface) has also become one goal to be achieved
in many navigation systems, for its user-friendliness as compared to bare display of coor-
dinates. It is important not only for navigation and map display, but also for advanced
driving assistance system (ADAS) applications such as adaptive cruise control, adaptive
lighting control, lane departure warning, and transmission shift control. Map-matching is
also required for the ultimate goal of intelligent vehicle research: autonomous driving [2].

Unfortunately, map-matching inaccuracy is still an obstacle for these applications.
The challenge of map-matching algorithms lies in that it has to reconcile inaccurate loca-

tional data with inaccurate digital road network (map) data into an accurate estimation

of the road segments traveled by the vehicle. If both digital maps and vehicle location
estimate are perfectly accurate, the algorithm would be a straightforward projection of a
point in the map road system [3]. Unfortunately, this is almost always not the case. GPS
readings vary over time, and it degrades when the environment is rather inconducive,
such as in urban canyons, roads with dense tree cover, or a tunnel [1]. Morcover, the map
is also subject to many error factors, complicated with the fact that the true location of
the vehicle is not always lic in the one dimensional road center-lines, but can be anywhere
"inside” the two dimensional road surface.

The map-matching inaccuracies will be seen as an off-road, or erroneous projection
of the vehicle on the road map, i.e. the vehicle is reported on the wrong road segment.
This spatial mismatch phenomenon happens more often at junctions, roundabouts, com-
plicated flyovers [1] where there are many plausible road segment alternatives, or in such
areas where the GPS degrades as mentioned before. Of course such inaccuracies will
decrease the usefulness of any implementation of a vehicle tracking systems.

Therefore, our objective is to develop a map-matching algorithm which is able to
give improvement on the accuracy in the field of vehicle tracking systems. The accuracy
will be measured by a proportion of correct road matchings and the number of matchings
made. A matching is correct if the vehicle is indeed located on the matched road scgment.
In other words, the algorithm must be able to present estimate location which coincides
the road system (or subway system etc) [3]. The algorithm must also able to present
unambiguous, meaningful travel route [4]. The algorithm shall aim at real-time usage,
effectively enabling application of in-vehicle navigation and many services which requires
it. This thesis will assume the use of GPS as the primary data source, while still acknowl-
edging the potential use of other GNSS (currently GLONASS or Galileo). Hence, it is

assumed that GPS characteristics could represent GNSS in the scope of map-matching.

-~ VTS improvement
of accuracy is needed

Vehicle Tracking System (VTS)

Technologies realized by

Map-Matching
Technologies

|~ a more accurate
map-matching

realized by

™ a better algorithm

Figure 1.1: Rescarch Arca

The thesis provides sufficient background in the Chapter 2, then proceeds to dis-
cuss the cutting edge algorithms to accomplish map-matching in Chapter 3. A new
distance metric is considered necessary and the development of it is presented in Chap-
ter 4. Chapter 5 discuss about the development a framework algorithm for the distance
metric mentioned. Both algorithm will be implemented and tested by a map-matching
simulator, presented in Chapter 6. The proof of concept of the theoretical algorithm was
given by the experiment, which is explained in Chapter 7. The discussion and conclusion

will compose the rest of the chapters (Chapter 8 and Chapter 9).

Chapter 2

Background

2.1 Measuring Accuracy

This thesis carries the objective to improve the accuracy of a Vehicle Tracking Systems,
which justifies for a discussion of the specific meaning of “accuracy”. Engineers often
define accuracy as the degree of perfection in measurement which denotes how close a
given measurement is to the true value of the quantity [5]. This definition assumes that
the actual value of a scalar variable will never be known exactly, and it is approached
through the measuring process. Therefore, according to this definition, there is no such
perfect measurement, and accuracy is often stated using some certainty and error factor.
The example of such statement is like, “The value is 50.1m with a 95% chance that this
measurement has £0.2m error”.

There is another meaning of accuracy [6, 7] which is widely used in the pattern recog-
nition field which will be better representing exact result experiment. In this meaning,
the accuracy is used to characterize a particular classifier in its ability to correctly clas-
sify an object. Accuracy is represented as the proportion of correct classification to total
number of classification. Using this measure, a perfect (100%) accuracy in an experiment
is achievable, as long as it satisfies the definition of correct (and incorrect) result. Because
the nature of map-matching is to infer the estimate road segment, then its outcome could
be classified into a correct and incorrect result. Such similar classification is also used
in [8]. This latter definition suits the problem of map-matching better, and will be used

throughout this work.

CHAPTER 2. BACKGROUND

(o]

2.2 Global Positioning System

Global Positioning System (GPS) is a satellite-based radio navigation system owned by
US Government. It is able to give positional, speed and heading information to all its
users concurrently. It started its full operational capability in 1995 with 24 satellites,
providing public use with horizontal positional accuracy to up to 100 m. With the Selec-
tive Availability (some kind of degrading mechanism, so that GPS gives lower accuracy
for public, non-military use) turned off by the US Government recently, a significant
improvement of accuracy was gained for most users, achieving accuracy within 15 m for
95% of time.

GPS provides continuous positioning and timing information anywhere in the world
under any weather conditions. Also, it provides the heading (direction) and speed in-
formation of the receiver. All the communication is done one way from the satellite to

the receiver, so the calculation of multiple GPS signal in the receiver’s side is needed to
obtain those information.

2.2.1 GPS error factors

The GPS itself has a list of error sources, which could be divided into three large segments:
satellite-related, receiver-related, and atmospheric errors and biases. The error estimation
for each item is elaborated in Table 2.1 adapted from [9]. In the table, two groups of
columns are listed: The C/A code and P(Y) code. These two are the codes transmitted by
GPS satellites signal, referring to two level of service, SPS (Standard Positioning Service,

for public use) and PPS (Precise Positioning Service, for military use), respectively.

Error Source C/A | P(Y)
Satellite Clock and Ephemeris Error | 3.9 3.9
Ionospheric Delay 9.9 341
Tropospheric Delay 2.9 2.0
Receiver Noise and Resolution 1451 150
Multipath 12.6 1.2
Selective Availability (if present) 30.0 | N/A

Table 2.1: GPS Error Sources and Magnitude (in meter)

Urban Canyon GPS problems

In the situation where there are many tall buildings or obstacles to block the satellite
signal (blocked line of sight as shown in the left part of Figure 2.2.1), the GPS accuracy

CHAPTER 2. BACKGROUND 6

may degrade significantly. This is partly because the GPS needs as many satellite signal
as possible to produce more accurate result. Another problem is because that of multipath
error (the right part of Figure 2.2.1), whereby a reflected satellite signal (e.g.: reflected
by building) has lower quality and interfere the original signal, thus degrading the overall
accuracy. This problem is commonly found in the urban area setting (thus called urban

“canyon” problem).

| | a2

DIRECT
SIGNAL

REFLECTED
SIGNAL

TALL BUILDINGS

Figure 2.1: Blocked Satellite LOS and Multipath Problem

Lower Heading Accuracy on Lower Speed

One of the observed characteristic of GPS is the decline in heading accuracy when the
receiver is on a low speed, also noted by [3, 1]. When the vehicle stops, the heading
information accuracy gets even worse. While this could be improved by using more than
onc antenna and a special search algorithm such the one presented in [10, 11], the usage

of GPS heading especially in the junction might not be reliable.

2.2.2 Minimizing GPS error

Differencing techniques such as Differential GPS (DGPS) and Real Time Kinematic
(RTK) are available to improve the accuracy, typically by monitoring the data from
two GPS receiver in some distance. The two sources of the data collected will roughly
share the same satellite and atmospheric errors, which could be used to reduce the errors
by differencing and performing correction using the data [12]. Figure 2.2a and Figure 2.2b
shows the architecture for a double differencing technique for DGPS and RTK.

Some works on map-matching (as an example the work of [13]) are using differencing

technique to approximate the “true” value, in order to measure accuracy of their map-

CHAPTER 2. BACKGROUND 7

matching techniques, thereby providing the standard deviation and the error mean of
the reported location. While this may potentially be useful to see the general trend, this
method ignores the basic question in map-matching, i.e. whether the matching correctly
finds the road the vehicle is traveling. For example, assume that a road map has an
error for 10-20 meters. A good map-matching algorithm with a very high accuracy may
be reported as having a large error mean value (due to the map error), even though
it actually does a good performance inference by correctly outputting the entire road
traveled by the vehicle.

Although DGPS and RTK could provide much improvement on accuracy to up to (1-5
m for DGPS, centimeter accuracy for RTK), the application of this technique requires
additional base receiver which will calculate the correction. Moreover, some kind of
communication network infrastructure (typically terrestrial radio) is needed to integrate
this correction [12]. These provisions might still be considered costly for most situations

worldwide, therefore basic map-matching without any of these support is still necessary.

CHAPTER 2. BACKGROUND

ROVER

ACH Y=~
BASE CURACY~ SUBMETER TO 5m

DISTANCE=UP TO FEW HUNDREDS KM

RADIO

(a) Differential GPS

BASE ROVER
ACCURACY~ 2-5 cm
DISTANCE=10-15 km

RADIO
(b) Real Time Kinematic

Figure 2.2: Example of Differencing Techniques

co

CHAPTER 2. BACKGROUND 9

2.2.3 Augmenting GPS: Dead reckoning and Inertial Naviga-

tion System

Dead reckoning (DR) technique is a position estimation method based on the idea that
the current position can be derived from the earlier position provided that the heading
and distance traveled is known.

The DR system is typically comprised of odometer sensor and a vibration gyroscope.
The travel distance is obtained from odometer, while the gyroscope measures the vehicle
heading. The odometer works by counting the number of revolution of vehicle wheel
multiplied by a calibrated scale error factor. This way the distance that the vehicle has
traveled could be obtained. The odometer’s scale error factor will accumulate rapidly,
causing significant positional error if left uncompensated [12].

Vibration gyroscope works by measuring voltage change in the vibration gyro which
is proportional to the angular velocity of the vehicle. It then multiplied by a scale-factor
to obtain the heading rate. The gyroscope is sensitive to the temperature (gyro bias)
and to the gyro scale-factor error when taking a turn. This make the gyroscope is also
subject to accumulative error just like odometer (12].

An Inertial Navigation System (INS) is a navigation system which relies on the ini-
tial position, velocity, and attitude (orientation), and thereafter measures the attitude
rates and accelerations. It is the only form of navigation that does not rely on external
references [9].

The characters of those two systems (DR and INS) are complementary to that of GPS:
the accuracy get worse over time, but it give a good short term accuracy. The typical
GPS setting, on the other side, may not give such good short-term accuracy, but the
accuracy does not degrade over time. This traits make a good combination of GPS/INS

or GPS/DR, usually integrated together by employing Kalman filter as the integrator.

2.2.4 Application of GPS in vehicle tracking systems

In many of the available vehicle tracking systems, GPS is generally used for vehicle
navigation as the primary and initial data source. To improve its accuracy, it may be
combined with DR technique as explained above. Besides DR technique, people have
been using signpost technology and terrestrial radio navigation system. The use of these
multiple data sources might help to correct the error on the GPS (or other satellite
navigation system) position output [14].

CHAPTER 2. BACKGROUND 10

2.3 On Mapping

A map is a model of geographical features, typically carrying relevant information to serve
some explanatory purpose which could not be easily understandable otherwise. Map of
continents, as an example, is a reduction and projection of a very large objects (the
continent itself) so that man could easily grasp the real object without having to fly up

into the upper atmosphere to see it [15].

2.3.1 Map Projection

A map is usually displayed in a two dimensional medium, whereby a kind of map projec-
tion must be used. Map projection is a transformation that distort a three dimensional
object into two dimensional image. Thus, there always exist inherent inaccuracies on
every distortion. Further, there is always something sacrificed in terms of preserving
other goal. For example, the conformal projection sacrifices the area information of a
land parcel for the sake of keeping direction intact. In contrast, the equal-area projection
works by maintaining the area while sacrifices the direction [16].

Maps creation is greatly helped by the remote sensing techniques such as aerial pho-
tographs, radar or satellite images. Google Earth is a service which is based on satellite
imagery to gencrate the acrial image data for the experiment of this rescarch work. Ac-
cording to [17], Google earth uses Simple Cylindrical Projection for its imagery base.
The cylindrical projection is considered conformal and it is easy to convert into a two

dimensional plane, cartesian coordinate.

2.3.2 Datum

Datum is a reference network consisted of a reference point and a spheroid to model
the real earth (i.e., the geoid). It has information on the estimate land height of any
requested earth coordinate (latitude and longitude). GPS uses the WGS-84 datum, and
the standard GPS receiver units are defaulting to this datum. This means that all
reported coordinates are relative to that particular datum. Two map information that
uses different datum cannot be used together unless some conversion is applied. Google
Earth, the map base that we use, is also servicing in respect to WGS-84, and thus

compatible with the GPS reported locations [17].

2.3.3 Mapping error

There are some errors typically involved in (digital) map creation:

CHAPTER 2. BACKGROUND 11

1. Digitizing error

Digitizing is the process of entering nodes and vertices that represents the map fea-
tures(could be road, area etc). It could be done using puck or using software (on screen
digitizing), where the human factors involvement is prevalent. The error could also come
from the simplification of features. For example. a curving road that is not straight may

be modeled using sequence of nodes only.

2. Georeferencing and rectification error

GIS data usually must have a real world coordinate system (such as latitude-longitude).
Georeferencing is a process of registering, or fixing, data to a standard coordinate system,
thereby linking the map to the earth. The best method of establishing a proper georef-
erence is to define at least four reference points (sometimes called tic points) around the
area being digitized (close to the corners if possible), each with a precisely known real
world coordinate position that is typed into the program. Only with some known refer-
ence points, digitized features can be properly located on carth. After georeferencing, the
map rectification could be made, by adjusting the image using affine transformation that
stretches and deforms it according to the reference points [18]. After the rectification,
normally each reference points normally have zero error, except if there are more than
three reference points. For a three reference points an exact mathematical transformation
could be calculated so that all points has the same coordinate with the already specified

coordinates and thus have zero error.

2.4 Map-matching

As already stated in the Introduction chapter, map-matching is a process to integrate
locational data of the vehicle with the digital map road data, to improve the accuracy
and also to give meaningful information to the vehicle tracking systems user.

Map-matching procedures have many approaches, varying from simple point-to-point
search to the use of more complex statistical techniques such as integration using Kalman
Filters as in [19]. It is noted that the map-matching problem is complex and fairly difficult
task [20] 3] since there are many error factors involved. Hence, the simple and naive
point-to-point and point-to-curve is unlikely to work very well, so more sophisticated
algorithm must be used.

Before further elaboration on the various algorithms in Chapter 3, the map-matching
formal problem statement adapted from [3] is included: The concern is about a vehicle

(might be abstracted to any agent) moving along a finite system (or set) of roads (or,

CHAPTER 2. BACKGROUND 12

a more general concept, tracks, such as railways), AV. At each time period T € Ny, the
system provides the estimate of the vehicle’s location (which is usually obtained from
satellite navigation system). The actual location is denoted by P and the estimate is
denoted by P*. The goal of map matching is to determine the road in AV which contains
P'. The “true’ road system, A is rather unknown exactly, instead, there is network
representation, N, consisting a set of curves in R?, each of which is called an arc. Each
arc is assumed to be piece-wise linear, and arc A € N can be characterized as a finite
sequence of points (A%, A, ..., A"4) each point A® € R2. The A? and A™ arc called
the nodes, where it may represents a connection to other arc. The rest of the points A"
in the set are referred as shape points, and between any point within any arc A* and
AM1 0 < k < nA there is an edge called arc segment connecting the two points. The
problem is called map-matching problem because the first goal is to match the estimated
location P, with an arc A € N, and then determine the road, A € N, which corresponds
to the person’s actual location P'. The sccondary goal is to infer on which spot of
the road the vehicle is in. That is, a map-matched (or snapped) point Pt on A that
best corresponds to P'. The third goal of map-matching is delivering a set of road arcs
that form an unambiguous, meaningful travel route of the vehicle. That is, providing a

connected sequence of (A, Ay, A_, 4;) which resulted from set of A resulting from the
first goal.

Actual Road 1 52 F3

The "True" Road Network
!/l/‘ projection

Actual Road 2
Road Arc1 }
B .\ 5 1m3‘
s - - - IT1.
: 1 o] 4 i P
\ .
5 - o RoadArc2 o }
L\
)
\\ a 2 The Network
Nodes - Representation

ﬁt : "True" Vehicle Positions

IJt : Estimate Vehicle Positions

Figure 2.3: The Problem of Map-matching

CHAPTER 2. BACKGROUND 13

The illustration on the problem can be seen in Figure 2.3. Assume we have the true,
exact road network information and projected on the figure as a aerial figure of road lane.
The network representation however, is not perfectly accurate. Hence, it differs from the
exact road. It is modeled using a set of arcs, A = {A;, Ay, A3, Ay, A5, A} (see Table 2.2
). Each arc is composed of two nodes and a number of shape points. In this example
cach arc is comprised from only two nodes and there are no intermediate shape points.
Every points on this map have specific coordinate according to the coordinate system
used. If Node 1 is expressed in (0.0,0.0) then Node 2 might be expressed in (550.0,80.0)
and Node 3 is (0.0,80.0).

Arc | Nodes
A] (112)
A2 (3!4)
AS (4%5)
Ay (5,6)
As (4,7)
Ag (5,8)

Table 2.2: A network representation example

The term arc and curve used on the definition actually have the same semantic.
Both are used to refer to a polyline or piecewise linear curve, i.e. curve composed from a
sequence of points. Throughout this thesis the term arc which carries the (road) topology
notion will be used in referring the network representation, while the term curve will be
used more often in the discussion of distance metric to measure its similarity.

Note that extra information such as heading, speed, and road width is not used on this
definition of map-matching. Such information might be valuable to further improve the
accuracy, but is not mandatory, and could be incorporated later after the first prototype
had been built. The approach used here is to start from the simple but solid model

definition, as alrcady described in this section.

CHAPTER 2. BACKGROUND 14

2.5 Parametrizing Curves

It is often helpful to model a curve A as a parametrized function a(t), which is a vector-
valued function of a real variable [21]. It means that the function returns a vector that
represent a target that moves along the curve. In two dimensional xy-plane, a(t) returns
a pair of x,y values (coordinate) indicating a point within the curve at parameter &. This
t has the range [0, 1], so a(0) would mean the initial point of curve A and similarly a(l)
mean the end-point of curve A. Since we use a piecewise-linear curve to approximate the

real curve, the coordinate obtained from the function would always coincide one of the

line constructing the curve.

2.6 Algorithm and Data Structure

This section will provide a basic of the algorithms and data structures which will be used
extensively throughout this thesis.

2.6.1 List and Linked List

A list is an ordered set of item, and might be implemented as a linked list, especially
when the dynamic collection of objects is needed. Every element in a (single) linked list
has the data item to be stored and a pointer (memory address) of the next node. Thus a
linked list does not need to be stored contiguously in memory [22]. Among the operation
that is commonly defined is adding the last element and deletion (clearing) of all element.
Note that if we attach object reference (or pointer) as the data item within the node,
then the list clearing will not deallocate the object from memory.

A list, however, might be implemented as an array, in which there is substantial work
of shifting the nodes in case of node deletion in the middle of the list. The developed
simulator program(see Chapter 6) is using this version of list. However, this difference is
not significant for further discussion, and both implementation is fine as long as there are

some basic primitives for adding element, deleting, and clearing all element from a list.

2.6.2. Stack

Stack is a data type that has LIFO (Last In First Out) property. It means that the
insertion place of the data item is always after the last clement of the stack, and the
deletion is always clearing the last element of the stack. Hence, the last element in will

be the first element out. There is a push() operation which insert the data item as the

CHAPTER 2. BACKGROUND 15

last element. There is also a pop() operation which delete the last element. Stacks might
be implemented as arrays or linked list [22].

2.6.3 Tree

Most of the following recursive definitions of tree are taken from the Knuth's master-
piece [23]: Formally, the tree data structure is a finite set T of one or more nodes such
that

a) there is one specially designated node called the root of the tree, root(T); and

b) the remaining nodes (excluding the root) are partitioned into m > 0 disjoint set
Ty, ..., Trm and cach of these sets in turn is a tree. The trees T4, ..., T}, are called subtrees
of the root.

It follows from the definition that every nodes of a tree is the root of some subtree
contained in the whole tree. The number of subtrees of a node is called the degree of that
node. A node of zero degree is called a terminal node, or a leaf. A non terminal node is
called a branch node.

Further, let us define that each root is a parent of the roots of its subtrees, and one
child is sibling to another child of the same parent. Note that the root of the entire tree
has no parent, and no trees are empty. It has minimum one root node. The level of root
of a tree is zero. The level of the root’s children is one higher than its parent’s level.

The path of a tree is a sequence of node {ry,...,7x} where every r; is the parent of
ri+1 on that sequence. A full path is a path where 74 is a leaf and r; is the root of the
whole tree. The length of a path is k — 1.

Level 0

®
@
®

Figure 2.4: An example of tree

CHAFPTER 2. BACKGROUND 16

In Figure 2.4, the root node is node 1, which has two children: node 2 and 9. Therefore
node 2 and 9 are siblings from the same parent node 1. Nodes {1,2,3,4} is a full path, it
has the length of 3.

2.6.4 Tree Traversal

Tree traversal means accessing every nodes on a particular tree in a systematic manner. It
could be done in many ways, such as Depth First Traversal and Breadth First Traversal.
The depth first traversal started from root(T) and proceeds to the first subtree 7} .
In turn, before it process the siblings of that child (root of T3), the same process is
repeated, i.e. another depth first traversal using the subtree 7). This way, the access is
done “depth first” rather than the “breadth” since it reach the highest tree level first.
Algorithm 1 is one example of depth first traversal, namely, preorder traversal. Back
to Figure 2.4, a depth first traversal will access and process the nodes in this sequence:
{1,2,3,4,5,6,7.8, 9,10,11,12,13, 14}

Algorithm 1 Depth First Traversal: Preorder

procedure DepthFirst(T:Tree):
process the root node of T
if T is not leaf then
for each subtrce of T, Tc do
DepthFirst(Te)

The algorithm also illustrates the recursion concept, where it calls itself (to perform
exactly the same thing with a smaller scope) somewhere on its parts. Care must be taken
to make sure that recursive algorithm eventually halt and returning the result. The

responsibility to provide basis for the recurrence lies on the designer of the algorithm.

2.6.5 Backtracking

Backtracking is often used in the context of tree-based solution search, where not all so-
lution space is explored, but instead it stops and backs up and tries different alternatives.
Because we can see map-matching as a search of the most resembling route in comparison
with the vehicle track, the backtracking concept could also be applied, whereby not all
possible solution space is ever explored. Instead it will be based on the vehicle position
and its track, and also the possible route alternatives that are still maintained. The term
backtracking is also used in the sense of “to change the previous decisions”, which will
be elaborated more on Chapter 5.1.2.

CHAPTER 2. BACKGROUND 17,

2.6.6 Measuring the performance of an algorithm

Asymptotic notation is often used to compare the performance (or complexity) of al-
gorithms related to the input size. The ©-notation asymptotically bounds a function
from above and below. When the situation is limited to asymptotic upper bound, the
O-notation (called big-oh notation) is used. The following definitions are taken from [24].

The definition for the first notation is given:

©(g(n)) = {f(n) :there exist positive constant c;, c2, and ng such that
0 < c1g9(n) < f(n) < eag(n) (2.1)
for all n > ng}

The second notation is commonly used, as it is capturing the upper-bound, worst case

running time which is common situation in the real world:

O(g(n)) = {f(n) :there exist positive constant ¢ and ng such that
0 < f(n) < cg(n) (2.2)

for all n > no}

Asymptotic analysis is done by evaluating the source program or pseudocode and
counting the steps of execution especially within loop. These will be summed up in form
of O-notation, reducing it to the most significant polynomial terms and omitting the
constant coefficients. The reduction is necessary to simplify the analysis, even though it
decrease the accuracy of the description. Therefore a tight bounds shall also be sought
in order to describe more accurately the performance of the algorithm.

[t should be noted that while asymptotic analysis shows the processing time growth
in terms of the number of input, it does not reveal the actual processing time. For
example, a linear algorithm might perform worse than quadratic algorithm and vice
versa, provided that the constant time operation is favouring the quadratic algorithm.
But what it guarantees is that at a particular input size and greater, the linear algorithm

will outperform the quadratic algorithm.

2.7 Summary

Global Positioning System and other GNSS have several error factors contributing to the
inaccuracies in the whole map-matching process. There are many ways to improve GPS
accuracy but it entails additional costs which might be too expensive for many situation.
Therefore an algorithmic approach might be feasible. Hence, the thesis will not delve

CHAPTER 2. BACKGROUND 18

into the GPS technicalities to improve the accuracy, but instead it will use GPS as a
blackbox, and assume the standard GPS positioning service, without any differencing
or other augmentation such as dead reckoning with the help of other sensor devices
(gyrocompass, odometer etc). Consequently, any other sensor support is not required,
so it is viable and attractive for worldwide use. The key to the accuracy improvement
lies on the ability of the algorithm to perform the process using the standard positioning
services and the network topology provided by the digital network representation (road
map).

Chapter 3

Literature Review

3.1 Map-matching strategies

This section discusses various geometric-based strategies often found in map-matching. It
introduces the naive point-to-point and point-to-curve map-matching, and then proceeds
to the more realistic curve-to-curve approach. Artificial Neural Network (ANN) approach
is also worth to mention here, although our attempt to use ANN in this thesis work is
considered unfruitful. There are some statistical-based strategies, but we will focus more

on geometrical strategy.

3.1.1 The point-to-point and point-to-curve

map-matching

Simplest point-to-point map-matching algorithm will snap the estimated location P' to
the closest node or shape point in the road network. This notion of “closest” or “nearest”
will depend on the measure used, such as Euclidean distance. In the Figure 3.1a this
algorithm is illustrated using Euclidean distance as the nearest measure. Therefore it
matched three GPS points into three nodes by the translation vectors m1, m2, and m3.

This technique is fast and ecasy to implement but suffers from too much dependency to
the resolution of the arc. If there are two similar roads in parallel, and P* lies in between
those roads, then a road arc with more shape points are more likely to be matched to [3].

The point-to-curve algorithm will select the piecewise arc (or curve) nearest to the
estimated point P*, and find the projection of the estimated point on the curve. If such
projection not exists, then it is replaced by the nearest end-point. This is more natural,
but may still have the “unstable” property [25], just like the previous algorithm. On the
Figure 3.1b, the first GPS point is matched to arc 1. The subsequent points are matched

to arc 2. These matches are not contiguous since there are no direct connectivity from arc

CHAPTER 3. LITERATURE REVIEW 20

1 to arc 2. This is because these algorithms do not care for the continuity and connectivity
of the route. A snapped point may be at one time on arc A and suddenly jumps to arc B,
then being snapped again on arc A, according to the “ncarest” measurement discussed

above.

3.1.2 The curve-to-curve matching

A better, albeit more complex, method is to compare the similarity between two curves:
the algorithm considers a sequence of estimated positions and matches this to the most
resembling arc. Assuming there are m positions, the algorithm is to find the are (or a
combination of it, may be partial) most similar to the piecewise linear arc P, defined by
estimate points (P, P! .., P™). As illustrated in 3.1c, three estimated points are used to
match the last position onto arc 4. On the process, the algorithm infers the previous two
positions onto arc 2. This approach needs some way to measure the similarity between
two curves, usually by employing some kind of distance metric. The development of the

new distance metric being used in this work will be discussed in the Chapter 4.

CHAPTER 3. LITERATURE REVIEW

Road Arc1

------- e age B
m& Road Arc 2 -‘:/.-"2‘

®
y

mti/v‘

€ 21y peoy
¥ 21y peoy

(a) Point to Point

Road Arc1

[
2
2

'0—!

L]
)

€21V peoy
¥ 21y peoy

(b) Point to Curve

Road Arc1

L]

o

€ a1y peoy
¥ o1y peoy
At

A

(¢) Curve to Curve

Figure 3.1: Map-matching Strategics

CHAPTER 3. LITERATURE REVIEW 22

3.1.3 Artificial Neural Network approach

The map-matching problem explained has several similar characteristics with that of in
computer vision or character recognition. The system has to be well prepared for the
errors, but still get the correct result. The system could get significant improvement by
learning the pattern that exists in the different case but essentially the same. This is
pattern recognition, which could be approached with Artificial Neural Networks (ANN).

The ANN as an information processing device composed of highly interconnected
nodes has the ability to derive meaning from complicated or imprecise data, and can be
used to extract patterns or detect trends that are too complex to be noticed by either

humans or other computer techniques.

ANN as Geometric Road Classifier

ANN could be used as geometric road classifier which is trained offline, such as the work
presented in [26]. The ANN is trained with a large number of GPS data which must cover
all of the expected road geometries in application phase. In other words, GPS data were
observed on different transport network (road) categories such as straight roads, curved
road parts, parallel roads, junctions and roundabouts [26]. These set of data will be used
to train the feed-forward network with backpropagation training algorithm. Although
the result is claimed promising, not many researchers are working in this direction.

The handwriting recognition is successfully tackled using ANN approach since each
letter still has the same semantic, wherever the position is. The offline training is applied
to the ANN so that it recognizes the letter based on the extracted features no matter the
position on the paper. For example, the letter A placed on top of the page is still deemed
equivalent with the letter A placed on the bottom. Unfortunately, this is not the case
with map matching.

In map-matching the existence of two or more similar roads is prevalent. The similar-
ity is often striking, e.g. two parallel roads within some area might be exactly equivalent
(their shape is equal). The only differentiating aspect is the position or coordinates of
each road. The problem with this approach might be that ANN by itself cannot be used
to differentiate two (or more) very similar route hypotheses, if the training is done offline.

Alternatively, ANN could be used as a road geometry classifier which is trained online,
and will categorize the vehicle track into one of the possible hypotheses that will come
up. The input of the classifier is the important features, such as 2-dimensional simplified
pixelation of road network. The output classes are taken from the possible road geometries
ahead. The training then done in a real-time fashion, by mapping the inputs into the

outputs using typical backpropagation.

CHAPTER 3. LITERATURE REVIEW 23

the transport
network category
that has been

trained offline [D m

important
features

(04 [4d 4 [
SIENENENEN
NUIOHEAE

huge offline training set

e transport
network category
that has been
trained online,
realtime

important
features

small online training set
obtained from the road
geometries ahead

Figure 3.2: Some ANN Solution Architecture

In this online approach, ANN is performing a curve-to-curve matching by classifying
the vehicle track into the one most-likely road. ANN exhibits a somewhat error-tolerant
characteristic, and is able to recognize patterns which are acquired from the training
data. These traits push for a broad range of ANN usage, with backpropagation as the
dominant training algorithm, so the application of ANN on the map-matching problem
looks attractive.

However, training an Artificial Neural Network with the popular backpropagation
typically takes enormous time and computing resource. Hundreds thousands of training
iteration might be needed to converge to the correct set of synapses’ weights. Unlike

online training, the offline training approach will tolerate a lengthy training process.

CHAPTER 3. LITERATURE REVIEW 24

Unfortunately the sheer size of data input that must be trained makes the offline training
approach a bit unattractive.

Not to mention the 'stuck’ to the local minima possibility and diverging result which
will need some manual intervention (design, tweaking etc). With these inherent char-
acteristics, the conclusion is that backpropagation training cannot be used in real-time
fashion. There is an opportunity of using another architecture or training algorithm
though, such as Kohonen’s Self Organizing Memory(SOM) or Linear Vector Quantiza-
tion (LVQ) which offer fast-learning [27], but unfortunately these techniques has not been
explored enough to warrant a promising result for map-matching,

Both of the above methods is illustrated in Figure3.1.3. There is another way to
utilize ANN within map-matching framework, by constructing a predictor for a time
series of GPS error. This method will predict the next GPS error based on last N GPS
reported location. This idea might be valuable but is not yet thoroughly explored on
this thesis. To sum up, the use of ANN is ruled out of this thesis work because of the
real-time constraint that is posed by the problem. Instead, a new distance metric will be

introduced to perform curve-to-curve matching.

CHAPTER 3. LITERATURE REVIEW 25

3.1.4 Adaptive-Network Fuzzy Inference System Approach (AN-
FIS)

An interesting use of ANFIS is explained in [28]. The input of the network are several
fuzzy variables routed into several rules producing “the resemblance” as the output.
The “resemblance” actually has the same role with “similarity”, which determine the
similarity of a particular segment with the navigation solution, only that this metric uses
non-geometrical approach.

There are several rules incorporated, for example, “if the heading change is nominal
and a particular link belongs to a close link set for a larger number of epoch, and the
magnitude of velocity is high and the velocity direction is the same as the road link
orientation, then the resemblance Z, of that link is high”. Of course by adding (or

removing) the rules will make the system more or less adapted to the map-matching
requirement.

3.2 Global and Incremental map-matching

One could also classify the map-matching algorithm based on its application, i.c. whether
the map-matching algorithm has all the trajectory data it needed before it could produce
the result (global) or it must cope with local and partial data that is the character of in-
cremental algorithm. It is clear from the real-time usage constraints that we should focus
on incremental algorithm. Global (typically offline) map-matching has more flexibility in
terms of full points information which tends to make it more accurate. The work in [29]
compared the implementation of a global and incremental map-matching and arrived at
this conclusion. It is interesting, however, to try to augment the incremental algorithms

in such a way that it has the accuracy comparable to that of global map-matching.

3.3 Metrics used in curve-to-curve map-matching

Some kind of distance metric usually is being used to measure the similarity between
two curves. Two curves are more similar if the distance between them is lower and vice

versa. There are a few propertics of a typical distance metrie, which calculate the distance

CHAPTER 3. LITERATURE REVIEW 26

d(x,y) between two set of points x = (), ..., z,) and y = (y1, ..., y»), as adapted from [30]:

0(x,y) > 0 (non-negativity) (3.1)

d(z,y) =0if and only if z = y (3.2)

d(z,y) = d(y, z)(symmetry) (3.3)

o(z,z) < d(z,y) + 0(y, z)(triangle inequality) (3.4)

Thus these properties will be important as the constraints and guidelines in the develop-
ment of the distance metric here. Although the properties are defined for n-dimensional
Euclidean space, but the notion of curve could be abstracted from the sequence of points
x or y, which makes the above property could still be used for the distance metric of
curves.

The Hausdorff distance metric could be used to measure the arc or curve similarity
and is easy to calculate, but does not consider the course of the curves. This distance
measure (6y (P, Q))is defined below [31]:

61 (P, Q) = max(dy (P, Q),6x(Q, P)), where
5

P, Q) = maxmin||z — 1
#(P, Q) = maxmin|jz — y/|

In other word, the Hausdorff distance from a set of point P to @ could be obtained by
first traversing each point zinP, and calculating the minimum Euclidean distance from
cach of z to all points y € @. This process will give a minimum Euclidean distance
for each z. Then the Hausdorff distance from P to Q (EH(P, Q@)) is the maximum of
those minimums. Note that this Hausdorff distance from P to Q (0 (P, Q)) may have
different value compared to the Hausdorff distance from Q to P (6 (Q, P)), thercfore
the symmetry property is violated. In order to avoid asymmetry, the formula is therefore
designed to pick the maximum of the two, giving 0y (P, Q)=dx(Q, P).

As opposed to Hausdorff distance, Fréchet distance consider the course of the curve
and presents a better similarity measurement for the example set in Figure 3.3 reproduced
from [32]. This example curves will be used to validate the proposed distance metric later
in Chapter 4.

The Fréchet distance could be illustrated by the following popular definition adapted
from [33]: A man is walking a dog on a leash: The man can move on one curve, the dog
on other. The Fréchet distance is then the minimum length of leash that is sufficient
for traversing both curves, provided that both may vary their speed (in order to get the
minimum length of leash), but backtracking is not allowed.

The drawback in Fréchet is perhaps on the running time and the complication of

CHAPTER 3. LITERATURE REVIEW o7

(a) Two curves resulting a small Hausdorff dis-
tance and large Fréchet distance

(b) Two curves resulting a small weak
Fréchet distance and a large Fréchet distance

Figure 3.3: Fréchet and Hausdorft Distance Comparison

implementing the algorithm (we assume the implementation is using a parametric search
technique presented by [34]). It solves the problem in the order of O(pg log*pq) (where
p and ¢ are the number of segments of polygonal curve [33]), and the huge constant
operational time might not fit enough for real-time constraint. There are global offline,
post real-time algorithms which use a weaker scheme of Fréchet distance, such as [29], in
order to speed up the running of the algorithm, but nevertheless it is still slow compared
to the incremental map-matching. The approach of [35] is using a Quicksort (instead of
parallel merge sort as exemplified in [34]) and achieve a better result. Unfortunately we
still consider it too slow for our constraint.

In an attempt to satisfy the near real-time constraint, we decided to implement a faster
way to compute distance (or similarity, by the opposite sense) between curves. One way is
by using parameterized (unidirectional) curve, as presented in [8]. The distance between
two curves A and B, assuming that the curves are parameterized in a : [0,1] — A, can
be written as ||A — B|| = Ji||la(t) — b(t)||dt. This distance metric will be the basis for arc

distance which will be used as the main map-matching technique on this project.

3.4 The Framework for Map-matching Metrics

It is clear that the distance metric alone could not perform the map-matching, espe-
cially in the curve-to-curve map-matching setting. This section will take a survey among
“framework” algorithms which will employ a particular distance metric into a good use.
We will use the term hypotheses loosely to represent many possible road alternatives.
The general idea is to find the minimum distance hypothesis, compared to some or all

part of the vehicle track.

CHAPTER 3. LITERATURE REVIEW 28

3.4.1 Road Reduction Filter (RRF)

Taylor et. al. [36] describe a map-matching algorithm which uses height information from
the map’s digital terrain models to better assist the GPS to improve the accuracy, cven
when only three GPS satellite is visible. It maintains and monitors some hypotheses
until the difference in heading and position is passing some threshold, whereby it would
discard that particular hypothesis. The RRF maintains the road hypotheses for a time
constant (30 seconds/epochs), then it will provide the estimate correct road based on
the hypotheses’ correlation with the vehicle track. The distance metric employed here
is the difference in bearing and position of the hypotheses (or might be called pseudo-
measurements) with the vehicle trajectory. The initial matching process is geometric
curve-to-curve matching, which is quite sensitive to outliers [1]. It is interesting to analyze
that if for some time constant (say near 30 seconds/epoch) there are no significant vehicle
movements, such as found in traffic lights or the vehicle is parking, then there might not
any sufficient information available to reduce to a single road correctly.

The original RRF does not need complex data structure to maintain its hypothesis.
This simplicity is sufficient since RRF does not use the road connectivity information [1].
The drawback of ignoring connectivity is that jumping, unstable map-matching result
might materialize. The road connectivity could also bear important information such as
traffic direction, so it might not be optimal to ignore the road connectivity completely.
However, newer version of RRF has evolved to incorporate network analysis software to
cater the road connectivity, including the driving restriction information [13].

The RRF is claimed to converge the hypotheses to the correct road for only a few
seconds in most cases, but has a problem in “along track error”. That is, RRF could
infer the correct road but it could not determine the spot on that road where the vehicle
is located. The development of so-called Mapped Dilution Of Precision (MDOP) is an
attempt to solve this problem, which is explained in [37] and [13].

One last note is that RRF does not have the backtracking ability, i.e. to rewind the
less likely hypothesis and picks the more likely hypothesis to be presented to user. Once
the choice is made, it is never changed. While this provides a bold information to user,
the flexibility and accuracy is traded for that. More discussion about backtracking is

presented in 5.1.2.

3.4.2 Multiple Hypotheses Technique

A pioneering work of Reid, later popular as Multiple Hypotheses Technique (MHT),
spawns many researches and applications. It can be used to track multiple targets in

a cluttered environment, by associating measurements with the appropriate tracks of

CHAPTER 3. LITERATURE REVIEW 29

the targets movement [38]. MHT will gencrate a set of data-association hypotheses
to account for all possible origins of every measurement. In other word, given a set of
imperfect measurements of multiple moving targets/objects, MHT could give the estimate
description of which object has which track, including the new object which appearing
in the middle.

MHT is based on Bayesian probability to give the estimation on measurement-tracks
association hypotheses. However, we are inspired in its management of hypotheses, rather
than its calculation of the most likely hypothesis using Bayes’ theory.

The hypotheses can be shown as a tree (represented using a two dimensional array
in computer), which lists measurement-oriented hypotheses, i.e. every possible target is
listed for each measurement. A measurement represented as a level of that tree. Each
node on a particular level is a possible target for a measurement. This technique is
formulated for multiple targets, and a Vehicle Tracking Systems brilliant rescarch by
reformulating Multiple Hypotheses Technique to a single target problem can be found
in [19].

The use of tree data structure enables the system to store a huge number of hypotheses
in an cfficient storage with minimum redundancy. Also, the huge hypotheses will be
useful to a very flexible backtracking, not limited to some time constant. By managing
the hypotheses as a tree we can employ the distance metric that is appropriate to evaluate
those hypotheses. In other words, the tree data structure is very important part of the
frameworks algorithm that will be developed.

3.5 Measuring Map-matching accuracy

A brief exposure on the map-matching accuracy is already given in Chapter 2.1. We
will proceed with the discussion in the map-matching context, starting with the work of
Morisue [39] for the indices 1-3 below, and adding them with the index used by [3] (the
fourth index).

The map-matching evaluation indices can be one of the following: 1. Average mileage
driven until the vehicle is off (map-matching limit).
This index records the travel length until a map-matching technique fail to match the map
with the vehicle track. It is quite normal that, eventually, the map-matching algorithm
fails to produce sensible match because wrongly selected earlier route or other deficiencies
in the process.

2. Average location accuracy.
This index is determined from the average of error of the matched route as compared
to the “true” route. The true route might be obtained from the differencing techniques

CHAPTER 3. LITERATURE REVIEW 30

such as RTK or DGPS. Alternatively, as a more coarse approximation, the index can be
determined from the error average of the matched points as compared to a list of specified
known benchmark points location.

3. Wrong route driving ration.

This is the ratio of driving distances on wrong routes, divided by distances driven on
correct routes. The index is useful because wrong route indication often confuses driver,
especially in the urban area settings where there are too many roads intersects one an-
other.

4. Correct arc ratio.

This index results from the ratio of the number of correctly matched points divided by the
total number of matchings. A match is correct if the vehicle is on the same arc predicted
by the system.

We will use the fourth index as it is relatively easy to calculate without sacrificing
the “perceived” accuracy of the human user. The first and second index might be giving
high score for a system which often fail to give the correct route. In other situation, a
good map-matching algorithm which provide a correct route on a largely distorted map

might be considered low in accuracy according to the first and second indices.

3.6 Summary

There are a number of map-matching methods to improve the accuracy. Geometrical
methods works by examining the geometric properties of the road arc and the vehicle
trajectory. Statistical approach involves probabilistic estimation of the correct road link
given sct of measurements and history of vehicle motion.

Our interest is on the geometric curve-to-curve matching. This method compares
the curve of vehicle track and the set of curves of possible road routes (measured in
a particular metric) and presents the estimate route based on the most similar curves
combination. There are several metrics that can be used in the curve-to-curve matching,
including Hausdorff and Fréchet distance metrics.

A map-matching algorithm could also be seen either as global (offline) or incremental
(online). The first has all the information upfront while the latter obtain the information
partially through time. The global map-matching is more accurate than incremental
map-matching but not suitable if used in a real-time situation. The challenge is to have
an incremental map-matching which is comparable to the global map-matching in terms
of accuracy.

The accuracy itself could be measured using several indices. Of those indices one is

picked to evaluate the performance of the proposed algorithm. The choice is based on

CHAPTER 3. LITERATURE REVIEW

the user-relevant property and it is also relatively easy to calculate.

31

Chapter 4

The Development of Arc Distance
Metric

As noted in Chapter 3, curve-to-curve matching will need a measure on curve similarity.
On this chapter, a new metric will be developed, that will be referred as arc distance.
The arc term is used instead of curve, as typically used in the GIS environment where
the vehicle tracking systems will be applied. An arc could be viewed as piecewise lincar
curve, which typically would represents an actual road in the road network system.

The most important criterion of the design is that the metric should measure similarity
between curves (or arc) visually, by tolerating some translational error. This is because we
will use the metric for measuring arc similarity in the context of map-matching. Further

reasoning about this is described in Chapter 5.1.1.

4.1 The Metric Design

The basic curve distance metric (version 1) to measure similarity of two curves A and B

which will be modified is reproduced here for easier reference:

1
lA— Bl = [lla(t) - b(®)lat (1)

It should be kept in mind that for two curves to be more similar, the distance metric
should give lower value, and for two identical curves, the distance metric should return
ZCTO.

Note that we use capital letter (A) to represent the curve as a whole, while the
lowercase (a(t)) is used to represent the parametrized version of the former (A). This
style will be used throughout this discussion.

The Figure 4.1 explains the computation procedure of this metric. The first step is

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 33

to set two “cursors” for each of the curve, then the cursors are moved toward the end of
the curve for some distance. The cursor is simply a variable to record a two-dimensional
position. For a lengthier curve, the distance step is bigger than the shorter curve. For
same-length curve, the distance step will be equivalent. The distance step depends on
the length of each curve. At each step the Euclidean distance is calculated, then added
to the total sums. The distance between the curves is then the total sum multiplied by

stepping parameter dt.

dt, A dt, = dtg

dtg B

dty A dt, # dtg
E ."‘. "ll"-.

dtg B

Figure 4.1: Metric version 1 computation

The problem with this measure is that it will not operate very well on curves with quite
different length [36]. Given two curves in differing length, we would like to measure more
on the initial similarity (that is the initial subcurve of the longer curve), rather than
measuring the whole curve similarity. This is because -in map matching- the curves
constructed by the vehicle track, or the road track, could be considered in the same scale
or unit. That is, the accuracy problem is mostly on a translational error and not on the
scaling or rotational error.

We will modify this so that it may handle the curves with different size good enough.
In other words, we want to measure more on initial similarity and not the whole curve
similarity. This is done by picking the shorter curve of the two as Q = min(A, B), and
the longer R = max(A, B), and Riy; denotes the initial portion curve of R with the same
length of @), then ;

1A= Bll = [lla(t) = rune(t) dt + Dr (42)

where D, is the residual distance, which is

D, = [(1) = res(t)l (4.9

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 34

where R,., is the last portion of R which follows the equation R = Rinit + Ryes. This
way, this new metric (version 1) will emphasize more on the initial portion of the curves
rather than the full curve comparison of two differing sized curves.

This modification is not complete yet. We found that the metric still has a problem
of accounting too much on the distance between the points within the curve (inter-curve
distance) rather than the shape of the curve itself. The illustration is presented on

Figure 4.2. On the figure, the curve P and Q is exactly the same in terms of shape,

Q Q

Figure 4.2: Equivalent curves is considered dissimilar compared to a very different curves

but they are separated by some (inter-curve) distance. The curves P’ and Q' is totally
different but positioned nearby. The modified equation will give a very similar result,
which is not suitable for the map-matching case. In map-matching , some slight, quasi-
translation is quite common, as can be seen in the Figure 5.1.

Therefore, the shape of the curve should be accounted much rather than the distance
between two curves. To make the metric account the shape of the curve, it is neces-
sary to compare both curves from the same origin point. This idea lead to the second
modification.

The second modification (algorithm version 2) is done by translating one of the curves
so that the initial points of those curve coincides. In other words, two curves will have the
same origin. Let R’ is the translated curve of R, such that (note that r(t) is a parametric
function of curve R)

r't)=r(t)-T (4.4)

where T is the translation delta, obtained from the initial points difference.

T = r(0) — q(0) (4.5)

This R’ is to replace R in our previous metric. The motivation behind this aligning
is to focus on the curvature of the curves, and not the Euclidean distance between the
curves. As illustrated in Figure 4.2, two curves that are very dissimilar could have the

same similarity as two identical curves, provided that some special arrangements on the

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 35

curve position are made.

We may note that the last modification will discard the Euclidean distance factor,
i.e. two curves have the same similarity, even if we separate those curves away to a
very far distance. This is not suitable for map-matching which prefer closer road arcs
as the better matching hypothesis, provided both have identical curvature. So the last
modification (version 3) is to account the maximum distance between two curves M, as
a multiplier of the metric. This variable is calculated from the larger value between M,

and My, i.e. M = max(Minit, Mres), where:

Minis = :él[gjf—-]”q(t) = r;nit(t)H

A'f[rc.v = trél[?{]"(i'(l) - 7"w:.';(t)ll

Note that M,;; is the maximum distance between the shorter curve to the initial
portion of the longer curve. Similarly M,., is the maximum distance from the end point
of the shorter curve @ to the last portion of the longer curve R. Thus the final modification

should read as: ;
14— Bll = M [llg(t) = rha(®)lde + Do (46)

This distance metric will be further referred as arc distance metric, represented by the
symbol d44m, and will be used as the primary method on matching the vehicle tracks to

the correct road arcs.

4.2 The Implementation

The metric is implemented in Algorithm 2 below, accepting two curves in the form of
polylines. A polyline is considered as an array of coordinates. The Trace() procedure
is responsible for tracing the two polylines starting from some point for some length
specified (in the algorithm it is represented as delta length dL). Tracing is the process of
moving a cursor in the curve direction for some length. The important data is the new
cursor position on the curve after trace, upon which the distance between two cursors is
measured. The distance will be multiplied with dL, and will be topped up to the total
distance. The distance metric is then the total distance after both lines are traced. The

algorithm should be more clearly explained by Figure 4.3.

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC

How to measure Arc Distance Metric for these arcs? Note that in this diagram the

> arc distance metric is explained
as technique in a curve-to-curve
map-matching. This is because
a curve is modelled using a se-
ries of points, which is equivalent
to an arc.

—p Also we assume that these two

arcs has the same length.
1. Coincide the initial points of these two, and establish
two cursors at the initial point.

N The initial points are the same
A - > (A) which initially also pointed
A by two cursors.

Every iteration step, all cursors
are advanced toward the end

» for some very small length dL.
D E Of course, the two cursors still
coincide up to B

2. Advance the cursors, and calculate the euclidean
distance D between cursors for each iteration k (Dk)

multiplied by dL. R The euclidean distance Dk bet-

Y > ween two cursors are still zero

E}, c up to B, since both cursors are
not separated at all. But after-

wards, two cursors are splitting

and Dk will not be zero anymore.

b E The cursors are splitting and are
advancing towards their own
path and destination.

3. Calculate the Arc distance metric by calculating the

sums of all calculated Dk*dL (called Total), then multi-

lying this value by the maximum Dk that was found.
pYing y The last calculated Dk is equal
N to the euclidean distance bet-
A ween C and E.
B ’C The Total sums is still zero only

up to B, since any earlier Dk is

A

Dk always zero.
> Afterwards, the total
B « E sums will not be zero since

f Total=Total + Dk * dL

The Arc Distance Metric is
Total * maximum Dk.

4, Special note: if one of the cursors already reached

the final destination (Cfinal), while the other is still on the

midway (Cnonfinal), then Cfinal will not be advanced or

freezed to the end point, and only Cnonfinal cursor will

be moving. The Dk is still calculated using the same way.

Figure 4.3: Illustrated explanation to calculate the Are Distance Metric

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 37

4.3 The Arc Distance Metric in the Light of a Dis-

tance Metric Criteria

Section 3.3 discuss about general distance requirements, upon which Arc Distance Metric
will be scrutinized. The observation of Arc Distance Metric algorithm shows that the
metric at least has the following properties (please refer to the figure 2 for the variables

used here):

4.3.1 Non-negativity (0q4m(z,y) > 0)

Since D is derived from Euclidean distance and always multiplied by a positive constant,

then consequently the Total (which is started from zero) is always non-negative.

4.3.2 The distance is zero for equivalent curves (0,4,(x,y) =

0 if and only if z = y)

For equivalent curves, the Euclidean distance per segment D is always 0. Therefore the
Total is always 0 for this case. For non-equivalent curves, there must be a different cursor
location at particular step somewhere. Thus the D will not be 0, and of course the Arc
Distance Metric result will not be 0. Note that there is no cancellation effect that will

affect the final result since D is always positive.

4.3.3 Symmetry (Saam(2,y) = Oadm(y, z))

The Euclidean distance D itself is symmetric, therefore it will not change if the polylines’
order in the metric’s parameter is reversed. Now the Polyline3 is arbitrarily derived from
Polyline2, and not Polylinel. Even though if it is derived from Polylinel, D will not
change because of the simple translation. The experiment with the algorithm also shows

this result.

4.3.4 Triangle Inequality

For this fourth property (triangle inequality) it might take a further mathematical proof
and will not be discussed here. Basically the Arc Distance Metric works and these three

properties are quite satisfying for the application in map-matching process.

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 38

Algorithm 2 OQutline of Arc Distance Metric

function ADM(PolyLinel,PolyLine2):

translate Polyline2 so that its initial point = Polylinel’s initial point
Posl = initial point on PolyLinel
Pos2 = initial point on PolyLine2
Total = 0.0
repeat
Posl = Trace(PolyLinel,Pos1,dL)
Pos2 = Trace(PolyLine2,Pos2,dL)
D = Euclidean distance between (posl,pos2)
Total = Total + D * dL
until all lines are Fully Traced
return (Total * (maximum D found during the above loop))

Trace(PolyLine,StartingPosition,L):
if StartingPosition is at the end of the polyline then
signal Fully Traced for this line
clse

move the StartingPosition cursor toward the end of polyline for L distance

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 39

4.4 Simple benchmarking

The metric is used to compare these two sets of curves in Figure 4.4. The lesser the
distance, the more similar they are. A good distance metric should result a zero distance
if applied to two equivalent curves, and also return large distance to both of these sets.
These sets are also used to benchmark between the Fréchet and Hausdorff distance in
Chapter 3.3, so it is also used here to test whether the arc distance metric (ADM) might

perform as good as Hausdorfl distance metric.

TV A~
(a) Set 1: Small Hausdorff distance, Large
Fréchet distance, Large ADM distance

(b) Set 2: Small weak Fréchet distance,
Large Fréchet distance, Large ADM distance

Figure 4.4: ADM, Fréchet and Hausdorff Distance Comparison

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 40

Both figures are represented in pixel coordinates. For Figure 4.4a there are two curves,
A (having many zigzagged lines) and B (less zigzagged lines), which have the coordinates
as listed in Table 4.1 (for curve A) and in Table 4.2 (for curve B).

Point# X| Y
0 57 | 134
1 118 | 22
2 99 | 145
3 175 | 22
4 161 | 153
) 234 | 22
6 218 [171
7 276 | 24
8 266 | 192
9 335 | 28
10 323 | 169
11 398 | 32
12 397 | 163
13 485 | 40
Length | 1912,33 | px

Table 4.1: Set 1: Curve A points

Point# D 4| [Ee
0 46 | 40
1l 515 | T2
2 26 | 106
3 531 | 127
4 15 | 174
Length | 1983,84 | px

Table 4.2: Set 1: Curve B points

For this pair, ADM returns .4, = 159480758, 678852. This is a large value indicating
dissimilarity of the pair. Now for the set displayed in Figure 4.4b there are also two curves,
A and B, which is having the coordinates listed Table 4.3 (for curve A) and in Table 4.4.

For this second pair, ADM returns d.4m = 130648470,529814. This is also a large
value indicating dissimilarity of the second pair. We will compare this result with the
Hausdorff distance and Fréchet distance soon.

The conclusion that might be drawn from the sets is that the Arc Distance Metric is
better for measuring similarity of two curves or arcs, at least if compared with Hausdorff

CHAPTER 4. THE DEVELOPMENT OF ARC DISTANCE METRIC 41

Point# X Y
0 78 | 115
1 405 | 131
2 25 | 150
3 520 | 159
Length | 1202,95 | px

Table 4.3: Set 2: Curve A points

Point+# Xa Y
0 32 | 195
1 521 | 195
Length | 489 | px

Table 4.4: Set 2: Curve B points

distance. Also, the performance is comparable to that of Fréchet distance. We will put
this metric into real test on the field experiment explained in Chapter 7.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 43

ol

\ :
y L,/ relative
—a ot) | translatior
Par—t] : I g /"
Bak 7 A : 2 =
corrected) o . Ea W /
: .
3 A i
) /‘T / — _~ +«— Street 1—/
actual vehicle track / N
estimated vehicle track (GPS ticks) Cb

Figure 5.1: A scenario where backtracking is necessary

5.1.2 Incremental Algorithm with Backtracking Ability

On the previous Figure 5.1, the navigation system reports P® as the position of the
vehicle at time a. Assume that the real vehicle location is P*. Later at time b, a similar
observation could be made, returning P’ as an estimate to P

Using such assumptions, an incremental map-matching algorithm has to provide best
estimate of the route and position at any time a and b (that is, P* and P") which coincides
on the road network. It could be seen that at time b, there is enough information to say
that —by visual inspection of the estimate track and the road network- it is likely that
the vehicle took the direction from Street 1, then turning to Street 2, then again turning
to Street 5. It is supported by the fact that Street 3 alternative is improbable, since
it has no left turn until some distance, quite far ahead. Whereas back at time a, such
information is not yet available, forcing immature inferences from a set of hypothesis,
i.e. either: (1) The vehicle took Street 1 then turned to Street 2, or (2) The vehicle
took Street 1 then turned to Street 3. Let us say that the system came up with wrong
inference and picked Pe for that time (i.e. the option number 2). The negative sign
symbol is used to hint the reader that this will be an erroneous choice. The system does
not know nor use that symbol. At time b, the system decided that it needs to backtrack
and modifies the previous choice P into F“*, since that is the most likely road taken

by the vehicle.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 44

This scenario illustrated that the partiality and incremental nature of the problem
needs to be considered carefully to come up with a good map-matching algorithm. In
other words, a good incremental map-matching algorithm should be able to backtrack to
the most likely hypothesis available.

The backtracking should not to be implemented as a reduction of hypotheses, such
as reduction within particular time limit like found in Road Reduction Filter (which
maintains hypotheses only for the last 30 epochs/seconds) but instead, as long as the
hypothesis is good enough (that is, quite resembling to the vehicle track), then that
hypothesis should be kept and not discarded. Therefore it will provide the ability for the
system to backtrack and amend the previous choices whenever necessary.

In order to do a decent backtracking, the system needs to manage the hypotheses in
an cfficient manner, by storing the necessary data into a suitable data structure for the
purpose. It is why the Multiple Hypotheses Technique offers an interesting insight to
the problem since it models the hypothesis in an efficient tree model. This thesis took
the similar direction of Pyo, by reformulating the Reid’s Multiple Hypotheses Technique
as a single target problem, and generating pseudo measurement using adjacent road
networks [19]. This thesis do not, however, follow the Multiple Hypotheses Technique
use of Bayesian probability to do the comparison, but will instead use the arc distance
metric developed in Chapter 4.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 45

5.1.3 The Algorithm Description

We will start with the hypothesis definition. Each hypothesis H inside H consist of
sequence of points (H° H',..., H") and a corresponding arc segment for cach H™. It
means that each hypothesis is assumed as a possible vehicle route through the road-center
lines, starting from the spot referred by the first hypothesis (H®) and proceeds through
the sequence of hypotheses until the last spot (H™#). It also uses the tree representation,
consisting of a root node and a number of hypotheses tree H as its children. A hypothesis
is stored as a full path of that tree, from root to the leaves, where H" is a direct parent
of H™*!. 1t is easy to see that the new hypotheses “grow” on the previous hypotheses,
by noting that new children will inherit the same ancestors in that tree. In other words,
new hypotheses are generated by expanding a leaf node on the hypotheses tree.

The hypotheses tree is illustrated in Figure 5.2b. As already mentioned in the previ-
ous section, the map-matching process does not use any probability calculation of each
hypothesis. Instead, the arc distance metric measure will be used to evaluate each of the
hypotheses to pick the best road the vehicle is on.

The central idea of the solution is to look back and ask two things:

1) what is the shape of curve constructed by the vehicle track just now, and
2) what is the possible route that is most similar to that shape of curve.

Therefore the algorithm has to evaluate the curve similarity between last estimated
vehicle track and each possible route according to the map. The objective is to find the
best estimate route (hence the road as well), which is most similar to the vehicle track
(i.e has the lowest Arc Distance Metric property). The route can be composed of many
connected roads or road segments, as long as the total length of the route is equal to the
last travel length of the vehicle for some period.

In the Figure 5.2a, the real route taken by the vehicle is through the node (1,2,3,7, 8).
The bold dotted arrow at the center represents sequence of GPS-reported estimated po-
sitions (i.e. the estimated vehicle track). The corresponding hypotheses tree for the
scenario can be seen in Figure 5.2b. For the explanation purposes, the hypothesis point
H" information will be omitted, and the discussion would use the road segment infor-
mation instead. Therefore a hypothesis will be represented as sequence of node such as
(1,2,3,7,8), which has the meaning that the vehicle went through nodes 1,2,3,7 and is
currently lies somewhere between node 7 and node 8. This simplification will be used
to convey the conceptual discussion. For a more detailed hypotheses tree structure, the
reader is suggested to refer to Section 5.1.5.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

The system generated the To

hypotheses at Ta, Gen(Ta). P 3> winner hyp.
Using arc similarity, it picked the C)_‘;:“m_{lz) | > woseer.
ke

most probable hypotheses at that
time, Choice(Ta). This time it D=a+tbec+d r
(temporarily) incorrectly infers the Choice(Taj=Gen(Ta),
vehicle route as (1-2-6). £) = Gen(Tb),

At Tb, the system will produce
Gen(Tb), by growing the
previous hypotheses set by the P
growth length D (the estimated
last travelled distance calculated from i
the last update is used to "advance" the vehicle hypotheses)

@ Among the new hypotheses is that (1,2,3,7,8) and (1,2,6,5). The hypotheses (1,2,6,5), represented
by Gen(Tb)2 is the result of growing Gen(Ta)1. Notice that Gen(Tb)z is exactly D distance grown
(following the road) from Gen(Ta)3. All hypotheses will be compared with last travelled vehicle
track L for the similarity. It is clear at Tb, that the more probable route is (1,2,3,7,8) since there is
a sharp right turn which is only possible on that route. Indeed, the system use arc distance
metric and picks Gen(Tb)1 as the winner for epoch Tb/Choice(Tb).

(a) The Map and Vehicle Track

===4 vehicle track

Gen(Tb)
start point

Gen(Ta)
start point

Gt o
X D ran Choice(Tb)=1-2:3.7-8

®
Choice(To) (2] e
‘ Gen(Tb)z
Gen(Ta)3 or
Choice(Ta)=1-2-6
nodes and path generated at Ta/
Gen(Tajn ==-=----
Nodes created nodes and path generated at Tb/
by first guessing Gen(Tb)m
process

H &

(b) Hypotheses Tree Structure

Figure 5.2: Hypotheses Tree Generation and Choosing the Winner

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 47

Let (Tp, T}, ..., Two) indicates a sequence of timestamp within a fixed time interval (e.g.
5 seconds), each comprising of several P information (for example, if the GPS epoch/ticks
is set per second then each five seconds interval would comprised of five estimate points
P!). Each T}, is called an “update”, and it holds that T; happens carlier than T} if j < k.
Each update is the time for the system to update the hypotheses and do map-matching
based on the retrieved information from navigation system. The figures shows that at T,
the system must find on what road the vehicle is on, based on the previous vehicle track
in form of estimate positions up to P(T,) = (PT, PTi, PT--, PT=) and also the previous
hypotheses set. In the illustration, it is H(T,) = {(1,2)} (to simplify the illustration,
assume that is the only hypothesis at T,). This is where the curve-to-curve algorithm
performs. It must find all possible, adjacent curves (roads) from all previous hypotheses,
to compare it with the last vehicle track for some distance C. In order to do that, it
must grow the hypotheses tree H for some growth-distance D, which is estimated from
| PTe— PTa-t||, That is, D represents the distance traveled by the vehicle since last update.
Usually the setting is that C > D. The algorithm then picks the most likely hypothesis
(the one with minimum sums of all Arc Distance Metric performed for that hypothesis)
tentatively and the system will present that as the estimate vehicle position on the road
and also as the estimate vehicle route. Back to the figure, at T, there are at least three
new hypotheses: the vehicle went through the route (1,2,6), or the road (1,2,3,7), or
(1,2,3,4). The hypothesis (1,2) is not included because it is the old hypotheses upon
which the new hypotheses must grow. Let say that the Arc Distance Metric score the
minimum for the sequence (1,2,6) and makes it the winner for this update, but because
(1,2,3,7) and (1,2,3,4) is quite “good”, then these two hypotheses will remain for some
time.

To delve more detail on the process, the content of the hypotheses tree is displayed in
Figure 5.2b, and the step-by-step execution is illustrated in Figure 5.3. Before Ty, there
is only one hypothesis available in the tree, H = {(1,2)}. This is the result of the first
guess performed at 7p using simple point-to-curve matching, since there are no sufficient
information available (i.e. no hypotheses yet) at the first time. Note that the nodes 3,74,
and 6 is generated on the grow phase of T, (noted by Gen(Ty)). After the growth of the
tree (hypotheses generation) of 7,, H = {(1,2,3,7),(1,2,3,4), (1,2,6)}. This generated
hypotheses Gen(T,) is drawn using dotted line on the Figure 5.2b and is “grown” over
the previous hypotheses H = {(1,2)}.

The next update, T}, the system will again grow the tree (the generation process noted
by Gen(T})), this time the growth distance D can be seen in Figure 5.2a, step 3. This
will grow (i.e. branch) two leaves to the hypotheses tree that is the two new hypotheses:
a) (1,2,3,7) added with the node 8, becomes (1,2,3,7,8) and

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 48

® ®
5 >
G
'l
O"
@'i?,&'@ ® ®
= TO
® ®
'0‘ i -’
o)
]
A

Figure 5.3: Hypotheses Generation Step By Step

b) the addition of node 5 to (1,2,6), which will become (1,2,6,5).

Notice that there are no growth on the (1,2,3,4) branch because it is too dissimilar to
the last vehicle track. Whenever the Arc Distance Metric of a branch yield D > Dz,
it will be discarded immediately and will not be added to the hypotheses tree. Also, it is
clear now that (1,2,3,7,8) is much more similar compared to (1,2,6,5). This is backed up by
the evaluation of Arc Distance Metric for those hypotheses. Note that the winner-decision
process will consider the sums of all previous Arc Distance Metric that has been done for
a particular hypothesis. It means that daam(1,2,6) + 6aam(1,2,6,5) > dagm(1,2,3,7) +
0adm(1,2,3,7,8). In fact, at T}, the hypothesis (1,2,3,7,8) has the minimum sums of all
Arc Distance Metric that has been performed. Hence, the algorithm picks this (1,2,3,7,8)

as the winner for T}, as noted by Choice(T},) on the diagram.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 49

5.1.4 The Outline of Execution

To sece the overall picture of the algorithm, it is important to note that the map-matching
algorithm is executed per update, and has some steps which are illustrated by the flow
chart figure 5.4. The first step is to get estimated location update from the navigation
system. It will then check whether the hypotheses set are empty or not. Empty hy-
potheses set indicates either the system does the first update at its startup or that the
system failed to match the reported location to any road segment for some times. The
latter is because the algorithm prunes all “dead” (i.e. too improbable) hypotheses and

will eventually left the system with no hypotheses at all (if there are no matches at all

Start Update

Get Location Update
from Navigation System

No Hypotheses?

True

for some time).

True Falpe

False
r 2 Decrease the life time of
Create First Hypothesis a hypothesis (Time To Live)

(point to curve matching)

Prune all dead hypotheses
(ie. Time To Live = 0)

Grow the Hypotheses Tree

for a D distance &
Pick the best hypotheses
ie. one that has the minimum

Compare all grown Hypotheses i
with the last C distance sums of arc similarity so far

vehicle track
End Update

Figure 5.4: Flowchart of the algorithm

An empty hypotheses set caused by two conditions above will need an initial hypothe-
ses generation process (First Guess or FG), which will be using another map-matching
methods. The current configuration uses point-to-curve algorithm. It will list all road
segments within a circular perimeter around the estimate vehicle location and find the
nearest spot within that road segment. Of all these possible starting points, the system
picked the nearest point to become the tentative best result.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 50

If the hypotheses set H is not empty, the system will just grow it for approximately
D distance. It does the growing by further tracing the adjacent road network for the
approximate length of D, and to incorporate “good” candidates into the hypotheses set.
After the growing, the system will compare all hypotheses with the last vehicle track for
some distance C. The comparison is done using Arc Distance Metric. The details of this
growing process is already discussed previously, leaving only the hypotheses reduction to

be explained in the next section.

5.1.5 Detailed Data Structure and the Notation

TNode

+X: Real
+Y: Real

THyptree

-RefCount: Integer
-TTL: Integer =
-Blocked: boolean

-NodeTo: TNode

-NodeFrom: TNode

-Children: TList of THyptree

-Dist: Real

-P: Tspot

+AddRef()

+ReduceTTL(var Liquidated:boolean)
+Block()

+ClearAllBlock()

Figure 5.5: class diagram for hypothesis node

The hypotheses tree in the earlier sections, probably at the simplest level will be
realized as an object of the class in Figure 5.2b. The figure represent a class (in the
OOP terminology) whose instance would be able to contain a number of itself, which
could be used to model our hypotheses tree. The root of that tree is already present on
the tree structure itself, thus the term hypothesis node and hypothesis tree are actually
refer to the same thing.

For further conceptual discussions we will use a simpler notation (compared to the
UML class above) to represent the hypotheses node, by capturing the most important

fields within the hypothesis node structure. Note that this notation will replace the

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 51

notation on Figure 5.2b for further discussions.

nypotheses node Legend:
within hypotheses tree snapped pointat Tb

Level n+1 i score
Level n m

H (B

NodeTo NodeFrom

arc node

.

................

PYP"/ P
vehicle's GPS trajectory Gen(Tb)2 (looser)

Figure 5.6: simpler notation for a hypothesis node

The Figure 5.1.5 shall explain this notation. The most important fields of a hypothesis
node is the P, NodeTo, and NodeFrom field. P is the snapped point within an arc
segment on the network representation. This arc segment is denoted by the combination of
NodeTo and NodeFrom. Hypothesis H, for example, has H = {P = (100, 100), NodeTo =
2, NodeFrom = 1}. It means that, according to H, the vehicle travels from Node 1 to
Node 2, and currently is located in (100,100), whatever the coordinate means. For the
implemented simulator, the coordinate is merely pixels. This coordinate is, of course,
already transformed into a pixel based representation from the latitude/longitude pair.

The next most important field is Score, which is the Arc Distance Metric score per-
formed for that hypotheses. The calculation of Are Distance Metric performed by evalu-
ating the full path of that hypotheses node. By full path we mean that all of its ancestor
are traced, thus giving us the route hypotheses which the last portion of it is to be
compared with the last portion of vehicle trajectory. Figure 5.1.5 should illustrate these
concepts clearly. The score in that figure is only represented as dots. The higher the dots
or the score means the more Arc Distance Metric the node has, and it will be less likely
selected as the winner. As stated in section 5.1.3, a winner is selected from the sum of
score from the root to the leaf node.

The point P must lic within the straight line between NodeTo and NodeFrom. This is
assuming that we are dealing with planar maps. This assumption is safe for small scale

maps such as city maps, where straight line nearly approximate the great circle distance

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 52

(the shortest distance between two points on the earth’s surface). For a much larger map
a straight line may not be (depending on the projection) representing this great circle
distance.

The main hypotheses tree contain a special root which do not contain any positional
information. This special root is created at the initial program execution and serves as a

single ancestor for every other generated positional hypotheses afterwards.

5.1.6 Hypotheses Reduction

The reason behind the reduction is because the algorithm presents an ever-growing and
often explosive hypotheses tree problem. Leaving the hypotheses nodes intact would
burden the system’s memory and also the processing unit. The reduction algorithms are
responsible for omitting the unnecessary nodes in the hypotheses tree. There are three
implemented reduction algorithms that are implemented in this work as summarized in
the following table:

Reduction Algorithm | Traits

Basic Pruning Eliminates unlikely hypotheses before it is even at-
tached. The most natural filtering and even nec-
essary for the accuracy of the map-matching algo-
rithm.

Compaction Eliminates the redundant hypotheses within an
arc. It gives maximum two hypotheses within an
arc. Very useful for low velocity setting such as in
slow traffic.

Merging Merges very similar hypotheses branch into one
physical branch, but still maintain the logical ex-
istence of them. Very useful for city setting which
contains many similar roads (such as road pattern
in blocks in a very ordered city)

Table 5.1: Reduction algorithms and their traits

5.1.7 Basic Pruning Technique

On this technique, the unnecessary nodes would be a set of unlikely hypotheses, i.c. the
new hypotheses that is fail to score the necessary similarity, and also a set of infertile
nodes, i.e. the hypotheses that is not growing for some time.

Every growth of hypotheses needs to be below some threshold of Are Distance Metric,

which mean that if the generated hypothesis is not good enough (badly dissimilar route),

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 53

it will not be attached to a growing point in the hypothesis tree. If certain hypothesis
node failed to grow for some time, it can be inferred that such hypothesis node is not
fertile, i.e. it then becomes an unnecessary node.

[t is possible then to assign Time-To-Live (TTL) counter to each node of the hypoth-
esis tree. The TTL counter is reduced for all “infertile”, non-growing hypotheses. On the
other hand, the T'TL counter remains intact for a “fertile”, growing hypotheses branch.
When a particular branch has zero TTL, it will be pruned up to non-dead nodes. The
experiment showed that this pruning algorithm successfully maintains the prospective

nodes and reducing the number of hypotheses if the TTL is initially set to 5.

5.1.8 Hypotheses Compaction Technique

On this technique, the unnecessary nodes would be redundant hypotheses nodes within
an arc. If the vehicle has low velocity then it is more likely that the grown hypotheses
will still be on the same arc, only shifted or shortly spaced away. In this casc not all
nodes are necessary to represent the vehicle’s journey.

The minimum number of nodes to represent a vehicle’s journey is exactly one per road
arc. Unfortunately the current algorithm architecture does not allow it to be realized in
an casy way, that we can only cut the size only to two minimum hypotheses nodes per
road arc. One of the node is always on the shape point or an arc node (arc node is not
hypothesis node), and the other one is in-between the shape points. These two nodes are
called the boundary nodes, and the nodes in-between these nodes are called internodes.
The internodes are the removal target of the compaction algorithm.

The removal of the internodes should not affect the scoring of the hypothesis, so there
must be a kind of carry-forward (or backward) mechanism to bring the score to other
unremoved hypothesis node.

It must be noted however, that the removal of hypotheses will inevitably affect (re-
move) the previous unnecessary snapping points, and thus preventing us to reconstruct
the vehicle’s time-to-time journey, unless if some vehicle track logging/recording schema
(that are independent of the hypotheses tree) are employed.

The figure 5.7 shows the situation before and after compaction. Before compaction
there are nine hypotheses nodes. As illustrated in 5.7a, the node of level n+1,n+2,and
n+3 of this path are considered unnecessary. Their score is represented as the number of
bars on the right side of the hypotheses nodes’ circular symbol. Their Are Distance Metric
score is then carried forward to the node at level n+4. Hence their scores are summed

(3x3+3=12 bars) and became the score at the node level n+4.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

Leveln+3 Levgln+d4 Leve

B

H
ﬁ“
1-2
4
.
.
‘l

ar;:'node N : /
! . “._ .‘. Gen(Tb)1 (winner)
o 4 av -
1 -
L/V‘ /"1 pﬁ
e —— e i i -t P
vehicle's GPS trajectory P T PT2 PT3 Pu P

(a) Before compaction

.7-[‘ the score is the aggregation of the removed nodes' scores before it

5
.

N O .

ST L P
vehicle’s GPS trajectory P L

o e

(b) After compaction

Figure 5.7: Hypotheses compaction technique

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 55

5.1.9 Hypotheses Merging Technique

The motivation of this merging is based on the redundant partial hypotheses that must
be maintained especially when there are route split and route join. Consider the road
situation in Figure 5.8. Suppose the vehicle is traveling the route 1-2-3-5-6. Alternatively
there is road route 1-2-4-5-6. The GPS record shows that both road route are indeed
possible, so the algorithm would maintain both route in its hypotheses tree. Eventually
these two route alternatives would meet in arc segment 5-6. Unfortunately the proposed
algorithm knows nothing about this and still maintains the alternatives in two differing
branches. Of course any new hypotheses nodes grown on one branch are also grown on
the other branch, effectively drains the system resource.

This merging technique tries to reduce the physical node by eliminating many similar,
joining hypotheses nodes and redirect all references to it into one selected physical node.
All of the nodes are still logically preserved (with some small error as a result of small
location difference or small hypothesis score difference), only that the reference to that
node is redirected to the physical node. By physical node, we mean a hypothesis node
that is allocated as an object occupying a chunk of memory, whereas logical node is only
a reference (pointer) to other physical node.

The hypotheses nodes that are mergeable must satisfy these conditions:
1. The nodes are recently explored.
A node is recently explored if it is attached to the hypothesis tree at the latest
current update.
2. The nodes is considered similar. Two hypotheses nodes are similar if :
a) the Arc Distance Metric score is less than some constant;
b) The nodes are on the same arc and heading on the same direction;

¢) The euclidean distance between two hypotheses node are less than some constant;

If those conditions are met, the first found hypothesis node of the mergeable set will
be retained and referenced, leaving the others to be freed. Any other references to the
freed nodes will be redirected to the retained node. Thus the system may save a lot of
memory and processing resources.

Managing such alias objects is quite error-prone, especially on objects creation or
deletion (freeing). Reference Counting is a popular programming technique to help main-
taining such sanity check [40] and thus also implemented here. It monitors how many
objects are referencing another object using a variable stored in the refenced object.

In our implementation of reference counting, the system will be responsible for incre-

menting the counter variable of a hypothesis node (RefCount) whenever another reference

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 56

Is pointing to that node. Later, upon the hypothesis node deletion by the function Safe-
Free(), the system will first decrement the RefCount. The real deallocation happens only

if the RefCount of the hypothesis node is zero after the decrement.

Figure 5.8: Regular hypotheses tree without merging

The figure 5.8 is also depicting the hypotheses tree before merging. The vehicle is
assumed running from left to right through the reported vehicle’s GPS tra jectory. Thus
it is quite probable that before the merging there are two main branches of hypotheses
following the road structure. The branch splitted after 77, giving two estimate snapping
points at 75, that are P that lies on arc 2-3, and the other one that lies on arc 2-4.
Each of that branch are developing another hypotheses on its own, so that for PP there
are two hypotheses as well, either the one that lies on arc 3-5 and 4-5.

However the two branches eventually meets in the arc 5-6. Both branches are produc-
ing a similar hypotheses for the update at 7. Both are producing P that lies on arc
5-6. The difference is that the upper branch that follows the route (1-2-3-5-6) also pro-
duce a hypothesis on arc 5-4 whereas the lower branch (1-2-4-5-6) produce a hypothesis
on arc 5-3.

If the merging technique is used within the proposed algorithm, the hypotheses tree
for such scenario will be like Figure 5.9. At the leaf, there is only one real hypotheses node

_” . - - -
created for P74 that lies on arc 5-6. This hypotheses is logically seen as two, for lower

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 5

|

similar
nades

merged node,
referenced by
two branches

Figure 5.9: Hypotheses Tree with Merging Technique

branch and for upper branch. Further calculation of Are Distance Metric and growing
is not committed when one of the branch already done, since doing so will violate the

model’s integrity. Hence the memory is saved and the computing speed is also gained.

5.2 Implementation

This section is devoted to explain the implementation of our proposed map-matching
algorithm. The implemented algorithms are presented in a pseudocode form that is
derived from Object Pascal, but we use the procedural style pseudo-code to convey many
primitives on the algorithm, even though the real implementation is using object-oriented
paradigm. The reason is to add the readability of the pseudo-code introduced. We
deviate from Object Pascal on the use of for each statement to replace the ordinary for

statement. We feel that the former is clearer and much easier to understand.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 58

Many other helper or very simple routines will not be explained further. These are
called primitives and will be briefly explained right after they are introduced in the

pseudo-code.

5.2.1 The Core Algorithms

The core algorithms includes the Arc Distance Metric metric calculation routines, a
framework algorithm that manages the hypotheses in a tree data structure, and a merging
hypotheses technique. The merging hypotheses technique is included because it is deeply

intertwined with the core algorithm.

Update

The Update() procedure will be called after some specified intervals, e.g. 4 GPS epoch
(four seconds). If it cannot find any hypotheses, then the first guessing process will take
place. Rep is the vehicle’s reported GPS location. It modifies the Guessed spot, by
examining the hypotheses tree after growing it for LastDist distance. Rep and Guessed
are of type TSpot, which is simply a structure that is consisted of X and Y location of
vehicle within the map, after translated from the Latitude/Longitude position.

This procedure is considered high-level and needs many lower-level procedures / func-
tion to achieve its goal. The most important of all is TraverseTree(), which is responsible
for traversing the whole hypotheses tree (Hyp) and then growing it for some distance.

The Update() procedure needs to initialize (clear) a stack of hypotheses tree when it is
called. This stack is named Path and will be useful inside the TraverseTree() function to
maintain the hypotheses nodes for every recursive traversal of the tree. This procedure is
also responsible for incrementing the global variable Epoch, and works on global variable
Hyp (the main hypotheses tree itself).

The RecentlyExploredNodes is a list containing the newly grown nodes of the current
update. It is not updated directly on the Update() function, but will be updated within
the Grow() function which will be called by TraverseTree() function.

CompactTree() is the procedure to do hypotheses compaction technique as explained
in Section 5.1.8. The merging hypothesis technique is done inside the Grow(), which
is called from TraverseTree() function. Both techniques use the blocking information of
a hypothesis node. This blocking information is simply a boolean field which indicates
whether a hypothesis tree is already accessed or not during the tree traversal within
TraverseTree() and CompactTree(). The blocking information is particularly useful to

avoid unnccessary (redundant) processing of multiple-referenced nodes introduced by the
merging-technique.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 59

Algorithm 3 Update() procedure to perform map-matching, called per several epochs.

procedure Update(Rep: TSpot; LastDist: Real; var Guessed: TSpot);
var
Path: stack of hypothesis tree;
begin
Epoch := Epoch + 1;
if NumberOfNodes(Hyp) = 1 then FirstGuess(Rep,Hyp);
Clear(Path);
Clear(RecentlyExploredNodes);
ClearAllBlocks(Hyp);
BestResult := TraverseTree(Hyp,Path,LastDist);
ClearAllBlocks(Hyp);
CompactTree(Hyp,nil);
Guessed := BestResult.Point;
end;

There are two primitives here that does not need to be explained in terms of pseudo-
code. These primitives are:
1. procedure Clear(L:List);
The pseudocode invoke this on Clear(RecentlyExploredNodes).
2. procedure Clear(P:Path);
The pseudocode invoke this on Clear(Path).
Both procedures will clear the respective container and thus no item is within the con-

tainer after it executes. There are no object deletion on these procedures.

Initial Guessing Process (FirstGuess)

The FirstGuess() procedure is responsible for creating initial hypotheses from empty
hypotheses set. This is done by enumerating all roads arc within the network (obtained
from global variable Roads). For each arc segment it will find the nearest spot to the
reported GPS position at that time. The calculation of the nearest segment and the

nearest spot is done through the IsNearSegment() function.

The primitives for the pseudocode are:
1. function CreateNewTree(P:Point, FromNode:Node, ToNode:Node): THypTree
Creating a new Tree and set the three most important member variable of it:
The position P, FromNode and ToNode.
2. procedure AttachNewChild(Child: THypTree,Parent: THypTree);

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 60

Algorithm 4 First Guess Algorithm using Point To Curve Matching

procedure FirstGuess(Rep:TSpot; Tree: THypTree);

var
[,J: Integer;
R: TRoad;

CDist: Real;
Proj: TSpot;
ChildTree: THypTree;

begin
for each R in Roads do
begin
if VertexCount(R) = 2 then
begin

if IsNearSegment(R.FromNode,R.ToNode,Rep,CDist,Proj)
then begin
ChildTree := CreateNewTree(Proj, R.FromNode, R.ToNode);
AttachNewChild(NewTree, Tree);
ChildTree := CreateNewTree(Proj, R.ToNode, R.FromNode);
AttachNewChild(NewTree, Tree);
end;
end else begin
for J:=0 to VertexCount(R) - 2 do begin
if IsNearSegment(GetVertexNode(J,R), GetVertexNode(J+1,R), Rep, CDist, Proj)
then begin
ChildTree := CreateNewTree(Proj, GetVertexNode(J,R), GetVertexNode(J+1,R));
AttachNewChild(NewChild,Tree);
ChildTree := CreateNewTree(Proj, GetVertexNode(J+1,R), GetVertexNode(J,R));
AttachNewChild(ChildTree, Tree);
end;
end;
end;
end;

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 61

Attaching the new children of Parent Tree by adding Child to the Children list
of Parent Tree.

3. function VertexCount(Road):Integer;

Returning the number of vertices in this Road arc.

4. function GetVertexNode(I,Road):TNode

Returning the node that is the vertex at index I of the vertices list or this Road arec.

function IsNearSegment()

This helper function will return boolean value indicating whether the nearest point of a
particular segment is considered near or far. A near segment means the nearest spot on
the segment is lesser than some constant radius (CONST_FIRSTGUESS_RADIUS), and

vice versa. To perform its job, the IsInside() function is needed.

Algorithm 5 Checking whether a segment has a quite near points

function IsNecarSegment(N1,N2:TNode; F:TSpot; var D:Real; var PProj: TSpot): boolean;
var

FromSpot, ToSpot: TSpot; begin

FromSpot := NodeToSpot(N1);

ToSpot := NodeToSpot(N2);

IsInside(FromSpot,ToSpot, F, Dist, PProj);

Result := (Dist <CONST_FIRSTGUESS_RADIUS);
end;

function IsInside(P1,P2,F:TSpot; var D:Real; var PProj: TSpot): boolean

This function checks whether the projection of F (pproj) lies inside the line segment con-
structed from P1 and P2. If it is, it will calculate the distance from F to that projection,
Dist(PProj,F). Else, it will calculate the nearest of the two endpoints, i.e. the minimum
of Dist(F,P1) and Dist(F,P2). The D variable will be set according to the distance cal-
culated. The PProj variable will be set to the projected F within the line, if there is a

projection.

The primitives called within this function are:
1. Vectorize(A,B:TSpot):TSpot

Will return a vector based on the difference between two points A and B.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

62

Algorithm 6 Calculating the nearest point of a segment to another point outside

function Islnside(P1,P2,F:TSpot; var D:Real; var PProj: TSpot): boolecan;
var
MagnitudeASquared: Real;
MagnitudeBSquared: Real,
CosSquared: Real;
A B,C: TSpot;
X,Y: Real;
AdotB: Real;
begin
MagnitudeASquared := Sqr(Dist(F,P1));
MagnitudeBSquared := Sqr(Dist(P1,P2));
A := Vectorize(P1,F);
B := Vectorize(P1,P2);
C := Vectorize(P2,F);
AdotB := DotProduct(A,B);
X := Abs(DotProduct(A,B));
Y := Abs(DotProduct(C,B));
Result := (X < MagnitudeBSquared) and (Y < MagnitudeBSquared));
if Result then begin
CosSquared := Sqr(AdotB)/(MagnitudeASquared * MagnitudeBSquared);
Dist := Sqrt(Abs(MASquared*(1-CosSquared)));
PProj := Addition(P1,CrossProduct(AdotB / MagnitudeBSquared, B));
end else begin
Dist := Min(Dist(F,P1),Dist(F,P2));
if Dist = Dist(F,P1) then PProj := P1 else PProj := P2;
end;
end;

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 63

2. DotProduct(A,B:TSpot):Real

Will return the dot product between two vectors A and B.
3. CrossProduct(A,B:Tspot):TSpot

Will return the cross product between two vectors A and B.
4. Abs(X:Real):Real

Will return the positive values of X.

5. Sqr(X:Real):Real

This function returns the Square of X.

6. Addition(A,B):TSpot

This returns the addition of two vectors A and B.

7. Dist(A,B): Real

This function returns the euclidean distance between A and B.

The TraverseTree() function

This is a core function responsible for visiting every nodes within the hypotheses tree.
After it has reached the leaves, it calls Grow() to explore and to grow the next nodes.
The growth of hypotheses (how far the ahead tracing is performed) is limited by Dist
variable. The path variable is a stack containing the hypotheses nodes (contains all
previous snapping points) up to the current node (Tree variable).

The tree traversal is done using Depth First traversal. The basis of the recursion is
when the leaf is reached (the number of children for the node is zero). This is the point
where the Grow() is called. The recurrence happens when the node visited is not a leaf
node. In the recurrence part, the Grow() will be called, and new hypotheses are added
during this process. The Grow() will return the newly growned hypothesis and its score.
Then the minimum score hypothesis (i.e the most similar to the partial vehicle track)
is sought among all candidates. The candidates are the new hypotheses score, obtained

from return values of the Grow() function for each of its children.

Below are the primitives used:
1. function CountChildren(Tree:THyptree):Integer;
Returns the number of children of a hypothesis tree node.
If the number of children is zero, it means that the node is a leaf.
2. function IsBlocked(Tree:THyptree):Boolean;
Returns true if the node is blocked. Otherwise it is false.
3. procedure Block(Tree:THyptree);
Will block a particular node.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 64

4. procedure Push(Tree:THyptree; Stack:THypStack);
This procedure will push Tree into Stack.
. function Pop(Stack:THypStack):THyptree;

(&1]

This function returns the item that has been popped from Stack.
6. procedure SetLargeValue(var Score);
An initializer for the score, will set into the largest possible value.
7. function IsGoodResult(Result):boolean;
Returns true if the result’s Score is lesser than a constant. Else it will return false.
8. procedure AddItemToList(Item,List);
This procedure will add Item to the list as the last item.
9. procedure RechargeTimeToLive(Tree: THyptree);
This procedure will set the (Time-to-Live) TTL field of a particular hypothesis tree
to a constant.
10. procedure ReduceTimeToLive(Tree:THyptree);
This procedure will decrement the TTL of Tree.
11. function IsZeroTTL(Tree:THyptree):boolean;
This function returns true if the TTL is zero for a Tree.

The Grow() function

This function is responsible for growing the hypotheses tree according to the possible
route ahead and the similarity of the route grown to the last portion of the reported
vehicle trajectory. The function grows the hypotheses for the length of Dist. Therefore
the recursion stop if the Dist is less than a (small) constant indicating it has grown enough
length. This Dist variable is obtained from the estimation of the last traveling distance
of the vehicle.

After it has stop growing for a branch, the calculation of Arc Distance Metric is
performed. This is done by Compare() function. The results of this function is the score
of the metric. If the score is lesser than CONST_MAX_HYPOTHESES_.THRESHOLD
then it is considered as a good hypothesis.

If the Dist is still large and the tree is not blocked, the hypotheses branch still needs
to be grown. The ProduceChildren() is a function which produce a set of route ahead.
For example, if there are road junctions ahead, then the produced set of route would
be the node at the intersection. It will decrement Dist up to the length required to the
intersection. On the next ProduceChildren() call (by the next recursive execution of

Grow()), the generated set of route would be a set of possible routes alternatives at the

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

65

Algorithm 7 Hypotheses tree traversal

function TraverseTree(Tree: THyptree; Path:THypStack; Dist:Real): TSimMeasure;
var [: Integer;
MinResult: TSimMeasure;
Liquidated: Boolean;
BadHypothesis: THyptree;
BadList: list of THyptree;
begin
if CountChildren(Tree)=0 then begin
if IsBlocked(Tree) then
Result := Grow(Tree, 0, Path, 0)
else
Result := Grow(Tree,Dist,Path,0);
end else begin
Block(Tree);
Push(Tree,Path);
SetLargeValue(MinResult.Score);
for each Child in Tree.Children
Result := TraverseTree(Child, Path, Dist);
if (Result.Score < MinResult.Score) or (I=0) then begin
MinResult := Result;
end;
if IsGoodResult(Result) then
RechargeTimeToLive(Child);
else
AddItemToList(Child,BadList);
end;

for each BadHypothesis in BadList
ReduceTimeToLive(BadHypothesis);
if IsZeroTTL(BadHypothesis) then begin
RemoveChildOfTree(BadHypothesis, Tree);
Free(BadHypothesis);
end;
end;
MinResult.Score := MinResult.Score + Tree.Score;
Result := MinResult;
Pop(Path);
end;
end;

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 66

junction, for the modified Dist length.

Note that if the tree is already blocked, it means that that particular node is referenced
by more than one branch and is already visited during the previous traversal. Thus, there
is no need to calculate, expand or grow it further. Instead the function shall return with
the existing Children.

The Compare() function

For the discussion of this function please refer also to Algorithm 9. This function prepares
the calculation of Are Distance Metric by trimming the possible route hypothesis and
the trajectory altogether, so that both will have the same length. Next, it will invoke the
Arc Distance Metric calculation function (CalcADM) with those trimmed line. This is
the normal scenario, except on the initial guessing process, whereby FirstGuess() produce
the initial hypotheses where the constructed routes only has single point and does not
even form a line (hence we put a restriction that the minimum nodes count is two). In
case where the minimum nodes less than two, it is not possible to invoke Arc Distance
Metric calculation function and the function simply returns 0 (zero) for indicating perfect
similarity.

LastDistance() is a simple utility to trim and convert a list (or stack) of hypotheses tree
into a list of points. The resulting list of points are guaranteed to have the sum of distance
(or total length) of CONST_BACKCOMPARE_DIST. CountNodes() is a function which
count the nodes or clement of a list or stack. Traj is a special list which contain the

current vehicle trajectory reported from the GPS in form of hypotheses nodes.

The CalcADM() function

This function is for calculating the Arc Distance Metric that is already discussed in
Chapter 4. It is important to note that a curve is modeled into a series of points. Within
this function there are no more reference to a series of hypotheses nodes, but there are
only series of points (taken from a list of hypotheses nodes by the LastDistance() function)
represented by TPolyline type.

The first part of this function is to initialize some variables used. Sum is the variable
which hold the sum of distance so far. Tracedl and Traced2 indicates whether the first
curve and second curve has been traced, respectively. MaxDist is the maximum distance
between two curves. IDX1 and IDX2 holds the active point within P1 and P2.

Next, P2 is translated so that the initial point coincide P1. The P3 is exactly P2
before translation. Then three cursors are set up, each positioned at the first point of the
curves. Within the loop, the P1 and P2 are both being traced for DL at each iteration.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

67

Algorithm 8 Hypotheses growing

function Grow(Tree: THyptree; Dist:Real; Path:THypStack; ExpansionLevels:
Integer): TSimMeasure;
var
[: Integer;
Child,Similar: THypTree;
Children: TList;
R: Real;
begin
Push(Tree,Path);
if Dist < CONST_NODE_PROXIMITY then begin
R := Compare (Path);
Tree.Score := R;
Result.Score := R;
Result.Good := R < CONST_MAX_HYPOTHESES_THRESHOLD;
Block(Tree);
end else begin
if not IsBlocked(Tree) then begin
Children := ProduceChildren(Tree, Dist);
end else begin
Children := Tree.Children;
end;
SetLargeValue(MinResult);
MinResult.Good := False;
for each Child in Children do begin
Result := Grow(Child, Child.Dist, Path, ExpansionLevels + 1);
if Result.Score <MinResult.Score or (1=0) then
MinResult := Result;
if not IsBlocked(Tree) then begin
if IsGood(Result) then
if IsExistsSimilarNode(Child, SimilarChild) then begin
AttachNewChild(SimilarChild, Tree);
end else begin
AttachNewChild(Child, Tree);
AddItemToList(Child,RecentlyExploredNodes);
AddRef(Child);
end;
end else begin
SafeFree(Child);
end;
end;
end;
Result := MinResult;
if not IsBlocked(Tree) then begin
Free(Children);
Block(Tree);
end;
end;
Pop(Path); end;

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 6

co

Algorithm 9 Preparing two curves before calling Are Distance Metric function

function Compare(Path:THypStack): Real;
var P1,P2: TPolyline;
begin
if CountNodes(Path) > 2 and CountNodes(Traj) > 2 then begin
P1 := LastDistance(Path, CONST_BACKCOMPARE_DIST);
P2 := LastDistance(Traj, CONST_BACKCOMPARE_DIST);
Result := CaleADM(p1,p2, CONST_DL); end else begin
Result := 0;
end;
end;

It means that the cursors are advanced forward for a length DL, according to the shape
of cach curves. P3 is also has another cursor, and it will be used to obtain the maximum
distance between P1 and P2 before translation. The loop continues until both P1 and
P2 are fully traced. A curve is fully traced if the cursor already reached the last point
of the curve, or the point index (IDX1 and IDX2) equals to the maximum point index
within the curve. The Sum is then multiplied by the maximum distance found to find

the result of Are Distance Metric.

These primitives are used within this function:
1. function GetFirstPoint(P:TPolyline):TSpot;
This function is to get the first point (zero index) within a list of points.
2. function Copy(P:TPolyline):TPolyline;
This function returns a copy of a polyline.
3. function TranslatePoints(P:TPolyline; DX,DY: Real);TPolyline;
This function returns a new polyline like P, only that it is translated according to
DX and DY delta.
4. function Dist(P1,P2:TSpot):Real;
This function returns the euclidean distance between P1 and P2.
5. function Max(A,B:Real):Real;
This function returns the maximum of two real numbers.
6. function Length(P:TPolyline):Integer;

This function returns the number of points comprising P.

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

69

Algorithm 10 Arc distance metric implementation

function CalcADM(P1,P2:TPolyline; DL: Real): Real;
var Posl,Pos2,Pos3: TSpot;
IDX1,IDX2: Integer;
begin
Sum := 0;
Tracedl := False;
Traced2 := False;
MaxDist := 0;
DX := GetFirstPoint(P2).X-GetFirstPoint(P1).X;
DY := GetFirstPoint(P2).Y-GetFirstPoint(P1).Y;
P3 := Copy(P2);
P2 := TranslatePoints(P2,DX,DY);
Posl := GetFirstPoint(P1);
Pos2 := GetFirstPoint(P2);

IDX1 =13
IDX2 = 1;
repeat

Trace(DL, P1, Posl, IDX1);
Tracedl := (IDX1 = Length(P1));
Trace(DL, P2, Pos2, IDX2);
Traced2 := (IDX2 = Length(P2));
Trace(DL, P3, Pos3, IDX3);
Sum := Sum + Dist(Posl,Pos2) * DL;
MaxDist := Max(MaxDist, Dist(Pos1,Pos3);

until Tracedl and Traced2;

Result := Sum * MaxDist;

end;

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 70

The Trace() function

This function advances the cursor Pos of a Curve for a length of DL. IDX is the index
of the target vertex that is aimed by the cursor. Pos and IDX will be modified by this

function as neccessary.

Algorithm 11 Trace() function implementation

procedure Trace(DL:Real; Curve:TPolyline; var Pos:TSpot; var IDX:Integer);
var TV: TSpot;
DTV, DX, DY, DELTAX, DELTAY: Real;
begin
if (abs(DL) > CONST_EPSILON) and (IDX # Length(Curve)) then
TV := Curve[IDX];
DTV := Dist(TV, Pos);
if DTV <DL then begin
Pos := Curve[IDX];
IDX := IDX + 1;
Trace(DL-DTV,Curve,Pos,IDX);
end else begin
if abs(DTV) < CONST_EPSILON) then begin
DX := 0;
DY =:0;
end else begin
DELTAX := TV.X - Pos.X;
DELTAY := TV.Y - Pos.Y;
DX := DL * DELTAX / DTV,
DY := DL * DELTAY / DTV;
end;
Pos.X := Pos.X 4+ DX;
Pos.Y := Pos.Y + DY;
end;
end;
end;

5.2.2 The Hypotheses Compaction Algorithm

This algorithm is to implement the hypotheses compaction technique presented in 5.1.8.
Specifically it will traverse the hypotheses tree and tries to eliminate all nodes which have

all of these properties:

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES 71

1. It has at least a parent.
2. It has cxactly one child.

3. Either its parent or its child is in the same arc segment of the node.

The idea is that if a node has a same segment with the parent, or if that a node
has a same arc segment with the child, then this node must lies in between a series of
hypotheses nodes within the same arc segment. Thus this kind of node is not uniquely
determine the route of the vehicle, and therefore may be eliminated with one note: the
Are Distance Metric score of this node must be carried to other node. We choose to carry
it forward (has higher tree level), so that the eliminated node’s Score field will be added
to the child of it. The next thing to do is to make the parent node directly refer to the

child of the eliminated node (GrandChild), which is similar to the technique used in the
deletion of a linked list data structure.

5.3 Summary

This chapter discussed the development and design of our proposed framework map-
matching algorithm. It further realized the concepts into a more concrete pseudocode,
which is hopefully clarified the explanation. The next chapter (Chapter 6) will discuss
the simulation software that is based on this algorithm. Figure 5.3 should summarize the
system discussed in Chapter 4 and Chapter 5.

| Map-matched |

coordinate |
vehicle estimate !
coordinate Map-matching Algorithm

from GPS | .[W

Map/Network

Arc Distance Metric Representation

Figure 5.10: Map-matching algorithm and Are Distance Metric

CHAPTER 5. MANAGING MULTIPLE HYPOTHESES

=~1
o

Algorithm 12 Hypotheses Compaction

procedure Compact(Tree, Parent:THypTree);
var GrandChild: THypTree;
begin
if CountChildren(Tree) >0 then begin
if Parent = nil then begin
for each Child in Tree.Children do begin
Compact(Child, Tree);
end;
end else if IsSpecialRoot(Tree) or
(CountRouteBranch(Tree) >1) or
IsMerged(Tree) or

((not IsSameSegment(Tree,Parent)) and (not IsAllChildSameSegment(Tree)))

then begin
for each Child in Tree.Children do begin
Compact(Child, Tree);
end;
end else begin
RemoveChildFromParent(Tree,Parent);
GrandChild := GetFirstChildren(Tree);

GrandChild.Score := GrandChild.Score + Tree.Score;

AttachNewChild(GrandChild,Parent);
SafeFree(Tree);
Compact(GrandChild,Parent);
end;
end;
end;

Chapter 6

The ViTracker Simulator

This chapter explains the design and implementation of a test bed environment for simu-
lating map-matching process. The test bed proves to be very helpful on the development
of the new map-matching algorithm, and deserves an explanation on this chapter. It is

hoped that the developed environment will be usable for further research on the field.

6.1 Simulator Design

The simulator should resemble a GIS application, with the design requirements as follows:
1. The simulator must be able to playback the vehicle tracking data obtained from the
field experiment with GPS receiver.

2. The simulator displays the vehicle, the road map, and the map-matching process dur-
ing the playback. (Presentation aspects)

3. Other than playback capability, the simulator must also able to simulate the vehicle
journey through some nodes, including its simulated, estimated GPS points. (GPS Sim-
ulation capability)

4. The simulator must implement Are Distance Metric the framework algorithm for
Are Distance Metric and also basic map-matching algorithm using simple point-to-curve
technique. (Test bed for Map-matching algorithms)

5. The simulator allows user to digitize road network from existing raster / bitmap back-
ground. (Map editing capability)

73

CHAPTER 6. THE VITRACKER SIMULATOR 74

6.2 Implementation

The simulator is a Win32 application developed in Borland Delphi 7, and is able to run
smoothly under 128MB Pentium III processors. The simulator is named ViTracker, to
capture the Vehicle Tracking chore problem that it handles. For the following explanation,

the reader should refer to the Figure 6.1 for the number references.

6.2.1 Playback of the recorded trajectory

A global time variable (6) is incremented periodically, according to the current simulation
speed. Every simulator’s second the vehicle’s data is updated either with the recorded
data (in the case of playback) or the simulated GPS point (in the case of GPS data
simulation).

User may modify the speed of the simulation by dragging the speed control scrollbar
(4). User could also pause the simulation, or do a step-by-step simulation as he/she
wishes (5). The vehicle could also be centered automatically on the application window
to avoid missing sight from the screen by ticking the checkbox (7). Lastly, the scale of
the map is also adjustable by the zoom scrollbar (3). The global time is displayed in the
time label (6). At the end of simulation, user might want to reset the overall simulation

by pressing reset button (5).

6.2.2 Implementing the simulation capability

If the GPS data is simulated, the points are obtained from the vehicle’s next waypoint,
the current position of the vehicle, and some designed error factor. The vehicle goes from
onc waypoint to the next, until the end waypoint.

Some algorithms are used to reflect the typical case in the real scenario. For example,
when the vehicle turns, it might be described from “hard turn” to “soft turn”. The harder
the road turn, the vehicle needs to slow down more. On the other side, the softer the
road turn, the lesser the necessity to slow down. The algorithm measure the “hardness”
of the turn ahead and calculates the speed reduction accordingly.

Another important feature is that of event architecture. An event indicates some
change in the vehicle environment which affects the behavior (speed, acceleration, etc) of
the vehicle. An example of it is traffic light event, where the vehicle will decelerate and
stop for a number of seconds specified. Any event could be programmed to reflect the

real scenario, and still easily integrated with the simulator.

CHAPTER 6. THE VITRACKER SIMULATOR

|

(2]

B V. Tracker Simulator [G:Wesearch AA Wsourcw¥latuGajakienap. ini]

101 GdawE

r~ ORI

(=

Crsste Flosd fiom Nodes [crn] | %
Select Rosd [sek] | 3 I~ DimBodt I

Delete Flosd |det] b r

Peis Hascideh) I %, L Durg Bost o

Ecit Nodels] of Fioad [ednodes] / r :::: 1':

Sel Regubation [seteg] [e

1 | 1 Hdahode
T o bama

Teome to V-Tracker (c) 21 2007 ung Dewandaru, Universit] Teknologl Petronas e
Ond ap loaded: Nodes 734 Arcs: W q

Edia foommariin] | SngleSim | HysTiew Dur | n

| o i

Figure 6.1: ViTracker snapshot and interface layout

6.2.3 User interface and presentation

ViTracker projects the vehicle and road network, superimposed with the background
bitmaps, enabling the user to interpret clearly the process of map-matching. It could dis-
play the overall best, most likely trajectory, and also the tree data structure visualization.
Many other options are available from these set of checkboxes (10).

ViTracker also has a layered architecture to make the selected road network to be
invisible or not, depending on the user’s choice. Each layer is a road network, i.e. a set
of arcs that is loaded from a configuration file (3).

Lastly, the simulator is also augmented with the information about the X and Y pixel
coordinates and its mapping to the real world latitude and longitude (9). Before it can
do the mapping the user must register two points within the map and associate those

points with the latitude and longitude of the represented spot.

6.2.4 Editing Map in ViTracker

ViTracker implements the digitizing capability, which enables the user to create nodes

and arcs upon any raster map. Among the current implemented procedure are adding

CHAPTER 6. THE VITRACKER SIMULATOR 76

nodes, selection of nodes, moving, and deletion. Also, user could create road arcs from
selected nodes, delete, move, and edit the nodes that belong to a road arcs (2).

The editing Ul resembles the AutoCAD style, blending the command line keyboard
input with mouse interaction (11). This interaction style worked well to digitize the map

which is used in the experiment (see Chapter 7).

6.2.5 Test Bed for map-matching Algorithms

During the execution of the simulation, ViTracker will do map-matching using the sup-
ported algorithm. ViTracker currently supports the basic point-to-curve map-matching
and the proposed algorithm with the Arc Distance Metric. However, it has the infrastruc-
ture to support any other map-matching algorithms given the availability of the source
code. The extension is currently at the source-code level, even though a dynamic-linked
library seems to offer more security in the original program’s code. Future development
could include the binary level extension (DLL) and the implementation of the discrete

Fréchet distance as the curve-to-curve distance metric.

6.2.6 Data File Specification

ViTracker works on three types of data file: the map file, a couple of layer files, and a

simulation file. The map file would consists of a sequence of layer files that it uses.

Map File

The main purpose of a map file is to contain a list of arc nodes and a list of roads
arcs. Every nodes has a pixel based coordinate, which is already transformed from the
Latitude/Longitude pairs. Every road arc consists of a sequence of several nodes ID. Note
that we relaxed the definition of arc as specified in Chapter 2.4. The difference is only
on the connectivity of arcs. The relaxed definition allows the shape points to contain
connection to other arc(s) whereas the stricter definition only allows the interconnection
to happen only at the end-nodes. The effect of relaxing this is not significant in the result

of accuracy because the hypotheses are stored in the form of arc segments.

Layer File

The layer file also contain a registration information for georeferencing purpose. It is fixing
a logical node to a particular latitude/longitude coordinate based on two reference points.

The program will calculate the necessary scaling for horizontal and vertical coordinate so

CHAPTER 6. THE VITRACKER SIMULATOR

|

that both reference points has zero error. The effect on this registration is scoped on the

layer level. It means that another layer would have another registration information.

Simulation File

Currently there are two modes of simulation: (1) GPS-based and (2) simulated-GPS. The
GPS based simulation is the simulation mode that use real gps trajectory of the vehicle.
It is stored as a special layer and thus has the same structure as the layer file that we
have discussed. The recorded GPS points become the nodes of the layer and there is only
one road arc which connects all of these nodes in a proper order.

The emulated GPS mode would need waypoints information. A virtual vehicle is
then moved from a waypoint to the next waypoint, by adding some slow moving noise to
mimic the real GPS signal. Additionally, there is an information about the events that
might happened during the simulated course, for example traffic light or a traffic jam.

This special event would modify the vehicle’s speed attribute at a particular time.

Chapter 7
The Experiment and Results

An experiment had been conducted as a proof of concept of the proposed algorithm. The
main objective of the experiment is to obtain vehicle trajectory in a pre-designated route
in the form of Latitude/Longitude pairs. Next, it had to record when (the time) the
vehicle enter an arc segment within the route. This will be the true route upon which

the accuracy of the algorithm is measured.

7.1 Setup

7.1.1 The Vehicle Route

The area where the experiment should be done must be able to give a quite typical
scenario for map-matching. We chose the area of Batu Gajah in Perak, Malaysia, sitnated
around 4° 28’ 6.39” N, 101° 2’ 33.68” E. It is a small town of without high-risers but has
considerable GPS signal obstacle along the route such as fly-over, and many two-three
stories building siding the roads.

The road network was digitized using our simulator (ViTracker) from the combination
of four image snapshots acquired from Google Earth. The digitizing process resulted 173
nodes, and 66 road arcs. We only use basic georeferencing technique without further
calculated stretching. As a result, the digitized map is estimated to have worst accuracy
of 20.6 m. This is a rather large value, but such inaccuracy is tolerable to test the
performance of the algorithm, so any further calibration is not committed.

The two reference points that we used for georeferencing were estimated from the
Google Earth coordinate on node 1 and node 49 seen on Figure 7.1. The Node 1 is
4°28’ 35.380000" Latitude and 101°2’ 28.900000" Longitude. This would be converted
into a decimal notation of 4.47650°Lat 101.04136° Long. Similarly for node 49 it gives
4.47272°Lat 101.03783° Long.

CHAPTER 7. THE EXPERIMENT AND RESULTS 79

Using this constructed map, the map accuracy is estimated around 29.6 meters.
To find this, we got the estimated GPS benchmark A0987 location of: 4.4688945° Lat
101.0429425° Long. Then we got the digitized map, that benchmark location is: 4.4691399°
Lat and 101.04284 ° Long. Then we use the distance calculator found in http://jan.ucc.nau
.edu/cvm-cgi-bin/latlongdist.pl or hitp://jan.ucc.nav.edu/ cvm/latlongdist.html to find
the distance between two points. It is 0.0296 km or 29.6 meters.

The planned route was picked from the digitized map. According to the plan, the car
would be driven through that predetermined route. By visually comparing the digitized
map and the GPS track and the time record, it would be known about what route taken
by the vehicle and when. This would serve as the set of true values upon which the
map-matching result of the algorithm is tested.

The roads sequence which compose the route was picked to give variety of GPS road
obstacle scenarios and to give the close proximity of roads scenarios within for the road
network. For example, the way under the flyover is a good scenario for both cases. First,
it has multipath error possibility arise from the blocking of the flyover. Second, the flyover
itself provides a close proximity choice over the road under it. A basic algorithm which

do not take road connectivity into account supposedly fail on this test.

7.1.2 The Device Setup

We used the GARMIN e-Trex handheld GPS receiver to collect all estimated vehicle
points location within the the overall route. During the setup, the epoch was set to one
second so that it would give the maximum sequence of points. The datum used was the
default WGS-84. The device was then mounted on the dashboard of the sedan that we
would use.

7.2 The Experiment

The sky was bright, the weather was fine, and the handheld GPS receiver that we used
reported varying accuracy, with the mode of 7 meters. We drove through predetermined
route for 563 seconds, with reported total length 3.51 km, and the average speed 22.43
kmh. We used MapSource to pull and convert the recorded data into text format and
later on imported that data to ViTracker. The data contains the information about the
time, the estimate position (latitude and longitude) and other details which are listed in
Appendix A.

The recorded GPS points are saved into a new layer within ViTracker. The layer

configuration for the experiment is as follows:

CHAPTER 7. THE EXPERIMENT AND RESULTS 79

Using this constructed map, the map accuracy is estimated around 29.6 meters.
To find this, we got the estimated GPS benchmark A0987 location of: 4.4688945° Lat
101.0429425° Long. Then we got the digitized map, that benchmark location is: 4.4691399°
Lat and 101.04284 ° Long. Then we use the distance calculator found in http://jan.uce. nau
-edu/cvm-cgi-bin/latlongdist.pl or http://jan.ucc.nau.edu/ cvm/latlongdist.html to find
the distance between two points. It is 0.0296 km or 29.6 meters.

The planned route was picked from the digitized map. According to the plan, the car
would be driven through that predetermined route. By visually comparing the digitized
map and the GPS track and the time record, it would be known about what route taken
by the vehicle and when. This would serve as the set of true values upon which the
map-matching result of the algorithm is tested.

The roads sequence which compose the route was picked to give variety of GPS road
obstacle scenarios and to give the close proximity of roads scenarios within for the road
network. For example, the way under the flyover is a good scenario for both cases. First,
it has multipath error possibility arise from the blocking of the flyover. Second, the flyover
itself provides a close proximity choice over the road under it. A basic algorithm which

do not take road connectivity into account supposedly fail on this test.

7.1.2 The Device Setup

We used the GARMIN e-Trex handheld GPS receiver to collect all estimated vehicle
points location within the the overall route. During the setup, the epoch was set to one
second so that it would give the maximum sequence of points. The datum used was the

default WGS-84. The device was then mounted on the dashboard of the sedan that we
would use.

7.2 The Experiment

The sky was bright, the weather was fine, and the handheld GPS receiver that we used
reported varying accuracy, with the mode of 7 meters. We drove through predetermined
route for 563 seconds, with reported total length 3.51 km, and the average speed 22.43
kmh. We used MapSource to pull and convert the recorded data into text format and
later on imported that data to ViTracker. The data contains the information about the
time, the estimate position (latitude and longitude) and other details which are listed in
Appendix A.

The recorded GPS points are saved into a new layer within ViTracker. The layer
configuration for the experiment is as follows:

CHAPTER 7. THE EXPERIMENT AND RESULTS 80

1. Base layer. contains the aerial bitmap of Batu Gajah.

2. Road Network. contains all the (digitized) nodes and ares which represents the road
network in Batu Gajah.

3. Vehicle Track. Contains the list of all recorded vehicle points from the first second to
the last second. The time that is recorded helps to determine the vehicle true location

(arc). This will be used as a benchmark upon which the accuracy is measured.

7.3 The Results

The simulator was fed with the data, coupled with the new algorithm and also the basic
map-matching algorithm (point-to-curve map-matching) as the benchmark. Out of the
140 system update (cach four GPS ticks/seconds), the basic map-matching incorrectly
matched 19 times (which is 86.43% accuracy) while the new algorithm presents no error
but with 10 corrections. On the near real-time gross error it can be said that the algorithm
performs better (92.86%), and on the final result the new algorithm presents perfect (100%
accuracy) for road inferences. While this result cannot be over generalized due to the
limited experiment but it proved that the algorithm works on a (quite typical) case with a
considerable improvement of accuracy. The performance summary is shown in Table 7.1.
Note that the Naive algorithm as the benchmark is implemented using the point-to-curve

map-matching process.

Category Naive | Proposed Algorithm
Total Errors 19 10
Total Prediction 140 140
Gross Accuracy | 86.43% 92.86%
Corrected Err. n/a 10
Net Accuracy 86.43% 100%

Table 7.1: Performance of the Algorithm

The digitized road network and the recorded vehicle route (obtained from GPS) are
displayed in dots of Figure 7.1. The route started from the area (1) and ended in area
(8). The direction of the vehicle is hinted by dashed arrows near the road arcs. In the
area (2) the vehicle is speeding under the flyover. The vehicle will travel upon the flyover
later. Area (3) has a heavier traffic. It should be noted that the driving rule in Malaysia
is that all vehicle drives in the left side of the road, so when the vehicle wanted to turn
right it has to wait for the opposite traffic first. This could be seen from the densely

spaced dots in the figure near area (3).

CHAPTER 7. THE EXPERIMENT AND RESULTS 81

The algorithm is fed with the recorded route and it gave the map-matched outcome
in connected dots that lies exactly in the road-center lines. It can be scen that there is
varying cstimated vehicle track error, which is gradually changing over time. This is a
direct effect of GPS and map inaccuracies resulting from digitizing and other map error.
For example, the vehicle track around area (3) is shifted (or translated) to the southeast
direction as compared to the map. However, in the vehicle track near area (6) the trends

changed to north direction for a while. Nevertheless the new algorithm could cope with
such inaccuracies pretty well.

. ‘;"'“'" ':;51-3805

Okm 0.25km

Figure 7.1: The Experiment Data and Map Matching Result

Chapter 8

Discussion

8.1 The Arc Distance Metric performance

The simulator implements the proposed map-matching algorithm, by using Are Distance
Metric as the primary means of curve-to-curve matching. This section discusses the Arc
Distance Metric comparisons on a sct of curves that was done during the simulation
based on the experiment data. The following Figure 8.1 are a set of images reproduced
from ViTracker which shows the curve similarity comparisons on 7" = 105s (Fig. 8.1).
They are grouped into seven clusters, each cluster comprised of three curves comparisons

based from a road hypotheses generated from the arcs near the vehicle at that time.

Figure 8.1: The road situation at 7' = 105s

The road curve hypotheses is indicated by a number near the end of it. The number
shows the Are Distance Metric score, which indicates the similarity between the road

curve and the vehicle curve. This number is low when the road curve hypothesis is

CHAPTER 8. DISCUSSION 83

similar to the vehicle track. By visual observation it can be seen that this metric worked
quite well for the problem, by giving lower score for dissimilar curve.

The design of Are Distance Metric required that the metric consider both: the shape
similarity of the curve and the lower Euclidean distance between them. These would make
up the similarity of two curve i.e. equivalent curves (zero distance) are those who have
equivalent shape and not spaced within any distance. But the design wanted to emphasize
more on the shape rather than the distance, which is yet to be seen. Figure 8.2a display
a rather dissimilar curve but very close proximity (i.e has low Euclidean distance). The
Arc Distance Metric (044m) for this pair reached more than 900,000 high. In contrast,
the Figure 8.1e shows a rather similar pair of curves, but much more spaced away. Yet
the Arc Distance Metric is around 500,000, which is still lower than the aforementioned
figure. This shows a good compliance to the design criterion: dissimilar curves have more

penalties than inter-curves Euclidean distance.

CHAPTER 8. DISCUSSION 84

51054377 B8%290.29 3 a461.20
(a) 100%-90%-70% variants of road 1

(b) 100%-90%-70% variants of road 2a

(e) 100%-90%-70% variants of road 2b

(d) 100%-90%-70% variants of road 2c

CHAPTER 8. DISCUSSION

n

) 100%-90%-70% variants of road 3a

i

(f) 100%-90%-70% variants of road 3b

(g) 100%-90%-T0% variants of road 3c

Figure 8.1: Curve similarity using Arc Distance Metric

J

CHAPTER 8. DISCUSSION 86

Two of the three curves for each cluster seen are actually a slight modification from
the original one. The modification lies on the distance between the last point and the
point before that. Specifically, the last arc segment of the original road hypothesis (the
original curve) is dilated into two variants: 90% length and 70% length. This will make
three curves for each road hypothesis: two shorter curves and one normal curve (100%
length). These available variants will be helpful to solve the last distance estimation

error. This error will be explained in the next section.

8.2 Last Distance Estimation Error

At each update the algorithm grows the hypotheses by tracing the road arc connectivity
ahead for some distance. The grown hypotheses are used to compare with the previous
vehicle track. Here the problem is that the distance of the grow process is only an
estimate, i.e. the sums of the point-to-point distances per GPS epoch.

The dependency on this single estimate variable would result either an estimate route
which is too long, or an estimate route which is too short, since the GPS inaccuracies
always produce a varying horizontal errors. Both of this has a negative implication on
the accuracy, whereby the vehicle estimated route is too far ahead the vehicle, or lags
behind the actual vehicle. If this situation get worse to some degree, the road arcs near
the snapped vehicle point will not represent the actual road near the real vehicle, and
would bring to a “no good match” condition, i.e. all the newly generated hypotheses
are discarded. Hence, the hypotheses number will be decreasing since there is no nodes
addition but there are a lot of nodes deletion(deleted by the pruning algorithm).

The implemented solution to this problem is to derive several variants, cach having a
modified distance. In the current implementation, it is done by multiplying 1.1 to the last
distance obtained from the GPS and then applying a 100%-90%-70% last arc segment
contraction. The multiplier caters for the lagged behind case (therefore it should be set
to a number which will lengthen the last distance for some small percentage) while the
contraction cares about too far ahead case. This technique will force the system to favor
and pick the lowest Arc Distance Metric among those variants, therefore providing a

chance of recovery for the position discrepancies based on the distance metric.

8.3 Refining the model

The working model of the algorithm uses only the locational information (latitude and
longitude). This might be improved by adding the heading information (from the GPS

CHAPTER 8. DISCUSSION 87

receiver) of the vehicle and use that information as a variable in measuring the similarity.
The algorithm is quite general however, since it does not use many heuristics involving
the movement of the vehicle. Hence, it might be a good candidate for solving other

problem that presents multiple possibilities within a set of restricted constraints such as
road network or grammar.

8.4 Backtracking and Correction Performance

The design of the proposed map-matching algorithm takes care about the possible back-
tracking, to cope with the incremental nature of the problem. According to the test result

(see Figure 8.2), there are only eight corrections with the peak increment happens near
simulation time 400 (7" = 400s).

Correction
10 o
€ 8
: 7
(8]
: . r
o 4
S 2 [
Q
0 T . - : '
0 100 200 300 400 500 600
Time(seconds)
—Corr

Figure 8.2: The Number of Correction vs Simulation Time

As seen on the Figure 8.3, the road situation near the vehicle at (7" = 400s) is quite
challenging for the map-matching . Figure 8.3a shows that the vehicle is facing many
possible (three) roads ahead. The straight way (a) leads to the flyover; a slight to the
left (b) is the road beside the flyover; while the right turn (c) is actually restricted by the
traffic regulation. The road beside the flyover (b) will connect to the road that lies under
the flyover, indicated by the vertical line.

The thick line with spaced dots indicates the predicted vehicle’s track and the previous

snapped points. There are two such lines on that figure: the horizontal on the left and

CHAPTER 8. DISCUSSION

oo
ﬁJ

the vertical on the right. The vertical line is actually the previous track at simulation
time between 31 and 60, and this is already the actual road taken by the vehicle (i.c.
converged true hypothesis). Meanwhile the line on the left is relatively new (7" > 400)
hypothesis and therefore a bit volatile: it may change depending on the next information.

The hollow dots indicate the actual vehicle’s track. The vehicle position itself at the
time is indicated by a small triangle, and emphasized by an arrow with label “V". The
snapped point on the road is indicated by the dots that always been constrained within
a road arc, and emphasized by an arrow with label “S”. If “V” is near “S” then it would
be pointed by only one arrow with the label “S,V”.

Referring to the Figure 8.3b, a manual inspection would suggest that later at that
time(T = 417s), the vehicle is most likely taking the flyover road arc. Hence, this is
exactly the hypotheses inferred by the system, and the estimate vehicle line is updated
to reflect this situation. However, this is not true. The actual road that was taken is the
road beside the flyover (b), then the vehicle turn right and travel through the road below
the flyover.

The lightly colored roads indicate that it is another probable hypothesis that is main-
tained by the system. The purpose is for the system to do backtracking, if it needs to
do so. A road arc is considered as a hypothesis (lightly colored) if it is similar enough to
the last vehicle track (i.e. below some Arc Distance Metric threshold). In this case, the
road (b) and (c) is also lightly colored (note that we do not implement the road direction
information yet, hence it is also consider road ¢ as a valid hypothesis). This is because
although road (b) and (c) are not the most likely hypothesis, they are not really bad on
their Arc Distance Metric score (i.e. scoring a low enough distance as compared to the
vehicle track), so it will be maintained as a probable hypotheses by the system.

At (T = 429s), a manual inspection would say that it is impossible for the vehicle to
travel on the flyover, since there was a sharp right turn just now. This is also exactly what
the system had suggested. The system performed an update (and grew the hypotheses
as necessary) at that time and did evaluation on every possible hypotheses’ score. It
grew the hypothesis (a) further along the flyover; it also grew the hypothesis (b) into
two branches: a sharp right turn and a sharp left turn. How far the system grows the
hypotheses will be determined by how far the vehicle had moved from the last update.

After it had evaluated the hypotheses set, it found that the previous best hypothesis
(a) (the flyover) scored lower than the hypothesis (b). Hence the system backtracked and
picked the road (b) followed by a sharp right turn.

CHAPTER 8. DISCUSSION

0% o oo
L eL™
o
o

<

o0 0 @

e ©©
o
QU

;!

(<]
o
1
o o
o aes®

o
ek

t=429

(c) Corrected inference

Figure 8.3: Example of backtracking in the experiment

39

CHAPTER 8. DISCUSSION 90

8.5 Hypothesis Tree Reduction Techniques Results

The algorithm presents an ever-growing hypotheses tree problem, which will need to be
pruned for its realistic applications. When the number of hypotheses gets too high, the
system’s resource could not process them all in a real-time fashion. It means that the
simulator could only advance to the next second after it had spent more than one second
processing. This condition called hypotheses explosion and it needs to be avoided. Thus
it is very important issue to tackle for realistic applications of the algorithm.

There are four methods that are proposed in this thesis and all of them are already im-
plemented (sece Chapter 5.2). We will discuss the performance of basic pruning, hypothe-
ses compaction and hypotheses merging techniques using the data set that is obtained
from the experiment.

The first implemented and tested pruning algorithm is to assign Time-To-Live (TTL)
counter to each node of the tree (basic pruning). The idea is basically that branches of
hypotheses tree which are continuously growing (at each update) are considered to be
decent hypotheses, while the static ones are bad. This basic pruning algorithm attached
new hypotheses which are lower than a particular threshold and discarded the new hy-
potheses which are higher. Every time the tree grows, the TTL counter for all node
within the tree is reduced, unless for a growing branch. When a particular branch has
zero TTL, it will be pruned up to non-dead nodes.

As displayed in Figure 8.4, the basic pruning (BP) technique is able to keep the
number of nodes manageable by the system. The number of nodes even decreasing in
several occasions. This is clearly seen in simulation time 400-500. Without the pruning
algorithm, the number of nodes to be managed is approximately twice (1345 nodes).
With the basic pruning, it reduced down to 735 nodes.

The next implemented technique are the hypotheses compaction (C) technique. Using
this technique many internodes hypotheses are successfully removed from the hypotheses
tree without affecting the accuracy. The result presented in Figure 8.4 shows that this
technique (BP+C) is able to further minimize the size of the tree (180 nodes).

The hypotheses merging (M) combined with other techniques (BP+C+M) could even
minimize the real node counts. It works by the presence of similar, mergeable hypotheses.
In the current experiment this technique combined with other technique only need 71 real
nodes.

We used the combination of all these reduction technique for another simulated sce-
nario. The simulated scenario is the condensed Batu Gajah map, which has much more
nodes and roads (752 nodes, 93 Arcs). We used the recorded trajectory and expect a

very heavy load because of the many similarities in the simulated network. Nevertheless

CHAPTER 8. DISCUSSION 91

Hypotheses Pruning
|
1600 {
1400 3
1200
£ 1000 L] —— Pruning I
$ aon : - = w/o Pruning|
§ . PC |
%500 s — PCM |
400 -7 ;
200 e
0 B ST L1 —
0 200 400 600
Time(second) |

Figure 8.4: The Effect of Hypotheses Pruning

the merging technique proves to be very useful on this simulated scenario. It ended up

with 16368 logical nodes, but with only 127 real nodes due to the merging.

8.5.1 Two Ways Internodes Hypotheses Generation Filter

The explosion of hypotheses casily happen if we allow the two-ways internodes hypotheses
generation at each update. It is a good ability to handle assumption that the vehicle able
to take a 180° at cach update. Currently the algorithm is only allowed to branch the
hypotheses only at the road junction, and the branching cannot go to the previous road.
The solution to this is to implement a simple filter to detect the vehicle's reverse in the
direction (e.g. 180° turn). It might be a fuzzy logic rule, neural networks, or even a
simple algorithm based on vehicle’s heading.

8.6 The Convergence of Hypotheses

Normally the algorithm will keep growing the hypotheses tree, unless there is huge dis-
correlation between the map and the vehicle track, whereby the hypotheses tree will be
shrinking to a minimum size of zero hypotheses. This is the point where a new initial
hypothesis is formed using point-to-curve algorithm.

In the normal state where the map and the vehicle track shows a good correlation, the

map-matching take place as predicted, and the number of nodes on hypotheses tree will

CHAPTER 8. DISCUSSION 92

be increasing. Normally the earlier hypotheses will be converging. In other words, there
will be many nodes with only single child, representing the most probable hypotheses on
the tree. Most of those nodes reside on the lower level of the tree (near the root). This

1s a situation where the hypotheses compaction technique is very useful.

8.7 Complexity analysis of the algorithm

The following discussion will make many references to Section 5.2.

We will take the analysis from the Update(). We will leave the FirstGuess() since it
is performed in the initial part of execution only. The Update() contains two important
functions (in terms of our developed algorithm) that is, TraverscTree() and Compact-
Tree(). Other functions such as Clear() and ClearAllBlocks() are not hard and may have

various implementation with various complexity, thus we will not discuss them.

8.7.1 Complexity of TraverseTree()

The CountChildren() could be implemented using variable lookup so it will not take
more than O(1). Similarly, Block(), Push(), and SetLargeValue() are also quite simple
and could be accomplished in O(1). The Grow() is recursive, and is using a tree, similar to
a DFS search. We introduce the branching factor, that is, the average number of children
of the hypotheses tree, represented as b. To simplify analysis, let us say that every tree
expansion, every node will produce exactly b children, so the branching factor is b. Using
that assumption, the number of nodes at depth n or less is N = 1+ b+ b% 4 ... + b".
This will reduce to N = (b**1) —1)/(b— 1)), which is O(o™).

8.7.2 Complexity of Grow()

This function is an integral part of TraverseTree(), and is responsible for producing new
children to be explored. This function is called only in the leaves of the hypotheses
tree. There are b" leaves to be grown, so if it is grown to add more m depth, then

N =0b"+ b+ 4+ 4 b+™) Similar to the previous analysis, the complexity should

be O(br+m)),

8.7.3 Complexity of CompactTree()

This algorithm performs compaction for every node in the hypotheses tree using recursive
DFS technique. The number of nodes already described in the explanation above, and
could also be reduced to O(").

Chapter 9

Conclusions

9.1 Summary

The arc similarity distance and the new map-matching algorithm have been implemented.
Both relies heavily on recursion, which make it somewhat limited by the stack and re-
duce its speed. The other consideration is about the explosion of hypotheses data, if the
system allows two-ways internodes hypotheses generation at cach update. It would be a
good ability to handle assumption that the vehicle is able to take a 180° at each update.
Currently the algorithm only allowed to branch the hypotheses tree only at the road junc-
tion, and the branches cannot refer to the previous road. The solution for this hypotheses
explosion problem is to implement a simple detector of the vehicle’s 180° turn, which will
effectively limit the number of hypotheses. It might be a fuzzy logic rule, neural net-
works, or even a simple algorithm based on vehicle’s heading. The hypotheses explosion
problem can also be attacked using the developed hypotheses reduction algorithms. The
hypotheses compaction and merging technique combined with the basic pruning is seen
t0 work quite well in the data sot.

In respect to the main objective, the simulation result showed a remarkable accuracy
improvement due to the algorithm’s ability to pick a better interpretation upon the vehicle
track. On the sccond objective, it can be seen that the algorithm can infer the spot that
the vehicle is located within the correct arc, albeit the several seconds latency given by the
effect of the near real-time constraint. The algorithm is also able to form the meaningful
travel route, as a consequence of the hypotheses generation that is always based on the
real road network conmnectivity. This indicates the compliance to the third objective.
Overall, while there are plenty of opportunities to improve the algorithm, it is observed
that this model works and potentially capable to give a considerable improvement of
accuracy.

CHAPTER 9. CONCLUSIONS 94

9.2 Future Works

9.2.1 Model Improvement

While the current model is simple yet proven, a greater complexity is needed to enhance
the ability for the algorithm to be adaptive. We recommend that the future model should
add the road direction and road width as part of the network information. It should also
consider the vehicle’s direction to help improving the accuracy in a harder scenario.
The next improvement should be to enable the algorithm to detect reverse direc-
tion of the vehicle, and to incorporate the reverse road hypotheses (two ways internode

hypotheses) if the vehicle’s direction is reversing.

9.2.2 Implementation Improvement

The ViTracker could be made more useful if there is a binary extension mechanism, such
as development of modular DLL to serve as “plug-ins”. Furthermore, the addition of
curve-to-curve matching technique such as Fréchet and Hausdorff would provide useful

measure for a comparison or benchmark.

Bibliography

(1

3]

[4]

[7]

8]

(9]

(10]

WY Ochieng, M. Quddus, and RB Noland. MAP-MATCHING IN COMPLEX
URBAN ROAD NETWORKS. Brazilian Journal of Cartography (Revista Brasileira
de Cartografia), 55(2):1-18, 2003.

RR Joshi. Novel metrics for map-matching in in-vehicle navigation systems. Intel-
ligent Vehicle Symposium, 2002. IEEE, 1, 2002.

CE White, D. Bernstein, and AL Kornhauser. Some map matching algorithms for
personal navigation assistants. Transportation Research Part C: Emerging Technolo-
gies, 8(1):91-108, 2000.

Jianyu (Jack) Zhou. A three-step general map matching method in the gis environ-

ment: Travel/transportation study perspective. In UCGIS Summer Assembly 2003,
2005.

J.C. McCormac. Surveying. John Wiley and Sons, Inc., 2004.

D. Michie, DJ Spiegelhalter, CC Taylor, and J. Campbell. Machine learning, neural
and statistical classification. Ellis Horwood Upper Saddle River, NJ, USA, 1995.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley-Interscience,
2000.

D. Bernstein and AL Kornhauser. An Introdution to Map Match-
ing for Personal Navigation Assistants. New Jersey TIDE Center
(http:/ /www.njtide.org/reports/mapmatchintro.pdf), 1996.

M.S. Grewal, L.R. Weill, and A.P. Andrews. Global Positioning Systems, Inertial
Navigation, and Integration. John Wiley and Sons, 2001.

Ronald A. Brown. Instantancous gps attitude determination. Position Location and
Navigation Symposium, 1992,

BIBLIOGRAPHY 96

[11]

(12]

13]

14

15
16

(17

[18]

(19]

[20]

[21]

[22]

(23]

(24]

[25]

Guo-Shing Huang Jyh-Ching Huang. Development of gps based attitude determina-

tion algorithm. IEEE transaction on Aerospace and Electronic System, 1996.

A. El-Rabbany. Introduction to GPS: The Global Positioning System. Artech House,
2002.

G. Taylor. GIS and GPS integration and mobile handset positioning. Web Informa-
tion Systerns Engineering (Workshops), 2002. Proceedings of the Third International
Conference on, pages 73-80, 2002.

G. Taylor, G. Blewitt, D. Steup, S. Corbett, and A. Car. Road Reduction Filtering
for GPS-GIS Navigation. Transactions in GIS, 5(3):193-207, 2001.

JS Keates. Understanding Maps. Longman, 1996.
John Campbell. Map Use and Analysis. McGraw Hill, 2001.

Google Inc. last access 12-14-2007 6:36:16 PM. http://earth.google.com /userguide.
2007.

BE Davis. GIS: A Visual Approach. Thomson Learning, 2001.

J.S. Pyo, D.H. Shin, and T.K. Sung. Development of a map matching method
using the multiple hypothesis technique. Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE, pages 23-27, 2001.

M.A. Quddus, W.Y. Ochieng, L. Zhao, and R.B. Noland. A general map matching
algorithm for transport telematics applications. GPS Solutions, 7(3):157-167, 2003.

Tom M. Apostol. Calculus vol 1, One-Variable Calculus, with an Introduction to
Linear Algebra. John Wiley and Sons, Inc, 1967.

Sartaj Sahni Dinesh P. Mehta. Handbook of Data Structures and Applications. Chap-
man and Hall, CRC, 2005.

D.E. Knuth. The art of computer programming. Vol. 1: Fundamental algorithms.
Addison Wesley Longman, 1997.

T.H. et. al Cormen. Introduction to Algorithms.2nd Edition. The MIT Press, 2001.

D. Andersson and J. Fjillstrom. Vehicle Positioning with Map Matching Using Inte-
gration of a Dead Reckoning System and GPS. PhD thesis, Master Thesis, Linképing
University, Sweden, 2004.

BIBLIOGRAPHY o7

(26

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

(38]

(39]

M. Winter and G. Taylor. Modular Neural Network for Map-matched GPS Posi-
tioning. 2003.

T. Kohonen. Statistical pattern recognition with neural networks: benchmarking
studies. IEEFE International Conference on, 1988.

Salman Syed. Development of Map-aided GPS algorithms for Vehicle Navigation in
Urban Canyons. PhD thesis, 2004.

S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-matching Vehicle Track-
ing Data. VLDB 31st Conference 2005. Proceedings., 2005.

K. Ito. Encyclopedia of Mathematics, vol. 2, 1993.

H. Alt, P. Brass, M. Godau, C. Knauer, and C. Wenk. Computing the Hausdorff
distance of geometric patterns and shapes. Discrete and Computational Geometry,
Special Issue-The Goodman-Pollack-Festschrift, 76, 2003.

H. Alt, C. Knauer, and C. Wenk. Comparison of Distance Measures for Planar
Curves. Algorithmica, 38(1):45-58, 2003.

T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technische Univer-
sitat Wien Technical Report CD-TR, 94:64, 1994.

Helmut Alt and Michael Godau. Measuring the resemblance of polygonal curves. In
SCG ’92: Proceedings of the eighth annual symposium on Computational geometry,
pages 102-109, New York, NY, USA, 1992. ACM.

R. van Oostrum and R.C. Veltkamp. Parametric search made practical. Proceedings

of the eighteenth annual symposium on Computational geometry, pages 1-9, 2002.

G. Taylor and G. Blewitt. Virtual differential GPS & road reduction filtering by
map matching. Proceedings of ION, 99:1675-1684, 1999.

G. Blewitt and G. Taylor. Mapping dilution of precision (mdop) and map matched

gps. International Journal of Geographical Information Science, ISSN 1365-8816,
2002.

D. Reid. An algorithm for tracking multiple targets. Automatic Control, IEEE
Transactions on, 24(6):843-854, 1979.

K. Ikeda F. Morisue. Evaluation of map-matching technique. Vehicle Navigation
and Information Systems Conference, 1989.

BIBLIOGRAPHY

[40] JJ Martin. Explicit Reference Counts. Southeastcon '96, 1996.

98

Appendices

49

Appendix A

The Vehicle trajectory derived from
GPS

The following table are derived from Garmin GPS receiver at 7/9/2007 10:10:43 AM

using WGS84 datum. The header “Time” is the simulation time. “Lat” and “Long” are

latitudes and longitudes, respectively. “Alt” is for altitude.

“LL” is the leg length, “LTime” is the leg time, “LS” is the leg speed, “LCourse” is

the heading of the vehicle. These four measures is for indicating the point-to-point line

deltas (leg) in terms of its length, the time taken, and the course.

Time Lat Long | Time2 | Alt(ft) | LL(ft) | LTime | LS(mph) | LCourse
1| N4.47656 | E101.04152 | 10:32:55 92 40 | 00:00:01 21 169°
2 | N4.47644 | E101.04154 | 10:32:56 90 48 | 00:00:01 32 /by
3| N4.47633 | E101.04158 | 10:32:57 90 42 | 00:00:01 29 158°
4 | N4.47622 | E101.04160 | 10:32:58 90 40 | 00:00:01 27 169°
5 | N4.47611 | E101.04162 | 10:32:59 90 40 | 00:00:01 27 169°
6 | N4.47601 | E101.04165 | 10:33:00 90 40 | 00:00:01 27 169°
7| N4.47590 | £101.04165 | 10:33:01 90 39 | 00:00:01 20 180°
8 | N4.47579 | E101.04167 | 10:33:02 92 40 | 00:00:01 27 169°
9 | N4.47568 | E101.04169 | 10:33:03 92 40 | 00:00:01 27 169°

10 | N4.47558 | E101.04171 | 10:33:04 90 40 | 00:00:01 27 169°
11 | N4.47547 | E101.04173 | 10:33:05 90 40 | 00:00:01 27, 169°
12 | N4.47536 | E101.04175 | 10:33:06 39 40 | 00:00:01 27 169°
13 | N4.47526 | E101.04177 | 10:33:07 89 40 | 00:00:01 27 169°
14 | N4.47513 | £101.04180 | 10:33:08 86 48 | 00:00:01 32 171°
15 | N4.47502 | E101.04182 | 10:33:09 84 40 | 00:00:01 27 169°
16 | N4.47489 | E101.04184 | 10:33:10 84 48 | 00:00:01 32 L{ds

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS 101

17 | N4.47476 | E101.04188 | 10:33:11 82 50 | 00:00:01 34 162°
18 | N4.47465 | E101.04190 | 10:33:12 84 40 | 00:00:01 27 169°
19 | N4.47453 | E101.04192 | 10:33:13 84 48 | 00:00:01 32 171*
20 | N4.47440 | E101.04195 | 10:33:14 86 48 | 00:00:01 32 171°
21 | N4.47429 | E101.04197 | 10:33:15 86 40 | 00:00:01 27 169°
22 | N4.47416 | E101.04201 | 10:33:16 86 50 | 00:00:01 34 162°
23 | N4.47405 | E101.04203 | 10:33:17 86 40 | 00:00:01 27 169°
24 | N4.47392 | £101.04205 | 10:33:18 87 48 | 00:00:01 32 171°
25 | N4.47382 | E101.04208 | 10:33:19 87 40 | 00:00:01 27 169°
26 | N4.47371 | E101.04210 | 10:33:20 87 40 | 00:00:01 27 169°
27 | N4.47360 | E101.04210 | 10:33:21 37 39 | 00:00:01 27 180°
28 | N4.47350 | E101.04212 | 10:33:22 87 40 | 00:00:01 27 169°
29 | N4.47337 | E101.04212 | 10:33:23 37 47 | 00:00:01 32 1807
30 | N4.47326 | E101.04212 | 10:33:24 87 39 | 00:00:01 27 180°
31 | N4.47315 | E101.04212 | 10:33:25 87 39 | 00:00:01 27 1807
32 | N4.47304 | E101.04212 | 10:33:26 87 39 | 00:00:01 27 180°
33 | N4.47294 | E101.04212 | 10:33:27 87 39 | 00:00:01 27 180°
34 | N4.47283 | E101.04212 | 10:33:28 87 39 | 00:00:01 27 180°
35 | N4.47274 | E101.04212 | 10:33:29 87 31 | 00:00:01 21 180°
36 | N4.47266 | E101.04212 | 10:33:30 87 31 | 00:00:01 21 180°
37 | N4.47255 | E101.04212 | 10:33:31 89 39 | 00:00:01 27 180°
38 | N4.47247 | E101.04212 | 10:33:32 89 31 | 00:00:01 21 180°
39 | N4.47236 | E101.04212 | 10:33:33 89 39 | 00:00:01 27 1807
40 | N4.47227 | E101.04212 | 10:33:34 89 31 | 00:00:01 21 180°
41 | N4.47219 | E101.04212 | 10:33:35 90 31 | 00:00:01 21 180°
42 | N4.47208 | E101.04214 | 10:33:36 90 40 | 00:00:01 27 169°
43 | N4.47199 | E101.04216 | 10:33:37 90 32 | 00:00:01 22 1667
44 | N4.47189 | E101.04218 | 10:33:38 90 40 | 00:00:01 27 169°
45 | N4.47180 | E101.04220 | 10:33:39 92 32 | 00:00:01 22 166°
46 | N4.47169 | £101.04223 | 10:33:40 92 40 | 00:00:01 27 169°
47 | N4.47161 | E101.04227 | 10:33:41 93 35 | 00:00:01 24 154°
48 | N4.47152 | E101.04229 | 10:33:42 93 32 | 00:00:01 22 166°
49 | N4.47144 | E101.04231 | 10:33:43 93 32 | 00:00:01 22 166°
50 | N4.47135 | E101.04233 | 10:33:44 93 32 | 00:00:01 22 166°
51 | N4.47126 | E101.04235 | 10:33:45 95 32 | 00:00:01 22 166°
52 | N4.47120 | E101.04238 | 10:33:46 95 25 | 00:00:01 17 162°
53 | N4.47111 | E101.04240 | 10:33:47 95 32 | 00:00:01 22 166°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

[SIS S) B o5) B) S
JC.ESSEE%LDOO-JC‘C‘-A

G5
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90

N4.47105
N4.47098
N4.47092
N4.47086
N4.47079
N4.47073
N4.47066
N4.47060
N4.47053
N4.47047
N4.47041
N4.47034
N4.47028
N4.47021
N4.47015
N4.47008
N4.47002
N4.46998
N4.46991
N4.46985
N4.46980
N4.46978
N4.46976
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46974
N4.46972

[£101.04242
E101.04244
E101.04246
E101.04248
E101.04253
E101.04255
E101.04259
E£101.04261
E101.04263
E101.04265
E101.04268
£101.04270
[101.04270
E101.04272
£101.04272
E101.04274
E101.04274
E101.04276
E101.04276
E101.04278
E101.04278
E101.04280
E101.04280
E101.04280
E101.04280
[£101.04280
E101.04280
E101.04280
[£101.04280
E101.04280
E101.04280
E101.04280
[£101.04280
E101.04280
E101.04280
E101.04280
E101.04280

10:33:48
10:33:49
10:33:50
10:33:51
10:33:52
10:33:53
10:33:54
10:33:55
10:33:56
10:33:57
10:33:58
10:33:59
10:34:00
10:34:01
10:34:02
10:34:03
10:34:04
10:34:05
10:34:06
10:34:07
10:34:08
10:34:09
10:34:10
10:34:11
10:34:12
10:34:13
10:34:14
10:34:15
10:34:16
10:34:17
10:34:18
10:34:19
10:34:20
10:34:21
10:34:22
10:34:23
10:34:24

W W YW © W YW W YW O O O © © O
0 O 0 ~1] ~J OCvorvov v OO CtoCn

100
100
100
100
100
100
100
100

98
100
100

98

98

98
100
100
101
101
101
101
101
101
101

[S= T]
[+ B, B &) |

]

o= NN = RN RN NN NN NN
= O 1 B 00 W T W Wb OO OO

00O OO0 00 o000 0Cc 0 o o W oo

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

17
17
17
19
17
19
17
17
17
17
17
16
17
16
17
16
12
16
17
11
7.5

5.3

= = = == === = = = R =]

on

102

162°
162°
162°
162°
146°
162°
146°
162°
162°
162°
162°
162°
180°
162°
180°
162°
1807
154°
180°
162°
180°
135°
180°
180°

0°

0°

0°

0°

0°

0

=== =

00
180°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

98

a9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

N4.46972
N4.46972
N4.46970
N4.46968
N4.46968
N4.46965
N4.46965
N4.46963
N4.46963
N4.46961
N4.46961
N4.46961
N4.46959
N4.46959
N4.46959
N4.46959
N4.46959
N4.46957
N4.46957
N4.46957
N4.46957
N4.46955
N4.46955
N4.469
N4.469
N4.469
N4.46955
N4.46953
N4.46955
N4.46953
N4.46950
N4.46948
N4.46946
N4.46942
N4.46938
N4.46931
N4.46927

9]
<

o1 ocn
(SLE 1

i

E101.04280
E101.04280
E101.04280
E101.04280
E101.04280
E101.04278
E101.04278
E101.04276
E101.04272
E101.04270
E101.04265
E101.04263
E101.04259
E101.04255
E101.04253
E101.04250
E101.04246
[101.04244
E101.04240
E101.04235
E101.04233
E101.04229
E101.04227
£101.04223
E101.04220
E101.04218
E101.04214
E101.04210
E101.04212
E101.04210
E101.04210
E101.04208
[£101.04208
E101.04210
E101.04210
E101.04212
[£101.04212

10:34:25
10:34:26
10:34:27
10:34:28
10:34:29
10:34:30
10:34:31
10:34:32
10:34:33
10:34:34
10:34:35
10:34:36
10:34:37
10:34:38
10:34:39
10:34:40
10:34:41
10:34:42
10:34:43
10:34:44
10:34:45
10:34:46
10:34:47
10:34:48
10:34:49
10:34:50
10:34:51
10:34:52
10:34:53
10:34:54
10:34:55
10:34:56
10:34:57
10:34:58
10:34:59
10:35:00
10:35:01

101
101
101
103
103
103
103
105
103
103
103
103
103
103
103
101
101
98
97
97
97
Y7
97
97
97
97
97
100
98
98
98
98
98
98
98
97
97

S 00 00 O O

11

11
16
11
16

17
16

16
11
16
16

17

16

16
17
11
11

11

18
16
25

16

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

I I
= T o LT O W W o o

N
n

11

I

&
@

12

cn

ST e SR e B e [)
— =] = b L T W o

103

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

N4.46865
N4.46865
N4.46865
N4.46865
N4.46865
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46862
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46860
N4.46862
N4.46865
N4.46867
N4.46869

[101.04051
[101.04042
£101.04034
£101.04025
E101.04019
E101.04014
E101.04012
[£101.04010
E101.04008
E101.04006
E101.04002
E101.03999
E101.03995
E101.03989
E101.03984
1£101.03930
E£101.03976
E101.03971
E£101.03965
E101.03961
E101.03954
E101.03948
E101.03941
E101.03935
E101.03931
E101.03924
E101.03920
E101.03916
[£101.03909
E101.03905
£101.03901
E101.03896
E101.03892
£101.03888
E101.03884
E101.03881
E101.03881

10:35:39
10:35:40
10:35:41
10:35:42
10:35:43
10:35:44
10:35:45
10:35:46
10:35:47
10:35:48
10:35:49
10:35:50
10:35:51
10:35:52
10:35:53
10:35:54
10:35:55
10:35:56
10:35:57
10:35:58
10:35:59
10:36:00
10:36:01
10:36:02
10:36:03
10:36:04
10:36:05
10:36:06
10:36:07
10:36:08
10:36:09
10:36:10
10:36:11
10:36:12
10:36:13
10:36:14
10:36:15

111
111
11,
111
111
112
112
112
112
112
112
112
112
112
112
112
112
112
112
114
114
114
114
114
114
114
114
114
114
116
116
116
116
116
116
116
116

39
31
31
31
23
17

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

27
21

21
21
16
12
5.3
5.3
5.3
5.3
11
5.3
11
16
11
11
11
11
16
11
17
16
16

10

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

202
203
204
205
2006
207
208
209
210
211
212

N4.46871
N4.46873
N4.46875
N4.46880
N4.46882
N4.46886
N4.46888
N4.46892
N4.46897
N4.46901
N4.46905
N4.46910
N4.46912
N4.46916
N4.46918
N4.46923
N4.46929
N4.46933
N4.46938
N4.46942
N4.46946
N4.46950
N4.46955
N4.46961
N4.46965
N4.46970
N4.46976
N4.46980
N4.46987
N4.46991
N4.46995
N4.47000
N4.47004
N4.47011
N4.47015
N4.47019
N4.47026

E101.03879
E101.03879
E101.03879
E101.03879
E101.03879
E101.03879
E101.03879
E101.03879
[101.03879
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03877
E101.03879
E101.03879
[£101.03881
E101.03884
E101.03886
E£101.03888
E101.03892
[£101.03894
E101.03896
E101.03899
E101.03903
[£101.03905
E101.03907
E101.03911
E101.03914
E101.03916
E101.03920

10:36:16
10:36:17
10:36:18
10:36:19
10:36:20
10:36:21
10:36:22
10:36:23
10:36:24
10:36:25
10:36:26
10:36:27
10:36:28
10:36:29
10:36:30
10:36:31
10:36:32
10:36:33
10:36:34
10:36:35
10:36:36
10:36:37
10:36:38
10:36:39
10:36:40
10:36:41
10:36:42
10:36:43
10:36:44
10:36:45
10:36:46
10:36:47
10:36:48
10:36:49
10:36:50
10:36:51
10:36:52

116
116
116
116
116
116
116
116
116
1177
117
117
117
116
116
117
1047
117
117
117
117
119
119
119
119
117
119
117
117
117
117
117
117
101k
117
117
116

11

16

16

16
16
18
16
16

16

16
24
16
16
16
18
16
18
25
18
18
28
18
25
18
22
18
18
28
18
18
28

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

106

315°
0°

0°
UU
0°

0°
0°
334°
0°
0°
0°
0°
0°

360°
360°
0°
360°
26°
0°
26°
18°
26"
26°
34°
26°
18°
26°
45°
26°
26°
34°
26°
26°
34°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS 107

239 | N4.47030 | E101.03922 | 10:36:53 117 18 | 00:00:01 12 26°
240 | N4.47036 | E101.03926 | 10:36:54 116 28 | 00:00:01 19 34°
241 | N4.47041 | E101.03929 | 10:36:55 116 18 | 00:00:01 12 26°
242 | N4.47047 | E101.03931 | 10:36:56 114 25 | 00:00:01 17 18°
243 | N4.47051 | E101.03933 | 10:36:57 114 18 | 00:00:01 12 26°
244 | N4.47056 | E101.03935 | 10:36:58 112 18 | 00:00:01 12 26°
245 | N4.47060 | £101.03937 | 10:36:59 112 18 | 00:00:01 12 26°
246 | N4.47064 | E101.03939 | 10:37:00 112 18 | 00:00:01 12 26°
247 | N4.47066 | £101.03941 | 10:37:01 112 11 | 00:00:01 7.5 45°
248 | N4.47068 | E101.03944 | 10:37:02 112 11 | 00:00:01 7.5 45"
249 | N4.47073 | £101.03946 | 10:37:03 112 18 | 00:00:01 12 26°
250 | N4.47077 | E101.03948 | 10:37:04 112 18 | 00:00:01 12 26°
251 | N4.47079 | E101.03950 | 10:37:05 112 11 | 00:00:01 7.5 45°
252 | N4.47083 | £101.03952 | 10:37:06 111 18 | 00:00:01 12 26°
253 | N4.47088 | E101.03954 | 10:37:07 111 18 | 00:00:01 12 26°
254 | N4.47092 | E101.03956 | 10:37:08 111 18 | 00:00:01 12 26°
255 | N4.47096 | E101.03959 | 10:37:09 111 18 | 00:00:01 12 26°
256 | N4.47101 | E101.03961 | 10:37:10 111 18 | 00:00:01 12 26°
257 | N4.47105 | E101.03965 | 10:37:11 111 22 | 00:00:01 15 45°
258 | N4.47109 | E101.03967 | 10:37:12 109 18 | 00:00:01 12 26°
259 | N4.47114 | E101.03969 | 10:37:13 109 18 | 00:00:01 12 26°
260 | N4.47118 | E101.03971 | 10:37:14 109 18 | 00:00:01 12 26°
261 | N4.47122 | E101.03974 | 10:37:15 109 18 | 00:00:01 12 26°
262 | N4.47126 | E101.03976 | 10:37:16 109 18 | 00:00:01 12 26°
263 | N4.47131 | E101.03980 | 10:37:17 111 22 | 00:00:01 15 45°
264 | N4.47135 | E101.03982 | 10:37:18 111 18 | 00:00:01 12 26°
265 | N4.47139 | E101.03984 | 10:37:19 109 18 | 00:00:01 12 26°
266 | N4.47144 | E101.03987 | 10:37:20 108 18 | 00:00:01 12 26°
267 | N4.47148 | E101.03989 | 10:37:21 109 18 | 00:00:01 12 26°
268 | N4.47152 | E101.03991 | 10:37:22 111 18 | 00:00:01 12 26°
269 | N4.47156 | E101.03993 | 10:37:23 111 18 | 00:00:01 12 26°
270 | N4.47159 | E101.03997 | 10:37:24 109 17 | 00:00:01 12 63°
271 | N4.47161 | E101.03997 | 10:37:25 111 8 | 00:00:01 5.3 0°
272 | N4.47163 | E101.03995 | 10:37:26 111 11 | 00:00:01 7.5 315°
273 | N4.47163 | E101.03995 | 10:37:27 111 0 | 00:00:01 0 0°
274 | N4.47165 | E101.03993 | 10:37:28 111 11 | 00:00:01 7.5 315°
275 | N4.47165 | E101.03991 | 10:37:29 112 8 | 00:00:01 5.3 270°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

N4.47259
N4.47262
N4.47264
N4.47264
N4.47264
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47266
N4.47268
N4.47270
N4.47274
N4.47277
N4.47281
N4.47283
N4.47287
N4.47292
N4.47296
N4.47300
N4.47307
N4.47311
N4.47315
N4.47322
N4.47326

E101.03808
E101.03804
E101.03800
E101.03798
E101.03798
E101.03796
E101.03796
E101.03796
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03793
E101.03791
E101.03791
E101.03791
E101.03793
E101.03796
E101.03798
E101.03800
E101.03802
E101.03806
E101.03811
E101.03817
E101.03823
E101.03828
E101.03834
E101.03841

10:38:07
10:38:08
10:38:09
10:38:10
10:38:11
10:38:12
10:38:13
10:38:14
10:38:15
10:38:16
10:38:17
10:38:18
10:38:19
10:38:20
10:38:21
10:38:22
10:38:23
10:38:24
10:38:25
10:38:26
10:38:27
10:38:28
10:38:29
10:38:30
10:38:31
10:38:32
10:38:33
10:38:34
10:38:35
10:38:36
10:38:37
10:38:38
10:38:39
10:38:40
10:38:41
10:38:42
10:38:43

131
131
131
131
131
131
131
131
133
133
133
133
133
134
134
134
134
134
134
133
133
133
133
133
133
131
131
131
134
133
134
134
134
134
133
131
131

[a—
M-

et
-~ ~

—_

B OO N N O N B e e e e e —
0 W v 0 W N N 0 0 = 0 = O 0 ~~ O O 0 0 00 COC O OoC OO OC moOOoO =o oom

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

-3

(]
S WD

& o~ p—
w O O o

o O O

@ =

-1
A T I O T I O T O 2

=

-~

[

B bt e e e
(%

109

315°
297"
207"

270°

315°
0°
0°

270°

315°
0°
0°
45°
26°
45°
26°
26°
45°
45°
45°
56°
45°
45°

56"

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

w W W W W w Ww
(o4 B oy |
~I T o W = O

o
co

w
(L) B 51 N, T <5 B <L B) T &
=}

o
[=}

N4.47330
N4.47332
N4.47337
N4.47339
N4.47337
N4.47337
N4.47337
N4.47335
N4.47332
N4.47330
N4.47326
N4.47324
N4.47320
N4.47315
N4.47313
N4.47309
N4.47302
N4.47298
N4.47294
N4.47289
N4.47285
N4.47279
N4.47274
N4.47270
N4.47266
N4.47264
N4.47259
N4.47255
N4.47253
N4.47251
N4.47249
N4.47247
N4.47244
N4.47242
N4.47242
N4.47242
N4.47242

E101.03847
£101.03853
E101.03862
E101.03871
E101.03879
[£101.03888
£101.03896
£101.03905
E101.03914
E101.03922
E£101.03931
E£101.03937
E£101.03946
E101.03954
E101.03963
E101.03971
E101.03978
E101.03987
E101.03995
£101.04004
E101.04012
£101.04021
E101.04029
E101.04036
E101.04044
E101.04051
E101.04057
E101.04064
E101.04070
E101.04077
E101.04081
E101.04087
E101.04094
E101.04096
E101.04098
E101.04098
E101.04098

10:38:44
10:38:45
10:38:46
10:38:47
10:38:48
10:38:49
10:38:50
10:38:51
10:38:52
10:38:53
10:38:54
10:38:55
10:38:56
10:38:57
10:38:58
10:38:59
10:39:00
10:39:01
10:39:02
10:39:03
10:39:04
10:39:05
10:39:06
10:39:07
10:39:08
10:39:09
10:39:10
10:39:11
10:39:12
10:39:13
10:39:14
10:39:15
10:39:16
10:39:17
10:39:18
10:39:19
10:39:20

130
130
130
130
131
131
131
131
131
131
133
131
131
131
130
128
128
127
127
125
127
127
127
127
128
130
130
130
130
130
130
130
130
130

133

134
134

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

=

o O W o

(@]

110

104°
104°
104°
117°
108°
117°
117°
104°
11y
135°
117°
117°
117°
11:7¢
127°
197
124°
S
108°
124°
124°
108°
108°
117°
108°
108°
135°
90°
0°
0°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS 111

387 | N4.47240 | £101.04098 | 10:39:21 134 8 | 00:00:01 5.3 180°
388 | N4.47240 | E101.04098 | 10:39:22 134 0 | 00:00:01 0 0°
389 | N4.47240 | E101.04098 | 10:39:23 134 0 | 00:00:01 0 0°
390 | N4.47240 | E101.04098 | 10:39:24 134 0 | 00:00:01 0 0°
391 | N4.47240 | E101.04098 | 10:39:25 136 0 | D0:00:01 0 0
392 | N4.47238 | E£101.04098 | 10:39:26 136 8 | 00:00:01 5.3 180°
393 | N4.47238 | E101.04098 | 10:39:27 136 0 | 00:00:01 0 0°
394 | N4.47238 | E101.04098 | 10:39:28 134 0 | 00:00:01 0 0°
395 | N4.47238 | E101.04098 | 10:39:29 134 0 | 00:00:01 0 0°
396 | N4.47238 | E101.04098 | 10:39:30 134 0 | 00:00:01 0 0°
397 | N4.47238 | E101.04098 | 10:39:31 133 0 | 00:00:01 0 0°
398 | N4.47238 | E101.04098 | 10:39:32 133 0 | 00:00:01 0 0°
399 | N4.47238 | E101.04098 | 10:39:33 136 0 | 00:00:01 0 0°
400 | N4.47238 | E101.04098 | 10:39:34 136 0 | 00:00:01 0 0°
401 | N4.47238 | E101.04098 | 10:39:35 136 0 | 00:00:01 0 0°
402 | N4.47238 | E101.04100 | 10:39:36 138 8 | 00:00:01 5.3 90°
403 | N4.47238 | E101.04102 | 10:39:37 136 8 | 00:00:01 5.3 90°
404 | N4.47236 | E101.04105 | 10:39:38 136 11 | 00:00:01 7.5 135°
405 | N4.47236 | E101.04107 | 10:39:39 136 8 | 00:00:01 5.3 90°
406 | N4.47236 | E101.04111 | 10:39:40 134 16 | 00:00:01 11 90°
407 | N4.47238 | E101.04115 | 10:39:41 134 17 | 00:00:01 12 63°
408 | N4.47238 | E101.04120 | 10:39:42 133 16 | 00:00:01 11 90°
409 | N4.47238 | E101.04126 | 10:39:43 131 23 | 00:00:01 16 90°
410 | N4.47240 | E101.04130 | 10:39:44 130 17 | 00:00:01 12 63°
411 | N4.47240 | E101.04137 | 10:39:45 130 23 | 00:00:01 16 90°
412 | N4.47240 | E101.04141 | 10:39:46 130 16 | 00:00:01 11 90°
413 | N4.47242 | E101.04147 | 10:39:47 131 25 | 00:00:01 17 72°
414 | N4.47242 | E101.04154 | 10:39:48 131 23 | 00:00:01 16 90°
415 | N4.47242 | E101.04160 | 10:39:49 131 23 | 00:00:01 16 90°
416 | N4.47244 | E101.04165 | 10:39:50 133 17 | 00:00:01 12 63°
417 | N4.47244 | E101.04171 | 10:39:51 133 23 | 00:00:01 16 90°
418 | N4.47244 | E101.04175 | 10:39:52 134 16 | 00:00:01 11 90°
419 [N4.47247 | E101.04182 | 10:39:53 136 25 | 00:00:01 17 2"
420 | N4.47247 | E101.04186 | 10:39:54 136 16 | 00:00:01 11 90°
421 | N4.47247 | E101.04190 | 10:39:55 136 16 | 00:00:01 11 90°
422 | N4.47247 | E101.04195 | 10:39:56 136 16 | 00:00:01 11 90°
423 | N4.47247 | £101.04201 | 10:39:57 134 23 | 00:00:01 16 90°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
45

P T =
o v O Ot
cc 9 O & W

=
(4 |
o

N4.47247
N4.47247
N4.47247
N4.47244
N4.47238
N4.47232
N4.47225
N4.47219
N4.47210
N4.47204
N4.47195
N4.47186
N4.47180
N4.47171
N4.47165
N4.47156
N4.47150
N4.47144
N4.47137
N4.47131
N4.47126
N4.47122
N4.47118
N4.47116
N4.47114
N4.47114
N4.47114
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111

[£101.04203
[E£101.04208
[£101.04212
£101.04218
E101.04220
£101.04220
E101.04223
E£101.04223
E101.04225
£101.04227
E101.04229
E101.04229
[£101.04231
E101.04233
E101.04235
£101.04238
E101.04240
£101.04240
[£101.04242
E101.04244
£101.04244
E£101.04246
£101.04244
E101.04244
£101.04242
£101.04242
E101.04242
£101.04242
£101.04242
E101.04240
E101.04240
E101.04240
E101.04240
E101.04240
E101.04240
E101.04240
£101.04240

10:39:58
10:39:59
10:40:00
10:40:02
10:40:03
10:40:04
10:40:05
10:40:06
10:40:07
10:40:08
10:40:09
10:40:10
10:40:11
10:40:12
10:40:13
10:40:14
10:40:15
10:40:16
10:40:17
10:40:18
10:40:19
10:40:20
10:40:21
10:40:22
10:40:23
10:40:24
10:40:25
10:40:26
10:40:27
10:40:28
10:40:29
10:40:30
10:40:31
10:40:32
10:40:33
10:40:34
10:40:35

134
133
131
131
131
130

— o= = RN W W W W N W NN N NN
l—‘CDOODOG)UIU‘JACJ‘!\DU'lMC«'T'—'I\DU![\D;&-U‘»&@CWEEOO

(e (= I o S o (e i = (= HC 0« IR == B+ o T o [

00:00:01
00:00:01
00:00:01
00:00:02
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

(4]

o

el ==l === = = B == =, L -

112

90°
90°
90”
108°
162°
180°
162°
180°
166"
162°
166°
180°
162°
1667
162°
166°
162°
180°
162°
162°
180°
154°
206°
180°
225°
0°
0°

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
A7T7
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47111
N4.47109
N4.47109
N4.47109
N4.47111
N4.47114
N4.47118
N4.47120
N4.47124
N4.47129
N4.47133
N4.47139
N4.47144
N4.47148
N4.47154
N4.47159
N4.47161
N4.47167
N4.47174
N4.47184
N4.47189
N4.47193
N4.47199
N4.47204
N4.47208
N4.47212

E101.04240
E£101.04240
£101.04240
[£101.04240
E101.04240
E101.04240
E101.04240
E£101.04240
E£101.04238
[£101.04238
E101.04238
E101.04238
£101.04235
E£101.04233
E101.04231
E101.04229
E101.04225
E101.04223
E101.04220
E101.04218
E101.04214
E101.04210
E101.04205
[£101.04201
[£101.04197
[£101.04192
[£101.04188
E101.04182
[£101.04184
[£101.04180
E101.04171
E101.04167
E101.04158
E101.04156
E101.04152
E101.04147
[£101.04143

10:40:36
10:40:37
10:40:38
10:40:39
10:40:40
10:40:41
10:40:42
10:40:43
10:40:44
10:40:45
10:40:46
10:40:47
10:40:48
10:40:49
10:40:50
10:40:51
10:40:52
10:40:53
10:40:54
10:40:55
10:40:56
10:40:57
10:40:58
10:40:59
10:41:00
10:41:01
10:41:02
10:41:03
10:41:04
10:41:05
10:41:07
10:41:08
10:41:09
10:41:10
10:41:11
10:41:12
10:41:13

116
117
117
117
117
117
13 [
117
117
117
117
117
116
114
114
114
114
116
116
116
114
114
114
114
114
112
112
122
125
127
125
123
116
116
117
117
117

o O O W O O O © O o o o

—
o 0o

00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:02
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01
00:00:01

<

cO 00 WwWeo oo oo oo o

et iy OU QU N
B B o W o

—
[y}

i
(1]

113

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS 114

498 | N4.47219 | E101.04139 | 10:41:14 117 28 | 00:00:01 19 326°
499 | N4.47223 | E101.04139 | 10:41:15 116 16 | 00:00:01 11 0°
500 | N4.47227 | E101.04137 | 10:41:16 117 18 | 00:00:01 12 334°
501 | N4.47232 | E101.04139 | 10:41:17 117 18 | 00:00:01 12 26°
502 | N4.47236 | E101.04141 | 10:41:18 117 18 | 00:00:01 12 26°
003 | N4.47238 | E101.04145 | 10:41:19 117 17 | 00:00:01 12 63°
504 | N4.47238 | E101.04150 | 10:41:20 117 16 | 00:00:01 11 90°
505 | N4.47238 | E101.04156 | 10:41:21 117 23 | 00:00:01 16 90°
506 | N4.47238 | E101.04162 | 10:41:22 119 23 | 00:00:01 16 90°
507 | N4.47238 | E101.04169 | 10:41:23 120 23 | 00:00:01 16 90°
508 | N4.47238 | E101.04173 | 10:41:24 120 16 | 00:00:01 11 90°
509 | N4.47240 | E101.04182 | 10:41:25 122 32 | 00:00:01 22 76°
510 | N4.47240 | E101.04188 | 10:41:26 123 23 | 00:00:01 16 90°
511 | N4.47240 | E101.04195 | 10:41:27 125 23 | 00:00:01 16 90°
012 | N4.47242 | E101.04203 | 10:41:28 127 32 | 00:00:01 22 76"
013 | N4.47242 | E101.04210 | 10:41:29 128 23 | 00:00:01 16 90°
014 | N4.47242 | E101.04218 | 10:41:30 130 31 | 00:00:01 21 90°
515 | N4.47244 | E101.04227 | 10:41:31 130 32 | 00:00:01 22 76°
516 | N4.47244 | E101.04235 | 10:41:32 131 31 | 00:00:01 21 90°
517 | N4.47247 | E101.04244 | 10:41:33 131 32 | 00:00:01 22 76°
018 | N4.47247 | E101.04253 | 10:41:34 131 31 | 00:00:01 21 90°
519 | N4.47249 | E101.04259 | 10:41:35 131 25 | 00:00:01 17 72°
520 | N4.47249 | E101.04268 | 10:41:36 131 31 | 00:00:01 21 90°
521 | N4.47249 | E101.04276 | 10:41:37 131 31 | 00:00:01 21 90°
522 | N4.47251 | E101.04287 | 10:41:38 131 40 | 00:00:01 27 79°
923 | N4.47251 | E101.04295 | 10:41:39 130 31 | 00:00:01 21 90°
924 | N4.47253 | E101.04304 | 10:41:40 128 32 | 00:00:01 22 76°
525 | N4.47253 | E101.04315 | 10:41:41 128 39 | 00:00:01 27 90°
526 | N4.47255 | £101.04326 | 10:41:42 127 40 | 00:00:01 27 79°
527 [N4.47255 | E101.04334 | 10:41:43 125 31 | 00:00:01 21 90°
528 | N4.47257 | E101.04345 | 10:41:44 123 40 | 00:00:01 27 79°
529 | N4.47259 | E101.04353 | 10:41:45 123 32 | 00:00:01 22 76°
530 | N4.47262 | E101.04364 | 10:41:46 120 40 | 00:00:01 27 79°
531 | N4.47266 | E101.04375 | 10:41:47 117 42 | 00:00:01 29 68°
532 | N4.47270 | E101.04383 | 10:41:48 114 35 | 00:00:01 24 63°
533 | N4.47277 | E101.04392 | 10:41:49 112 39 | 00:00:01 27 53°
534 | N4.47285 | E101.04398 | 10:41:50 109 39 | 00:00:01 27 3

APPENDIX A. THE VEHICLE TRAJECTORY DERIVED FROM GPS 115

535 | N4.47292 | E101.04407 | 10:41:51 108 39 | 00:00:01 27 53"
536 | N4.47300 | E101.04414 | 10:41:52 106 39 | 00:00:01 27 37°
537 | N4.47309 | E101.04422 | 10:41:53 105 44 1 00:00:01 30 45°
038 | N4.47317 | E101.04429 | 10:41:54 105 39 | 00:00:01 27 37°
539 | N4.47324 | E101.04437 | 10:41:55 105 39 | 00:00:01 27 53°
940 | N4.47330 | E101.04444 | 10:41:56 105 33 | 00:00:01 23 45°
541 | N4.47337 | E101.04452 | 10:41:57 103 39 | 00:00:01 27 53°
942 | N4.47343 | E101.04461 | 10:41:58 103 39 | 00:00:01 27 53°
943 | N4.47347 | £101.04469 | 10:41:59 103 35 | 00:00:01 24 63"
544 | N4.47354 | E101.04478 | 10:42:00 101 39 | 00:00:01 27 53°
945 | N4.47356 | E101.04484 | 10:42:01 101 25 | 00:00:01 17 72°
546 | N4.47360 | E101.04493 | 10:42:02 103 35 | 00:00:01 24 63°
547 | N4.47365 | E101.04501 | 10:42:03 103 35 | 00:00:01 24 63°
548 | N4.47369 | E101.04510 | 10:42:04 101 35 | 00:00:01 24 63°
549 | N4.47371 | E101.04519 | 10:42:05 103 32 | 00:00:01 22 76°
950 | N4.47375 | E101.04527 | 10:42:06 103 35 | 00:00:01 24 63"
051 | N4.47377 | E101.04536 | 10:42:07 103 32 | 00:00:01 22 76"
052 | N4.47382 | E101.04547 | 10:42:08 101 42| 00:00:01 29 68°
553 | N4.47386 | E101.04555 | 10:42:09 101 35 | 00:00:01 24 63°
554 | N4.47390 | E101.04566 | 10:42:10 101 42 | 00:00:01 29 68°
055 | N4.47392 | E101.04574 | 10:42:11 101 32 | 00:00:01 22 76°
556 | N4.47397 | E101.04585 | 10:42:12 101 42 | 00:00:01 29 68°
557 | N4.47401 | E101.04596 | 10:42:13 103 42 | 00:00:01 29 68°
558 | N4.47405 | E101.04607 | 10:42:14 105 42 | 00:00:01 29 68°
559 | N4.47410 | E101.04617 | 10:42:15 105 42 | 00:00:01 29 68°
060 | N4.47414 | E101.04626 | 10:42:16 105 35 | 00:00:01 24 63°
561 | N4.47416 | E101.04637 | 10:42:17 105 40 | 00:00:01 27 79°
962 | N4.47420 | E101.04647 | 10:42:18 106 42 | 00:00:01 29 68"

Table A.1: Relevant Raw Trajectory

Appendix B

ViTracker Tutorial

B.1 Introduction

This user manual is for ViTracker, vehicle tracking simulator platform. You can down-
load the executable from http://dewandaru.googlepages.com/source.zip ViTracker allows
the vehicle tracking or map-matching algorithms implemented and tested with various
scenarios. ViTracker is equipped with GPS simulator to give some position signal ran-
domness, if needed. Alternatively, the vehicle track could be edited, or be read from the
MapSource(tm) output text file. ViTracker is also able to produce a visualization of the

map-matching process in real-time.

B.2 Basic Usage

The first time the application is launched (by running prjViTracker.Exe), the user will be
presented with the blank map. What you need to prepare is the map and the simulation
file. The map file is a simple text initialization file (INI file). You can prepare the file like
the example below, or just open the map file that is supplied with the example (named
map.ini). To open the example, choose menu File/Open Map and browse for the map.ini
that is on the folder BatuGajah (the example folder).

;Note that ;" start a comment line and thus the line will be ignored by the system
;:0=(fill with your own BMP)

;(name for layer 1)=(Ini file name for the layer 1)

;(name for layer 2)=(Ini file name for the layer 2)

;ete.

[layers]

APPENDIX B. VITRACKER TUTORIAL 1147

0=Batugajah.bmp
RoadNet=layerl.ini
Vehicle Trajectory=VTrack.ini

After successfully loading the map file, you will be presented with the aerial view of
Batu Gajah town, which is taken from Google Earth. You could supply any bitmaps that
you like, just update the map file, at entry layer 0, to point to your custom bitmap.

Next, open and browse the simulation file (Sim.Ini) from the menu Simulation/Open.
This will load the necessary simulation information. If you want to load a recorded true

£ps points, then the simulation file should have this key/value pair under [config] section:

track=true_gps, Vehicle Trajectory

The “track” key is necessary. The true_gps could be replaced with simulated_gps, if
you like to have a simulated one. The next value (“Vehicle Trajectory”) must refer to the
name of one existing layer defined in the [layers] section in the map file. In this case, we
would like to appoint the Vehicle Trajectory layer to serve as the GPS points record. The
Vehicle Trajectory layer is normally prepared by a special command Simulation/Import
Garmin Tracks.

After you have open both map and simulation file, you can press the “Run” to see
how the active map-matching algorithm performed. The vehicle and its short trace is
represented by a small green arrow. The map-matched route is represented by a thick
blue line. The overall (future and past) route for the true_gps option is represented by a

circular red line.

B.3 Digitizing a Map

To prepare map, you can start from the bitmap as the background, then by encoding
the important nodes and arcs based on that bitmap. To start, get a background bitmap
that you want to digitize. It should be aerial with some easily identifiable landmarks.
The landmarks will be useful in the georeferencing process later on. Assume that the
background bitmap is named “map.bmp”, and placed in the same folder as the map file
“map.ini”, folder F. Put “map.bmp” within the [layers] section of “map.ini”, specifically,
in the special layer 0. Then, you can open and modify the “layerl.ini” that is available
in the example provided. Save the modification in folder F. Also, add within the layers|
section, a reference to “layerl.ini”.

APPENDIX B. VITRACKER TUTORIAL 118

The next step is to add relevant nodes within the blank map and connecting them.
The nodes are placed in the road intersection, or in a relevant road curvature. Please pick
the “Editor” tab in the far right. You create nodes by picking Add node command and
then clicking on the screen. Then you create arcs by selecting the nodes and then issue a
Create Road from Nodes. Others are supportive commands and can be explored easily,
especially noting the instruction messages that appear on the center of the application
window.

After this process, it is necessary to attach / register the map to the real coordinate.
This is done by selecting the “Set Registration” command. You will be asked with a
reference node Id (the number that is shown on the node) and a location (Lat/Long)

of that node. This is done two times and you must enter in a string formatted here

chfnudo:xabs:yahs:rcfnodeQ:xabs2:yab52 . for example,
1:101.041361:4.476494:49:101.037825:4.472722

